
Return to JMF API

Java API User’s Guide

How to Locate API
To Locate a Package:

Go to the Package Index

To Locate a Class or Interface:

Go to the Class Hierarchy and then use "Find" in your browser.
Once you’re at a class page, use the Next/Previous links to browse through classes in that
package alphabetically. The link called "This Package" in the navigation bar takes you to the
list of classes in that package.

To Locate a Method, Field or Constructor:

Use the Index of Fields and Methods

How This Document Is Organized
This document has three types of pages, corresponding to three different levels of API, plus a class
hierarchy and an index of fields and methods.

Level 1 - All Packages
Example: Java Platform Core API

This page provides a list of all packages and is the front page of this document.

Level 2 - All Classes and Interfaces within a Package
Example: Package java.awt

This type of page provides links to the public classes and interfaces in a given package. It can
contain four categories:

Interfaces
Classes
Exceptions
Errors

Level 3 - A Single Class or Interface
Example: Class Label

Near the top of the page is a class inheritance diagram, starting with java.lang.Object and ending
with the class or interface. This is followed by the class declaration and a general class
description.

Following this are two sections: the indexes for this page, followed by detailed descriptions.
(Each index entry contains the first sentence from the detailed description for that item.) The
index entries are alphabetical, while the detailed descriptions are in the order they appear in the
source code. This is done to preserve the logical groupings established by the programmer. These
are the categories, in order (where a category is omitted when it has no entries):

Field Index
Constructor Index
Method Index
Fields
Constructors
Methods

The fields, constructors and methods have additional color coding as follows:
[IMAGE] Instance Variable (Non-Static Field)
[IMAGE] Static Field (Class Variable)
[IMAGE] Constructor
[IMAGE] Instance Method (Non-Static Method)
[IMAGE] Class Method (Static Method)

Class Hierarchy
The Class Hierarchy contains a list of all the classes and interfaces starting with java.lang.Object,
organized first by their inheritance structure, and within that structure sorted alphabetically by
class or interface. Most every page has a "Class Hierarchy" link in the navigation bar to get to
this page.

Index of Fields and Methods
The Index of Fields and Methods contains a list of all fields, methods and constructors, sorted
alphabetically. Most every page has an "Index" link in the navigation bar to get to this page.

Submit a bug or feature

http://java.sun.com/cgi-bin/bugreport.cgi

All Packages Class Hierarchy

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index of all Fields and Methods

A
addController (Controller). Method in interface javax.media.Player

Assume control of another Controller .
addControllerListener (ControllerListener). Method in interface javax.media.Controller

Specify a ControllerListener to which this Controller will send events.
addGainChangeListener(GainChangeListener). Method in interface javax.media.GainControl

Register for gain change update events.

C
CachingControlEvent(Controller, CachingControl, long). Constructor for class
javax.media.CachingControlEvent

Construct a CachingControlEvent from the required elements.
ClockStartedError (). Constructor for class javax.media.ClockStartedError

Construct a ClockStartedError with no message.
ClockStartedError (String). Constructor for class javax.media.ClockStartedError

Construct a ClockStartedError that contains the specified reason message.
ClockStoppedException(). Constructor for class javax.media.ClockStoppedException
ClockStoppedException(String). Constructor for class javax.media.ClockStoppedException
close(). Method in interface javax.media.Controller

Release all resources and cease all activity.
commitContentPrefixList (). Static method in class javax.media.PackageManager

Make changes to the content prefix-list persistent.
commitProtocolPrefixList (). Static method in class javax.media.PackageManager

Make changes to the protocol package-prefix list persistent.
conn. Variable in class javax.media.protocol.URLDataSource
connect(). Method in class javax.media.protocol.DataSource

Open a connection to the source described by the MediaLocator .
connect(). Method in class javax.media.protocol.URLDataSource

Initialize the connection with the source.
connected. Variable in class javax.media.protocol.URLDataSource
ConnectionErrorEvent(Controller). Constructor for class javax.media.ConnectionErrorEvent
ConnectionErrorEvent(Controller, String). Constructor for class javax.media.ConnectionErrorEvent
CONTENT_UNKNOWN . Static variable in class javax.media.protocol.ContentDescriptor
ContentDescriptor(String). Constructor for class javax.media.protocol.ContentDescriptor

Create a content descriptor with the specified name.
contentType. Variable in class javax.media.protocol.URLDataSource
ControllerClosedEvent(Controller). Constructor for class javax.media.ControllerClosedEvent

Construct a ControllerClosedEvent .

ControllerClosedEvent(Controller, String). Constructor for class javax.media.ControllerClosedEvent
ControllerErrorEvent (Controller). Constructor for class javax.media.ControllerErrorEvent
ControllerErrorEvent (Controller, String). Constructor for class javax.media.ControllerErrorEvent
ControllerEvent (Controller). Constructor for class javax.media.ControllerEvent
controllerUpdate(ControllerEvent). Method in interface javax.media.ControllerListener

This method is called when an event is generated by a Controller that this listener is
registered with.

createDataSource(MediaLocator). Static method in class javax.media.Manager
Create a DataSource for the specified media.

createDataSource(URL). Static method in class javax.media.Manager
Create a DataSource for the specified media.

createPlayer(DataSource). Static method in class javax.media.Manager
Create a Player for the DataSource .

createPlayer(MediaLocator). Static method in class javax.media.Manager
Create a Player for the specified media.

createPlayer(URL). Static method in class javax.media.Manager
Create a Player for the specified media.

D
DataSource(). Constructor for class javax.media.protocol.DataSource

A no-argument constructor required by pre 1.1 implementations so that this class can be
instantiated by calling Class.newInstance .

DataSource(MediaLocator). Constructor for class javax.media.protocol.DataSource
Construct a DataSource from a MediaLocator .

DataStarvedEvent(Controller, int, int, int, Time). Constructor for class
javax.media.DataStarvedEvent
deallocate(). Method in interface javax.media.Controller

Abort the current operation and cease any activity that consumes system resources.
DeallocateEvent(Controller, int, int, int, Time). Constructor for class javax.media.DeallocateEvent
disconnect(). Method in class javax.media.protocol.DataSource

Close the connection to the source described by the locator.
disconnect(). Method in class javax.media.protocol.URLDataSource

Disconnect the source.
DURATION_UNBOUNDED . Static variable in interface javax.media.Duration

Returned by getDuration .
DURATION_UNKNOWN . Static variable in interface javax.media.Duration

Returned by getDuration .
DurationUpdateEvent(Controller, Time). Constructor for class javax.media.DurationUpdateEvent

E
EndOfMediaEvent(Controller, int, int, int, Time). Constructor for class
javax.media.EndOfMediaEvent
endOfStream(). Method in interface javax.media.protocol.SourceStream

Find out if the end of the stream has been reached.

G
gainChange(GainChangeEvent). Method in interface javax.media.GainChangeListener

This method is called to deliver a GainChangeEvent when the state of a GainControl
changes.

GainChangeEvent(GainControl, boolean, float, float). Constructor for class
javax.media.GainChangeEvent
getCachingControl(). Method in class javax.media.CachingControlEvent

Get the CachingControl object that generated the event.
getContentDescriptor(). Method in interface javax.media.protocol.SourceStream

Get the current content type for this stream.
getContentLength(). Method in interface javax.media.CachingControl

Get the total number of bytes in the media being downloaded.
getContentLength(). Method in interface javax.media.protocol.SourceStream

Get the size, in bytes, of the content on this stream.
getContentPrefixList(). Static method in class javax.media.PackageManager

Get the current value of the content package-prefix list.
getContentProgress(). Method in interface javax.media.CachingControl

Get the total number of bytes of media data that have been downloaded so far.
getContentProgress(). Method in class javax.media.CachingControlEvent

Get the total number of bytes of media data that have been downloaded so far.
getContentType(). Method in class javax.media.protocol.ContentDescriptor

Obtain a string that represents the content-name for this descriptor.
getContentType(). Method in class javax.media.protocol.DataSource

Get a string that describes the content-type of the media that the source is providing.
getContentType(). Method in class javax.media.protocol.URLDataSource

Return the content type name.
getControl(String). Method in interface javax.media.Controller

Get the Control that supports the class or interface specified.
getControl(String). Method in interface javax.media.protocol.Controls

Obtain the object that implements the specified Class or Interface The full class or
interface name must be used.

getControl(String). Method in class javax.media.protocol.URLDataSource
Returns null, because this source doesn’t provide any controls.

getControlComponent(). Method in interface javax.media.CachingControl
Get a Component that provides additional download control.

getControlComponent(). Method in interface javax.media.Control
Get the Component associated with this Control object.

getControlPanelComponent(). Method in interface javax.media.Player
Obtain the Component that provides the default user interface for controlling this Player .

getControls(). Method in interface javax.media.Controller
Get a list of the Control objects that this Controller supports.

getControls(). Method in interface javax.media.protocol.Controls
Obtain the collection of objects that control the object that implements this interface.

getControls(). Method in class javax.media.protocol.URLDataSource
Returns an empty array, because this source doesn’t provide any controls.

getCurrentRate(). Method in class javax.media.protocol.RateRange
Get the current rate.

getCurrentState(). Method in class javax.media.TransitionEvent
Get the Controller’s state at the time this event was generated

getDataSource(). Method in interface javax.media.MediaProxy
Obtain the new DataSource .

getDataSourceList(String). Static method in class javax.media.Manager
Build a list of DataSource class names from the protocol prefix-list and a protocol name.

getDB(). Method in class javax.media.GainChangeEvent
Get the GainControl’s new gain value in dB.

getDB(). Method in interface javax.media.GainControl
Get the current gain set for this object in dB.

getDuration(). Method in interface javax.media.Duration
Get the duration of the media represented by this object.

getDuration(). Method in class javax.media.DurationUpdateEvent
Get the duration of the media that this Controller is using.

getDuration(). Method in class javax.media.protocol.URLDataSource
Returns Duration.DURATION_UNKNOWN.

getGainControl(). Method in interface javax.media.Player
Obtain the object for controlling this Player’s audio gain.

getHandlerClassList(String). Static method in class javax.media.Manager
Build a list of Handler/CODE> classes from the content-prefix-list and
a content name.

getLevel (). Method in class javax.media.GainChangeEvent
Get the GainControl’s new gain value in the level scale.

getLevel (). Method in interface javax.media.GainControl
Get the current gain set for this object as a value between 0.0
and 1.0

getLocator (). Method in class javax.media.protocol.DataSource
Get the MediaLocator that describes this source.

getMaximumRate (). Method in class javax.media.protocol.RateRange
Get the maximum rate supported by this range.

getMediaNanoseconds (). Method in interface javax.media.Clock
Get this Clock’s current media time in nanoseconds.

getMediaTime (). Method in interface javax.media.Clock
Get this Clock’s current media time .

getMediaTime (). Method in class javax.media.MediaTimeSetEvent
Get the new media time of the Controller that generated this
event.

getMediaTime (). Method in class javax.media.StartEvent
Get the clock time (media time) when the Controller started.

getMediaTime (). Method in class javax.media.StopEvent
Get the clock time (media time) that was passed into the
constructor.

getMessage (). Method in class javax.media.ControllerClosedEvent
Obtain the message describing why this event occurred.

getMinimumRate (). Method in class javax.media.protocol.RateRange
Get the minimum rate supported by this range.

getMinimumTransferSize (). Method in interface
javax.media.protocol.PushSourceStream

Determine the size of the buffer needed for the data transfer.

getMute (). Method in class javax.media.GainChangeEvent
Get the GainControl’s new mute value.

getMute (). Method in interface javax.media.GainControl
Get the mute state of the signal associated with this
GainControl.

getNanoseconds (). Method in class javax.media.Time
Get the time value in nanoseconds.

getNanoseconds (). Method in interface javax.media.TimeBase
Get the current time of the TimeBase specified in nanoseconds.

getPreviousState (). Method in class javax.media.TransitionEvent
Get the state that the Controller was in before this event
occurred.

getProgressBarComponent (). Method in interface
javax.media.CachingControl

Get a Component for displaying the download progress.
getProtocol (). Method in class javax.media.MediaLocator

Get the beginning of the locator string up to but not including
the first colon.

getProtocolPrefixList (). Static method in class
javax.media.PackageManager

Get the current value of the protocol package-prefix list.
getRate (). Method in interface javax.media.Clock

Get the current temporal scale factor.
getRate (). Method in class javax.media.RateChangeEvent

Get the new rate of the Controller that generated this event.
getRate (). Method in interface
javax.media.protocol.RateConfiguration

Get the RateRange for this configuration.
getRateConfigurations (). Method in interface
javax.media.protocol.RateConfigureable

Get the rate configurations that this object supports.
getRemainder (). Method in class javax.media.MediaLocator

Get the MediaLocator string with the protocol removed.
getSeconds (). Method in class javax.media.Time

Get the time value in seconds.
getSource (). Method in class javax.media.ControllerEvent
getSource (). Method in class javax.media.GainChangeEvent

Get the object that posted this event.
getSource (). Method in interface javax.media.MediaEvent
getSourceController (). Method in class javax.media.ControllerEvent

Get the Controller that posted this event.
getSourceGainControl (). Method in class javax.media.GainChangeEvent

Get the GainControl that posted this event.
getStartLatency (). Method in interface javax.media.Controller

Get the Controller’s start latency in nanoseconds.
getState (). Method in interface javax.media.Controller

Get the current state of this Controller.
getStopTime (). Method in interface javax.media.Clock

Get the last value successfully set by setStopTime.

getStopTime (). Method in class javax.media.StopTimeChangeEvent
Get the new stop-time for the Controller that generated this
event.

getStreams (). Method in class javax.media.protocol.PullDataSource
Get the collection of streams that this source manages.

getStreams (). Method in class javax.media.protocol.PushDataSource
Get the collection of streams that this source manages.

getStreams (). Method in interface
javax.media.protocol.RateConfiguration

Get the streams that will have content at this rate.
getStreams (). Method in class javax.media.protocol.URLDataSource

Get the collection of streams that this source manages.
getSyncTime (). Method in interface javax.media.Clock

Get the current media time or the time until this Clock will
synchronize to its TimeBase.

getSystemTimeBase (). Static method in class javax.media.Manager
Get the time-base object for the system.

getTargetState (). Method in interface javax.media.Controller
Get the current target state of this Controller.

getTargetState (). Method in class javax.media.TransitionEvent
Get the Controller’s target state at the time this event was
generated.

getTime (). Method in interface javax.media.TimeBase
Get the current time of this TimeBase.

getTimeBase (). Method in interface javax.media.Clock
Get the TimeBase that this Clock is using.

getTimeBaseTime (). Method in class javax.media.StartEvent
Get the time-base time that started the Controller.

getURL (). Method in class javax.media.MediaLocator
Get the URL associated with this MediaLocator.

getVisualComponent (). Method in interface javax.media.Player
Obtain the display Component for this Player.

I
IncompatibleSourceException (). Constructor for class
javax.media.IncompatibleSourceException
IncompatibleSourceException (String). Constructor for class
javax.media.IncompatibleSourceException
IncompatibleTimeBaseException (). Constructor for class
javax.media.IncompatibleTimeBaseException
IncompatibleTimeBaseException (String). Constructor for class
javax.media.IncompatibleTimeBaseException
initCheck (). Method in class javax.media.protocol.DataSource

Check to see if this connection has been initialized with a
MediaLocator.

InternalErrorEvent (Controller). Constructor for class
javax.media.InternalErrorEvent

InternalErrorEvent (Controller, String). Constructor for class
javax.media.InternalErrorEvent
isDownloading (). Method in interface javax.media.CachingControl

Check whether or not media is being downloaded.
isExact (). Method in class javax.media.protocol.RateRange

Determine whether or not the source will maintain a constant
speed when using this rate.

isRandomAccess (). Method in interface
javax.media.protocol.Positionable

Find out if this source can be repositioned to any point in the
stream.

isRandomAccess (). Method in interface javax.media.protocol.Seekable
Find out if this source can position anywhere in the stream.

L
LATENCY_UNKNOWN. Static variable in interface javax.media.Controller

Returned by getStartLatency.
LENGTH_UNKNOWN. Static variable in interface
javax.media.CachingControl

Use to indicate that the CachingControl doesn’t know how long the
content is.

The definition is: LENGTH_UNKNOWN == Long.MAX_VALUE
LENGTH_UNKNOWN. Static variable in interface
javax.media.protocol.SourceStream

M
mapToTimeBase (Time). Method in interface javax.media.Clock

Get the TimeBase time corresponding to the specified media time .
MediaError (). Constructor for class javax.media.MediaError
MediaError (String). Constructor for class javax.media.MediaError
MediaException (). Constructor for class javax.media.MediaException
MediaException (String). Constructor for class
javax.media.MediaException
MediaLocator (String). Constructor for class javax.media.MediaLocator
MediaLocator (URL). Constructor for class javax.media.MediaLocator
MediaTimeSetEvent (Controller, Time). Constructor for class
javax.media.MediaTimeSetEvent
message . Variable in class javax.media.ControllerClosedEvent
mimeTypeToPackageName (String). Static method in class
javax.media.protocol.ContentDescriptor

Map a MIME content-type to an equivalent string of class-name
components.

N
nanoseconds . Variable in class javax.media.Time

Time is kept to a granularity of nanoseconds.
NoDataSourceException (). Constructor for class
javax.media.NoDataSourceException
NoDataSourceException (String). Constructor for class
javax.media.NoDataSourceException
NoPlayerException (). Constructor for class
javax.media.NoPlayerException
NoPlayerException (String). Constructor for class
javax.media.NoPlayerException
NotPrefetchedError (String). Constructor for class
javax.media.NotPrefetchedError
NotRealizedError (String). Constructor for class
javax.media.NotRealizedError

O
ONE_SECOND. Static variable in class javax.media.Time

P
PackageManager (). Constructor for class javax.media.PackageManager
prefetch (). Method in interface javax.media.Controller

Process as much data as necessary to reduce the Controller’s
start latency to the shortest possible time.

PrefetchCompleteEvent (Controller, int, int, int). Constructor for
class javax.media.PrefetchCompleteEvent
Prefetched . Static variable in interface javax.media.Controller

Returned by getState.
Prefetching . Static variable in interface javax.media.Controller

Returned by getState.
PullDataSource (). Constructor for class
javax.media.protocol.PullDataSource
PushDataSource (). Constructor for class
javax.media.protocol.PushDataSource

R
RateChangeEvent (Controller, float). Constructor for class
javax.media.RateChangeEvent
RateRange (float, float, float, boolean). Constructor for class
javax.media.protocol.RateRange

Constructor using required values.

RateRange (RateRange). Constructor for class
javax.media.protocol.RateRange

Copy constructor.
read (byte[], int, int). Method in interface
javax.media.protocol.PullSourceStream

Block and read data from the stream.
read (byte[], int, int). Method in interface
javax.media.protocol.PushSourceStream

Read from the stream without blocking.
realize (). Method in interface javax.media.Controller

Construct the media dependent portions of the Controller.
RealizeCompleteEvent (Controller, int, int, int). Constructor for
class javax.media.RealizeCompleteEvent
Realized . Static variable in interface javax.media.Controller

Returned by getState.
Realizing . Static variable in interface javax.media.Controller

Returned by getState.
removeController (Controller). Method in interface javax.media.Player

Stop controlling a Controller.
removeControllerListener (ControllerListener). Method in interface
javax.media.Controller

Remove the specified listener from this Controller’s listener
list.

removeGainChangeListener (GainChangeListener). Method in interface
javax.media.GainControl

Remove interest in gain change update events.
RESET. Static variable in interface javax.media.Clock

Returned by getStopTime if the stop-time is unset.
ResourceUnavailableEvent (Controller). Constructor for class
javax.media.ResourceUnavailableEvent
ResourceUnavailableEvent (Controller, String). Constructor for class
javax.media.ResourceUnavailableEvent
RestartingEvent (Controller, int, int, int, Time). Constructor for
class javax.media.RestartingEvent
RoundDown. Static variable in interface
javax.media.protocol.Positionable
RoundNearest . Static variable in interface
javax.media.protocol.Positionable
RoundUp. Static variable in interface
javax.media.protocol.Positionable

S
secondsToNanoseconds (double). Method in class javax.media.Time

Convert seconds to nanoseconds.
seek (long). Method in interface javax.media.protocol.Seekable

Seek to the specified point in the stream.

setContentPrefixList (Vector). Static method in class
javax.media.PackageManager

Set the current value of the content package-prefix list.
setCurrentRate (float). Method in class
javax.media.protocol.RateRange

Set the current rate.
setDB (float). Method in interface javax.media.GainControl

Set the gain in decibels.
setLevel (float). Method in interface javax.media.GainControl

Set the gain using a floating point scale with values between 0.0
and 1.0.

setLocator (MediaLocator). Method in class
javax.media.protocol.DataSource

Set the connection source for this DataSource.
setMediaTime (Time). Method in interface javax.media.Clock

Set the Clock’s media time .
setMute (boolean). Method in interface javax.media.GainControl

Mute or unmute the signal associated with this GainControl.
setPosition (Time, int). Method in interface
javax.media.protocol.Positionable

Set the position to the specified time.
setProtocolPrefixList (Vector). Static method in class
javax.media.PackageManager

Set the protocol package-prefix list.
setRate (float). Method in interface javax.media.Clock

Set the temporal scale factor.
setRateConfiguration (RateConfiguration). Method in interface
javax.media.protocol.RateConfigureable

Set a new RateConfiguration.
setSource (DataSource). Method in interface javax.media.MediaHandler

Set the media source the MediaHandler should use to obtain
content.

setStopTime (Time). Method in interface javax.media.Clock
Set the media time at which you want the Clock to stop.

setTimeBase (TimeBase). Method in interface javax.media.Clock
Set the TimeBase for this Clock.

setTransferHandler (SourceTransferHandler). Method in interface
javax.media.protocol.PushSourceStream

Register an object to service data transfers to this stream.
sources . Variable in class javax.media.protocol.URLDataSource
start (). Method in class javax.media.protocol.DataSource

Initiate data-transfer.
start (). Method in interface javax.media.Player

Start the Player as soon as possible.
start (). Method in class javax.media.protocol.URLDataSource

Initiate data-transfer.
Started . Static variable in interface javax.media.Controller

Returned by getState.

StartEvent (Controller, int, int, int, Time, Time). Constructor for
class javax.media.StartEvent

Construct a new StartEvent.
stop (). Method in interface javax.media.Clock

Stop the Clock.
stop (). Method in class javax.media.protocol.DataSource

Stop the data-transfer.
stop (). Method in class javax.media.protocol.URLDataSource

Stops the
StopAtTimeEvent (Controller, int, int, int, Time). Constructor for
class javax.media.StopAtTimeEvent
StopByRequestEvent (Controller, int, int, int, Time). Constructor for
class javax.media.StopByRequestEvent
StopEvent (Controller, int, int, int, Time). Constructor for class
javax.media.StopEvent
StopTimeChangeEvent (Controller, Time). Constructor for class
javax.media.StopTimeChangeEvent
StopTimeSetError (String). Constructor for class
javax.media.StopTimeSetError
syncStart (Time). Method in interface javax.media.Clock

Synchronize the current media time to the specified time-base
time and start the Clock.

T
tell (). Method in interface javax.media.protocol.Seekable

Obtain the current point in the stream.
Time (double). Constructor for class javax.media.Time

Construct a time in seconds.
Time (long). Constructor for class javax.media.Time

Construct a time in nanoseconds.
toExternalForm (). Method in class javax.media.MediaLocator

Create a string from the URL argument that can be used to
construct the MediaLocator.

toString (). Method in class javax.media.MediaLocator
Used for printing MediaLocators.

transferData (PushSourceStream). Method in interface
javax.media.protocol.SourceTransferHandler

Transfer new data from a PushSourceStream.
TransitionEvent (Controller, int, int, int). Constructor for class
javax.media.TransitionEvent

Construct a new TransitionEvent.
typeName . Variable in class javax.media.protocol.ContentDescriptor

U
UNKNOWN_CONTENT_NAME. Static variable in class javax.media.Manager
Unrealized . Static variable in interface javax.media.Controller

Returned by getState.
URLDataSource (). Constructor for class
javax.media.protocol.URLDataSource

Implemented by subclasses.
URLDataSource (URL). Constructor for class
javax.media.protocol.URLDataSource

Construct a URLDataSource directly from a URL.

W
willReadBlock (). Method in interface
javax.media.protocol.PullSourceStream

Find out if data is available now.

All Packages Class Hierarchy Index

package javax.media

Interface Index
CachingControl
Clock
Control
Controller
ControllerListener
Duration
GainChangeListener
GainControl
MediaEvent
MediaHandler
MediaProxy
Player
TimeBase

Class Index
CachingControlEvent
ConnectionErrorEvent
ControllerClosedEvent
ControllerErrorEvent
ControllerEvent
DataStarvedEvent
DeallocateEvent
DurationUpdateEvent
EndOfMediaEvent
GainChangeEvent
InternalErrorEvent
Manager
MediaLocator
MediaTimeSetEvent
PackageManager
PrefetchCompleteEvent
RateChangeEvent
RealizeCompleteEvent
ResourceUnavailableEvent
RestartingEvent
StartEvent
StopAtTimeEvent
StopByRequestEvent

StopEvent
StopTimeChangeEvent
Time
TransitionEvent

Exception Index
ClockStoppedException
IncompatibleSourceException
IncompatibleTimeBaseException
MediaException
NoDataSourceException
NoPlayerException

Error Index
ClockStartedError
MediaError
NotPrefetchedError
NotRealizedError
StopTimeSetError

All Packages Class Hierarchy Index

package javax.media.protocol

Interface Index
Controls
Positionable
PullSourceStream
PushSourceStream
RateConfiguration
RateConfigureable
Seekable
SourceStream
SourceTransferHandler

Class Index
ContentDescriptor
DataSource
PullDataSource
PushDataSource
RateRange
URLDataSource

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.CachingControl
public interface CachingControl
extends Control

CachingControl is an interface supported by Players that are capable of reporting download
progress. Typically, this control is accessed through the Controller.getControls method. A
Controller that supports this control will post CachingControlEvents often enough to
support the implementation of custom progress GUIs.

Version:
1.18, 97/08/25.

See Also:
Controller, ControllerListener, CachingControlEvent, Player

Variable Index
o LENGTH_UNKNOWN

Use to indicate that the CachingControl doesn’t know how long the content is.

The definition is: LENGTH_UNKNOWN == Long.MAX_VALUE

Method Index
o getContentLength()

Get the total number of bytes in the media being downloaded.
o getContentProgress()

Get the total number of bytes of media data that have been downloaded so far.
o getControlComponent()

Get a Component that provides additional download control.
o getProgressBarComponent()

Get a Component for displaying the download progress.
o isDownloading()

Check whether or not media is being downloaded.

Variables
o LENGTH_UNKNOWN

 public static final long LENGTH_UNKNOWN

Use to indicate that the CachingControl doesn’t know how long the content is.

The definition is: LENGTH_UNKNOWN == Long.MAX_VALUE

Methods
o isDownloading

 public abstract boolean isDownloading()

Check whether or not media is being downloaded.

Returns:
Returns true if media is being downloaded; otherwise returns false . .

o getContentLength

 public abstract long getContentLength()

Get the total number of bytes in the media being downloaded. Returns LENGTH_UNKNOWN if
this information is not available.

Returns:
The media length in bytes, or LENGTH_UNKNOWN.

o getContentProgress

 public abstract long getContentProgress()

Get the total number of bytes of media data that have been downloaded so far.

Returns:
The number of bytes downloaded.

o getProgressBarComponent

 public abstract Component getProgressBarComponent()

Get a Component for displaying the download progress.

Returns:
Progress bar GUI.

o getControlComponent

 public abstract Component getControlComponent()

Get a Component that provides additional download control. Returns null if only a progress
bar is provided.

Returns:
Download control GUI.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.CachingControlEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.CachingControlEvent

public class CachingControlEvent
extends ControllerEvent

This event is generated by a Controller that supports the CachingControl interface. It is
posted when the caching state changes.

Version:
1.10, 97/08/23.

See Also:
Controller, ControllerListener, CachingControl

Constructor Index
o CachingControlEvent(Controller, CachingControl, long)

Construct a CachingControlEvent from the required elements.

Method Index
o getCachingControl()

Get the CachingControl object that generated the event.
o getContentProgress()

Get the total number of bytes of media data that have been downloaded so far.

Constructors
o CachingControlEvent

 public CachingControlEvent(Controller from,
 CachingControl cacheControl,
 long progress)

Construct a CachingControlEvent from the required elements.

Methods
o getCachingControl

 public CachingControl getCachingControl()

Get the CachingControl object that generated the event.

Returns:
The CachingControl object.

o getContentProgress

 public long getContentProgress()

Get the total number of bytes of media data that have been downloaded so far.

Returns:
The number of bytes of media data downloaded.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.Clock
public interface Clock

The Clock interface is implemented by objects that support the Java Media time model. For example,
this interface might be implemented by an object that decodes and renders MPEG movies.

Clock and TimeBase
A Clock contains a TimeBase that provides a source of time, much like a crystal oscillator. The
only information that a TimeBase provides is its current time; it does not provide any methods for
influencing how time is kept. A Clock defines a transformation on the time that its TimeBase
keeps, typically marking time for a particular media stream. The time that a Clock keeps is referred
to as the media time.

Clock Transform
The transformation that a Clock defines on a TimeBase is defined by three parameters: rate, media
start-time (mst), and time-base start-time (tbst). Given a time-base time (tbt), the media time (mt) can
be calculated using the following transformation:

mt = mst + (tbt - tbst)*rate

The rate is simply a scale factor that is applied to the TimeBase . For example, a rate of 2.0 indicates
that the Clock will run at twice the rate of its TimeBase . Similarly, a negative rate indicates that the
Clock runs in the opposite direction of its TimeBase .

The time-base start-time and the media start-time define a common point in time at which the Clock
and the TimeBase are synchronized.

Default Time Base
A Clock has a default TimeBase . For many objects that support the Clock interface, the default
TimeBase is the system TimeBase . The system TimeBase can be obtained from Manager
through the getSystemTimeBase method.

Some Clocks have a TimeBase other than the system TimeBase . For example, an audio renderer
that implements the Clock interface might have a TimeBase that represents a hardware clock.

Using a Clock
You can get the TimeBase associated with a Clock by calling the getTimeBase method. To
change the TimeBase that a Clock uses, you call the setTimeBase method. These get and set
methods can be used together to synchronize different Clocks to the same TimeBase .

For example, an application might want to force a video renderer to sync to the TimeBase of an
audio renderer. To do this, the application would call getTimeBase on the audio renderer and then
use the value returned to call setTimeBase on the video renderer. This would ensure that the two
rendering objects use the same source of time. You can reset a Clock to use its default TimeBase
by calling setTimeBase(null) .

Some Clocks are incapable of using another TimeBase . If this is the case, an
IncompatibleTimeBaseException is thrown when setTimeBase is called.

Clock also provides methods for getting and setting a Clock’s media time and rate:

getMediaTime and setMediaTime
getRate and setRate

Starting a Clock
Until a Clock’s TimeBase transformation takes effect, the Clock is in the Stopped state. Once all
three transformation parameters (media start-time, time-base start-time, and rate) have been provided
to the Clock , it enters the Started state.

To start a Clock , syncStart is called with the time-base start-time as an argument. The new
media start-time is taken as the current media time, and the current rate defines the Clock’s rate
parameter. When syncStart is called, the Clock and its TimeBase are locked in sync and the
Clock is considered to be in the Started state.

When a Clock is stopped and then restarted (using syncStart), the media start-time for the
restarted Clock is the current media time. The syncStart method is often used to synchronize two
Clocks that share the same TimeBase . When the time-base start-time and rate of each clock are set
to the same values and each Clock is set with the appropriate media start-time, the two Clocks will
run in sync.

When syncStart is called with a new time-base start-time, the synchronization with the media time
doesn’t occur until the TimeBase reaches the time-base start-time. The getMediaTime method
returns the untransformed media time until the TimeBase reaches the time-base start-time.

The getSyncTime method behaves slightly differently. Once syncStart is invoked,
getSyncTime always reports the transformed time-base time, whether or not the time-base
start-time has been reached. You can use getSyncTime to determine how much time remains
before the time-base start-time is reached. When the time-base start-time is reached, both
getMediaTime and getSyncTime return the same value.

Objects that implement the Clock interface can provide more convenient start methods than
syncStart . For example, Player defines start , which should be used instead of syncStart
to start a Player .

Stopping a Clock
A Stopped Clock is no longer synchronized to its TimeBase . When a Clock is Stopped, its media
time no longer moves in rate-adjusted synchronization with the time-base time provided by its
TimeBase .

There are two ways to explicitly stop a Clock : you can invoke stop or set a media stop-time. When
stop is invoked, synchronization with the TimeBase immediately stops. When a media stop-time is
set, synchronization stops when the media stop-time passes.

A Clock’s rate affects how its media stop-time is interpreted. If its rate is positive, the Clock stops
when the media time becomes greater than or equal to the stop time. If its rate is negative, the Clock
stops when the media time becomes less than or equal to the stop time.

If the stop-time is set to a value that the Clock has already passed, the Clock immediately stops.

Once a stop-time is set, it remains in effect until it is changed or cleared. To clear a stop-time, call
setStopTime with Clock.RESET . A Clock’s stop-time is cleared automatically when it stops.

If no stop-time is ever set or if the stop-time is cleared, the only way to stop the Clock is to call the
stop method.

Clock State
Conceptually, a Clock is always in one of two states: Started or Stopped. A Clock enters the
Started state after syncStart has been called and the Clock is mapped to its TimeBase . A
Clock returns to the Stopped state immediately when the stop method is called or the media time
passes the stop time.

Certain methods can only be invoked when the Clock is in a particular state. If the Clock is in the
wrong state when one of these methods is called, an error or exception is thrown.

Methods Restricted to Started Clocks
The mapToTimeBase method can only be called on a Clock in the Started state. If it is invoked on
a Stopped Clock , a ClockStoppedException is thrown. This is because the Clock is not
synchronized to a TimeBase when it is Stopped.

Methods Restricted to Stopped Clocks
The following methods can only be called on a Clock in the Stopped state. If invoked on a Started
Clock , these methods throw a ClockStartedError .

syncStart
setTimeBase
setMediaTime
setRate

Resetting the rate, the media time, the time base, or the time-base start-time implies a complete
remapping between the Clock and its TimeBase and is not allowed on a Started Clock .

Methods with Additional Restrictions
A race condition occurs if a new media stop-time is set when a Clock is already approaching a
previously set media stop-time. In this situation, it impossible to guarantee when the Clock will stop.
To prevent this race condition, setStopTime can only be set once on a Started Clock . A
StopTimeSetError is thrown if setStopTime is called and the media stop-time has already
been set.

There are no restrictions on calling setStopTime on a Stopped Clock ; the stop time can always be
reset if the Clock is Stopped.

Version:
1.42, 97/08/25

See Also:
TimeBase, Player

Variable Index
o RESET

Returned by getStopTime if the stop-time is unset.

Method Index
o getMediaNanoseconds()

Get this Clock’s current media time in nanoseconds.
o getMediaTime()

Get this Clock’s current media time.
o getRate()

Get the current temporal scale factor.
o getStopTime()

Get the last value successfully set by setStopTime .
o getSyncTime()

Get the current media time or the time until this Clock will synchronize to its TimeBase .
o getTimeBase()

Get the TimeBase that this Clock is using.
o mapToTimeBase(Time)

Get the TimeBase time corresponding to the specified media time.
o setMediaTime(Time)

Set the Clock’s media time.
o setRate(float)

Set the temporal scale factor.
o setStopTime(Time)

Set the media time at which you want the Clock to stop.
o setTimeBase(TimeBase)

Set the TimeBase for this Clock .
o stop()

Stop the Clock .
o syncStart(Time)

Synchronize the current media time to the specified time-base time and start the Clock .

Variables
o RESET

 public static final Time RESET

Returned by getStopTime if the stop-time is unset.

Methods
o setTimeBase

 public abstract void setTimeBase(TimeBase master) throws IncompatibleTimeBaseException

Set the TimeBase for this Clock . This method can only be called on a Stopped Clock . A
ClockStartedError is thrown if setTimeBase is called on a Started Clock .

A Clock has a default TimeBase that is determined by the implementation. To reset a Clock
to its default TimeBase , call setTimeBase(null) .

Parameters:
master - The new TimeBase or null to reset the Clock to its default TimeBase .

Throws: IncompatibleTimeBaseException
Thrown if the Clock can’t use the specified TimeBase .

o syncStart

 public abstract void syncStart(Time at)

Synchronize the current media time to the specified time-base time and start the Clock . The
syncStart method sets the time-base start-time, and puts the Clock in the Started state. This
method can only be called on a Stopped Clock . A ClockStartedError is thrown if
setTimeBase is called on a Started Clock .

Parameters:
at - The time-base time to equate with the current media time.

o stop

 public abstract void stop()

Stop the Clock . Calling stop releases the Clock from synchronization with the TimeBase .
After this request is issued, the Clock is in the Stopped state. If stop is called on a
Stopped Clock , the request is ignored.

o setStopTime

 public abstract void setStopTime(Time stopTime)

Set the media time at which you want the Clock to stop. The Clock will stop when its media
time passes the stop-time. To clear the stop time, set it to: Clock.RESET .

You can always call setStopTime on a Stopped Clock .

On a Started Clock , the stop-time can only be set once. A StopTimeSetError is thrown if
setStopTime is called and the media stop-time has already been set.

Parameters:
stopTime - The time at which you want the Clock to stop, in media time.

o getStopTime

 public abstract Time getStopTime()

Get the last value successfully set by setStopTime . Returns the constant Clock.RESET if
no stop time is set. (Clock.RESET is the default stop time.)

Returns:
The current stop time.

o setMediaTime

 public abstract void setMediaTime(Time now)

Set the Clock’s media time. This method can only be called on a Stopped Clock . A
ClockStartedError is thrown if setMediaTime is called on a Started Clock .

Parameters:
now - The new media time.

o getMediaTime

 public abstract Time getMediaTime()

Get this Clock’s current media time. A Started Clock’s media time is based on its
TimeBase and rate, as described in Starting a Clock.

Returns:
The current media time.

o getMediaNanoseconds

 public abstract long getMediaNanoseconds()

Get this Clock’s current media time in nanoseconds.

Returns:
The current media time in nanoseconds.

o getSyncTime

 public abstract Time getSyncTime()

Get the current media time or the time until this Clock will synchronize to its TimeBase . The
getSyncTime method is used by Players and advanced applet writers to synchronize
Clocks .

Like getMediaTime , this method returns the Clock’s current media time, which is based on
its TimeBase and rate. However, when syncStart is used to start the Clock ,
getSyncTime performs a countdown to the time-base start-time, returning the time remaining
until the time-base start-time. Once the TimeBase reaches the time-base
start-time, getSyncTime and getMediaTime will return the same value.

o getTimeBase

 public abstract TimeBase getTimeBase()

Get the TimeBase that this Clock is using.

o mapToTimeBase

 public abstract Time mapToTimeBase(Time t) throws ClockStoppedException

Get the TimeBase time corresponding to the specified media time.

Parameters:
t - The media time to map from.

Returns:
The time-base time in media-time coordinates.

Throws: ClockStoppedException
Thrown if mapToTimeBase is called on a Stopped Clock .

o getRate

 public abstract float getRate()

Get the current temporal scale factor. The scale factor defines the relationship between the
Clock’s media time and its TimeBase .

For example, a rate of 2.0 indicates that media time will pass twice as fast as the TimeBase time
once the Clock starts. Similarly, a negative rate indicates that the Clock runs in the opposite
direction of its TimeBase . All Clocks are guaranteed to support a rate of 1.0, the default rate.
Clocks are not required to support any other rate.

o setRate

 public abstract float setRate(float factor)

Set the temporal scale factor. The argument suggests the scale factor to use.

The setRate method returns the actual rate set by the Clock . Clocks should set their rate as
close to the requested value as possible, but are not required to set the rate to the exact value of
any argument other than 1.0. A Clock is only guaranteed to set its rate exactly to 1.0.

You can only call this method on a Stopped Clock . A ClockStartedError is thrown if
setRate is called on a Started Clock .

Parameters:
factor - The temporal scale factor (rate) to set.

Returns:
The actual rate set.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.ClockStartedError
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Error
 |
 +----javax.media.MediaError
 |
 +----javax.media.ClockStartedError

public class ClockStartedError
extends MediaError

ClockStartedError is thrown by a Started Clock when a method is invoked that is not legal on
a Clock in the Started state. For example, this error is thrown if syncStart or setTimeBase is
invoked on a Started Clock . ClockStartedError is also thrown if addController is
invoked on a Started Player .

Version:
1.15, 97/08/23.

See Also:
Player, Controller, Clock

Constructor Index
o ClockStartedError ()

Construct a ClockStartedError with no message.
o ClockStartedError (String)

Construct a ClockStartedError that contains the specified reason message.

Constructors
o ClockStartedError

 public ClockStartedError(String reason)

Construct a ClockStartedError that contains the specified reason message.

o ClockStartedError

 public ClockStartedError()

Construct a ClockStartedError with no message.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.ClockStoppedException
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----javax.media.MediaException
 |
 +----javax.media.ClockStoppedException

public class ClockStoppedException
extends MediaException

A ClockStoppedException is thrown when a method that expects the Clock to be Started is
called on a Stopped Clock . For example, this exception is thrown if mapToTimeBase is called on a
Stopped Clock .

Version:
1.12, 97/08/23

Constructor Index
o ClockStoppedException()
o ClockStoppedException(String)

Constructors
o ClockStoppedException

 public ClockStoppedException()

o ClockStoppedException

 public ClockStoppedException(String reason)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.ConnectionErrorEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.ControllerClosedEvent
 |
 +----javax.media.ControllerErrorEvent
 |
 +----javax.media.ConnectionErrorEvent

public class ConnectionErrorEvent
extends ControllerErrorEvent

A ConnectionErrorEvent is posted when an error occurs within a DataSource when
obtaining data or communicating with a server.

Version:
1.6, 97/08/23

Constructor Index
o ConnectionErrorEvent(Controller)
o ConnectionErrorEvent(Controller, String)

Constructors
o ConnectionErrorEvent

 public ConnectionErrorEvent(Controller from)

o ConnectionErrorEvent

 public ConnectionErrorEvent(Controller from,
 String why)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.Control
public interface Control

The base interface for processing Control objects.

Version:
1.13, 97/08/26

Method Index
o getControlComponent()

Get the Component associated with this Control object.

Methods
o getControlComponent

 public abstract Component getControlComponent()

Get the Component associated with this Control object. For example, this method might
return a slider for volume control or a panel containing radio buttons for CODEC control. The
getControlComponent method can return null if there is no GUI control for this
Control .

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.Controller
public interface Controller
extends Clock, Duration

Controller , which extends Clock , provides resource-allocation state information, event
generation, and a mechanism for obtaining objects that provide additional control over a
Controller .

Controller life-cycle
As a Clock , a Controller is always either Started or Stopped. However, Controller
subdivides Clock’s Stopped state into five resource-allocation phases: Unrealized, Realizing,
Realized, Prefetching, and Prefetched.

The motivation for these life-cycle states is to provide programmatic control over potentially
time-consuming operations. For example, when a Controller is first constructed, it’s in the
Unrealized state. While Realizing, the Controller performs the communication necessary to locate
all of the resources it needs to function (such as communicating with a server, other controllers, or a
file system). The realize method allows an application to initiate this potentially time-consuming
process (Realizing) at an appropriate time. When a Controller is Realizing or Prefetching, it will
eventually transition to another state, such as Realized, Prefetched, or even Unrealized.

Because a Controller is often in one state on its way to another, its destination or target state is an
integral part of the Controller life-cycle. You can query a Controller to determine both its
current state and its target state.

A Controller typically moves from the Unrealized state through Realizing to the Realized state,
then through Prefetching to the Prefetched state, and finally on to the Started state. When a
Controller finishes because the end of the media stream is reached, its stop time is reached, or the
stop method is invoked, the Controller moves from the Started state back to Prefetched or
possibly back to Realized, ready to repeat the cycle.

To use a Controller , you set up parameters to manage its movement through these life-cycle states
and then move it through the states using the Controller state transition methods. To keep track of
the Controller’s current state, you monitor the state transition events that it posts when changing
states.

State Transition Methods
A Controller has five methods that are used to induce life-cycle state changes: realize ,
prefetch , deallocate , syncStart , and stop . To transition a Controller to the Realized,
Prefetched, or Started state, you use the corresponding method: realize , prefetch , or
syncStart . The deallocate and stop methods can change a requested state transition or
trigger a state change.

The forward transition methods (realize , prefetch , and syncStart) are executed
asynchronously and return immediately. When the requested operation is complete, the Controller
posts a ControllerEvent that indicates that the target state has been reached, stop or
deallocate has been invoked, or that an error occurred.

The deallocate , and stop methods can change the target state and induce a transition back to a
previous state. For example, calling deallocate on a Controller in the Prefetching state will
move it back to Realized. These methods are synchronous.

State Transition Events
A Controller often moves between states in an asynchronous manner. To facilitate the tracking of
a Controller’s state, every time its state or target state changes, the Controller is required to
post a TransitionEvent that describes its previous state, current state, and new target state. By
monitoring the Controller event stream, you can determine exactly what a Controller is doing
at any point in time.

When one of the asynchronous forward state transition methods completes, the Controller posts
the appropriate TransitionEvent or a ControllerErrorEvent indicating that the
Controller is no longer usable. For more information about ControllerEvents , see the
Controller Events section.

To facilitate simple asynchronous method protocols, a Controller always posts a method
completion event when one of the asynchronous forward state transition methods is invoked, even if
no state or target state change occurs. For example, if realize is called on a
Prefetching Controller , a RealizeCompleteEvent is immediately posted, even though the
Controller remains in the Prefetching state and the target state is still Prefetched. The method
completion events always report the Controller’s previous, current, and target state at the time
the event was posted.

Controller States
This section describes the semantics of each of the Controller states.

Unrealized State
A newly instanced Controller starts in the Unrealized state. An Unrealized Controller knows
very little about its internals and does not have enough information to acquire all of the resources it
needs to function. In particular, an Unrealized Controller does not know enough to properly
construct a Clock . Therefore, it is illegal to call the following methods on an
Unrealized Controller :

getTimeBase
setTimeBase
setMediaTime
setRate
setStopTime
getStartLatency

A NotRealizedError is thrown if any of these methods are called on an
Unrealized Controller .

Realizing and Realized States
A Controller is Realized when it has obtained all of the information necessary for it to acquire the
resources it needs to function. A Realizing Controller is in the process of identifying the resources
that it needs to acquire. Realizing can be a resource and time-consuming process. A
Realizing Controller might have to communicate with a server, read a file, or interact with a set of
other objects.

Although a Realized Controller does not have to acquire any resources, a Realized Controller
is likely to have acquired all of the resources it needs except those that imply exclusive use of a scarce
system resource, such as an audio device or MPEG decoding hardware.

Normally, a Controller moves from the Unrealized state through Realizing and on to the Realized
state. After realize has been invoked on a Controller , the only way it can return to the
Unrealized state is if deallocate is invoked before Realizing completes. Once a Controller
reaches the Realized state, it never returns to the Unrealized state; it remains in one of four states:
Realized, Prefetching, Prefetched, or Started.

Realize method

The realize method executes asynchronously and completion is signaled by a
RealizeCompleteEvent or a ControllerErrorEvent .

Prefetching and Prefetched States
Once Realized, a Controller might still need to perform a number of time-consuming tasks before
it is ready to be started. For example, it might need to acquire scarce hardware resources, fill buffers
with media data, or perform other start-up processing. While performing these tasks, the
Controller is in the Prefetching state. When finished, it moves into the Prefetched state. Over a
Controller’s lifetime, Prefetching might have to recur when certain methods are invoked. For
example, calling setMediaTime might cause a Player to be Prefetched again before it is Started.

Once a Controller is Prefetched, it is capable of starting as quickly as is possible for that
Controller . Prefetching reduces the startup latency of a Controller to the minimum possible
value. (The startup latency is the value returned by getStartLatency .)

Typically, a Controller moves from the Realized state through Prefetching and on to the
Prefetched state. Once Prefetched, a Controller remains Prefetched unless deallocate ,
syncStart or a method that changes its state and increases its startup latency is invoked, such as
setMediaTime .

A Started Controller returns to the Prefetched or Realized state when it stops.

Prefetch Method

The prefetch method is asynchronous and its completion is signaled by a
PrefetchCompleteEvent or a ControllerErrorEvent . As a convenience, if prefetch
is invoked before a Controller has reached the Realized state, an implicit realize is invoked by
changing the target state to Prefetched. Both a RealizeCompleteEvent and a

PrefetchCompleteEvent are posted by the Controller as it transitions to the Prefetched
state.

If a Controller is Prefetching and cannot obtain all of the resources it needs to start, it posts a
ResourceUnavailableEvent instead of a PrefetchCompleteEvent . This is a catastrophic
error condition from which the Controller cannot recover.

Started State
Once Prefetched, a Controller can enter the Started state. A Started Controller’s Clock is
running and it is processing data. A Controller returns to the Prefetched or Realized state when it
stops because it has reached its stop time, reached the end of the media, or because the stop method
was invoked.

When the Controller moves from the Prefetched to the Started state, it posts a StartEvent .
When it moves from the Started state to a stopped state, it posts a StopEvent .

A Controller is a Clock ; therefore, syncStart , setTimeBase , setMediaTime , and
setRate are illegal when the Controller is in the Started state.

syncStart

The only way to start a Controller is to call syncStart .

It is illegal to call syncStart unless the Controller is in the Prefetched state. If syncStart is
called before the Controller is Prefetched, a NotPrefetchedError is thrown. Player
defines a start method that relaxes this requirement.

Freeing the Resources Used by a Controller
Deallocate is used to stop a Controller’s resource consumption. For example, when
Applet.stop is called, deallocate should be called to free the resources that the
Controller was using. Deallocate stops any resource-consuming activity and releases any
exclusive-use resources that the Controller has acquired. Deallocate executes synchronously;
when deallocate returns, the resources have been released.

If the Controller is Unrealized or Realizing, calling deallocate returns it to the Unrealized
state. Otherwise, calling deallocate returns a Controller to the Realized state. Regardless of
the state that a Controller is in, deallocate must relinquish any exclusive-use system
resources that it holds; the only way to guarantee that a Controller is not holding resources is to
call the deallocate method.

It is illegal to call deallocate on a Started Controller . You must stop the Controller
before it can relinquish its resources.

When deallocate is called, a Controller posts a special StopEvent , DeallocateEvent .

Controller Events
Controller events asynchronously deliver information about Controller state changes. There
are four kinds of notifications: life-cycle transition, method acknowledgement, state notification, and
error notification.

To receive events, an object must implement the ControllerListener interface and use the
addControllerListener method to register its interest in a Controller’s events. All
Controller events are posted to each registered listener.

The Controller event mechanism is extensible and some Controllers define events other than
the ones described here. For example, the DurationUpdateEvents that a Player posts are
ControllerEvents .

TransitionEvent
TransitionEvents are posted when a Controller’s current or target state changes.
TransitionEvent is subclassed to provide a small set of events that are posted for particular
kinds of transitions that merit special interest. The class name of the event indicates either the
reason that the event was posted (such as EndOfMediaEvent), or the particular transition that
the event represents (such as PrefetchCompleteEvent).

In addition to being posted for state transitions, the method acknowledgement events
RealizeCompleteEvent , PrefetchCompleteEvent , StartEvent ,
DeallocateEvent , and StopByRequestEvent are always posted to signify method
completion even if no transition has taken place.

RealizeCompleteEvent
Posted when a Controller moves from Realizing to the Realized state, or when the
realize method is invoked and the Controller is already Realized.

PrefetchCompleteEvent
Posted when a Controller moves from Prefetching to the Prefetched state, or when the
prefetch method is invoked and the Controller is already Prefetched.

StartEvent
Posted when a Controller moves from Prefetched to Started.

StopEvent
Posted when a Controller moves backward. For example, when moving from
Prefetched to Realized or from Started to Prefetched. The reason that a stop event occurs is
often important; this information is provided through several subclasses of StopEvent .
StopAtTimeEvent

Posted when a Controller changes state because it has reached its stop time.
StopByRequestEvent

Posted when a Controller changes state because stop is invoked. This event is
also posted as an acknowledgement to stop requests.

DeallocateEvent
Posted when the deallocate method is invoked, indicating a possible state change
and the loss of exclusive-use resources. The current state is either Unrealized or
Realized. This event doesn’t always indicate a state change. For example, it is posted
even if deallocate is called on a Realized Controller .

EndOfMediaEvent
Posted when a Controller has reached the end of the media.

ControllerClosedEvent
When a Controller closes it is no longer usable, and it will post a
ControllerClosedEvent . Once this has happened method calls on the
Controller have undefined behavior. A Controller will close for one of two
reasons. Either the close method was invoked on the Controller , or an error has
occurred. If a Controller is closed because the close method was invoked, it
posts a ControllerClosedEvent . If an error occurs it posts one of the
ControllerErrorEvents .

ControllerErrorEvent
This is the super class of all of the error events that can be posted by a Controller . While this
event is rarely posted, you should watch for it when processing other error events--this is how
you can detect implementation-specific error events.

When a ControllerErrorEvent is posted, it indicates a catastrophic error from which the
Controller cannot recover. There is no recovery mechanism for a Controller once one of
these events has been posted.

ResourceUnavailableEvent
This error event is posted during Prefetching or Realizing to indicate that the operation has
failed because a required resource was unavailable.

DataLostErrorEvent
This error event is posted when a Controller has lost data.

InternalErrorEvent
This error event is posted when something goes wrong with the Controller for an
implementation-specific reason. This usually indicates that there is a problem with the
implementation.

Status Change Events
A small number of status changes occur in a Controller where notification of the change is
useful, particularly for updating user interface components. Notification of these changes is
provided through three ControllerEvents :
RateChangeEvent

Posted when the rate of a Controller changes.
StopTimeChangeEvent

Posted when the stop time of a Controller changes.
MediaTimeSetEvent

Posted when the media time has been set using the setMediaTime method. This event is
not periodically posted as media time changes due to normal Controller processing and
Clock operation.

Controls
A Control is an object that provides a way to affect some aspect of a Controller’s operation in a
specific way. The Control interface provides access to a GUI Component that is specific to the
particular Control . For example, the GainControl interface provides a way to display a GUI
control that allows the user to change the volume.

A Controller makes a collection of Controls available that effect the Controller’s
behavior. To access these Controls , you use the getControls method, which returns an array of
supported Controls . If you know the full class or interface name of the Control you want, you
can use getControl .

Since an application using a Controller might not know how to use all of the Controls that a
Controller supports, it can make the functionality available to a user by providing access to the
Component for the Control .

Version:
1.63, 97/08/28

See Also:
Player, Control, ControllerListener, ControllerEvent, TransitionEvent, RealizeCompleteEvent,
PrefetchCompleteEvent, StartEvent, StopEvent, EndOfMediaEvent, ControllerErrorEvent,
DataLostErrorEvent, ResourceUnavailableEvent, InternalErrorEvent, RateChangeEvent,
MediaTimeSetEvent, ClockStartedError, NotRealizedError

Variable Index
o LATENCY_UNKNOWN

Returned by getStartLatency .
o Prefetched

Returned by getState .
o Prefetching

Returned by getState .
o Realized

Returned by getState .
o Realizing

Returned by getState .
o Started

Returned by getState.
o Unrealized

Returned by getState .

Method Index
o addControllerListener (ControllerListener)

Specify a ControllerListener to which this Controller will send events.
o close()

Release all resources and cease all activity.
o deallocate()

Abort the current operation and cease any activity that consumes system resources.
o getControl(String)

Get the Control that supports the class or interface specified.
o getControls()

Get a list of the Control objects that this Controller supports.
o getStartLatency()

Get the Controller’s start latency in nanoseconds.

o getState()
Get the current state of this Controller .

o getTargetState()
Get the current target state of this Controller .

o prefetch()
Process as much data as necessary to reduce the Controller’s start latency to the shortest
possible time.

o realize()
Construct the media dependent portions of the Controller .

o removeControllerListener(ControllerListener)
Remove the specified listener from this Controller’s listener list.

Variables
o LATENCY_UNKNOWN

 public static final Time LATENCY_UNKNOWN

Returned by getStartLatency .

o Unrealized

 public static final int Unrealized

Returned by getState .

o Realizing

 public static final int Realizing

Returned by getState .

o Realized

 public static final int Realized

Returned by getState .

o Prefetching

 public static final int Prefetching

Returned by getState .

o Prefetched

 public static final int Prefetched

Returned by getState .

o Started

 public static final int Started

Returned by getState.

Methods
o getState

 public abstract int getState()

Get the current state of this Controller . The state is an integer constant as defined above.

Note: A race condition can occur between the return of this method and the execution of a state
changing method.

Returns:
The Controller’s current state.

o getTargetState

 public abstract int getTargetState()

Get the current target state of this Controller . The state is an integer constant as defined
above.

Note: A race condition can occur between the return of this method and the execution of a state
changing method.

Returns:
The Controller’s current target state.

o realize

 public abstract void realize()

Construct the media dependent portions of the Controller . This can require examining media
data and might take some time to complete.

The realize method puts the Controller into the Realizing state and returns immediately.
When realize is complete and the Controller is in the Realized state, the Controller
posts a RealizeCompleteEvent .

o prefetch

 public abstract void prefetch()

Process as much data as necessary to reduce the Controller’s start latency to the shortest
possible time. This typically requires examining media data and takes some time to complete.

The prefetch method puts the Controller into the Prefetching state and returns
immediately. When Prefetching is complete and the Controller is in the Prefetched state, the
Controller posts a PrefetchCompleteEvent .

o deallocate

 public abstract void deallocate()

Abort the current operation and cease any activity that consumes system resources. If a
Controller is not yet Realized, it returns to the Unrealized state. Otherwise, the
Controller returns to the Realized state.

It is illegal to call deallocate on a Started Controller . A ClockStartedError is
thrown if deallocate is called and the Controller is in the Started state.

o close

 public abstract void close()

Release all resources and cease all activity. The close method indicates that the Controller
will no longer be used, and the Controller can shut itself down. A
ControllerClosedEvent is posted. Methods invoked on a closed Controller might
throw errors.

o getStartLatency

 public abstract Time getStartLatency()

Get the Controller’s start latency in nanoseconds. The start latency represents a worst-case
estimate of the amount of time it will take to present the first frame of data.

This method is useful for determining how far in advance the syncStart method must be
invoked to ensure that media will be rendered at the specified start time.

For a Controller that has a variable start latency, the value returned represents the maximum
possible start latency. If you call getStartLatency on a Controller that isn’t Prefetched
and getStartLatency returns LATENCY_UNKNOWN, calling prefetch and then calling
getStartLatency again after the Controller posts a PrefetchCompleteEvent
might return a more accurate estimate. If getStartLatency still returns
LATENCY_UNKNOWN, the start latency is indeterminate and you might not be able to use
syncStart to synchronize the Controller with other Controllers .

Note: In most cases, the value returned by getStartLatency will change once the
Controller is Prefetched.

Returns:
The time it will take before the first frame of media can be presented.

o getControls

 public abstract Control[] getControls()

Get a list of the Control objects that this Controller supports. If there are no controls, an
array of length zero is returned.

Returns:
A list of Controller Controls .

o getControl

 public abstract Control getControl(String forName)

Get the Control that supports the class or interface specified. The full class or interface name
should be specified. Null is returned if the Control is not supported.

Returns:
Control for the class or interface name.

o addControllerListener

 public abstract void addControllerListener(ControllerListener listener)

Specify a ControllerListener to which this Controller will send events. A
Controller can have multiple ControllerListeners .

Parameters:
listener - The listener to which the Controller will post events.

o removeControllerListener

 public abstract void removeControllerListener(ControllerListener listener)

Remove the specified listener from this Controller’s listener list.

Parameters:
listener - The listener that has been receiving events from this Controller .

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.ControllerClosedEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.ControllerClosedEvent

public class ControllerClosedEvent
extends ControllerEvent

A ControllerClosedEvent describes an event that is generated when an a Controller is
closed. This implies that the Controller is no longer operational.

Version:
1.6, 97/08/23.

See Also:
Controller, ControllerListener

Variable Index
o message

Constructor Index
o ControllerClosedEvent(Controller)

Construct a ControllerClosedEvent .
o ControllerClosedEvent(Controller, String)

Method Index
o getMessage()

Obtain the message describing why this event occurred.

Variables
o message

 protected String message

Constructors
o ControllerClosedEvent

 public ControllerClosedEvent(Controller from)

Construct a ControllerClosedEvent .

o ControllerClosedEvent

 public ControllerClosedEvent(Controller from,
 String why)

Methods
o getMessage

 public String getMessage()

Obtain the message describing why this event occurred.

Returns:
Message describing event cause.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.ControllerErrorEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.ControllerClosedEvent
 |
 +----javax.media.ControllerErrorEvent

public class ControllerErrorEvent
extends ControllerClosedEvent

A ControllerErrorEvent describes an event that is generated when an error condition occurs
that will cause a Controller to cease functioning. Events should only subclass from
ControllerErrorEvent if the error being reported will result in catastrophic failure if action is I
not taken, or if the Controller has already failed. A ControllerErrorEvent indicates that
the Controller is closed.

Version:
1.16, 97/08/23

See Also:
Controller, ControllerListener

Constructor Index
o ControllerErrorEvent (Controller)
o ControllerErrorEvent (Controller, String)

Constructors
o ControllerErrorEvent

 public ControllerErrorEvent(Controller from)

o ControllerErrorEvent

 public ControllerErrorEvent(Controller from,
 String why)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.ControllerEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent

public class ControllerEvent
extends Object
implements MediaEvent

ControllerEvent is the base class for events generated by a Controller . These events are
used by ControllerListener .

Java Beans Compatibility
This class is designed to support the Java Beans event model. In order to enable

Version:
1.11, 97/08/25

See Also:
Controller, ControllerListener, MediaEvent

Constructor Index
o ControllerEvent (Controller)

Method Index
o getSource()
o getSourceController()

Get the Controller that posted this event.

Constructors
o ControllerEvent

 public ControllerEvent(Controller from)

Methods
o getSourceController

 public Controller getSourceController()

Get the Controller that posted this event. The returned Controller has at least one active
listener. (The addListener method has been called on the Controller).

Returns:
The Controller that posted this event.

o getSource

 public Object getSource()

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.ControllerListener
public interface ControllerListener

ControllerListener is an interface for handling asynchronous events generated by
Controllers .

Java Beans Support
If implementations of this interface are going to be used with Java Beans they need to also implement
either java.util.EventListener or sunw.util.EventListener.

Version:
1.18, 97/08/25

See Also:
Controller

Method Index
o controllerUpdate(ControllerEvent)

This method is called when an event is generated by a Controller that this listener is
registered with.

Methods
o controllerUpdate

 public abstract void controllerUpdate(ControllerEvent event)

This method is called when an event is generated by a Controller that this listener is
registered with.

Parameters:
event - The event generated.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.DataStarvedEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent
 |
 +----javax.media.StopEvent
 |
 +----javax.media.DataStarvedEvent

public class DataStarvedEvent
extends StopEvent

DataStarvedEvent indicates that a Controller has lost data or has stopped receiving data
altogether. This transitions the Controller into a Stopped state.

Version:
1.17, 97/08/23

See Also:
Controller, ControllerListener

Constructor Index
o DataStarvedEvent(Controller, int, int, int, Time)

Constructors
o DataStarvedEvent

 public DataStarvedEvent(Controller from,
 int previous,
 int current,
 int target,
 Time mediaTime)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.DeallocateEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent
 |
 +----javax.media.StopEvent
 |
 +----javax.media.DeallocateEvent

public class DeallocateEvent
extends StopEvent

A DeallocateEvent is posted as an acknowledgement of the invocation of the deallocate
method. It implies that the scarce resources associated with this Controller are no longer available
and must be reacquired.

A DeallocateEvent can be posted at any time regardless of the Controller’s previous or
current state. DeallocateEvent is a StopEvent because if the Controller is in the Started
state when the event is posted, it transitions to one of the Stopped states.

Version:
1.11, 97/08/23.

See Also:
Controller, ControllerListener

Constructor Index
o DeallocateEvent(Controller, int, int, int, Time)

Constructors
o DeallocateEvent

 public DeallocateEvent(Controller from,
 int previous,
 int current,
 int target,
 Time mediaTime)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.Duration
public interface Duration

The Duration interface provides a way to determine the duration of the media being played by a
media object. Media objects that expose a media duration implement this interface.

A Controller that supports the Duration interface posts a DurationUpdateEvent
whenever its duration changes.

Version:
1.16, 97/08/23

See Also:
Controller, DurationUpdateEvent

Variable Index
o DURATION_UNBOUNDED

Returned by getDuration .
o DURATION_UNKNOWN

Returned by getDuration .

Method Index
o getDuration()

Get the duration of the media represented by this object.

Variables
o DURATION_UNBOUNDED

 public static final Time DURATION_UNBOUNDED

Returned by getDuration .

o DURATION_UNKNOWN

 public static final Time DURATION_UNKNOWN

Returned by getDuration .

Methods
o getDuration

 public abstract Time getDuration()

Get the duration of the media represented by this object. The value returned is the media’s
duration when played at the default rate. If the duration can’t be determined (for example, the
media object is presenting live video) getDuration returns DURATION_UNKNOWN.

Returns:
A Time object representing the duration or DURATION_UNKNOWN.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.DurationUpdateEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.DurationUpdateEvent

public class DurationUpdateEvent
extends ControllerEvent

DurationUpdateEvent is posted by a Controller when its duration changes.

Version:
1.10, 97/08/23.

See Also:
Controller, ControllerListener

Constructor Index
o DurationUpdateEvent(Controller, Time)

Method Index
o getDuration()

Get the duration of the media that this Controller is using.

Constructors
o DurationUpdateEvent

 public DurationUpdateEvent(Controller from,
 Time newDuration)

Methods
o getDuration

 public Time getDuration()

Get the duration of the media that this Controller is using.

Returns:
The duration of this Controller’s media.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.EndOfMediaEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent
 |
 +----javax.media.StopEvent
 |
 +----javax.media.EndOfMediaEvent

public class EndOfMediaEvent
extends StopEvent

An EndOfMediaEvent indicates that the Controller has reached the end of its media and is
stopping.

Version:
1.21, 97/08/23.

See Also:
Controller, ControllerListener

Constructor Index
o EndOfMediaEvent(Controller, int, int, int, Time)

Constructors
o EndOfMediaEvent

 public EndOfMediaEvent(Controller from,
 int previous,
 int current,
 int target,
 Time mediaTime)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.GainChangeEvent
java.lang.Object
 |
 +----javax.media.GainChangeEvent

public class GainChangeEvent
extends Object
implements MediaEvent

A GainChangeEvent is posted by a GainControl when its state has been updated.

Java Beans support
Any implementation of this object is required to be subclassed from either java.util.EventObject or
sunw.util.EventObject.

Version:
1.14, 97/08/26

See Also:
GainControl, GainChangeListener

Constructor Index
o GainChangeEvent(GainControl, boolean, float, float)

Method Index
o getDB()

Get the GainControl’s new gain value in dB.
o getLevel()

Get the GainControl’s new gain value in the level scale.
o getMute()

Get the GainControl’s new mute value.
o getSource()

Get the object that posted this event.
o getSourceGainControl()

Get the GainControl that posted this event.

Constructors
o GainChangeEvent

 public GainChangeEvent(GainControl from,
 boolean mute,
 float dB,
 float level)

Methods
o getSource

 public Object getSource()

Get the object that posted this event.

Returns:
The object that posted this event.

o getSourceGainControl

 public GainControl getSourceGainControl()

Get the GainControl that posted this event.

Returns:
The GainControl that posted this event.

o getDB

 public float getDB()

Get the GainControl’s new gain value in dB.

Returns:
The GainControl’s new gain value, in dB.

o getLevel

 public float getLevel()

Get the GainControl’s new gain value in the level scale.

Returns:
The GainControl’s new gain, in the level scale.

o getMute

 public boolean getMute()

Get the GainControl’s new mute value.

Returns:
The GainControl’s new mute value.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.GainChangeListener
public interface GainChangeListener

GainChangeListener is an interface for handling GainChangeEvents generated by
GainControls .

Java Beans support
It is required that any implementation of this object is sub-classed either from java.util.EventListener,
or sunw.util.EventListener.

Version:
1.11, 97/08/25.

See Also:
GainControl, GainChangeEvent

Method Index
o gainChange(GainChangeEvent)

This method is called to deliver a GainChangeEvent when the state of a GainControl
changes.

Methods
o gainChange

 public abstract void gainChange(GainChangeEvent event)

This method is called to deliver a GainChangeEvent when the state of a GainControl
changes.

Parameters:
event - The event generated.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.GainControl
public interface GainControl
extends Control

GainControl is an interface for manipulating audio signal gain.

Gain and Gain Measures
Gain is a multiplicative value applied to an audio signal that modifies the amplitude of the signal. This
interface allows the gain to be specified in either decibels or using a floating point value that varies
between 0.0 and 1.0.

Specifying Gain in Decibels

The decibel scale is valid over all float values. A gain of 0.0 dB implies that the audio signal is
neither amplified nor attenuated. Positive values amplify the audio signal, negative values attenuate
the audio signal. The relationship between a linear gain multiplier and the gain specified in decibels is:

value = pow(10.0, gainDB/20.0)

Specifying Gain in the Level Scale

The level scale ranges from 0.0 to 1.0, where 0.0 represents a gain that is virtually indistinguishable
from silence and 1.0 represents the value that is, in some sense, the maximum gain. In other words, 1.0
represents the highest gain value that produces "useful" results. The mapping for producing a linear
multiplicative value is implementation dependent.

Decibel and Level Interactions

The dB and level scales are representations of the same gain value. Calling setLevel will affect
subsequent getDB invocations. Level and dB are interrelated in the following ways:

Level Silence Threshold. After setLevel(0.0) , getDB returns the value for which smaller
values are not usefully distinguishable from silence. Calling setDB with values equal to or less
than this silence threshold causes getLevel to return a value of 0.0.
Level Maximum Threshold. After setLevel(1.0) , getDB returns the value for which larger
values are not useful. Calling setDB with values equal to or greater than this threshold causes
getLevel to return a value of 1.0.
The decibel interface is not limited to the thresholds described by the level interface. For
example, if you call setDB with a value that is greater than the maximum level threshold and
then immediately call getDB , getDB returns the gain that was returned by the setDB , not the
value that would be returned if you called setLevel(1.0) and then called getDB .
Both measures increase gain monotonically with increasing measure values.

Defaults

Gain defaults to a value of 0.0 dB. The corresponding level is implementation dependent. Note that for
some implementations, the default level might change on a per-instance basis.

Mute
Muting is independent of the gain. If mute is true , no audio signal is produced by this object; if mute
is false an audio signal is produced and the gain is applied to the signal.

Gain Change Events
When the state of the GainControl changes, a GainChangeEvent is posted. This event is
delivered through an object that implements GainChangeListener and has been registered as a
listener with the GainControl using addGainChangeListener .

Version:
1.33, 97/08/23

See Also:
GainChangeEvent, GainChangeListener, Control

Method Index
o addGainChangeListener(GainChangeListener)

Register for gain change update events.
o getDB()

Get the current gain set for this object in dB.
o getLevel()

Get the current gain set for this object as a value between 0.0 and 1.0
o getMute()

Get the mute state of the signal associated with this GainControl .
o removeGainChangeListener(GainChangeListener)

Remove interest in gain change update events.
o setDB(float)

Set the gain in decibels.
o setLevel(float)

Set the gain using a floating point scale with values between 0.0 and 1.0.
o setMute(boolean)

Mute or unmute the signal associated with this GainControl .

Methods
o setMute

 public abstract void setMute(boolean mute)

Mute or unmute the signal associated with this GainControl . Calling setMute(true) on
an object that is already muted is ignored, as is calling setMute(false) on an object that is
not currently muted. Going from a muted to an unmuted state doesn’t effect the gain.

Parameters:
mute - Specify true to mute the signal, false to unmute the signal.

o getMute

 public abstract boolean getMute()

Get the mute state of the signal associated with this GainControl .

Returns:
The mute state.

o setDB

 public abstract float setDB(float gain)

Set the gain in decibels. Setting the gain to 0.0 (the default) implies that the audio signal is
neither amplified nor attenuated. Positive values amplify the audio signal and negative values
attenuate the signal.

Parameters:
gain - The new gain in dB.

Returns:
The gain that was actually set.

o getDB

 public abstract float getDB()

Get the current gain set for this object in dB.

Returns:
The gain in dB.

o setLevel

 public abstract float setLevel(float level)

Set the gain using a floating point scale with values between 0.0 and 1.0. 0.0 is silence; 1.0 is the
loudest useful level that this GainControl supports.

Parameters:
level - The new gain value specified in the level scale.

Returns:
The level that was actually set.

o getLevel

 public abstract float getLevel()

Get the current gain set for this object as a value between 0.0 and 1.0

Returns:
The gain in the level scale (0.0-1.0).

o addGainChangeListener

 public abstract void addGainChangeListener(GainChangeListener listener)

Register for gain change update events. A GainChangeEvent is posted when the state of the
GainControl changes.

Parameters:
listener - The object to deliver events to.

o removeGainChangeListener

 public abstract void removeGainChangeListener(GainChangeListener listener)

Remove interest in gain change update events.

Parameters:
listener - The object that has been receiving events.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.IncompatibleSourceException
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----javax.media.MediaException
 |
 +----javax.media.IncompatibleSourceException

public class IncompatibleSourceException
extends MediaException

An IncompatibleSourceException is thrown by a MediaHandler when setSource is
invoked and the MediaHandler cannot support the DataSource .

Version:
1.2, 97/08/23.

See Also:
DataSource, MediaHandler, Manager

Constructor Index
o IncompatibleSourceException()
o IncompatibleSourceException(String)

Constructors
o IncompatibleSourceException

 public IncompatibleSourceException()

o IncompatibleSourceException

 public IncompatibleSourceException(String reason)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.IncompatibleTimeBaseException
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----javax.media.MediaException
 |
 +----javax.media.IncompatibleTimeBaseException

public class IncompatibleTimeBaseException
extends MediaException

An IncompatibleTimeBaseException is generated when Clock.setTimeBase is invoked
using a TimeBase that the Clock cannot support. This happens for certain types of Players that
can only be driven by their own internal clocks, such as certain commercial video servers.

Note: A Player might throw this exception when addController is called because of the
implied setTimeBase in addController .

Version:
1.9, 97/08/23.

See Also:
Clock, Player

Constructor Index
o IncompatibleTimeBaseException()
o IncompatibleTimeBaseException(String)

Constructors
o IncompatibleTimeBaseException

 public IncompatibleTimeBaseException()

o IncompatibleTimeBaseException

 public IncompatibleTimeBaseException(String reason)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.InternalErrorEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.ControllerClosedEvent
 |
 +----javax.media.ControllerErrorEvent
 |
 +----javax.media.InternalErrorEvent

public class InternalErrorEvent
extends ControllerErrorEvent

An InternalErrorEvent indicates that a Controller failed for implementation-specific
reasons. This event indicates that there are problems with the implementation of the Controller .

Version:
1.7, 97/08/23

See Also:
Controller, ControllerListener

Constructor Index
o InternalErrorEvent (Controller)
o InternalErrorEvent (Controller, String)

Constructors
o InternalErrorEvent

 public InternalErrorEvent(Controller from)

o InternalErrorEvent

 public InternalErrorEvent(Controller from,
 String message)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.Manager
java.lang.Object
 |
 +----javax.media.Manager

public final class Manager
extends Object

Manager is the access point for obtaining system dependent resources such as Players ,
DataSources , and the system TimeBase .

A Player is an object used to control and render multimedia data that is specific to the content type
of the data. A DataSource is an object used to deliver time-based multimedia data that is specific to
a delivery protocol. A DataSource provides a Player with media data; a Player must have a
DataSource . Manager provides access to a protocol and media independent mechanism for
constructing Players and DataSources .

Creating Players and DataSources
Manager will createPlayers from a URL, a MediaLocator or a DataSource . Creating a
Player requires the following:

Obtain the connected DataSource for the specified protocol
Obtain the Player for the content-type specified by the DataSource
Attach the DataSource to the Player using the setSource method.

Finding DataSources by Protocol
A MediaLocator defines a protocol for obtaining content. DataSources are identified by the
protocol that they support. Manager uses the protocol name to find DataSource classes.

To find a DataSource using a MediaLocator , Manager constructs a list of class names from
the protocol package-prefix list and the protocol name obtained from the MediaLocator . For each
class name in the constructed list a new DataSource is instanced, the MediaLocator is attached,
and the DataSource is connected. If no errors have occurred, the procces is considered finished and
the connected DataSource is used by Manager in any following operations. If there was an error
then the next class name in the list is tried. The exact details of the search algorithm is described in the
method documentation below.

Finding Players by Content Type
A Player is a MediaHandler . A MediaHandler is a an object that reads data from a
DataSource . There are two types of supported MediaHandler : MediaProxy , and Player .

MediaHandlers are identified by the content type that they support. A DataSource identifies the
content type of the data it produces with the getContentType method. Manager uses the content
type name to find instances of MediaHandler .

To find a MediaHandler using a content type name, Manager constructs a list of class names
from the content package-prefix list and the content type name. For each class name in the constructed
list a new MediaHandler is instanced, and the DataSource is attached to the MediaHandler
using MediaHandler.setSource.

If the MediaHandler is a Player and the setSource was successful the process is finished and
the Player is returned. If the setSource failed, another name in the list is tried.

If the MediaHandler is a MediaProxy then a new DataSource is obtained from the
MediaProxy , a new list is created for the content type the DataSource supports and the whole
thing is tried again.

If a valid Player , is not found then the whole procedure is repeated is repeated with "unknown"
substituted for the content-type name. The "unknown" content type is supported by generic Players
that are capable of handling a large variety of media types, often in a platform dependent way.

The detailed creation algorithm is specified in the methods below.

Player Threads
Players render media data asynchronously from the main program flow. This implies that a
Player must often manage one or more threads. The threads managed by the Player are not in the
thread group of the application that calls createPlayer .

System Time Base
All Players need a TimeBase . Many use a system-wide TimeBase , often based on a time-of-day
clock. Manager provides access to the system TimeBase through getSystemTimeBase .

Version:
1.57, 97/08/28.

See Also:
URL, MediaLocator, PackageManager, DataSource, URLDataSource, MediaHandler, Player,
MediaProxy, TimeBase

Variable Index
o UNKNOWN_CONTENT_NAME

Method Index
o createDataSource(MediaLocator)

Create a DataSource for the specified media.

o createDataSource(URL)
Create a DataSource for the specified media.

o createPlayer(DataSource)
Create a Player for the DataSource .

o createPlayer(MediaLocator)
Create a Player for the specified media.

o createPlayer(URL)
Create a Player for the specified media.

o getDataSourceList(String)
Build a list of DataSource class names from the protocol prefix-list and a protocol name.

o getHandlerClassList(String)
Build a list of Handler/CODE> classes from the content-prefix-list and
a content name.

o getSystemTimeBase ()
Get the time-base object for the system.

Variables
o UNKNOWN_CONTENT_NAME

 public static final String UNKNOWN_CONTENT_NAME

Methods
o createPlayer

 public static Player createPlayer(URL sourceURL) throws IOException, NoPlayerException

Create a Player for the specified media. This creates a
MediaLocator from the URL and then calls createPlayer.

Parameters:
sourceURL - The URL that describes the media data.

Returns:
A new Player.

Throws: NoPlayerException
Thrown if no Player can be found.

Throws: IOException
Thrown if there was a problem connecting with the source.

o createPlayer

 public static Player createPlayer(MediaLocator sourceLocator) throws IOException, NoPlayerException

Create a Player for the specified media.

The algorithm for creating a Player from a MediaLocator is:
1. Get the protocol from the MediaLocator.
2. Get a list of DataSource classes that support the protocol,

using the protocol package-prefix-list.
3. For each source class in the list:

1. Instantiate a new DataSource,

2. Call the connect method to connect the source.
3. Get the media content-type-name (using getContentType)

from the source.
4. Get a list of MediaHandler classes that support the

media-content-type-name, using the content
package-prefix-list.

5. For each MediaHandler class in the list:
1. Instantiate a new MediaHandler.
2. Attach the source to the MediaHandler by calling

MediaHandler.setSource.
3. If there are no failures, determine the type of the

MediaHandler; otherwise try the next MediaHandler in the
list.

4. If the MediaHandler is a Player , return the new Player .
5. If the MediaHandler is a MediaProxy , obtain a new DataSource from the

MediaProxy , obtain the list of MediaHandlers that support the new
DataSource , and continue searching the new list.

6. If no MediaHandler is found for this source, try the next source in the list.
4. If no Player is found after trying all of the sources, reuse the source list.

This time, for each source class in the list:
1. Instantiate the source.
2. Call the connect method to connect to the source.
3. Use the content package-prefix-list to create a list of MediaHandler classes that

support the "unknown" content-type-name.
4. For each MediaHandler class in the list, search for a Player as in the previous

search.
1. If no Player is found after trying all of the sources, a NoPlayerException

is thrown.

Parameters:
sourceLocator - A MediaLocator that describes the media content.

Returns:
A Player for the media described by the source.

Throws: NoPlayerException
Thrown if no Player can be found.

Throws: IOException
Thrown if there was a problem connecting with the source.

o createPlayer

 public static Player createPlayer(DataSource source) throws IOException, NoPlayerException

Create a Player for the DataSource .

The algorithm for creating a Player from a DataSource is:
1. Get the media content-type-name from the source by calling getContentType .
2. Use the content package-prefix-list to get a list of Player classes that support the

media content-type name.
3. For each Player class in the list:

1. Instantiate a new Player .
2. Attach the source to the Player by calling setSource on the Player .

3. If there are no failures, return the new Player ; otherwise, try the next Player
in the list.

4. If no Player is found for this source:
1. Use the content package-prefix-list to create a list of Player classes that support

the "unknown" content-type-name.
2. For each Player class in the list:

1. Instantiate a new Player .
2. Attach the source to the Player by calling setSource on the Player .
3. If there are no failures, return the new Player ; otherwise, try the next

Player in the list.
5. If no Player can be created, a NoPlayerException is thrown.

Parameters:
DataSource - The DataSource that describes the media content.

Returns:
A new Player .

Throws: NoPlayerException
Thrown if a Player can’t be created.

Throws: IOException
Thrown if there was a problem connecting with the source.

o createDataSource

 public static DataSource createDataSource(URL sourceURL) throws IOException, NoDataSourceException

Create a DataSource for the specified media.

Parameters:
sourceURL - The URL that describes the media data.

Returns:
A new DataSource for the media.

Throws: NoDataSourceException
Thrown if no DataSource can be found.

Throws: IOException
Thrown if there was a problem connecting with the source.

o createDataSource

 public static DataSource createDataSource(MediaLocator sourceLocator) throws IOException, NoDataSourceException

Create a DataSource for the specified media.

Returns a data source for the protocol specified by the MediaLocator . The returned data
source is connected; DataSource.connect has been invoked.

The algorithm for creating a DataSource from a MediaLocator is:
1. Get the protocol from the MediaLocator .
2. Use the protocol package-prefix list to get a list of DataSource classes that support

the protocol.
3. For each source class in the list:

1. Instantiate a new DataSource .
2. Call connect to connect the source.
3. If there are no errors, return the connected source; otherwise, try the next source in

the list.

4. If no source has been found, obtain a URL from the MediaLocator and use it to
create a URLDataSource

5. If no source can be found, a NoDataSourceException is thrown.

Parameters:
sourceLocator - The source protocol for the media data.

Returns:
A connected DataSource .

Throws: NoDataSourceException
Thrown if no DataSource can be found.

Throws: IOException
Thrown if there was a problem connecting with the source.

o getSystemTimeBase

 public static TimeBase getSystemTimeBase()

Get the time-base object for the system.

Returns:
The system time base.

o getDataSourceList

 public static Vector getDataSourceList(String protocolName)

Build a list of DataSource class names from the protocol prefix-list and a protocol name.

The first name in the list will always be:

 media.protocol.<protocol>DataSource

Each additional name looks like:

 <protocol-prefix>.media.protocol.<protocol>.DataSource

for every <protocol-prefix> in the protocol-prefix-list.

Parameters:
protocol - The name of the protocol the source must support.

Returns:
A vector of strings, where each string is a Player class-name.

o getHandlerClassList

 public static Vector getHandlerClassList(String contentName)

Build a list of Handler/CODE> classes from the content-prefix-list
and a content name.

The first name in the list will always be:

 media.content.<contentType>.Handler

Each additional name looks like:

 <content-prefix>.media.content.<contentName>.Player

for every <content-prefix> in the content-prefix-list.

Parameters:
contentName - The content type to use in the class name.

Returns:
A vector of strings where each one is a Player class-name.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.MediaError
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Error
 |
 +----javax.media.MediaError

public class MediaError
extends Error

A MediaError indicates an error condition that occurred through incorrect usage of the API. You
should not check for MediaErrors .

Version:
1.11, 97/08/23.

Constructor Index
o MediaError ()
o MediaError (String)

Constructors
o MediaError

 public MediaError()

o MediaError

 public MediaError(String reason)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.MediaEvent
public interface MediaEvent

MediaEvent is the base interface for events supported by the media framework.

Java Beans support
In order to support the Java Beans event model an implementation of MediaEvent is required to
sub-class java.util.EventObject. If an implementation is designed to support the 1.0.2 JDK then it may
alternatively sub-class sunw.util.EventObject to provide the support appropriate support. Any class
that subclasses MediaEvent must resolve to either java.util.EventObject or
sunw.util.EventObject.

Version:
1.3, 97/08/25.

See Also:
ControllerEvent, GainChangeEvent

Method Index
o getSource()

Methods
o getSource

 public abstract Object getSource()

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.MediaException
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----javax.media.MediaException

public class MediaException
extends Exception

A MediaException indicates an unexpected error condition in a JavaMedia method.

Version:
1.9, 97/08/28

Constructor Index
o MediaException()
o MediaException(String)

Constructors
o MediaException

 public MediaException()

o MediaException

 public MediaException(String reason)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.MediaHandler
public interface MediaHandler

MediaHandler is the base interface for objects that read and manage media content delivered from
a DataSource .

There are currently two supported types of MediaHandler : Player and MediaProxy .

Version:
1.4, 97/08/23.

See Also:
Player, MediaProxy

Method Index
o setSource(DataSource)

Set the media source the MediaHandler should use to obtain content.

Methods
o setSource

 public abstract void setSource(DataSource source) throws IOException, IncompatibleSourceException

Set the media source the MediaHandler should use to obtain content.

Parameters:
source - The DataSource used by this MediaHandler .

Throws: IOException
Thrown if there is an error using the DataSource

Throws: IncompatibleSourceException
Thrown if this MediaHandler cannot make use of the DataSource .

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.MediaLocator
java.lang.Object
 |
 +----javax.media.MediaLocator

public class MediaLocator
extends Object

MediaLocator describes the location of media content. MediaLocator is closely related to URL.
URLs can be obtained from MediaLocators , and MediaLocators can be constructed from
URL. Unlike a URL, a MediaLocator can be instanced without a URLStreamHandler installed
on the System.

Version:
1.8, 97/08/25.

See Also:
URL, URLStreamHandler

Constructor Index
o MediaLocator(String)
o MediaLocator(URL)

Method Index
o getProtocol()

Get the beginning of the locator string up to but not including the first colon.
o getRemainder()

Get the MediaLocator string with the protocol removed.
o getURL()

Get the URL associated with this MediaLocator .
o toExternalForm ()

Create a string from the URL argument that can be used to construct the MediaLocator .
o toString()

Used for printing MediaLocators .

Constructors
o MediaLocator

 public MediaLocator(URL url)

Parameters:
url - The URL to construct this media locator from.

o MediaLocator

 public MediaLocator(String locatorString)

Methods
o getURL

 public URL getURL() throws MalformedURLException

Get the URL associated with this MediaLocator .

o getProtocol

 public String getProtocol()

Get the beginning of the locator string up to but not including the first colon.

Returns:
The protocol for this MediaLocator .

o getRemainder

 public String getRemainder()

Get the MediaLocator string with the protocol removed.

Returns:
The argument string.

o toString

 public String toString()

Used for printing MediaLocators .

Returns:
A string for printing MediaLocators .

Overrides:
toString in class Object

o toExternalForm

 public String toExternalForm()

Create a string from the URL argument that can be used to construct the MediaLocator .

Returns:
A string for the MediaLocator .

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.MediaProxy
public interface MediaProxy
extends MediaHandler

MediaProxy is a MediaHandler which processes content from one DataSource , to produce
another DataSource .

Typically, a MediaProxy reads a text configuration file that contains all of the information needed
to make a connection to a server and obtain media data. To produce a Player from a
MediaLocator referencing the configuration file, Manger :

constructs a DataSource for the protocol described by the MediaLocator
constructs a MediaProxy to read the configuration file using the content-type of the
DataSource
obtains a new DataSource from the MediaProxy
constructs the Player using the content-type of the new DataSource

Version:
1.10, 97/08/25.

See Also:
Manager

Method Index
o getDataSource()

Obtain the new DataSource .

Methods
o getDataSource

 public abstract DataSource getDataSource() throws IOException, NoDataSourceException

Obtain the new DataSource . The DataSource is already connected.

Returns:
the new DataSource for this content.

Throws: IOException
Thrown when if there are IO problems in reading the the original or new DataSource .

Throws: NoDataSourceException
Thrown if this proxy can’t produce a DataSource .

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.MediaTimeSetEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.MediaTimeSetEvent

public class MediaTimeSetEvent
extends ControllerEvent

A MediaTimeSetEvent is posted by a Controller when its media-time has been set with the
setMediaTime method.

Version:
1.13, MediaTimeSetEvent.java.

See Also:
Controller, ControllerListener

Constructor Index
o MediaTimeSetEvent(Controller, Time)

Method Index
o getMediaTime()

Get the new media time of the Controller that generated this event.

Constructors
o MediaTimeSetEvent

 public MediaTimeSetEvent(Controller from,
 Time newMediaTime)

Methods
o getMediaTime

 public Time getMediaTime()

Get the new media time of the Controller that generated this event.

Returns:
The Controller’s new media time.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.NoDataSourceException
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----javax.media.MediaException
 |
 +----javax.media.NoDataSourceException

public class NoDataSourceException
extends MediaException

A NoDataSourceException is thrown when a DataSource can’t be found for a particular
URL or MediaLocator .

Version:
1.8, 97/08/23.

Constructor Index
o NoDataSourceException()
o NoDataSourceException(String)

Constructors
o NoDataSourceException

 public NoDataSourceException()

o NoDataSourceException

 public NoDataSourceException(String reason)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.NoPlayerException
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----javax.media.MediaException
 |
 +----javax.media.NoPlayerException

public class NoPlayerException
extends MediaException

A NoPlayerException is thrown when a PlayerFactory can’t find a Player for a particular
URL or MediaLocator .

Version:
1.8, 97/08/23.

Constructor Index
o NoPlayerException()
o NoPlayerException(String)

Constructors
o NoPlayerException

 public NoPlayerException()

o NoPlayerException

 public NoPlayerException(String reason)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.NotPrefetchedError
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Error
 |
 +----javax.media.MediaError
 |
 +----javax.media.NotPrefetchedError

public class NotPrefetchedError
extends MediaError

NotPrefetchedError is thrown when a method that requires a Controller to be in the
Prefetched state is called and the Controller has not been Prefetched.

This typically happens when syncStart is invoked on a Stopped Controller that hasn’t been
Prefetched.

Version:
1.12, 97/08/23.

See Also:
Controller

Constructor Index
o NotPrefetchedError(String)

Constructors
o NotPrefetchedError

 public NotPrefetchedError(String reason)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.NotRealizedError
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Error
 |
 +----javax.media.MediaError
 |
 +----javax.media.NotRealizedError

public class NotRealizedError
extends MediaError

NotRealizedError is thrown when a method that requires a Controller to be in the Realized
state is called and the Controller is not Realized.

For example, this can happen when getComponents is called on an Unrealized Player .

Version:
1.8, 97/08/23.

See Also:
Controller, Player

Constructor Index
o NotRealizedError(String)

Constructors
o NotRealizedError

 public NotRealizedError(String reason)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.PackageManager
java.lang.Object
 |
 +----javax.media.PackageManager

public class PackageManager
extends Object

A PackageManager maintains a persistent store of package-prefix lists. A package prefix specifies
the prefix for a complete class name. A factory uses a package-prefix list to find a class that might
belong to any of the packages that are referenced in the prefix list.

The Manager uses package-prefix lists to find protocol handlers and content handlers for time-based
media.

The current version of a package-prefix list is obtained with the get<package-prefix>List
method. This method returns the prefix list in use; any changes to the list take effect immediately.
Unless it is made persistent with commit<package-prefix>List , a package-prefix list is only
valid while the Manager is referenced. The commit<package-prefix>List method ensures
that any changes made to a package-prefix list are still visible the next time that the Manager is
referenced.

Version:
1.11, 97/08/23.

See Also:
Manager

Constructor Index
o PackageManager()

Method Index
o commitContentPrefixList ()

Make changes to the content prefix-list persistent.
o commitProtocolPrefixList ()

Make changes to the protocol package-prefix list persistent.
o getContentPrefixList()

Get the current value of the content package-prefix list.
o getProtocolPrefixList()

Get the current value of the protocol package-prefix list.
o setContentPrefixList(Vector)

Set the current value of the content package-prefix list.

o setProtocolPrefixList(Vector)
Set the protocol package-prefix list.

Constructors
o PackageManager

 public PackageManager()

Methods
o getProtocolPrefixList

 public static Vector getProtocolPrefixList()

Get the current value of the protocol package-prefix list.

Returns:
The protocol package-prefix list.

o setProtocolPrefixList

 public static void setProtocolPrefixList(Vector list)

Set the protocol package-prefix list. This is required for changes to take effect.

Parameters:
list - The new package-prefix list to use.

o commitProtocolPrefixList

 public static void commitProtocolPrefixList()

Make changes to the protocol package-prefix list persistent.

This method throws a SecurityException if the calling thread does not have access to
system properties.

o getContentPrefixList

 public static Vector getContentPrefixList()

Get the current value of the content package-prefix list. Any changes made to this list take effect
immediately.

Returns:
The content package-prefix list.

o setContentPrefixList

 public static void setContentPrefixList(Vector list)

Set the current value of the content package-prefix list. This is required for changes to take effect.

Parameters:
list - The content package-prefix list to set.

o commitContentPrefixList

 public static void commitContentPrefixList()

Make changes to the content prefix-list persistent.

This method throws a SecurityException if the calling thread does not have access to
system properties.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.Player
public interface Player
extends MediaHandler, Controller, Duration

Player is a MediaHandler for rendering and controlling time based media data. Player extends
both the Controller and Duration interfaces Player provides methods for obtaining AWT
components, media processing controls, and a way to manage other Controllers .

How a Player Differs from a Controller
Player relaxes some restrictions that a Controller imposes on what methods can be called on a
Started, Stopped, or Unrealized Controller . It also provides a way to manage groups of
Controllers .

Methods Restricted to Stopped Players
The following methods can only be called on a Player in one of the Stopped states. If they are
invoked on a Started Player , a ClockStartedError is thrown.

setTimeBase
syncStart
deallocate
addController
removeController

Methods Allowed on Started Players
Unlike a Controller , the following methods are legal on a Player in the Started state:

setMediaTime
setRate

Invoking these methods on a Started Player might initiate significant and time-consuming
processing, depending on the location and type of media being processed. These methods might also
cause the state of the Player to change. If this happens, the appropriate TransitionEvents are
posted by the Player when its state changes.

For example, a Player might have to enter the Prefetching state to process a setMediaTime
invocation. In this case, the Player posts a RestartingEvent , a PrefetchCompleteEvent ,
and a StartEvent as it moves from the Started state to Prefetching, back to Prefetched, and finally
back to the Started state.

Methods that are Illegal on Unrealized Players
As with Controller , it is illegal to call the following methods on an Unrealized Player :

getTimeBase
setTimeBase
setMediaTime
setRate
setStopTime
getStartLatency

It is also illegal to call the following Player methods on an Unrealized Player :

getVisualComponent
getControlPanelComponent
getGainControl
addController
removeController

The Player throws a NotRealizedError if any of these methods are called while the Player
is in the Unrealized state.

Start Method
As a convenience, Player provides a start method that can be invoked before a Player is
Prefetched. This method attempts to transition the Player to the Started state from whatever state
it’s currently in. For example, if the Player is Unrealized, start implicitly calls realize ,
prefetch , and Clock.syncStart . The appropriate TransitionEvents are posted as the
Player moves through each state on its way to Started.

RestartingEvent
If setMediaTime or setRate cause a perceptible delay in the presentation of the media, the
Player posts a RestartingEvent and transitions to the Prefetching state. The previous state and
target state of a RestartingEvent is always Started. RestartingEvent is a subclass of
StopEvent .

DurationUpdateEvent
Because a Player cannot always know the duration of the media it is playing, the Duration
interface defines that getDuration returns Duration.DURATION_UNKNOWN until the duration
can be determined. A DurationUpdateEvent is generated when the Player can determine its
duration or the if its duration changes, which can happen at any time. When the end of the media is
reached, the duration should be known.

Managing other Controllers
In some situations, an application might want to use a single Player to control other Players or
Controllers . A single controlling Player can be used to invoke start , stop ,
setMediaTime , and other methods on the entire group. The controlling Player manages all of the
state transitions and event posting.

It is also possible to construct a simple Controller to update animations, report on media time-line
progress, or provide other timing-related functions. Such Controllers can operate in sync with a
controlling Player .

Adding a Controller
To have a Player assume control over a Controller , use the addController method. A
Controller can only be added to a Stopped Player . If addController is called on a
Started Player , a ClockStartedError is thrown. An Unrealized Controller cannot be
added to a Player ; a NotRealizedError is thrown if the Controller is Unrealized.

Once a Controller has been added, the Player :

Invokes setTimeBase on the Controller with the Player’s TimeBase . If this fails,
addController throws an IncompatibleTimeBaseException .
Synchronizes the Controller with the Player using setMediaTime , setStopTime ,
and setRate .
Takes the added Controller’s latency into account when computing the Player’s start
latency. When getStartLatency is called, the Player returns the greater of: its latency
before the Controller was added and the latency of the added Controller .
Takes the added Controller’s duration into account when computing the Player’s
duration. When getDuration is called, the Player returns the greater of: its duration before
the Controller was added and the duration of the added Controller . If either of these
values is DURATION_UNKNOWN, getDuration returns DURATION_UNKNOWN. If
either of these values is DURATION_UNBOUNDED getDuration returns
DURATION_UNBOUNDED.
Adds itself as a ControllerListener for the added Controller so that it can manage the
events that the Controller generates. (See the Events section below for more information.)
Invokes control methods on the added Controller in response to methods invoked on the
Player . The methods that affect managed Controllers are discussed below.

Once a Controller has been added to a Player , methods should only be called on the
Controller through the managing Player . It is not defined how the Controller or Player
will behave if methods are called directly on an added Controller . You cannot place a controlling
Player under the control of a Player that it is managing; the resulting behavior is undefined.

When a Controller is added to a Player , the Player does not transition the added
Controller to new state, nor does the Player transition itself forward. The Player either
transitions back to the realized state if the added Controller is realized or prefetching or it stays in
the prefetched state if the both the Player and the added Controller are in the prefetched state.
If the Player makes a state transition as a result of adding a Controller the Player posts a
TransitionEvent .

Removing a Controller
To stop a Player from managing another Controller , call removeController . The
managing Player must be Stopped before removeController can be called. A
ClockStartedError is thrown if removeController is called on a Started Player .

When a Controller is removed from a Player’s control, the Player :

Resets the Controller’s TimeBase to its default.
Recalculates its duration and posts a DurationUpdateEvent if the Player’s duration is
different without the Controller added.
Recalculates its start latency.

Setting the Media Time and Rate of a Managing Player
When you call setMediaTime on a Player that’s managing other Controllers , its actions
differ depending on whether or not the Player is Started. If the Player is not Started, it simply
invokes setMediaTime on all of the Controllers it’s managing.

If the Player is Started, it posts a RestartingEvent and performs the following tasks for each
managed Controller :

Invokes stop on the Controller .
Invokes setMediaTime on the Controller .
Invokes prefetch on the Controller .
Waits for a PrefetchCompleteEvent from the Controller .
Invokes syncStart on the Controller

The same is true when setRate is called on a managing Player . The Player attempts to set the
specified rate on all managed Controllers , stopping and restarting the Controllers if
necessary. If some of the Controllers do not support the requested rate, the Player returns the
rate that was actually set. All Controllers are guaranteed to have been successfully set to the rate
returned.

Starting a Managing Player
When you call start on a managing Player , all of the Controllers managed by the Player
are transitioned to the Prefetched state. When the Controllers are Prefetched, the managing
Player calls syncStart with a time consistent with the latencies of each of the managed
Controllers .

Calling realize, prefetch, stop, or deallocate on a Managing Player
When you call realize , prefetch , stop , or deallocate on a managing Player , the
Player calls that method on all of the Controllers that it is managing. The Player moves
from one state to the next when all of its Controllers have reached that state. For example, a
Player in the Prefetching state does not transition into the Prefetched state until all of its managed
Controllers are Prefetched. The Player posts TransitionEvents normally as it changes
state.

Calling syncStart or setStopTime on a Managing Player
When you call syncStart or setStopTime on a managing Player , the Player calls that
method on all of the Controllers that it is managing. (The Player must be in the correct state or
an error is thrown. For example, the Player must be Prefetched before you can call syncStart .)

Setting the Time Base of a Managing Player
When setTimeBase is called on a managing Player , the Player calls setTimeBase on all of
the Controllers it’s managing. If setTimeBase fails on any of the Controllers , an
IncompatibleTimeBaseException is thrown and the TimeBase last used is restored for all
of the Controllers .

Getting the Duration of a Managing Player
Calling getDuration on a managing Player returns the maximum duration of all of the added
Controllers and the managing Player . If the Player or any Controller has not resolved
its duration, getDuration returns Duration.DURATION_UNKNOWN.

Closing a Managing Player
When close is called on a managing Player all managed Controllers are closed as well.

Events
Most events posted by a managed Controller are filtered by the managing Player . Certain
events are sent directly from the Controller through the Player and to the listeners registered
with the Player .

To handle the events that a managed Controller can generate, the Player registers a listener
with the Controller when it is added. Other listeners that are registered with the Controller
must be careful not to invoke methods on the Controller while it is being managed by the
Player . Calling a control method on a managed Controller directly will produce unpredictable
results.

When a Controller is removed from the Player’s list of managed Controllers , the
Player removes itself from the Controller’s listener list.

Transition Events

A managing Player posts TransitionEvents normally as it moves between states, but the
managed Controllers affect when the Player changes state. In general, a Player does not post
a transition event until all of its managed Controllers have posted the event.

Status Change Events

The managing Player collects the RateChangeEvents , StopTimeChangeEvents , and
MediaTimeSetEvents posted by its managed Controllers and posts a single event for the
group.

DurationUpdateEvent

A Player posts a DurationUpdateEvent when it determines its duration or its duration
changes. A managing Player’s duration might change if a managed Controller updates or
discovers its duration. In general, if a managed Controller posts a DurationUpdateEvent
and the new duration changes the managing Player’s duration, the Player posts a
DurationUpdateEvent

CachingControlEvent

A managing Player reposts CachingControlEvents received from a Players that it
manages, but otherwise ignores the events.

ControllerErrorEvents

A managing Player immediately reposts any ControllerErrorEvent received from a
Controller that it is managing. After a ControllerErrorEvent has been received from a
managed Controller , a managing Player no longer invokes any methods on the managed
Controller ; the managed Controller is ignored from that point on.

Version:
1.75, 97/08/25

See Also:
Manager, GainControl, Clock, TransitionEvent, RestartingEvent, DurationUpdateEvent,
Component

Method Index
o addController (Controller)

Assume control of another Controller .
o getControlPanelComponent()

Obtain the Component that provides the default user interface for controlling this Player .
o getGainControl()

Obtain the object for controlling this Player’s audio gain.
o getVisualComponent()

Obtain the display Component for this Player .
o removeController(Controller)

Stop controlling a Controller .
o start()

Start the Player as soon as possible.

Methods
o getVisualComponent

 public abstract Component getVisualComponent()

Obtain the display Component for this Player . The display Component is where visual
media is rendered. If this Player has no visual component, getVisualComponent returns
null . For example, getVisualComponent might return null if the Player only plays
audio.

Returns:
The media display Component for this Player .

o getGainControl

 public abstract GainControl getGainControl()

Obtain the object for controlling this Player’s audio gain. If this player does not have a
GainControl , getGainControl returns null . For example, getGainControl might
return null if the Player does not play audio data.

Returns:
The GainControl object for this Player .

o getControlPanelComponent

 public abstract Component getControlPanelComponent()

Obtain the Component that provides the default user interface for controlling this Player . If
this Player has no default control panel, getControlPanelComponent returns null .

Returns:
The default control panel GUI for this Player .

o start

 public abstract void start()

Start the Player as soon as possible. The start method attempts to transition the Player to
the Started state. If the Player has not been Realized or Prefetched, start automatically
performs those actions. The appropriate events are posted as the Player moves through each
state.

o addController

 public abstract void addController(Controller newController) throws IncompatibleTimeBaseException

Assume control of another Controller .

Parameters:
newController - The Controller to be managed.

Throws: IncompatibleTimeBaseException
Thrown if the added Controller cannot take this * Player’s TimeBase .

o removeController

 public abstract void removeController(Controller oldController)

Stop controlling a Controller .

Parameters:
oldController - The Controller to stop managing.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.PrefetchCompleteEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent
 |
 +----javax.media.PrefetchCompleteEvent

public class PrefetchCompleteEvent
extends TransitionEvent

A PrefetchCompleteEvent is posted when a Controller finishes Prefetching. This occurs
when a Controller moves from the Prefetching state to the Prefetched state, or as an
acknowledgement that the prefetch method was called and the Controller is already
Prefetched.

Version:
1.20, 97/08/23.

See Also:
Controller, ControllerListener

Constructor Index
o PrefetchCompleteEvent(Controller, int, int, int)

Constructors
o PrefetchCompleteEvent

 public PrefetchCompleteEvent(Controller from,
 int previous,
 int current,
 int target)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.RateChangeEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.RateChangeEvent

public class RateChangeEvent
extends ControllerEvent

A RateChangeEvent is a ControllerEvent that is posted when a Controller’s rate
changes.

Version:
1.11, 97/08/23.

See Also:
Controller, ControllerListener

Constructor Index
o RateChangeEvent(Controller, float)

Method Index
o getRate()

Get the new rate of the Controller that generated this event.

Constructors
o RateChangeEvent

 public RateChangeEvent(Controller from,
 float newRate)

Methods
o getRate

 public float getRate()

Get the new rate of the Controller that generated this event.

Returns:
The Controller’s new rate.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.RealizeCompleteEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent
 |
 +----javax.media.RealizeCompleteEvent

public class RealizeCompleteEvent
extends TransitionEvent

A RealizeCompleteEvent is posted when a Controller finishes Realizing. This occurs when
a Controller moves from the Realizing state to the Realized state, or as an acknowledgement that
the realize method was called and the Controller is already Realized.

Version:
1.14, 97/08/23

See Also:
Controller, ControllerListener

Constructor Index
o RealizeCompleteEvent(Controller, int, int, int)

Constructors
o RealizeCompleteEvent

 public RealizeCompleteEvent(Controller from,
 int previous,
 int current,
 int target)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.ResourceUnavailableEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.ControllerClosedEvent
 |
 +----javax.media.ControllerErrorEvent
 |
 +----javax.media.ResourceUnavailableEvent

public class ResourceUnavailableEvent
extends ControllerErrorEvent

A ResourceUnavailableEvent indicates that a Controller was unable to allocate a
resource that it requires for operation.

Version:
1.21, 97/08/23

See Also:
Controller, ControllerListener

Constructor Index
o ResourceUnavailableEvent(Controller)
o ResourceUnavailableEvent(Controller, String)

Constructors
o ResourceUnavailableEvent

 public ResourceUnavailableEvent(Controller from)

o ResourceUnavailableEvent

 public ResourceUnavailableEvent(Controller from,
 String message)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.RestartingEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent
 |
 +----javax.media.StopEvent
 |
 +----javax.media.RestartingEvent

public class RestartingEvent
extends StopEvent

A RestartingEvent indicates that a Controller has moved from the Started state back to the
Prefetching state (a Stopped state) and intends to return to the Started state when Prefetching is
complete. This occurs when a Started Player is asked to change its rate or media time and to fulfill
the request must prefetch its media again.

Version:
1.14, 97/08/23.

See Also:
Controller, ControllerListener

Constructor Index
o RestartingEvent(Controller, int, int, int, Time)

Constructors
o RestartingEvent

 public RestartingEvent(Controller from,
 int previous,
 int current,
 int target,
 Time mediaTime)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.StartEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent
 |
 +----javax.media.StartEvent

public class StartEvent
extends TransitionEvent

StartEvent is a TransitionEvent that indicates that a Controller has entered the Started
state. Entering the Started state implies that syncStart has been invoked, providing a new media
time to time-base time mapping. StartEvent provides the time-base time and the media-time that
Started this Controller .

Version:
1.31, 97/08/23

See Also:
Controller, ControllerListener

Constructor Index
o StartEvent(Controller, int, int, int, Time, Time)

Construct a new StartEvent .

Method Index
o getMediaTime()

Get the clock time (media time) when the Controller started.
o getTimeBaseTime()

Get the time-base time that started the Controller .

Constructors
o StartEvent

 public StartEvent(Controller from,
 int previous,
 int current,
 int target,
 Time mediaTime,
 Time tbTime)

Construct a new StartEvent . The from argument identifies the Controller that is
generating this event. The mediaTime and the tbTime identify the media-time to
time-base-time mapping that Started the Controller

Parameters:
from - The Controller that has Started.
mediaTime - The media time when the Controller Started.
tbTime - The time-base time when the Controller Started.

Methods
o getMediaTime

 public Time getMediaTime()

Get the clock time (media time) when the Controller started.

Returns:
The Controller’s media time when it started.

o getTimeBaseTime

 public Time getTimeBaseTime()

Get the time-base time that started the Controller .

Returns:
The time-base time associated with the Controller when it started.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.StopAtTimeEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent
 |
 +----javax.media.StopEvent
 |
 +----javax.media.StopAtTimeEvent

public class StopAtTimeEvent
extends StopEvent

A StopAtTimeEvent indicates that the Controller has stopped because it reached its stop time.

Version:
1.11, 97/08/23.

See Also:
Controller, ControllerListener

Constructor Index
o StopAtTimeEvent(Controller, int, int, int, Time)

Constructors
o StopAtTimeEvent

 public StopAtTimeEvent(Controller from,
 int previous,
 int current,
 int target,
 Time mediaTime)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.StopByRequestEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent
 |
 +----javax.media.StopEvent
 |
 +----javax.media.StopByRequestEvent

public class StopByRequestEvent
extends StopEvent

A StopByRequestEvent indicates that the Controller has stopped in response to a stop call.
This event is posted as an acknowledgement even if the Controller is already Stopped.

Version:
1.11, 97/08/23.

See Also:
Controller, ControllerListener

Constructor Index
o StopByRequestEvent(Controller, int, int, int, Time)

Constructors
o StopByRequestEvent

 public StopByRequestEvent(Controller from,
 int previous,
 int current,
 int target,
 Time mediaTime)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.StopEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent
 |
 +----javax.media.StopEvent

public class StopEvent
extends TransitionEvent

StopEvent is a ControllerEvent that indicates that a Controller has stopped.

Version:
1.28, 97/08/23

See Also:
Controller, ControllerListener

Constructor Index
o StopEvent(Controller, int, int, int, Time)

Method Index
o getMediaTime()

Get the clock time (media time) that was passed into the constructor.

Constructors
o StopEvent

 public StopEvent(Controller from,
 int previous,
 int current,
 int target,
 Time mediaTime)

Parameters:
from - The Controller that generated this event.
mediaTime - The media time at which the Controller stopped.

Methods
o getMediaTime

 public Time getMediaTime()

Get the clock time (media time) that was passed into the constructor.

Returns:
The mediaTime at which the Controller stopped.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.StopTimeChangeEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.StopTimeChangeEvent

public class StopTimeChangeEvent
extends ControllerEvent

A StopTimeChangeEvent is generated by a Controller when its stop time has changed.

Version:
1.12, 97/08/25.

See Also:
Controller, ControllerListener

Constructor Index
o StopTimeChangeEvent(Controller, Time)

Method Index
o getStopTime()

Get the new stop-time for the Controller that generated this event.

Constructors
o StopTimeChangeEvent

 public StopTimeChangeEvent(Controller from,
 Time newStopTime)

Methods
o getStopTime

 public Time getStopTime()

Get the new stop-time for the Controller that generated this event.

Returns:
The new stop time for the Controller that generated this event.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.StopTimeSetError
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Error
 |
 +----javax.media.MediaError
 |
 +----javax.media.StopTimeSetError

public class StopTimeSetError
extends MediaError

StopTimeSetError is thrown when the stop time has been set on a Started Clock and
setStopTime is invoked again.

Version:
1.10, 97/08/23.

Constructor Index
o StopTimeSetError(String)

Constructors
o StopTimeSetError

 public StopTimeSetError(String reason)

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.Time
java.lang.Object
 |
 +----javax.media.Time

public class Time
extends Object

Time abstracts time in the Java Media framework.

Version:
1.10, 97/08/28.

See Also:
Clock, TimeBase

Variable Index
o nanoseconds

Time is kept to a granularity of nanoseconds.
o ONE_SECOND

Constructor Index
o Time(double)

Construct a time in seconds.
o Time(long)

Construct a time in nanoseconds.

Method Index
o getNanoseconds()

Get the time value in nanoseconds.
o getSeconds()

Get the time value in seconds.
o secondsToNanoseconds(double)

Convert seconds to nanoseconds.

Variables
o ONE_SECOND

 public static final long ONE_SECOND

o nanoseconds

 protected long nanoseconds

Time is kept to a granularity of nanoseconds. Converions to and from this value are done to
implement construction or query in seconds.

Constructors
o Time

 public Time(long nano)

Construct a time in nanoseconds.

Parameters:
nano - Number of nanoseconds for this time.

o Time

 public Time(double seconds)

Construct a time in seconds.

Parameters:
seconds - Time specified in seconds.

Methods
o secondsToNanoseconds

 protected long secondsToNanoseconds(double seconds)

Convert seconds to nanoseconds.

o getNanoseconds

 public long getNanoseconds()

Get the time value in nanoseconds.

Returns:
The time in nanoseconds.

o getSeconds

 public double getSeconds()

Get the time value in seconds.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.TimeBase
public interface TimeBase

A TimeBase is a constantly ticking source of time, much like a crystal.

Unlike a Clock , a TimeBase cannot be temporally transformed, reset, or stopped.

Version:
1.13, 97/08/25.

See Also:
Clock

Method Index
o getNanoseconds()

Get the current time of the TimeBase specified in nanoseconds.
o getTime()

Get the current time of this TimeBase .

Methods
o getTime

 public abstract Time getTime()

Get the current time of this TimeBase .

Returns:
the current TimeBase time.

o getNanoseconds

 public abstract long getNanoseconds()

Get the current time of the TimeBase specified in nanoseconds.

Returns:
the current TimeBase time in nanoseocnds.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.TransitionEvent
java.lang.Object
 |
 +----javax.media.ControllerEvent
 |
 +----javax.media.TransitionEvent

public class TransitionEvent
extends ControllerEvent

TransitionEvent is a ControllerEvent that indicates that a Controller has changed
state.

Version:
1.10, 97/08/23

See Also:
Controller, ControllerListener

Constructor Index
o TransitionEvent(Controller, int, int, int)

Construct a new TransitionEvent .

Method Index
o getCurrentState()

Get the Controller’s state at the time this event was generated
o getPreviousState()

Get the state that the Controller was in before this event occurred.
o getTargetState()

Get the Controller’s target state at the time this event was generated.

Constructors
o TransitionEvent

 public TransitionEvent(Controller from,
 int previous,
 int current,
 int target)

Construct a new TransitionEvent .

Parameters:
from - The Controller that is generating this event.
previous - The state that the Controller was in before this event.

current - The state that the Controller is in as a result of this event.
target - The state that the Controller is heading to.

Methods
o getPreviousState

 public int getPreviousState()

Get the state that the Controller was in before this event occurred.

Returns:
The Controller’s previous state.

o getCurrentState

 public int getCurrentState()

Get the Controller’s state at the time this event was generated

Returns:
The Controller’s current state.

o getTargetState

 public int getTargetState()

Get the Controller’s target state at the time this event was generated.

Returns:
The Controller’s target state.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.protocol.ContentDescriptor
java.lang.Object
 |
 +----javax.media.protocol.ContentDescriptor

public class ContentDescriptor
extends Object

A ContentDescriptor identifies media data containers.

Version:
1.10, 97/08/26.

See Also:
SourceStream

Variable Index
o CONTENT_UNKNOWN
o typeName

Constructor Index
o ContentDescriptor(String)

Create a content descriptor with the specified name.

Method Index
o getContentType()

Obtain a string that represents the content-name for this descriptor.
o mimeTypeToPackageName(String)

Map a MIME content-type to an equivalent string of class-name components.

Variables
o CONTENT_UNKNOWN

 public static final String CONTENT_UNKNOWN

o typeName

 protected String typeName

Constructors
o ContentDescriptor

 public ContentDescriptor(String cdName)

Create a content descriptor with the specified name.

To create a ContentDescriptor from a MIME type, use the mimeTypeToPackageName
static member.

Parameters:
cdName - The name of the content-type.

Methods
o getContentType

 public String getContentType()

Obtain a string that represents the content-name for this descriptor.

Returns:
The content-type name.

o mimeTypeToPackageName

 protected static final String mimeTypeToPackageName(String mimeType)

Map a MIME content-type to an equivalent string of class-name components.

The MIME type is mapped to a string by:
1. Replacing all slashes with a period.
2. Converting all alphabetic characters to lower case.
3. Converting all non-alpha-numeric characters other than periods to underscores (_).

For example, "text/html" would be converted to "text.html"

Parameters:
mimeType - The MIME type to map to a string.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.protocol.Controls
public interface Controls

Controls provides an interface for obtaining objects by interface or class name. This is useful in the
case where support for a particular interface cannot be determined at runtime, or where a different
object is required to implement the behavior. The object returned from getControl is assumed
to control the object that getControl was invoked on.

Version:
1.4, 97/08/28.

Method Index
o getControl(String)

Obtain the object that implements the specified Class or Interface The full class or
interface name must be used.

o getControls()
Obtain the collection of objects that control the object that implements this interface.

Methods
o getControls

 public abstract Object[] getControls()

Obtain the collection of objects that control the object that implements this interface.

If no controls are supported, a zero length array is returned.

Returns:
the collection of object controls

o getControl

 public abstract Object getControl(String controlType)

Obtain the object that implements the specified Class or Interface The full class or
interface name must be used.

If the control is not supported then null is returned.

Returns:
the object that implements the control, or null .

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.protocol.DataSource
java.lang.Object
 |
 +----javax.media.protocol.DataSource

public abstract class DataSource
extends Object
implements Controls, Duration

A DataSource is an abstraction for media protocol-handlers. DataSource manages the life-cycle
of the media source by providing a simple connection protocol.

Source Controls
A DataSource might support an operation that is not part of the DataSource class definition. For
example a source could support positioning its media to a particular time. Some operations are
dependent on the data stream that the source is managing, and support cannot be determined until after
the source has been connected.

To obtain all of the objects that provide control over a DataSource , use getControls which
returns an array of Object To determine if a particular kind of control is available and obtain the
object that implements it, use getControl which takes the name of the Class or Interface that of the
desired control.

Version:
1.16, 97/08/26

See Also:
Manager, DefaultPlayerFactory, Positionable, RateConfigureable

Constructor Index
o DataSource()

A no-argument constructor required by pre 1.1 implementations so that this class can be
instantiated by calling Class.newInstance .

o DataSource(MediaLocator)
Construct a DataSource from a MediaLocator .

Method Index
o connect()

Open a connection to the source described by the MediaLocator .
o disconnect()

Close the connection to the source described by the locator.

o getContentType()
Get a string that describes the content-type of the media that the source is providing.

o getControl(String)
Obtain the object that implements the specified Class or Interface The full class or
interface name must be used.

o getControls()
Obtain the collection of objects that control the object that implements this interface.

o getDuration()
Get the duration of the media represented by this object.

o getLocator()
Get the MediaLocator that describes this source.

o initCheck()
Check to see if this connection has been initialized with a MediaLocator .

o setLocator(MediaLocator)
Set the connection source for this DataSource .

o start()
Initiate data-transfer.

o stop()
Stop the data-transfer.

Constructors
o DataSource

 public DataSource()

A no-argument constructor required by pre 1.1 implementations so that this class can be
instantiated by calling Class.newInstance .

o DataSource

 public DataSource(MediaLocator source)

Construct a DataSource from a MediaLocator . This method should be overloaded by
subclasses; the default implementation just keeps track of the MediaLocator .

Parameters:
source - The MediaLocator that describes the DataSource .

Methods
o setLocator

 public void setLocator(MediaLocator source)

Set the connection source for this DataSource . This method should only be called once; an
error is thrown if the locator has already been set.

Parameters:
source - The MediaLocator that describes the media source.

o getLocator

 public MediaLocator getLocator()

Get the MediaLocator that describes this source. Returns null if the locator hasn’t been set.
(Very unlikely.)

Returns:
The MediaLocator for this source.

o initCheck

 protected void initCheck()

Check to see if this connection has been initialized with a MediaLocator . If the connection
hasn’t been initialized, initCheck throws an UninitializedError . Most methods should
call initCheck on entry.

o getContentType

 public abstract String getContentType()

Get a string that describes the content-type of the media that the source is providing.

It is an error to call getContentType if the source is not connected.

Returns:
The name that describes the media content.

o connect

 public abstract void connect() throws IOException

Open a connection to the source described by the MediaLocator .

The connect method initiates communication with the source.

Throws: IOException
Thrown if there are IO problems when connect is called.

o disconnect

 public abstract void disconnect()

Close the connection to the source described by the locator.

The disconnect method frees resources used to maintain a connection to the source. If no
resources are in use, disconnect is ignored. If stop hasn’t already been called, calling
disconnect implies a stop.

o start

 public abstract void start() throws IOException

Initiate data-transfer. The start method must be called before data is available. (You must call
connect before calling start .)

Throws: IOException
Thrown if there are IO problems with the source when start is called.

o stop

 public abstract void stop() throws IOException

Stop the data-transfer. If the source has not been connected and started, stop does nothing.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.protocol.Positionable
public interface Positionable

A DataSource implements the Positionable interface if it supports changing the media
position within the stream.

Version:
1.6, 97/08/23.

See Also:
Datasource

Variable Index
o RoundDown
o RoundNearest
o RoundUp

Method Index
o isRandomAccess()

Find out if this source can be repositioned to any point in the stream.
o setPosition(Time, int)

Set the position to the specified time.

Variables
o RoundUp

 public static final int RoundUp

o RoundDown

 public static final int RoundDown

o RoundNearest

 public static final int RoundNearest

Methods
o setPosition

 public abstract Time setPosition(Time where,
 int rounding)

Set the position to the specified time. Returns the rounded position that was actually set.

Parameters:
time - The new position in the stream.
round - The rounding technique to be used: RoundUp, RoundDown, RoundNearest.

Returns:
The actual position set.

o isRandomAccess

 public abstract boolean isRandomAccess()

Find out if this source can be repositioned to any point in the stream. If not, the source can only
be repositioned to the beginning of the stream.

Returns:
Returns true if the source is random access; false if the source can only be reset to the
beginning of the stream.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.protocol.PullDataSource
java.lang.Object
 |
 +----javax.media.protocol.DataSource
 |
 +----javax.media.protocol.PullDataSource

public abstract class PullDataSource
extends DataSource

Abstracts a media data-source that only supports pull data-streams.

Version:
1.5, 97/08/23.

See Also:
Manager, Player, DefaultPlayerFactory, DataSource

Constructor Index
o PullDataSource()

Method Index
o getStreams()

Get the collection of streams that this source manages.

Constructors
o PullDataSource

 public PullDataSource()

Methods
o getStreams

 public abstract PullSourceStream[] getStreams()

Get the collection of streams that this source manages. The collection of streams is entirely
content dependent. The MIME type of this DataSource provides the only indication of what
streams can be available on this connection.

Returns:
The collection of streams for this source.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.protocol.PullSourceStream
public interface PullSourceStream
extends SourceStream

Abstracts a read interface that data is pulled from.

Version:
1.8, 97/08/23.

See Also:
PullDataSource

Method Index
o read(byte[], int, int)

Block and read data from the stream.
o willReadBlock()

Find out if data is available now.

Methods
o willReadBlock

 public abstract boolean willReadBlock()

Find out if data is available now. Returns true if a call to read would block for data.

Returns:
Returns true if read would block; otherwise returns false .

o read

 public abstract int read(byte buffer[],
 int offset,
 int length) throws IOException

Block and read data from the stream.

Reads up to length bytes from the input stream into an array of bytes. If the first argument is
null , up to length bytes are read and discarded. Returns -1 when the end of the media is
reached. This method only returns 0 if it was called with a length of 0.

Parameters:
buffer - The buffer to read bytes into.
offset - The offset into the buffer at which to begin writing data.
length - The number of bytes to read.

Returns:
The number of bytes read, -1 indicating the end of stream, or 0 indicating read was called
with length 0.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.protocol.PushDataSource
java.lang.Object
 |
 +----javax.media.protocol.DataSource
 |
 +----javax.media.protocol.PushDataSource

public abstract class PushDataSource
extends DataSource

Abstracts a data source that manages PushDataStreams .

Version:
1.5, 97/08/23.

See Also:
Manager, Player, DefaultPlayerFactory, DataSource

Constructor Index
o PushDataSource()

Method Index
o getStreams()

Get the collection of streams that this source manages.

Constructors
o PushDataSource

 public PushDataSource()

Methods
o getStreams

 public abstract PushSourceStream[] getStreams()

Get the collection of streams that this source manages. The collection of streams is entirely
content dependent. The ContentDescriptor of this DataSource provides the only
indication of what streams can be available on this connection.

Returns:
The collection of streams for this source.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.protocol.PushSourceStream
public interface PushSourceStream
extends SourceStream

Abstracts a read interface that pushes data.

Version:
1.7, 97/08/25.

See Also:
PushDataSource

Method Index
o getMinimumTransferSize()

Determine the size of the buffer needed for the data transfer.
o read(byte[], int, int)

Read from the stream without blocking.
o setTransferHandler(SourceTransferHandler)

Register an object to service data transfers to this stream.

Methods
o read

 public abstract int read(byte buffer[],
 int offset,
 int length)

Read from the stream without blocking. Returns -1 when the end of the media is reached.

Parameters:
buffer - The buffer to read bytes into.
offset - The offset into the buffer at which to begin writing data.
length - The number of bytes to read.

Returns:
The number of bytes read or -1 when the end of stream is reached.

o getMinimumTransferSize

 public abstract int getMinimumTransferSize()

Determine the size of the buffer needed for the data transfer. This method is provided so that a
transfer handler can determine how much data, at a minimum, will be available to transfer from
the source. Overflow and data loss is likely to occur if this much data isn’t read at transfer time.

Returns:
The size of the data transfer.

o setTransferHandler

 public abstract void setTransferHandler(SourceTransferHandler transferHandler)

Register an object to service data transfers to this stream.

If a handler is already registered when setTransferHandler is called, the handler is
replaced; there can only be one handler at a time.

Parameters:
transferHandler - The handler to transfer data to.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.protocol.RateConfiguration
public interface RateConfiguration

A configuration of streams for a particular rate.

Version:
1.7, 97/08/28.

See Also:
DataSource, RateConfigureable

Method Index
o getRate()

Get the RateRange for this configuration.
o getStreams()

Get the streams that will have content at this rate.

Methods
o getRate

 public abstract RateRange getRate()

Get the RateRange for this configuration.

Returns:
The rate supported by this configuration.

o getStreams

 public abstract SourceStream[] getStreams()

Get the streams that will have content at this rate.

Returns:
The streams supported at this rate.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.protocol.RateConfigureable
public interface RateConfigureable

DataSources support the RateConfigureable interface if they use different
rate-configurations to support multiple media display speeds.

Version:
1.7, 97/08/26.

See Also:
DataSource, RateConfiguration, RateRange

Method Index
o getRateConfigurations()

Get the rate configurations that this object supports.
o setRateConfiguration(RateConfiguration)

Set a new RateConfiguration .

Methods
o getRateConfigurations

 public abstract RateConfiguration[] getRateConfigurations()

Get the rate configurations that this object supports. There must always be one and only one for a
RateConfiguration that covers a rate of 1.0.

Returns:
The collection of RateConfigurations that this source supports.

o setRateConfiguration

 public abstract RateConfiguration setRateConfiguration(RateConfiguration config)

Set a new RateConfiguration . The new configuration should have been obtained by calling
getRateConfigurations . Returns the actual RateConfiguration used.

Parameters:
config - The RateConfiguration to use.

Returns:
The actual RateConfiguration used by the source.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.protocol.RateRange
java.lang.Object
 |
 +----javax.media.protocol.RateRange

public class RateRange
extends Object

Describes the speed at which data flows.

Version:
1.6, 97/08/23.

Constructor Index
o RateRange(float, float, float, boolean)

Constructor using required values.
o RateRange(RateRange)

Copy constructor.

Method Index
o getCurrentRate()

Get the current rate.
o getMaximumRate()

Get the maximum rate supported by this range.
o getMinimumRate()

Get the minimum rate supported by this range.
o isExact()

Determine whether or not the source will maintain a constant speed when using this rate.
o setCurrentRate(float)

Set the current rate.

Constructors
o RateRange

 public RateRange(RateRange r)

Copy constructor.

o RateRange

 public RateRange(float init,
 float min,
 float max,
 boolean isExact)

Constructor using required values.

Parameters:
init - The initial value for this rate.
min - The minimum value that this rate can take.
max - The maximum value that this rate can take.
isExact - Set to true if the source rate does not vary when using this rate range.

Methods
o setCurrentRate

 public float setCurrentRate(float rate)

Set the current rate. Returns the rate that was actually set. This implementation just returns the
specified rate, subclasses should return the rate that was actually set.

Parameters:
rate - The new rate.

o getCurrentRate

 public float getCurrentRate()

Get the current rate.

Returns:
The current rate.

o getMinimumRate

 public float getMinimumRate()

Get the minimum rate supported by this range.

Returns:
The minimum rate.

o getMaximumRate

 public float getMaximumRate()

Get the maximum rate supported by this range.

Returns:
The maximum rate.

o isExact

 public boolean isExact()

Determine whether or not the source will maintain a constant speed when using this rate. If the
rate varies, synchronization is usually impractical.

Returns:
Returns true if the source will maintain a constant speed at this rate.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.protocol.Seekable
public interface Seekable

A SourceStream will implement this interface if it is capable of seeking to a particular position in
the stream.

Version:
1.6, 97/08/23.

See Also:
SourceStream

Method Index
o isRandomAccess()

Find out if this source can position anywhere in the stream.
o seek(long)

Seek to the specified point in the stream.
o tell()

Obtain the current point in the stream.

Methods
o seek

 public abstract long seek(long where)

Seek to the specified point in the stream.

Parameters:
where - The position to seek to.

Returns:
The new stream position.

o tell

 public abstract long tell()

Obtain the current point in the stream.

o isRandomAccess

 public abstract boolean isRandomAccess()

Find out if this source can position anywhere in the stream. If the stream is not random access, it
can only be repositioned to the beginning.

Returns:
Returns true if the stream is random access, false if the stream can only be reset to the
beginning.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.protocol.SourceStream
public interface SourceStream
extends Controls

Abstracts a single stream of media data.

Stream Controls
A SourceStream might support an operation that is not part of the SourceStream definition.
For example a stream might support seeking to a particular byte in the stream. Some operations are
dependent on the stream data, and support cannot be determined until the stream is in use.

To obtain all of the objects that provide control over a stream use getControls . To determine if a
particular kind of control is available, and obtain the object that implements the control use
getControl .

Version:
1.12, 97/08/28.

See Also:
DataSource, PushSourceStream, PullSourceStream, Seekable

Variable Index
o LENGTH_UNKNOWN

Method Index
o endOfStream()

Find out if the end of the stream has been reached.
o getContentDescriptor()

Get the current content type for this stream.
o getContentLength()

Get the size, in bytes, of the content on this stream.

Variables
o LENGTH_UNKNOWN

 public static final long LENGTH_UNKNOWN

Methods
o getContentDescriptor

 public abstract ContentDescriptor getContentDescriptor()

Get the current content type for this stream.

Returns:
The current ContentDescriptor for this stream.

o getContentLength

 public abstract long getContentLength()

Get the size, in bytes, of the content on this stream. LENGTH_UNKNOWN is returned if the
length is not known.

Returns:
The content length in bytes.

o endOfStream

 public abstract boolean endOfStream()

Find out if the end of the stream has been reached.

Returns:
Returns true if there is no more data.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Interface javax.media.protocol.SourceTransferHandler
public interface SourceTransferHandler

Implements the callback from a PushSourceStream .

Version:
1.5, 97/08/23.

See Also:
PushSourceStream

Method Index
o transferData(PushSourceStream)

Transfer new data from a PushSourceStream .

Methods
o transferData

 public abstract void transferData(PushSourceStream stream)

Transfer new data from a PushSourceStream .

Parameters:
stream - The stream that is providing the data.

All Packages Class Hierarchy This Package Previous Next Index

All Packages Class Hierarchy This Package Previous Next Index

Class javax.media.protocol.URLDataSource
java.lang.Object
 |
 +----javax.media.protocol.DataSource
 |
 +----javax.media.protocol.PullDataSource
 |
 +----javax.media.protocol.URLDataSource

public class URLDataSource
extends PullDataSource

A default data-source created directly from a URL using URLConnection .

Version:
1.19, 97/08/28.

See Also:
URL, URLConnection, InputSourceStream

Variable Index
o conn
o connected
o contentType
o sources

Constructor Index
o URLDataSource()

Implemented by subclasses.
o URLDataSource(URL)

Construct a URLDataSource directly from a URL.

Method Index
o connect()

Initialize the connection with the source.
o disconnect()

Disconnect the source.
o getContentType()

Return the content type name.
o getControl(String)

Returns null, because this source doesn’t provide any controls.

o getControls()
Returns an empty array, because this source doesn’t provide any controls.

o getDuration()
Returns Duration.DURATION_UNKNOWN.

o getStreams()
Get the collection of streams that this source manages.

o start()
Initiate data-transfer.

o stop()
Stops the

Variables
o conn

 protected URLConnection conn

o contentType

 protected ContentDescriptor contentType

o sources

 protected URLSourceStream sources[]

o connected

 protected boolean connected

Constructors
o URLDataSource

 protected URLDataSource()

Implemented by subclasses.

o URLDataSource

 public URLDataSource(URL url) throws IOException

Construct a URLDataSource directly from a URL.

Methods
o getStreams

 public PullSourceStream[] getStreams()

Get the collection of streams that this source manages.

Overrides:
getStreams in class PullDataSource

o connect

 public void connect() throws IOException

Initialize the connection with the source.

Throws: IOException
Thrown if there are problems setting up the connection.

Overrides:
connect in class DataSource

o getContentType

 public String getContentType()

Return the content type name.

Returns:
The content type name.

Overrides:
getContentType in class DataSource

o disconnect

 public void disconnect()

Disconnect the source.

Overrides:
disconnect in class DataSource

o start

 public void start() throws IOException

Initiate data-transfer.

Overrides:
start in class DataSource

o stop

 public void stop() throws IOException

Stops the

Overrides:
stop in class DataSource

o getDuration

 public Time getDuration()

Returns Duration.DURATION_UNKNOWN. The duration is not available from an
InputStream .

Returns:
Duration.DURATION_UNKNOWN.

Overrides:
getDuration in class DataSource

o getControls

 public Object[] getControls()

Returns an empty array, because this source doesn’t provide any controls.

Returns:
empty Object array.

Overrides:
getControls in class DataSource

o getControl

 public Object getControl(String controlName)

Returns null, because this source doesn’t provide any controls.

Overrides:
getControl in class DataSource

All Packages Class Hierarchy This Package Previous Next Index

API User’s Guide Class Hierarchy Index

Package Index

Other Packages
package javax.media
package javax.media.protocol

All Packages Index

Class Hierarchy
class java.lang.Object

interface javax.media.CachingControl (extends javax.media.Control)
interface javax.media.Clock
class javax.media.protocol.ContentDescriptor
interface javax.media.Control
interface javax.media.Controller (extends javax.media.Clock, javax.media.Duration)
class javax.media.ControllerEvent (implements javax.media.MediaEvent)

class javax.media.CachingControlEvent
class javax.media.ControllerClosedEvent

class javax.media.ControllerErrorEvent
class javax.media.ConnectionErrorEvent
class javax.media.InternalErrorEvent
class javax.media.ResourceUnavailableEvent

class javax.media.DurationUpdateEvent
class javax.media.MediaTimeSetEvent
class javax.media.RateChangeEvent
class javax.media.StopTimeChangeEvent
class javax.media.TransitionEvent

class javax.media.PrefetchCompleteEvent
class javax.media.RealizeCompleteEvent
class javax.media.StartEvent
class javax.media.StopEvent

class javax.media.DataStarvedEvent
class javax.media.DeallocateEvent
class javax.media.EndOfMediaEvent
class javax.media.RestartingEvent
class javax.media.StopAtTimeEvent
class javax.media.StopByRequestEvent

interface javax.media.ControllerListener
interface javax.media.protocol.Controls
class javax.media.protocol.DataSource (implements javax.media.protocol.Controls,
javax.media.Duration)

class javax.media.protocol.PullDataSource
class javax.media.protocol.URLDataSource

class javax.media.protocol.PushDataSource
interface javax.media.Duration
class javax.media.GainChangeEvent (implements javax.media.MediaEvent)
interface javax.media.GainChangeListener
interface javax.media.GainControl (extends javax.media.Control)
class javax.media.Manager
interface javax.media.MediaEvent
interface javax.media.MediaHandler

class javax.media.MediaLocator
interface javax.media.MediaProxy (extends javax.media.MediaHandler)
class javax.media.PackageManager
interface javax.media.Player (extends javax.media.MediaHandler, javax.media.Controller,
javax.media.Duration)
interface javax.media.protocol.Positionable
interface javax.media.protocol.PullSourceStream (extends
javax.media.protocol.SourceStream)
interface javax.media.protocol.PushSourceStream (extends
javax.media.protocol.SourceStream)
interface javax.media.protocol.RateConfiguration
interface javax.media.protocol.RateConfigureable
class javax.media.protocol.RateRange
interface javax.media.protocol.Seekable
interface javax.media.protocol.SourceStream (extends javax.media.protocol.Controls)
interface javax.media.protocol.SourceTransferHandler
class java.lang.Throwable (implements java.io.Serializable)

class java.lang.Error
class javax.media.MediaError

class javax.media.ClockStartedError
class javax.media.NotPrefetchedError
class javax.media.NotRealizedError
class javax.media.StopTimeSetError

class java.lang.Exception
class javax.media.MediaException

class javax.media.ClockStoppedException
class javax.media.IncompatibleSourceException
class javax.media.IncompatibleTimeBaseException
class javax.media.NoDataSourceException
class javax.media.NoPlayerException

class javax.media.Time
interface javax.media.TimeBase

	Java API User's Guide
	How to Locate API
	How This Document Is Organized
	Level 1 - All Packages
	Level 2 - All Classes and Interfaces within a Package
	Level 3 - A Single Class or Interface
	Class Hierarchy
	Index of Fields and Methods

	Index of all Fields and Methods
	 A
	 C
	 D
	 E
	 G
	 I
	 L
	 M
	 N
	 O
	 P
	 R
	 S
	 T
	 U
	 W

	package javax.media
	Interface Index
	Class Index
	Exception Index
	Error Index

	package javax.media.protocol
	Interface Index
	Class Index

	Interface javax.media.CachingControl
	Variable Index
	Method Index
	Variables
	Methods

	Class javax.media.CachingControlEvent
	Constructor Index
	Method Index
	Constructors
	Methods

	Interface javax.media.Clock
	Clock and TimeBase
	Clock Transform
	Default Time Base

	Using a Clock
	Starting a Clock
	Stopping a Clock

	Clock State
	Methods Restricted to Started Clocks
	Methods Restricted to Stopped Clocks
	Methods with Additional Restrictions

	Variable Index
	Method Index
	Variables
	Methods

	Class javax.media.ClockStartedError
	Constructor Index
	Constructors

	Class javax.media.ClockStoppedException
	Constructor Index
	Constructors

	Class javax.media.ConnectionErrorEvent
	Constructor Index
	Constructors

	Interface javax.media.Control
	Method Index
	Methods

	Interface javax.media.Controller
	Controller life-cycle
	State Transition Methods
	State Transition Events

	Controller States
	Unrealized State
	Realizing and Realized States
	Realize method

	Prefetching and Prefetched States
	Prefetch Method

	Started State
	syncStart

	Freeing the Resources Used by a Controller

	Controller Events
	Controls
	Variable Index
	Method Index
	Variables
	Methods

	Class javax.media.ControllerClosedEvent
	Variable Index
	Constructor Index
	Method Index
	Variables
	Constructors
	Methods

	Class javax.media.ControllerErrorEvent
	Constructor Index
	Constructors

	Class javax.media.ControllerEvent
	Java Beans Compatibility
	Constructor Index
	Method Index
	Constructors
	Methods

	Interface javax.media.ControllerListener
	Java Beans Support
	Method Index
	Methods

	Class javax.media.DataStarvedEvent
	Constructor Index
	Constructors

	Class javax.media.DeallocateEvent
	Constructor Index
	Constructors

	Interface javax.media.Duration
	Variable Index
	Method Index
	Variables
	Methods

	Class javax.media.DurationUpdateEvent
	Constructor Index
	Method Index
	Constructors
	Methods

	Class javax.media.EndOfMediaEvent
	Constructor Index
	Constructors

	Class javax.media.GainChangeEvent
	Java Beans support
	Constructor Index
	Method Index
	Constructors
	Methods

	Interface javax.media.GainChangeListener
	Java Beans support
	Method Index
	Methods

	Interface javax.media.GainControl
	
	Gain and Gain Measures
	Specifying Gain in Decibels
	Specifying Gain in the Level Scale
	Decibel and Level Interactions
	Defaults

	Mute
	Gain Change Events

	Method Index
	Methods

	Class javax.media.IncompatibleSourceException
	Constructor Index
	Constructors

	Class javax.media.IncompatibleTimeBaseException
	Constructor Index
	Constructors

	Class javax.media.InternalErrorEvent
	Constructor Index
	Constructors

	Class javax.media.Manager
	Creating Players and DataSources
	Finding DataSources by Protocol
	Finding Players by Content Type

	Player Threads
	System Time Base
	Variable Index
	Method Index
	Variables
	Methods

	Class javax.media.MediaError
	Constructor Index
	Constructors

	Interface javax.media.MediaEvent
	Java Beans support
	Method Index
	Methods

	Class javax.media.MediaException
	Constructor Index
	Constructors

	Interface javax.media.MediaHandler
	Method Index
	Methods

	Class javax.media.MediaLocator
	Constructor Index
	Method Index
	Constructors
	Methods

	Interface javax.media.MediaProxy
	Method Index
	Methods

	Class javax.media.MediaTimeSetEvent
	Constructor Index
	Method Index
	Constructors
	Methods

	Class javax.media.NoDataSourceException
	Constructor Index
	Constructors

	Class javax.media.NoPlayerException
	Constructor Index
	Constructors

	Class javax.media.NotPrefetchedError
	Constructor Index
	Constructors

	Class javax.media.NotRealizedError
	Constructor Index
	Constructors

	Class javax.media.PackageManager
	Constructor Index
	Method Index
	Constructors
	Methods

	Interface javax.media.Player
	How a Player Differs from a Controller
	Methods Restricted to Stopped€Players
	Methods Allowed on Started€Players
	Methods that are Illegal on Unrealized Players
	Start Method
	RestartingEvent
	DurationUpdateEvent

	Managing other Controllers
	Adding a Controller
	Removing a Controller
	Setting the Media Time and Rate of a Managing Player
	Starting a Managing Player
	Calling realize, prefetch, stop, or deallocate on a Managing Player
	Calling syncStart or setStopTime on a Managing Player
	Setting the Time Base of a Managing Player
	Getting the Duration of a Managing Player
	Closing a Managing Player
	Events
	Transition Events
	Status Change Events
	DurationUpdateEvent
	CachingControlEvent
	ControllerErrorEvents

	Method Index
	Methods

	Class javax.media.PrefetchCompleteEvent
	Constructor Index
	Constructors

	Class javax.media.RateChangeEvent
	Constructor Index
	Method Index
	Constructors
	Methods

	Class javax.media.RealizeCompleteEvent
	Constructor Index
	Constructors

	Class javax.media.ResourceUnavailableEvent
	Constructor Index
	Constructors

	Class javax.media.RestartingEvent
	Constructor Index
	Constructors

	Class javax.media.StartEvent
	Constructor Index
	Method Index
	Constructors
	Methods

	Class javax.media.StopAtTimeEvent
	Constructor Index
	Constructors

	Class javax.media.StopByRequestEvent
	Constructor Index
	Constructors

	Class javax.media.StopEvent
	Constructor Index
	Method Index
	Constructors
	Methods

	Class javax.media.StopTimeChangeEvent
	Constructor Index
	Method Index
	Constructors
	Methods

	Class javax.media.StopTimeSetError
	Constructor Index
	Constructors

	Class javax.media.Time
	Variable Index
	Constructor Index
	Method Index
	Variables
	Constructors
	Methods

	Interface javax.media.TimeBase
	Method Index
	Methods

	Class javax.media.TransitionEvent
	Constructor Index
	Method Index
	Constructors
	Methods

	Class javax.media.protocol.ContentDescriptor
	Variable Index
	Constructor Index
	Method Index
	Variables
	Constructors
	Methods

	Interface javax.media.protocol.Controls
	Method Index
	Methods

	Class javax.media.protocol.DataSource
	Source Controls
	Constructor Index
	Method Index
	Constructors
	Methods

	Interface javax.media.protocol.Positionable
	Variable Index
	Method Index
	Variables
	Methods

	Class javax.media.protocol.PullDataSource
	Constructor Index
	Method Index
	Constructors
	Methods

	Interface javax.media.protocol.PullSourceStream
	Method Index
	Methods

	Class javax.media.protocol.PushDataSource
	Constructor Index
	Method Index
	Constructors
	Methods

	Interface javax.media.protocol.PushSourceStream
	Method Index
	Methods

	Interface javax.media.protocol.RateConfiguration
	Method Index
	Methods

	Interface javax.media.protocol.RateConfigureable
	Method Index
	Methods

	Class javax.media.protocol.RateRange
	Constructor Index
	Method Index
	Constructors
	Methods

	Interface javax.media.protocol.Seekable
	Method Index
	Methods

	Interface javax.media.protocol.SourceStream
	Stream Controls
	Variable Index
	Method Index
	Variables
	Methods

	Interface javax.media.protocol.SourceTransferHandler
	Method Index
	Methods

	Class javax.media.protocol.URLDataSource
	Variable Index
	Constructor Index
	Method Index
	Variables
	Constructors
	Methods

	Package Index
	Other Packages

	Class Hierarchy

