Java Media Players

Version 1.0.3
November 6, 1997

Java Media Framework is being developed by
Sun Microsystems, Inc., Silicon Graphics Inc., and Intel Corporation.

A¢ Sun SI/IGOIIGI'apIIICS intel ®

microsystems ‘\ }-' E'OmputerSystems

00 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii)) and FAR
52.227-19.

The release described in this document may be protected by one or more U.S. patents, foreign
patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable,
perpetual, worldwide limited license (without the right to sublicense) under SUN's intellectual
property rights that are essential to practice this specification. This license allows and is limited to
the creation and distribution of clean-room implementations of this specification that (i) are
complete implementations of this specification, (ii) pass all test suites relating to this specification
that are available from SUN, (iii) do not derive from SUN source code or binary materials, and (iv)
do not include any SUN binary materials without an appropriate and separate license from SUN.

Java and JavaScript are trademarks of Sun Microsystems, Inc. Sun, Sun Microsystems, Sun
Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer Corporation

logo, Java and HotJava are trademarks or registered trademarks of Sun Microsystems, Ific. UNIX

is a registered trademark in the United States and other countries, exclusively licensed through X/
Open Company, Ltd. All other product names mentioned herein are the trademarks of their

respective owners.

THIS PUBLICATION IS PROVIDED *AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR

TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE

IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS PUBLICATION AT ANY TIME

Contents

Preface Vil
Java Media Players. 1
1 OVEIVIEBW .o e e 2
Data SOUICES 2
Players 3
MediaBEvents. 4
Player States 6
CallingJMF Methods 8
2 Example: Creating an Applet to Play a Media File 9
Overview of PlayerApplet. 10
PlayerApplet Code Listing 11
Initializingthe Applet 12
Controllingthe Player 13
Respondingto MediaEvents. 13
3 Creating and Displayinga Player 14
Creatinga Player. 14
Displaying a Player and Player Controls. 15
4 Controlling Media Players 17
Startinga Player. 17
Stoppinga Player. 18
5 Managing Player States 19
Preparinga Playerto Start. 19
Starting and Stoppinga Player 22
Releasing Player Resources.o.... 22

Implementing the ControllerListener Interface........... 23

vi

Java Media Players — Version 1.0

6 Managing Timingt ee 24
Settingthe MediaTime 25
Getting the Current Time 25
Settinga PlayersRate. 26
Getting a Player's Duration 27

7 Synchronizing Players 27

8 Using a Player to Manage and Synchronize other Controllers 29
AddingaController 30
Managing the Operation of Added Controllers 30
RemovingaController. 31

9 Extending JMF 32
Understanding the Player Architecture 32
Integrating a New Player Implementation. 34
Implementing a New Data Source 35
Integrating a New Data Source Implementation 35

Appendix A: Java Media Applet 37
Appendix B: Sample Data Source Implementation.......... 43
Appendix C: Sample Controller Implementation 55

Appendix D: ControllerAdapter 67

Preface

The Java Media Framework (JMF) is an application programming interface (API)
for incorporating media data types into Java applications and applets. It is specifi-
cally designed to take advantage of Java platform features. The 1.0 version of IMF
provides APIs for media players; future versions will support media capture and
conferencing. This document describes the Java Media Player APIs and how they
can be used to present time-based media such as audio and video.

Java Media Players

The 1.0 specification for Java Media Players addresses media display and the
concerns of the application builder in that domain, with an eye towards the other
application domains and other levels of developer. There are two parts to this
release: a user guide entitled “Java Media Players” and the accompanying API
documentation.

Future Releases

Javasoft and its partners are developing additional capabilities and features that
will appear in a future release of the JMF specification. The features that we are
considering for future releases include:

* Incomplete Players A JMF Player is self-contained and does not provide
access to its media data. Additional interfaces that provide access to media
data and allow selection of rendering components are in development and
intended for a future release.

« Rendering Interfaces Rendering interfaces for specific audio and video
formats and additional interfaces for audio and video renderers will be

Vii

viii

Java Media Players — Version 1.0.1
developed for a future release.

» Capture Semantics The JMF Player architecture does not support the media
capture capabilities required for authoring or conferencing applications.
Capture semantics will be addressed in a future release.

« Data Definitions— JMF 1.0 provides an overall structure for data
manipulation and format negotiation among generic formats. Future releases
will address specific interfaces for audio and video data.

» CODEC Architecture- A CODEC (coder-decoder) architecture will be
defined in a future release to provide a common API for using CODECs to
compress and decompress media data and a mechanism for installing
additional CODECSs into the system.

Contact Information

JavaSoft

To obtain information about the Java Media Framework, see the web site at:

HTTP://java.sun.com/products/java-media/jmf

Silicon Graphics

To obtain information about Java products for Silicon Graphics hardware, see the
web site at:

HTTP://www.sgi.com/Products/DevMagic/products/java.html

Intel Corporation

To obtain information about Java Media Framework implementations for Intel
hardware, see the web site at:

HTTP://developer.intel.com/ial/jmedia

Preface ix

Change History

Version 1.0.3

Updated contact info for SGI.

Version 1.0.2

Added attribution foblockingRealize example code in Section 5. Versions 1.0
and 1.0.1 of this document erroneously omitted this attribution. This example
code is used with the permission of Bill Day and JavaWorld magazine. It was first
published April 1997 in Bill Day’s article “Java Media Framework Player API:
Multimedia Comes to Java” in JavaWorld magazine, an online publication of Web
Publishing Inc.

Changed references kdayerClosedEvent and Player.close to Controller-
ClosedEvent andController.close in Section 5.

Changed java.media to javax.media in Appendix B.

Changed example in Appendix C to Usee objects as parameters &tStop-
Time andsetMediaTime.

Version 1.0.1

Fixed inconsistencies with IMF 1.0 API.

Version 1.0

Updated document for final IMF 1.0 API release.

Java Media Players — Version 1.0.1

Java Media Players

Sun Microsystems, Inc.
Silicon Graphics Inc.
Intel Corporation

Copyright © 1997 by Sun Microsystems Inc.
All Rights Reserved

The Java Media Framework (JMF) 1.0 specification defines APIs for displaying
time-based media. This document describes these APIs and how they can be used
to present media such as audio and video.

Media display encompasses local and network playback of multimedia data
within an application or applet. The focus of the JMF 1.0 Player APIs is to support
the delivery of synchronized media data and to allow integration with the underly-
ing platform’s native environment and Java’s core packages, syahaswt.

The Player APIs support both clignill protocols, such as HTTP, and sempash
protocols, such as RTP.

JMF makes it easy to incorporate media in client applications and applets, while
maintaining the flexibility needed for more sophisticated applications and plat-
form customization:

 Client programmers can create and control Java Media Players for any
standard media type using a few simple method calls.

« Technology providers can extend JMF to support additional media formats or
perform custom operations by creating and integrating new types of media
controllers, media players, and media data sources. These extensions can be
used side-by-side with existing JMF objects.

Java Media Players — Version 1.0.1

“Extending JMF” on page 32 contains information about extending JMF; how-
ever, this document is intended primarily for application and applet developers.

1.0 Overview

JMF provides a platform-neutral framework for displaying time-based media. The
Java Media Player APIs are designed to support most standard media content
types, including MPEG-1, MPEG-2, QuickTime, AVI, WAV, AU, and MIDI.

Using JMF, you can synchronize and present time-based media from diverse
sources.

Existing media players for desktop computers are heavily dependent on native
code for computationally intensive tasks like decompression and rendering. The
JMF API provides an abstraction that hides these implementation details from the
developer. For example, a particular JMF Player implementation might choose to
leverage an operating system’s capabilities by using native methods. However, by
coding to the JMF API, the application or applet developer doesn’t need to know
whether or not that implementation uses native methods.

The JMF Player API:

» Scales across different protocols and delivery mechanisms
» Scales across different types of media data

» Provides an event model for asynchronous communication between JMF
Players and applications or applets

1.1 Data Sources

A DataSource encapsulates the location of media and the protocol and software
used to deliver the media. A Java Mediayer contains &ataSource. Once
obtained, the source cannot be reused to deliver other meditayAr’s data
source is identified by either a JMiediaLocator or auURL (universal resource
locator).

MedialLocator is a JMF class that describes the media tiRatger displays. A
MedialLocator is similar to aJRL and can be constructed fronorL. In Java, a

URL can only be constructed if the corresponding protocol handler is installed on
the systemMedialocator doesn’t have this restriction.

Java Media1ayers can present media data obtained from a variety of sources,
such as local or network files and live broadcasts. JMF supports two different
types of media sources:

Players 3

 Pull Data-Source-the client initiates the data transfer and controls the flow
of data from pull data-sources. Established protocols for this type of data
include Hypertext Transfer Protocol (HTTP) and FILE.

* Push Data-Souree-the server initiates the data transfer and controls the flow
of data from a push data-source. Push data-sources include broadcast media,
multicast media, and video-on-demand (VOD). For broadcast data, one
protocol is the Real-time Transport Protocol (RTP), under development by
the Internet Engineering Task Force (IETF). The MediaBase protocol
developed by SGIl is one protocol used for VOD.

The degree of control that a client program can extend to the user depends on the
type of media source being presented. For example, an MPEG file can be reposi-
tioned and a client program could allow the user to replay the video clip or seek to
a new position in the video. In contrast, broadcast media is under server control
and cannot be repositioned. Some VOD protocols might support limited user con-
trol—for example, a client program might be able to allow the user to seek to a
new position, but not fast forward or rewind.

1.2 Players

A Java MediePl1ayer is an object that processes a stream of data as time passes,
reading data from bBataSource and rendering it at a precise time. A Java Media
Player implements th@layer interface.

Clock ‘—’has a [TimeBase
s¥ncStart []
stop
getMediaTime
getTimeBase Duration
setTimeBase .
setRate getDuration

$extends éextends

Controller
prefetch
realize
deallocate

close
addControllerListener

@xtends
has a

Player 145 8 ™ DataSource
start []
setSource
addController
getVisualComponent
getControlPanelComponent

¢mp1 ements

| JavaMediaPlayer |

Java Media Players — Version 1.0.1

* Clock defines the basic timing and synchronization operations tatyar
uses to control the presentation of media data.

» Controller extend<lock to provide methods for managing system
resources and preloading data and a listening mechanism that allows you to
receive notification of media events.

* Duration provides a way to determine the duration of the media being
played.

* Player supports standardized user control and relaxes some of the
operational restrictions imposed O}ock.

Players share a common model for timekeeping and synchronization. A
Player’s media timaepresents the current position in the media stream. Each
Player has arimeBase that defines the flow of time for theitayer. When a
Player is started, itenedia times mapped to itime-base timeTo be synchro-
nized,Players must use the sanTémeBase.

A Player’s user interface can include both a visual component and a control-
panel component. You can implement a custom user-interfac@fayear or use
thePlayer’s default control-panel component.

A Player must perform a number of operations before it is capable of presenting
media. Because some of these operations can be time consuming, JMF allows you
to control when they occur by defining the operational statesPdfiyer and
providing a control mechanism for moving thikayer between those states.

1.3 Media Events

The JMF event reporting mechanism allows your program to respond to media-
driven error conditions, such as out-of-data or resource unavailable conditions.
The event system also provides an essential notification protocol; when your
program calls an asynchronous method @iaer, it can only be sure that the
operation is complete by receiving the appropriate event.

Two types of JMF objects post everisinControl objects andontroller
objectsController andGainControl follow the established Java Beans patterns
for events.

A GainControl object posts only one type of evetd;jinChangeEvent. To
respond to gain changes, you implementGthinChangeListener interface.

Media Events

A Controller can post a variety of events that are derived ftontroller-
Event. To receive events from@ntroller such as &1ayer, you implement
theControllerListener interface. The following figure shows the events that
can be posted by@ntroller.

ControllerEvent

r
4' ResourceUnavaiIabIeEveint
4| InternalErrorEvent I
4|ConnectionErrorEvent I
4| DurationUpdateEventI
4| RateChangeEvent I
4| StopTimeChangeEve'ﬂ
4| MediaTimeSetEvent I
L] TransitionEvent |
Z§4| PrefetchCompIeteEveht
4| RealizeCompIeteEvedt
4| StartEvent I
4| StopEvent I
A4| DeallocateEvent I
I EndOfMediaEvent I
4| RestartingEvent I
4| StopAtTimeEvent I
4| StopByRequestEventI
4| DataStarvedEvent I

ControllerEvents fall into three categories: change natifications, closed events,
and transition events:

« Change notification events suchraseChangeEvent and
DurationUpdateEvent indicate that some attribute of theayer has
changed, often in response to a method call. For exampk,aher posts a
RateChangeEvent when its rate is changed by a calktaRate.

Java Media Players — Version 1.0.1

* TransitionEvents allow your program to respond to changeshmser’s
state. APTayer posts transition events whenever it moves from one state to
another. (See Section 1.4 for more information abbdayer states.)

* ControllerClosedEvents are posted by Blayer when thePlayer shuts
down. When @1ayer posts a&ontrollerClosedEvent, it is no longer
usable. AControllerErrorEvent is a special case of
ControllerClosedEvent. You can listen foControllerErrorEvents SO
that your program can respondpttayer malfunctions, minimizing the
impact on the user.

1.4 Player States

A Java MedizP1ayer can be in one of six states. Ttick interface defines the
two primary statesStoppecandStarted To facilitate resource managemetfuiy -
troller breaks th&toppedstate down into five standby statesirealized Real-
izing, RealizedPrefetching andPrefetched

Stopped: Started

realize RCE prefetch PFCE

@—»{RealizinH RealizeMrefetchir%—»Grefetcheg—u»[Started]

deallocate StopEvent

deallocate, setMediaTime
RCE = RealizeCompleteEvent; PFCE = PrefetchCompleteEvent

In normal operation, Blayer steps through each state until it reacheStheted
state:

* A Player in theUnrealizedstate has been instantiated, but does not yet know
anything about its media. When a meeiiayer is first created, it is
Unrealized

* Whenrealize is called, e?1ayer moves from th&Jnrealizedstate into the
Realizingstate. ARealizingPlayer is in the process of determining its
resource requirements. During realizatioR] ayer acquires the resources
that it only needs to acquire once. These might include rendering resources

Player States 7

other than exclusive-use resources. (Exclusive-use resources are limited
resources such as particular hardware devices that can only be used by one
Player at a time; such resources are acquired diRiedetching) A
RealizingP1ayer often downloads assets over the net.

* When aPlayer finishesRealizing it moves into th&kealizedstate. A
RealizedP1ayer knows what resources it needs and information about the
type of media itis to present. Becaustealized1ayer knows how to render
its data, it can provide visual components and controls. Its connections to
other objects in the system are in place, but it does not own any resources that
would prevent anotherlayer from starting.

* Whenprefetch is called, e?Tayer moves from th&ealizedstate into the
Prefetchingstate. APrefetchingPlayer is preparing to present its media.
During this phase, thelayer preloads its media data, obtains exclusive-use
resources, and anything else it needs to do to prepare itself to play.
Prefetchingmight have to recur if Alayer’s media presentation is
repositioned, or if a change in thgayer’s rate requires that additional
buffers be acquired or alternate processing take place.

* When aPlayer finishesPrefetching it moves into thérefetchedstate. A
PrefetchedP1ayer is ready to be started; it is as ready to play as it can be
without actually beingtarted

e Calling start puts aPlayer into theStartedstate. AStartedPlayer’s time-
base time and media time are mapped and its clock is running, though the
Player might be waiting for a particular time to begin presenting its media
data.

A Player postsTransitionEvents as it moves from one state to another. The
ControllerListener interface provides a way for your program to determine
what state ®&1ayer is in and to respond appropriately.

Using this event reporting mechanism, you can maRage:r latency by con-
trolling when aP1ayer beginsRealizingandPrefetching It also enables you to
ensure that thelayer is in an appropriate state before calling methods on the
Player.

1.4.1 Methods Available in Each Player State

To prevent race conditions, not all methods can be calledoayar in every
state. Table 1, “Restrictions on Player Methods” identifies the restrictions
imposed by JMF. If you call a method that is illegal ifayer’s current state,
thePlayer throws an error or exception.

Table 1: Restrictions on Player Methods

Java Media Players — Version 1.0.1

Method Unrealized Realized Prefetched Started

Player Player Player Player
getStartLatency NotRealizedError legal legal legal
getTimeBase NotRealizedError legal legal legal
setMediaTime NotRealizedError legal legal legal
setRate NotRealizedError legal legal legal
getVisualComponent NotRealizedError legal legal legal
getControlPanelComponent NotRealizedError legal legal legal
getGainControl NotRealizedError legal legal legal
setStopTime NotRealizedError legal legal StopTimeSetError

if previously set

syncStart NotPrefetchedError NotPrefetchedError legal ClockStartedError
setTimeBase NotRealizedError legal legal ClockStartedError
deallocate legal legal legal ClockStartedError
addController NotRealizedError legal legal ClockStartedError
removeController NotRealizedError legal legal ClockStartedError

mapToTimeBase ClockStoppedException ClockStoppedException ClockStoppedException legal

15 Calling JMF Methods

JMF uses the following convention for errors and exceptions:

» Java Media Errors are thrown when a program calls a method that is illegal in
the object’s current state. Errors are thrown in situations where you have
control over the state and the requested operation could result in a race
condition. For example, it is an error to call certain methodsStaréed
Player. It is your responsibility to ensure thabayer is stopped before
using these methods. Applications should not catch JMF errors; well-written
applications will never encounter these errors.

» Java Media Exceptions are thrown when a program calls a method that cannot
be completed or is not applicable in the object’s current state. Exceptions are
thrown in situations where you do not necessarily have control over the state.
For example, an exception is thrown if you attempt to synchronize two
Players with incompatible time bases. This is not an error because you could

Calling JMF Methods 9

not determine ahead of time that the time bases were incompatible. Similarly,
if you call a method that is only applicable fastartedrlayer and the

Player is Stoppedan exception is thrown. Even if you just started the
Player, it might have already stopped in response to other conditions, such
as end of media.

Some JMF methods return values that indicate the results of the method call. In
some instances, these results might not be what you anticipated when you called
the method; by checking the return value, you can determine what actually hap-
pened. For example, the return value might indicate:

« The value that was actually set. For example, n#tlalfers can present
media data at five times the normal rate. If you «adRate(5.0), the
Player will set its rate as close as it can to 5.0 and return the rate it actually
set. That rate might be 5.0, or it might be 1.0; you need to check the return
value to find out.

¢ That the information you requested is not currently available. For example, a
Player might not know its duration until it has played its media stream once.
If you callgetDuration on such &1ayer before it has playedetDuration
returnsDURATION_UNKNOWN. If you callgetDuration again after th@layer
has played, it might be able to return the actual duration of the media stream.

2.0 Example: Creating an Applet to Play a Media File

The sample prograralayerApplet demonstrates how to create a Java Media
Player and present an MPEG movie from within a Java applet. This is a general
example that could easily be adapted to present other types of media streams.

ThePlayer’s visual presentation and its controls are displayed within the
applet’s presentation space in the browser window. If you crePateyar in a
Java application, you are responsible for creating the window to display the
Player’s components.

Note: While PlayerApplet illustrates the basic usage of a Java Medliger, it

does not perform the error handling necessary in a real applet or application. For a
more complete sample suitable for use as a template, see “Appendix A: Java
Media Applet” on page 37.

10

Java Media Players — Version 1.0.1

2.1 Overview of PlayerApplet

TheAPPLETtag is used to invok@layerApplet in anHTML file. ThewIDTH and
HEIGHT fields of the HTMLAPPLET tag determine the dimensions of the applet’s
presentation space in the browser window. FArAM tag identifies the media file
to be played. For examplelayerApplet could be invoked with:

<APPLET CODE=ExampTleMedia.PlayerApplet
WIDTH=320 HEIGHT=300>

<PARAM NAME=FILE VALUE="Astrnmy.mpg'>
</APPLET>

When a user opens a web page contaipirgerApplet, the applet loads auto-
matically and runs in the specified presentation space, which contains the
Player’s visual component and default controls. Pheyer starts and plays the
MPEG movie once. The user can use the defaalter controls to stop, restart,

or replay the movie. If the page containing the applet is closed whit@ dher is
playing the movie, thelayer automatically stops and frees the resources it was
using.

To accomplish thise1ayerApplet extendsipplet and implements théontrol-
lTerListener interfacePlayerApplet defines five methods:

* init—creates &1ayer for the file that was passed in through#heAM tag
and registerg8layerApplet as a controller listener so that it can observe
media events posted by thtayer. (This causeBlayerApplet’s
controllerUpdate method to be called whenever #iayer posts an
event.)

* start—starts thePlayer whenPlayerApplet is started.
* stop—stops and deallocates thtayer whenPlayerApplet is stopped.
» destroy—closes the@layer whenPlayerApplet is removed.

* controllerUpdate—responds t®layer events to display th@layer’s
components.

PlayerApplet Code Listing

2.2 PlayerApplet Code Listing

PlayerApplet.java:
package ExampleMedia;

import java.applet.¥*;
import java.awt.*;
import java.net.*;
import javax.media.*;

public class PlayerApplet extends Applet implements ControllerListener {
Player player = null;
public void init() {
setLayout(new BorderLayout());
String mediaFile = getParameter(“FILE”);
try {
URL mediaURL = new URL(getDocumentBase(), mediaFile);
player = Manager.createPlayer(mediaURL);
player.addControllerListener(this);
}
catch (Exception e) {
System.err.printin("Got exception "+e);
3
3
public void start() {
player.start();
}
pubTlic void stop() {
player.stop();
player.deallocate();
}
public void destroy() {
player.close();
3
pubTlic synchronized void controllerUpdate(ControllerEvent event) {
if (event instanceof RealizeCompleteEvent) {
Component comp;
if ((comp = player.getVisualComponent()) != null)
add ("Center", comp);
if ((comp = player.getControlPanelComponent()) != null)
add ("South"™, comp);
validate();

11

12

Java Media Players — Version 1.0.1

2.3 Initializing the Applet

When a Java applet starts,iits t method is invoked automatically. You override
init to prepare your applet to be startethyerApplet performs four tasks in
init:

1. Retrieves the applet’s FILE parameter.

2. Uses the FILE parameter to locate the media file and buitd abject that
describes that media file.

3. Creates @layer for the media file by callinganager.createPlayer.

4. Registers the applet as a controller listener with theRiayer by calling
addControllerListener. Registering as a listener caugé@syerApplet’s
controllerUpdate method to be called automatically whenevermheyer
posts a media event. Tilayer posts media events whenever its state
changes. This mechanism allows you to control Rh&yer’s transitions
between states and ensure thatthger is in a state in which it can process
your requests. (For more information, see “Player States” on page 6.)

public void init() {

setLayout(new BorderLayout());

// 1. Get the FILE parameter.

String mediaFile = getParameter(“FILE”);

try {
// 2. Create a URL from the FILE parameter. The URL
// class is defined in java.net.
URL mediaURL = new URL(getDocumentBase(), mediaFile);
// 3. Create a player with the URL object.
player = Manager.createPlayer(mediaURL);
// 4. Add PlayerApplet as a listener on the new player.
player.addControllerListener(this);

}

catch (Exception e) {
System.err.println("Got exception "+e);

}

Controlling the Player 13

2.4 Controlling the Player

TheApplet class definestart andstop methods that are called automatically
when the page containing the applet is opened and closed. You override these
methods to define what happens each time your applet starts and stops.

PlayerApplet implementstart to start thePlayer whenever the applet is
started:

public void start() {
player.start();
}

Similarly, P1ayerApplet overridesstop to stop and deallocate théayer:

public void stop() {
player.stop(Q);
player.deallocate();

Deallocating thelayer releases any resources that would prevent another
Player from being started. For example, if thiayer uses a hardware device to
present its medialeallocate frees that device so that otlPdiayers can use it.

When an applet exitdestroy is called to dispose of any resources created by the
applet.PTayerApplet overridesdestroy to close thelayer. Closing aPlayer
releases all of the resources that it's using and shuts it down permanently.

public void destroy() {
player.close(Q);

}

2.5 Responding to Media Events

PlayerApplet registers itself as @ntrollerListener in itsinit method so
that it receives media events from Hiayer. To respond to these everfiday-
erApplet implements theontrollerUpdate method, which is called automati-
cally when thePlayer posts an event.

Java Media Players — Version 1.0.1

PlayerApplet responds to one type of evekdalizeCompleteEvent. When the
Player posts &RealizeCompleteEvent, PlayerApplet displays the?layer’s
components:

public synchronized void controllerUpdate(ControllerEvent event)
{
if (event instanceof RealizeCompleteEvent) {
Component comp;
if ((comp = player.getVisualComponent()) != null)
add ("Center", comp);
if ((comp = player.getControlPanelComponent()) != null)
add ("South", comp);
validate();

A Player’s user-interface components cannot be displayed untifitieer is
RealizeglanUnrealizedP1ayer doesn’t know enough about its media stream to
provide access to its user-interface components.erApplet waits for the

Player to post &RealizeCompleteEvent and then displays tti8ayer’s visual
component and default control panel by adding them to the applet container. Call-
ing validate triggers the layout manager to update the display to include the new
components.

3.0 Creating and Displaying a Player

You create aPlayer indirectly through the mediflanager. To display the
Player, you get thePlayer’s components and add them to the applet's
presentation space or application window.

3.1 Creating a Player

When you need a neWlayer, you request it from th&anager by calling
createPlayer. The Manager uses the medi@RL or Medialocator that you
specify to create an appropri@eayer.

A URL can only be successfully constructed if the appropriate correspamding
StreamHandler is installedMediaLocator doesn't have this restriction.

Displaying a Player and Player Controls 15

This level of indirection allows ne®layers to be integrated seamlessly. From
the client perspective, a ndVayer is always created the same way, even though
thePlayer might actually be constructed from interchangeable parts or dynami-
cally loaded at runtime.

3.2 Displaying a Player and Player Controls

JMF specifies the timing and rendering model for displaying a media stream, but
aPlayer’s interface components are actually displayed usgivg . awt, Java’s

core package for screen displayPPayer can have two types of AWT compo-
nents, its visual component and its control components.

3.2.1 Displaying a Player’s Visual Component

The component in whichRlayer displays its media data is called its visual com-
ponent. Even an audidayer might have a visual component, such as a wave-
form display or animated character.

To display eP1ayer’s visual component, you:

1. Get the component by callimgtVisualComponent.

2. Add it to the applet’s presentation space or application window.

You can access ttayer’s display properties, such as xtandy coordinates,
through its visual component. The layout of heyer components is controlled
through the AWT layout manager.

3.2.2 Displaying a Player’s Controls

A Player often has a control panel that allows the user to control the media pre-
sentation. For example pdayer might be associated with a set of buttons to

start, stop, and pause the media stream, and with a slider control to adjust the vol-
ume.

Every Java Medialayer provides a default control panel. To displédiayer’s

default control panel, you get it by calliggtControlPanelComponent and add

it to the applet’s presentation space or application window. If you prefer to define

a custom user-interface, you have access to the interfaces through which the stan-
dard control panel is implemented.

A Player’s control-panel component often interacts with bothriheyer and
thePlayer’s controls. For example, to start and stopRhgyer or set its media

16

Java Media Players — Version 1.0.1

time, the control panel calls tiR@ayer directly. But manylayers have other
properties that can be managed by the user. For example, &@Vigeo might

allow the user to adjust brightness and contrast, which are not managed through
thePlayer interface.To handle these types of controls, JMF define®theo1
interface.

A mediaPlayer can have any number Oéntrol1 objects that define control
behaviors and have corresponding user interface components. You can get these
controls by callingietControls on thePlayer. For example, to determine if a
Player supports th€achingControl interface and get theachingControl if it

does, you can cadletControls:

Control[] controls = player.getControls();
for (int i = 0; i < controls.length; i++) {
if (controls[i] instanceof CachingControl) {
cachingControl = (CachingControl) controls[i];

}

What controls are supported by a partic@letyer depends on thelayer imple-
mentation.

3.2.3 Displaying a Gain Control Component

GainControl extends th€ontrol interface to provide a standard API for adjust-
ing audio gain. To get this control, you must gatGainControl; getControls
does not return Blayer’s GainControl. GainControl provides methods for
adjusting the audio volume, suchsaslLevel andsetMute. Like other controls,
theGainControl is associated with a GUI component that can be added to an
applet’s presentation space or an application window.

3.2.4 Displaying a Player’'s Download Progress

Downloading media data can be a time consuming process. In cases where the
user must wait while data is downloaded, a progress bar is often displayed to reas-
sure the user that the download is proceeding and to give some indication of how
long the process will take. TltachingControl interface is a special type of

Control supported bylayers that can report their download progress. You can
use this interface to display a download progress bar to the user.

Starting a Player 17

You can calgetControls to determine whether or noPaayer supports the
CachingControl interface. If it does, thelayer will post aCachingControlEv-

ent whenever the progress bar needs to be updated. If you implement your own
progress bar component, you can listen for this event and update the download
progress wheneveachingControlEvent is posted.

A CachingControl also provides a default progress bar component that is auto-
matically updated as the download progresses. To use the default progress bar in
an applet:

1. Implement th&ontrollerListener interface and listen for
CachingControlEvents in controllerUpdate.

2. The first time you receive@chingControlEvent:
a. CallgetCachingControl on the event to get the caching control.

b. CallgetProgressBar on theCachingControl to get the default progress
bar component.

c. Add the progress bar component to the applet’'s presentation space.

3. Each time you receiveCachingControlEvent, check to see if the download
is complete. WhengetContentProgress returns the same value as
getContentlLength, remove the progress bar.

4.0 Controlling Media Players

TheClock andPlayer interfaces define the methods for starting and stopping a
Player.

4.1 Starting a Player

You typically start @1ayer by callingstart. Thestart method tells thelayer
to begin presenting media data as soon as possible. If necessatyprepares
thePlayer to start by performing the realize and prefetch operatiossakt is
called on &tartedPlayer, the only effect is that &tartEvent is posted in
acknowledgment of the method call.

Clock defines asyncStart method that can be used for synchronization. See
“Synchronizing Players” on page 27 for more information.

18

Java Media Players — Version 1.0.1
To start aPTayer at a specific point in a media stream:

1. Specify the point in the media stream at which you want to start by calling
setMediaTime.

2. Callstart on thePlayer.

4.2 Stopping a Player

There are four situations in whictPaayer will stop:

* When thestop method is called on thH8 ayer.

« When thePlayer has reached the specified stop time.

* When theP1ayer has run out of media data.

« When thePlayer is receiving data too slowly to allow acceptable playback.

When a non-broadcaBtayer is stopped, itenedia timeis frozen. If theStopped
Player is subsequently restarted, media time resumes from the stop time. When
you stop a broadcaBlayer, only the receipt of the media data is stopped; the
data continues to be broadcast. When you restart a broategast, the play-

back will resume wherever the broadcast is at that point in time.

You use thestop method to stop Blayer immediately. If you calstop on a
StoppecPlayer, the only effect is that &topByRequestEvent is posted in
acknowledgment of the method call.

4.2.1 Stopping a Player at a Specified Time

You can callsetStopTime to indicate when &layer should stop. Th€layer

stops when itsnedia timepasses the specified stop time. If ieyer’s rate is
positive, thePlayer stops when the media time becomes greater than or equal to
the stop time. If th@layer’s rate is negative, thellayer stops when the media
time becomes less than or equal to the stop timepThyer stops immediately if

its current media time is already beyond the specified stop time.

For example, assume thabttayer’s media time is 5.0 angktStopTime is

called to set the stop time to 6.0. If #layer’s rate is positive, media time is
increasing and thellayer will stop when the media time becomes greater than or
equal to 6.0. However, if thtBayer’ s rate is negative, it is playing in reverse and
thePlayer will stop immediately because the media time is already beyond the

Preparing a Player to Start 19

stop time. (For more information abitayer rates, see “Setting a Player's
Rate” on page 26.)

You can always caletStopTime on a stoppeé@layer. However, you can only
set the stop time onStartedPlayer if the stop time is not currently set. If the
Player already has a stop timsgtStopTime throws an error.

You can callgetStopTime to get the currently scheduled stop time. If the clock
has no scheduled stop timeStopTime returnsClock.UNSET. To remove the
stop time so that thelayer continues until it reaches end-of-media, call
setStopTime (UNSET).

5.0 Managing Player States

The transitions between states are controlled with five methods:

o realize

e prefetch

o start

» deallocate

* stop

e close

By controlling when these methods are called, you can manage the state of a
Player. For example, you might want to minimize start-latency by preparing the
Player to start before you actually start it.

You can implement theontrollerListener interface to manage these control
methods in response to changes infthe/er’ s state. Listening for layer’s

state transitions is also important in other cases. For example, you cannot get a
Player’s components until thelayer has beefRealized By listening for a
RealizeCompleteEvent YOu can get the components as soon aBlthyer is
Realized

5.1 Preparing a Player to Start

Most mediaPlayers cannot be started instantly. Before #iayer can start,
certain hardware and software conditions must be met. For examplerihilee

has never been started, it might be necessary to allocate buffers in memory to
store the media data. Or, if the media data resides on a network devidey#e

might have to establish a network connection before it can download the data.

20

Java Media Players — Version 1.0.1

Even if thePlayer has been started before, the buffers might contain data that is
not valid for the current media position.

5.1.1 Realizing and Prefetching the Player

JMF breaks the process of preparirgj ayer to start into two phaseRealizing
andPrefetching RealizingandPrefetchingaPlayer before you start it minimizes

the time it takes thelayer to begin presenting media whetart is called and

helps create a highly-responsive interactive experience for the user. Implementing
theControllerListener interface allows you to control when these operations
occur.

You callrealize to move thePlayer into theRealizingstate and begin the real-
ization process. You calirefetch to move thePlayer into thePrefetchingstate
and initiate the prefetching process. Healize andprefetch methods are
asynchronous and return immediately. Wherpttsger completes the requested
operation, it posts RealizeCompleteEvent Or PrefetchCompleteEvent.
“Player States” on page 6 describes the operations thatlar performs in each
of these states.

A Player in thePrefetchedstate is prepared to start and its start-up latency cannot
be further reduced. However, setting the media time threergediaTime might
return therlayer to theRealizedstate, increasing its start-up latency.

Keep in mind that &refetched1ayer ties up system resources. Because some
resources, such as sound cards, might only be usable by one program at a time,
this might prevent othérlayers from starting.

5.1.2 Blocking until a Player is Realized

Many of the methods that can be called @ia&er require that th€layer be in
the Realizedstate. One way to guarantee that ayer is Realizedwvhen you call
these methods is to implement a method that ealisize and blocks until the
Player posts &RealizeCompleteEvent.

Note: Be aware that blocking atealize can produce unsatisfactory results. For
example, if an applet blocks whilerdayer is realizingApplet.start and
Applet.stop will not be able to interrupt the process.

To block until aPTayer is Realizedyou could implement a method callgtbck-
ingRealize that callsrealize on yourPlayer and returns when triayer
posts &RealizeCompleteEvent and yourcontrollerUpdate method is called.
This requires that you implement tbentrollerListener interface and register
as a listener with thelayer. If you register as a listener with multipiéayers,

Preparing a Player to Start 21

your controllerUpdate method needs to determine whithayer posted the
RealizeCompl eteEvent.!

boolean realized = false;
public synchronized void blockingRealize()

{
myPlayer.realize();
while (!realized) {
try {
wait(Q;
}
catch (java.lang.InterruptedException e) {
status.setText("Interrupted while waiting on
realize...exiting.");
System.exit(l);
}
}
}
public synchronized void controllerUpdate (ControllerEvent
event)
{
if (event instanceof RealizeCompleteEvent) {
realized = true;
notify();
}

else if (event instanceof EndOfMediaEvent) {
eomReached = true;

}

5.1.3 Determining a Player’s Start-up Latency

To determine how much time is required to stata#yer, you can calbet-
StartLatency. ForPlayers that have a variable start latency, the return value of
getStartLatency represents the maximum possible start latency. For some
media typesgetStartLatency might returnLATENCY_UNKNOWN.

1 This example code is used with the permission of Bill Day and JavaWorld magazine. The
blockingRealize example code was first published by Bill Day in “Java Media Framework
Player API: Multimedia Comes to Java” in JavaWorld magazine, an online publication of Web
Publishing Inc., April 1997. Please see http://www.javaworld.com/javaworld/jw-04-1997/jw-
04-jmf.html for the complete article, example code listing, and demonstration applets.

Java Media Players — Version 1.0.1

The start-up latency reported ytStartLatency might differ depending on the
Player’s current state. For example, aftesr&fetch operation, the value

returned byetStartLatency is typically smaller. AController that can be

added to @1ayer will return a useful value once itefetched(For more infor-
mation about added Controllers, see “Using a Player to Manage and Synchronize
other Controllers” on page 29.)

5.2 Starting and Stopping a Player

Calling start moves &1layer into theStartedstate. As soon asart is called,
methods that are only legal for stopadyers cannot be called until tti8ayer
has been stopped.

If start is called and thelayer has not been prefetchedtart performs the
realize and prefetch operations as needed to mow slger into thePrefetched
state. ThePlayer posts transition events as it moves through each state.

Whenstop is called on &1ayer, thePlayer is considered to be stopped immedi-
ately; stop is synchronous. Howeverpaayer can also stop asynchronously
when:

« The end of the media stream is reached.
* The stop time previously set witletStopTime is reached.
* ThePlayer is data starved.

When aPlayer stops, it posts stopEvent. To determine why thelayer
stopped, you must listen for the specific stop ev@atsl1ocateEvent, EndOf-
MediaEvent, RestartingEvent, StopAtTimeEvent, StopByRequestEvent, and
DataStarvedEvent.

5.3 Releasing Player Resources

Thedeallocate method tells ®1ayer to release any exclusive resources and
minimize its use of non-exclusive resources. Although buffering and memory
management requirements fdrayers are not specified, most Java Me#liay-

ers allocate buffers that are large by the standards of Java objects. A well-imple-
mentedPlayer releases as much internal memory as possible dddnocate

is called.

The deallocate method can only be called onSioppedPlayer. To avoid
ClockStartedErrors, you should calktop before you callieallocate. Calling
deallocate on aPlayer in the Prefetchingor Prefetchedstate returns it to the

Implementing the ControllerListener Interface 23

Realizedstate. Ifdeallocate is called while thelayer is realizing, thePlayer
posts @eallocateEvent and returns to thenrealizedstate. (Once Rlayer has
been realized, it can never return to theealizedstate.)

You generally calleallocate when thePlayer is not being used. For example,
an applet should calleallocate as part of itstop method. By callingleallo-
cate, the program can maintain references torthser, while freeing other
resources for use by the system as a whole. (JMF does not pr&esadizzed
Player that has formerly bedprefetchedr Startedfrom maintaining informa-
tion that would allow it to be started up more quickly in the future.)

When you are finished withr ayer (or otherController) and are not going to
use it anymore, you should callose. Theclose method indicates that titen-
troller will no longer be used and can shut itself down. Caltingse releases
all of the resources that tkentro1ler was using and causes the it to cease all
activity. When &ontroller is closed, it posts @ntrollerClosedEvent. A
closedController cannot be reopened and invoking methods on a clased
troller might generate errors.

5.4 Implementing the ControllerListener Interface

ControllerListener is an asynchronous interface for handling events generated
by Controller objects. Using théontrollerListener interface enables you to
manage the timing of potentially time-consumipPtayer operations such as
prefetching.

To implement th&ontrollerListener interface, you need to:

1. Implement th&ontrollerListener interface in a class.

2. Register that class as a listener by callingControllerListener on the
Controller that you want to receive events from.

When aController posts an event, it call®ntrollerUpdate on each regis-
tered listener. TypicallyontrollerUpdate is implemented as a series of if-else
statements of the form:

if(event instanceof EventType){
} else if(event instanceof OtherEventType){

24

Java Media Players — Version 1.0.1

This filters out the events that you are not interested in. If you have registered as a
listener with multipleControllers, you also need to determine whicdntro1l-

ler posted the eventontrollerEvents come “stamped” with a reference to

their source that you can access by callietsource.

“Appendix D: ControllerAdapter” on page 67 provides the source for an imple-
mentation ofControllerListener that can be easily extended to respond to par-
ticular Events.

When you receive events fronCentroller, you might need to do some addi-
tional processing to ensure that tt@troller is in the proper state before call-

ing a control method. For example, before calling any of the methods that are
restricted tdStoppedPlayers, you should check thelayer’ s target state by
callinggetTargetState. If start has been called, tth@ayer is considered to be

in the Startedstate, though it might be posting transition events as it prepares the
Player to present media.

Some types ofontrollerEvents are stamped with additional state information.
For example, theétartEvent andStopEvent classes each define a method that
allows you to retrieve the media time at which the event occurred.

6.0 Managing Timing

In many cases, instead of playing a single media stream from beginning to end,
you want to play a portion of the stream or synchronize the playback of multiple
streams. The JMRimeBase and Clock interfaces define the mechanism for
managing the timing and synchronization of media playback.

A TimeBase represents the flow of time. thne-base timeannot be transformed

or reset. A Java MedRrilayer uses itSimeBase to keep time in the same way

that a quartz watch uses a crystal that vibrates at a known frequency to keep time.
The system maintains a masténeBase that measures time in nanoseconds from

a specified base time, such as January 1, 1970. The SyisieBase is driven by

the system clock and is accessible throughvéihager.getSystemTimeBase

method.

A Player’s media timerepresents a point in time within the stream that the
Player is presenting. Thmedia timecan be started, stopped, and reset much like
a stopwatch.

A Clock defines the mapping betweemimeBase and thanedia time

Setting the Media Time 25

0 end of media

k- t — >0 media time
“y 4 . —y > time-base time
start stop start stop

A Java MedigP1ayer can answer several timing queries about the media source it
is presenting. Of course, timing information is subject to the physical
characteristics and limitations of both the media source and of the network device
on which it is stored.

A Time object represents a quantity of some time unit, such as nanoseconds. You
useTime objects when you query or sekayer’s timing information.

6.1 Setting the Media Time

Setting aPlayer’s media timeis equivalent to setting a read position within a
media stream. For a media data source such as a filmetfia times bounded;
the maximummedia timds defined by the end of the media stream.

To set theanedia timeyou callsetMediaTime and pass in &ime object that rep-
resents the time you want to set.

6.2 Getting the Current Time

Calling getMediaTime returns arime object that represents thgayer’s current
media time If the Player is not presenting media data, this is the point from
which media presentation will commence. There is not a one-to-one
correspondence betweennzedia timeand a particular frame. Each frame is
presented for a certain period of time, andredia timecontinues to advance
during that period.

For example, imagine you have a slide sidayer that displays each slide for 5
seconds—thelayer essentially has a frame rate of 0.2 frames per second.

26

Java Media Players — Version 1.0.1

A
getMediaTime

15 ——

]] >

Duration

5 10 15

N e Ny N)

frame 1 frame 2 frame 3

If you start thePTayer at time 0.0, while the firdtameis displayed, the media
time advances from 0.0 to 5.0. If you start at time 2.0, the first frame is displayed
for 3 seconds, until time 5.0 is reached.

You can get &layer’s currenttime-base timby getting the®layer’s TimeBase
and callinggetRefTime:

myCurrentTBTime = playerl.getTimeBase().getRefTime();

When aPlayer is running, you can get thiene-base tim¢hat corresponds to a
particularmedia timeby callingmapToTimeBase.

6.3 Setting a Player’'s Rate

ThePlayer’s rate determines homedia timechanges with respect to time-base
time; it defines how many unitsPaayer’s media timeadvances for every unit of
time-base timeThePlayer’s rate can be thought of as a temporal scale factor.
For example, a rate of 2.0 indicates thwdia timepasses twice as fast as the
time-base timevhen thePlayer is started.

In theory, aPlayer’s rate could be set to any real number, with negative rates
interpreted as playing the media in reverse. However, some media formats have
dependencies between frames that make it impossible or impractical to play them
in reverse or at non-standard rates.

WhensetRate is called on ®1ayer, the method returns the rate that is actually
set, even if it has not chang@dayers are only guaranteed to support a rate of
1.0.

Getting a Player's Duration 27

6.4 Getting a Player’s Duration

Since your program might need to determine how long a given media stream will
run, allControllers implement th®uration interface. This interface comprises

a single methodyetbDuration. Duration represents the length of time that a
media object would run, if played at the default rate of 1.0. A media stream’s
duration is accessible only through #iayer.

If the duration can't be determined whgstDuration is called,

DURATION_UNKNOWN is returned. This can happen if #leayer has not yet reached

a state where the duration of the media source is available. At a later time, the
duration might be available and a calbtexDuration would return the duration

value. If the media source does not have a defined duration, as in the case of a live
broadcastgetDuration returnsSDURATION_UNBOUNDED.

7.0 Synchronizing Players

To synchronize the playback of multiple media streams, you can synchronize the
Players by associating them with the samigeBase. To do this, you use the
getTimeBase andsetTimeBase methods defined by tl@ock interface. For

example, you could synchroniggayerl with player2 by settingplayerl to use
player2’s time base:

playerl.setTimeBase(player2.getTimeBase());

When you synchroniz&l ayers by associating them with the sameeBase, you

must still manage the control of eaktayer individually. Because managing
synchronizedlayers in this way can be complicated, JMF provides a mecha-
nism that allows &layer to assume control over aggntroller. ThePlayer
manages the states of the controllers automatically, allowing you to interact with
the entire group through a single point of control. For more information, see
“Using a Player to Manage and Synchronize other Controllers” on page 29.

In a few situations, you might want to manage the synchronization of multiple
Players yourself so that you can control the rates or media times independently.
If you do this, you must:

* Register as a listener for each synchronZeger.

« Determine whiclpPlayer’s time base is going to be used to drive the other
Players and set the time base for the synchronPdegers. Not allPTayers
can assume a new time base. For example, if one ptilgers you want to
synchronize has a push data-source,thater’ s time base must be used to

28

Java Media Players — Version 1.0.1

drive the othepPlayers.

» Set the rate for all of thelayers. If aPlayer cannot support the rate you

specify, it returns the rate that was used. (There is no mechanism for querying
the rates that Blayer supports.)

» Synchronize th@layers’ states. (For example, stop all of #iayers.)

» Synchronize the operation of tRgayers:

- Set the media time for eaéhayer.
- Prefetch all of th@layers.
- Determine the maximum start latency among the synchronizgers.

- Start theP1ayers by callingsyncStart with a time that takes into account
the maximum latency.

You must listen for transition events for all of hieyers and keep track of
which ones have posted events. For example, when you prefetdagkes, you
need to keep track of which ones have poBtedtetchComplete events so that
you can be sure all of ttlaayers arePrefetchedefore callingsyncStart. Sim-
ilarly, when you request that the synchronieédyers stop at a particular time,
you need to listen for the stop event posted by eaayer to determine when all
of thePlayers have actually stopped.

In some situations, you need to be careful about responding to events posted by
the synchronizedlayers. To be sure of thelayers’ states, you might need to
wait at certain stages for all of the synchroniegayers to reach the same state
before continuing.

For example, assume that you are usingriager to drive a group of synchro-
nizedPlayers. A user interacting with tha&flayer sets the media time to 10,
starts thelayer, and then changes the media time to 20. You then:

Pass along the firsketMediaTime call to all of the synchronizetlayers.

Call prefetch on thePlayers to prepare them to start.

Callstop onthePlayers when the second set media time request is received.
Call setMediaTime on thePlayers with the new time.

Restart the prefetching operation.

When all of thePTayers have been prefetched, start them by calling
syncStart, taking into account their start latencies.

Getting a Player's Duration 29

In this case, simply listening ferefetchComplete events from all of thelay-

ers before callingsyncStart isn't sufficient. You can't tell whether those events
were posted in response to the first or second prefetch operation. To avoid this
problem, you can block when you catlop and wait for all of th@1ayers to

post stop events before continuing. This guarantees that there@&xtchCom-

plete events you receive are the ones that you are really interested in.

8.0 Using a Player to Manage and Synchronize other
Controllers

SynchronizingPlayers manually usingyncStart requires that you carefully
manage the states of all of the synchroniZkgers. You must control each one
individually, listening for events and calling control methods on them as appropri-
ate. Even with only a fewlayers, this quickly becomes a difficult task. Through
thePlayer interface, JMF provides a simpler solutiorPlayer can be used to
manage the operation of adyntroller.

When you interact with a managifgayer, your instructions are automatically
passed along to the manageétrollers as appropriate. The managirithyer
takes care of the state management and synchronization for all of theoather
trollers.

This mechanism is implemented through ddéController andremoveCon-
troller methods. When you callidController on aPlayer, theController
you specify is added to the list@dntrollers managed by thelayer. Con-
versely, when you callemoveController, the specifiedontroller is removed
from the list of managetontrollers.

Typically, when you need to synchron2kayers or otherControllers, you
should use thiaddController mechanism. It is simpler, faster, and less error-
prone than attempting to manage synchronbdegers individually.

When aPlayer assumes control of@ntroller:

* TheController assumes thelayer’s time-base.

e ThePlayer’s duration becomes the longer of tentroller’s duration
and its own. If multipl&Controllers are placed underfayer’s control,
thePlayer’s duration is the longest of all of their durations.

e ThePlayer’s start latency becomes the longer ofthetroller’s start
latency and its own. If multipleontrollers are placed underfayer’s
control, thePlayer’s start latency is the longest of all of their latencies.

Java Media Players — Version 1.0.1

A managingPlayer only posts completion events for asynchronous methods after
every addedontroller has posted the event. The mana@ihgyer reposts
other events generated by the mana@edrollers as appropriate.

8.1 Adding a Controller

You use theaddController method to add @ontroller to the list ofControl-
lers managed by a particulatayer. To be added, @ntroller must be in the
Realizedstate; otherwise, otRealizedError is thrown. TwoPlayers cannot
be placed under control of each other. For exampiéaifer1 is placed under the
control ofplayer2, player2 cannot be placed under the controptdyeri
without first removingplayerl from player2’s control.

Once &ontroller has been added tcPdayer, do not call methods directly on
the addedontroller. To control an addetbntroller, you interact with the
managingPlayer.

To haveplayer2 assume control gflayerl, call:

player2.addController(playerl);

8.2 Managing the Operation of Added Controllers

To control the operation of a group@introllers managed by a particular
Player, you interact directly with the managingayer. Do not call control meth-
ods on the manage&@ntrollers directly.

For example, to prepare all of the managetkrollers to start, calpbrefetch
on the managinglayer. Similarly, when you want to start them, cathrt on
the managin@layer. The managing@layer makes sure that all of tltentrol-
lers arePrefetcheddetermines the maximum start latency amongéherol-
lers, and callssyncStart to start them, specifying a time that takes the
maximum start latency into account.

When you call &@ontroller method on the managimdayer, thePlayer propa-
gates the method call to the managegtrollers as appropriate. Before calling
aController method on a manag€dntrolier, thePlayer ensures that the
Controller is in the proper state. The following table describes what happens to
the managedontrollers when you call control methods on the managing
Player.

Removing a Controller 31

Function Stopped Player Started Player
setMediaTime InvokessetMediaTime on all man- Stops all managetbntrollers, in-
agedControllers. vokessetMediaTime, and restartSon-
trollers.
setRate InvokessetRate on all managedon- Stops all managetbntrollers, in-

trollers. Returns the actual rate thatokessetRate, and restartSontrol-
was supported by atbntrollers Ters. Returns the actual rate that was

and set. supported by alfontrollers and set.
start Ensures all manage@ntrollers Depends on thelayer implementation.
arePrefetchedand invokesync- Player might immediately post a

Start on each of them, taking into acstartEvent.
count their start latencies.

realize The managin@layer immediately The managin@layer immediately
posts &RealizeCompleteEvent. TO posts &RealizeCompleteEvent. TO be
be added, @ontroller must already added, &ontroller must already be

be realized. realized.
prefetch Invokesprefetch on all managed The managin@layer immediately
Controllers. posts ePrefetchCompleteEvent, indi-
cating that all managetbntrollers
arePrefetched
stop No effect. Invokestop on all managedontrol-
lers.
deallocate Invokesdeallocate on all managed It is illegal to calldeallocate on a
Controllers. StartedPlayer.
setStopTime InvokessetStopTime on all managed InvokessetStopTime on all managed
Controllers. (P1layer must beReal- Controllers. (Can only be set once on
ized) aStarted Player.)
syncStart InvokessyncStart on all managed Itis illegal to callsyncStart on aStart-
Controllers. edPlayer.
close Invokesclose on all managedon- It is illegal to callclose on aStarted
trollers. Player.

8.3 Removing a Controller

You use theemoveController method to remove @ntroller from the list of
controllers managed by a particubkdmyer.

32

Java Media Players — Version 1.0.1
To haveplayer2 release control gflayerl, call:

player2.removeController(playerl);

9.0 Extending JMF

The JMF architecture allows advanced developers to create and integrate new
types of controllers and data sources. For example, you might implement a new
Player that supports a special media format.

This section introduces the JMF Player architecture and describes havayew
ers andDataSources can be integrated into JMF.

9.1 Understanding the Player Architecture

As described in “Creating a Player” on page 14, a client programmer calls
Manager.createPlayer to get a nevPlayer for a particular media source. When
createPlayer is called, an appropriatelayer is created and returned to the
caller.

Manager construct®layers for particular media sources.DataSource is first
constructed from BRL orMedialLocator and then used to creat®@tayer. (A
DataSource is a protocol-specific source of media dafayers usually use
DataSources to manage the transfer of media-content.)

When creating &1ayer, Manager:
* Obtains the connect@dtaSource for the specified protocol

» Obtains therTayer for the content-type specified by tbetaSource
» Attaches th@ataSource to thePlayer

PackageManager
getContentPrefixList
uses | getProtocolPrefixList
Manager > .
creates | MediaHandler |
createDataSource > DataSource q
createPlayer getContentName exten S_|J: %extends
creates
:: Player |
creates :: Med1iaProxy

Understanding the Player Architecture 33

9.1.1 Locating a DataSource

The createDataSource method locates and instantiates an approfiate-
Source for a specifiethedialLocator. To do this, it first creates a search list of
DataSource class names and then steps through each class in the list until a
usable data source is found. To construct the search tistafource class
namescreateDataSource:

1. Obtains a vector of protocol package-prefixes framkageManager.
2. Adds a class name of the form:

<package-prefix>.media.protocol.<protocol>.DataSource

for each<package-prefix> in the protocol package-prefix-vector.

Manager steps through each class in the list until it finda@Source that it can
instantiate and to which it can attach Me€iaLocator-.

9.1.2 Locating a Player

The createPlayer method uses a similar mechanism to locate and instantiate an
appropriatePTayer for a particularbataSource. A Player is a type oMediaH-
andler, an object that reads data fromaaaSource. MediaHandlers are identi-

fied by the content type that they supp®ahager uses the content type name
obtained from @ataSource to findMediaHandler objects. JMF supports two

types ofMediaHandlers, Player andvediaProxy.

A MediaProxy processes content from obetaSource to create another. Typi-
cally, aMediaProxy reads a text configuration file that contains all of the informa-
tion needed to make a connection to a server and obtain media data.

WhencreatePlayer is calledManager first creates a search list of class names
using the content name from thetaSource and the list of installed packages
returned by th@ackageManager. It then steps through each class in the list until
it finds aMediaHandler that can be constructed and to which it can attach the
DataSource.

If the MediaHandler is aPlayer, the process is finished amghager returns the
newPlayer. If theMediaHandler iS aMediaProxy, Manager obtains a newata-
Source from theMediaProxy, creates a new list for the content type that the
DataSource supports and repeats the search process.

If an appropriat@layer cannot be found, the procedure is repeated, substituting
“unknown” for the content type name. The “unknown” content type is supported

34 Java Media Players — Version 1.0.1

by genericPlayers that are capable of handling a large variety of media types,
often in a platform dependent way.

To construct the search listiddiaHandler class nameg,reatePlayer:

1. Obtains a vector of content package-prefixes frattkageManager.

2. Adds a class name of the form:
<package-prefix>.media.content.<content-type>.Handler

for each<package-prefix> in the content package-prefix-vector.

9.2 Integrating a New Player Implementation

You can create custom implementation®tfyer that can work seamlessly with
the rest of JMF. To integratePaayer with JMF, you need to:

e ImplementPlayer.setSource to check th®ataSource and determine
whether or not thelayer can handle that type of source. When the client
programmer callscreatePlayer, setSource is called as th#anager
searches for an appropri®@tayer.

* Install the package containing the neyer class.

» Add the package prefix to the content package-prefix list controlled by the
PackageManager. TheManager queries th@ackageManager for the list of
content package-prefixes it uses to search fdmnger.

For example, to integrate a néhayer for the content type mpeg.sys, you would
create and install a package called:

<package-prefix>.media.content.mpeg.sys

that contains the nemiayer class. The package prefix is an identifier for your
code, such as0M.yourbiz. Your installation program also needs to add your
package prefix to the content package-prefix list managed ley¢hegeMan-
ager.

Implementing a New Data Source 35

Vector packagePrefix = PackageManager.getContentPrefixList();
string myPackagePrefix = new String(“COM.yourbiz”);

// Add new package prefix to end of the package prefix Tist.
packagePrefix.addETement(myPackagePrefix);
PackageManager.setContentPrefixList();

// Save the changes to the package prefix 1ist.
PackageManager.commitContentPrefixList();

9.3 Implementing a New Data Source

A DataSource is an abstraction of a media protocol-handler. You can implement
new types ofDataSources to support additional protocols by extending
PuliDataSource Or PushDataSource. If your DataSource supports changing the
media position within the stream to a specified time, it should implement the
Positionable interface. If thedbataSource supports seeking to a particular point

in the stream, the correspondifigurceStream should implement theeekable
interface.

A DataSource manages a collection 8éurceStreams. A Pul1DataSource only
supports pull data-streams; it manages a collecti®niafSourceStreams. A
PushDataSource only supports push data-streams; it manages a collection of
PushSourceStreams. When you implement a neitaSource, you also need to
implement the corresponding source streRui] SourceStream Or Push-
SourceStream.

See “Appendix B: Sample Data Source Implementation” on page 43 for an exam-
ple illustrating how a newul1DataSource, FTPDataSource, could be imple-
mented.

9.4 Integrating a New Data Source Implementation

The mechanism for integrating a custdoataSource implementation with JMF
is similar to the one used for integratinglayer. You need to:

* Install the package containing the neataSource class.

» Add the package prefix to the protocol package-prefix list controlled by the
PackageManager. TheManager queries th@ackageManager for the list of
protocol package prefixes it uses to search fartaSource.

36

Java Media Players — Version 1.0.1

Appendix AI:
Java Media Applet

This Java Applet demonstrates proper error checking in a Java Media program.
Like PlayerApplet, it creates a simple media player with a media event listener.

When this applet is started, it immediately begins to play the media clip. When the
end of media is reached, the clip replays from the beginning.

import java.applet.Applet;

import java.awt.*;

import java.lang.String;

import java.net.URL;

import java.net.MalformedURLException;
import java.io.IOException;

import javax.media.¥*;

/:‘: %
* This is a Java Applet that demonstrates how to create a simple
* media player with a media event Tistener. It will play the
* media clip right away and continuously Toop.

* <!l-- Sample HTML

<applet code=TypicalPlayerApplet width=320 height=300>
<param name=file value="Astrnmy.avi'">

* </applet>

o>

*/

pubTlic class TypicalPlayerApplet extends Applet implements
ControllerListener
{

// media player

Player player = null;

37

38

Java Media Players — Version 1.0.1

// component in which video is playing
Component visualComponent = null;

// controls gain, position, start, stop
Component controlComponent = null;

// displays progress during download

Component progressBar = null;

/:‘: %
* Read the applet file parameter and create the media
* player.
:‘:/

public void init(Q)
{
setLayout(new BorderLayout());
// input file name from html param
String mediaFile = null;
// URL for our media file
URL url = null;
// URL for doc containing applet
URL codeBase = getDocumentBase();

// Get the media filename info.
// The applet tag should contain the path to the
// source media file, relative to the html page.

if ((mediaFile = getParameter("FILE")) == null)
Fatal("Invalid media file parameter");

try

{
// Create an url from the file name and the url to the
// document containing this applet.

if (Curl = new URL(codeBase, mediaFile)) == null)
Fatal("Can't build URL for " + mediaFile);

// Create an instance of a player for this media
if ((player = Manager.createPlayer(url)) == null)
Fatal("Could not create player for "+url);

// Add ourselves as a listener for player's events
player.addControllerListener(this);

}
catch (MalformedURLException u)
{
Fatal("Invalid media file URL!");
}

catch(IOException i)
{

Appendix A: Java Media Applet 39

Fatal("IO exception creating player for "+url);

}

// This applet assumes that its start() calls

// player.start().This causes the player to become

// Realized. Once Realized, the Applet will get

// the visual and control panel components and add

// them to the Applet. These components are not added
// during init() because they are long operations that
// would make us appear unresposive to the user.

}

/:‘: ¥
* Start media file playback. This function is called the
* first time that the Applet runs and every
* time the user re-enters the page.

*/
public void start()
{ // Call start() to prefetch and start the player.
if (player != null) player.start();
}
Vol

* Stop media file playback and release resources before
* Teaving the page.

*/

public void stop()
{
if (player !'= null)
{
player.stop();
player.deallocate();

}
/7‘:7‘:

* This controllerUpdate function must be defined in order
* to implement a ControllerListener interface. This
* function will be called whenever there is a media event.

*/

public synchronized void controllerUpdate(ControllerEvent event)

{

// If we're getting messages from a dead player,
// just leave

Java Media Players — Version 1.0.1
if (player == null) return;

// When the player is Realized, get the visual
// and control components and add them to the Applet

if (event instanceof RealizeCompleteEvent)
{
if ((visualComponent = player.getVisualComponent()) != null)
add("Center", visualComponent);
if ((controlComponent = player.getControlPanelComponent()) !'= null)
add("South",controlComponent) ;
// force the applet to draw the components

validate();
}
else if (event instanceof CachingControlEvent)
{
// Put a progress bar up when downloading starts,
// take it down when downloading ends.
CachingControlEvent e = (CachingControlEvent) event;
CachingControl cc = e.getCachingControl();
Tong cc_progress = e.getContentProgress();
long cc_length = cc.getContentLength(Q);
// Add the bar if not already there ...
if (progressBar == null)
if ((progressBar = cc.getProgressBarComponent()) != null)
{
add("North", progressBar);
validate(Q);
}
// Remove bar when finished ownloading
if (progressBar != null)
if (cc_progress == cc_length)
{
remove (progressBar);
progressBar = null;
validate();
b
3
else if (event instanceof EndOfMediaEvent)
{

// We've reached the end of the media; rewind and
// start over

player.setMediaTime(new Time(@));
player.start();

Appendix A: Java Media Applet

}
else if (event instanceof ControllerErrorEvent)
{
// Tell TypicalPlayerApplet.start() to call it a day
player = null;
Fatal (((ControllerErrorEvent)event).getMessage());
}
}
void Fatal (String s)
{
// Applications will make various choices about what
// to do here. We print a message and then exit
System.err.println("FATAL ERROR: " + s);
throw new Error(s); // Invoke the uncaught exception
// handler System.exit() 1is another
// choice
}

41

42

Java Media Players — Version 1.0.1

Appendix B:
Sample Data Source
Implementation

This sample demonstrates how to implement abwwSource to support an
additional protocol, the FTP protocol. There are two classes:

* DataSource extendsPulliDataSource and implements
intel.media.protocol.PullProtocolHandler.

e FTPSourceStream implementsPullSourceStream.

FTP Data Source

package COM.intel.media.protocol.ftp;

import javax.media.protocol.PullDataSource;
import javax.media.protocol.SourceStream;
import javax.media.protocol.PullSourceStream;
import javax.media.Time;

import javax.media.Duration;

import java.io.*;

import java.net.¥;

import java.util.Vector;

public class DataSource extends PullDataSource
{
public static final int FTP_PORT = 21;
public static final int FTP_SUCCESS = 1;
public static final int FTP_TRY_AGAIN = 2;

43

Java Media Players — Version 1.0.1

public static final int FTP_ERROR = 3;

// used to send commands to server
protected Socket controlSocket;

// used to receive file
protected Socket dataSocket;

// wraps controlSocket's output stream
protected PrintStream controlOut;

// wraps controlSocket's input stream
protected InputStream controlln;

// hold (possibly multi-line) server response
protected Vector response = new Vector(l);

// reply code from previous command
protected int previousReplyCode;

// are we waiting for command reply?
protected boolean replyPending;

// user login name
protected String user = "anonymous";

// user login password
protected String password = "anonymous";

// FTP server name
protected String hostString;

// file to retrieve
protected String fileString;

public void connect() throws IOException
{
initCheck(); // make sure the locator is set
if (controlSocket != null)
{
disconnect();
3
// extract FTP server name and target filename from Tocator
parselLocator();
controlSocket = new Socket(hostString, FTP_PORT);
controlOut = new PrintStream(new BufferedOutputStream(

Appendix B: Sample Data Source Implementation

controlSocket.getOutputStream()), true);
controlIn = new
BufferedInputStream(controlSocket.getInputStream());

if (readReply() == FTP_ERROR)

{
throw new IOException("connection failed");
}
if (issueCommand("USER " + user) == FTP_ERROR)
{
controlSocket.close();
throw new IOException("USER command failed");
}
if (issueCommand("PASS " + password) == FTP_ERROR)
{
controlSocket.close();
throw new IOException("PASS command failed");
}
}
public void disconnect()
{
if (controlSocket == null)
{
return;
}
try
{
issueCommand ("QUIT");
controlSocket.close();
}
catch (IOException e)
{
// do nothing, we just want to shutdown
}
controlSocket = null;
controlIn = null;
controlOut = null;
}

public void start() throws IOException

46

}

//
//

Java Media Players — Version 1.0.1

ServerSocket serverSocket;
InetAddress myAddress = InetAddress.getlLocalHost();
byte[] address = myAddress.getAddress();

String portCommand = "PORT ";
serverSocket = new ServerSocket(0, 1);

// append each byte of our address (comma-separated)

for (int i = 0; i < address.length; i++)

{

portCommand = portCommand + (address[i] & OxFF) + ",";
}

append our server socket's port as two comma-separated
hex bytes
portCommand = portCommand +
((serverSocket.getLocalPort() >>> 8)
& OxFF) + "," + (serverSocket.getlLocalPort() & OxFF);

// issue PORT command
if (issueCommand(portCommand) == FTP_ERROR)
{
serverSocket.close();
throw new IOException("PORT");
}

// issue RETRieve command
if (issueCommand("RETR " + fileString) == FTP_ERROR)
{
serverSocket.close();
throw new IOException("RETR");
}

dataSocket = serverSocket.accept();
serverSocket.close();

public void stop()

{

try
{
//
iss
dat

issue ABORt command
ueCommand ("ABOR") ;
aSocket.close();

Appendix B: Sample Data Source Implementation

}
catch(IOException e) {}

}

public String getContentType()

{
// We don't get MIME info from FTP server. This
// implementation makes an attempt guess the type using

// the File name and returns "unknown" in the default case.

// A more robust mechanisms should
// be supported for real-world applications.

String locatorString = getLocator().toExternalForm();
int dotPos = locatorString.lastIndexOf(".");

String extension = locatorString.substring(dotPos + 1);
String typeString = "unknown";

if (extension.equals("avi'))
typeString = "video.x-msvideo";

else if (extension.equals("mpg") ||
extension.equals("mpeg"))
typeString = "video.mpeg";

else if (extension.equals("mov'"))
typeString = "video.quicktime";

else if (extension.equals("wav'"))
typeString = "audio.x-wav";

else if (extension.equals("au™))
typeString = "audio.basic";

return typeString;

}

public PullSourceStream[] getStreams()

{
Pul1SourceStream[] streams = new PullSourceStream[1];
try
{

streams[0] = new
FTPSourceStream(dataSocket.getInputStream());

}
catch(IOException e)
{
System.out.printin("error getting streams");
}

return streams;

a7

48

Java Media Players — Version 1.0.1

public Time getDuration()

{
return Duration.DURATION_UNKNOWN;

}

public void setUser(String user)

{
this.user = user;
}
public String getUser()
{
return user;
}

public void setPassword(String password)

{

this.password = password;

}
public String getPassword()
{
return password;
}

private int readReply() throws IOException
{
previousReplyCode = readResponse();
System.out.println(previousReplyCode);
switch (previousReplyCode / 100)
{
case 1:
replyPending = true;
// fall through
case 2:
case 3:
return FTP_SUCCESS;
case 5:
if (previousReplyCode == 530)
{
if (user == null)

{

Appendix B: Sample Data Source Implementation

throw new IOException("Not Togged in");

}
return FTP_ERROR;
}
if (previousReplyCode == 550)
{
throw new FileNotFoundException();
}
}
return FTP_ERROR;
}

/:': %
* Pulls the response from the server and returns the code as a
* number. Returns -1 on failure.

*/

private int readResponse() throws IOException
{
StringBuffer buff = new StringBuffer(32);
String responseStr;
int C;
int continuingCode = -1;
int code = 0;

response.setSize(0);

while (true)
{
while ((c = controlIn.read()) != -1)
{
if (c == "\r")
{
if ((c = controlIn.read()) != '\n'")
{
buff.append('\r');
}
}
buff.append((char)c);

if (c == "\n")
{

break;
}

}
responseStr = buff.toString(Q);

49

50

Java Media Players — Version 1.0.1

buff.setlLength(0);
try
{

code = Integer.parselnt(responseStr.substring(0, 3));

}

catch (NumberFormatException e)

{
code = -1;
}
catch (StringIndexOutOfBoundsException e)
{
/* this Tine doesn't contain a response code, so
* we just completely ignore it
z':/
continue;
}
response.addElement(responseStr);
if (continuingCode != -1)
{
/* we've seen a XXX- sequence */
if (code != continuingCode ||
(responseStr.length() >= 4 &&
responseStr.charAt(3) == '-'))
{
continue;
}
else
{
/* seen the end of code sequence */
continuingCode = -1;
break;
}
}
else if (responseStr.length() >= 4 &&
responseStr.charAt(3) == '-')
{
continuingCode = code;
continue;
}
else
{
break;
}

}
previousReplyCode = code;
return code;

Appendix B: Sample Data Source Implementation

}
private int issueCommand(String cmd) throws IOException
{
int reply;
if (replyPending)
{
if (readReply() == FTP_ERROR)
{
System.out.print("Error reading pending reply\n");
}
}
replyPending = false;
do
{
System.out.println(cmd);
controlOut.print(cmd + "\r\n");
reply = readReply();
} while (reply == FTP_TRY_AGAIN);
return reply;
}
Vi
* Parses the medialLocator field into host and file strings
*/
protected void parselLocator()
{
initCheck();
String rest = getlLocator().getRemainder();
System.out.printIn("Begin parsing of: " + rest);
int pl, p2 = 0;
pl = rest.indexO0f("//");
p2 = rest.indexOf("/", pl+2);
hostString = rest.substring(pl + 2, p2);
fileString = rest.substring(p2);
System.out.printin("host: " + hostString + " file: "
+ fileString);
}

Source Stream

Java Media Players — Version 1.0.1

package intel.media.protocol.ftp;

import java.io.*;

import javax.media.protocol.ContentDescriptor;
import javax.media.protocol.PullSourceStream;
import javax.media.protocol.SourceStream;

public class FTPSourceStream implements PullSourceStream

{
protected InputStream dataln;
protected boolean eofMarker;
protected ContentDescriptor cd;

public FTPSourceStream(InputStream in)
{

this.dataIn = in;
eofMarker = false;
cd = new ContentDescriptor("unknown™);

}
// SourceSteam methods

public ContentDescriptor getContentDescriptor()
{

return cd;
}
public void close() throws IOException
{
dataIn.close();
}
public boolean endOfStream()
{
return eofMarker;
}

// PullSourceStream methods

public int available() throws IOException
{

return dataIn.available();

}

Appendix B: Sample Data Source Implementation

public int read(byte[] buffer, int offset, int length) throws

IOException
{
int n = dataln.read(buffer, offset, Tength);
if (n == -1)
{
eofMarker = true;
}
return n;
}
public boolean wilTReadBTock() throws IOException
{
if(eofMarker)
{
return true;
}
else
{
return dataIn.available() == 0;
}
}
public Tong getContentLength()
{
return SourceStream.LENGTH_UNKNOWN;
}

53

54

Java Media Players — Version 1.0.1

Appendix C:
Sample Controller
Implementation

This sample illustrates how a simple time-l@@@troller can be implemented in
JMF. This example includes three classes:

e TimeLineController.java

TheController. You give it an array of time values (representing a time
line) and it keeps track of which segment in the time line you are in.

o TimeLineEvent.java

An event posted by theimeLineController when the segment in the time
line changes.

« EventPostingBase.java
A base class used BymeLineController that handles theontroller

methodsaddControllerListener andremoveControllerListener. It also
provides gostEvent method that can be used by the subclass to post events.

This implementation also uses two additional classes whose implementations are
not shown here.

* EventPoster
A class that spins a thread to post eventsnarollerListener.
« BasicClock

A simpleClock implementation that implements all of thiock methods.

55

56

Java Media Players — Version 1.0.1

TimeLineEvent

TimeLineEvent.java
import javax.media.¥*;

// TimeLineEvent -- posted by TimeLineController when we have
// switched segments in the time line.

public class TimeLineEvent extends ControllerEvent

{

protected int segment;

public TimeLineEvent (Controller source, int currentSegment)
{
super (source);
segment = currentSegment;
3
public final int getSegment ()
{
return segment;

}

EventPostingBase

EventPostingBase.java

import javax.media.*;
import COM.yourbiz.media.EventPoster;

// EventPoster supports two methods:

// public EventPoster ();

// public void postEvent (ControllerListener who,
// ControllerEvent what);

// A Tist of controller Tisteners that we are supposed to send
// events to.
class ListenerList
{
ControllerListener observer;
ListenerList next;

public class EventPostingBase

{

protected ListenerList olist;

Appendix C: Sample Controller Implementation 57

protected Object olistLock;
protected EventPoster eventPoster;

// We sync around a new object so that we don't mess with
// the super class synchronization.
EventPostingBase ()
{
olistLock = new Object ();

public void addControllerListener (ControllerListener observer)
{
synchronized (olistLock)
{
if (eventPoster == null)

{

eventPoster = new EventPoster ();

ListenerList iter;
for (iter = olist; iter != null; iter = iter.next)
{
if (iter.observer == observer) return;
}
iter = new ListenerList ();
iter.next = olist;
iter.observer = observer;
olist = 1iter;

public void removeControllerListener (ControllerListener observer)
{
synchronized (olistLock)
{
if (olist == null)
{
return;
}
else if (olist.observer == observer)
{
olist = olist.next;
}
else
{
ListenerList iter;
for (iter = olist; iter.next != null; iter = iter.next)
{
if (iter.next.observer == observer)

{

Java Media Players — Version 1.0.1

iter.next = jter.next.next;

return;
}
h
b
}
}
protected void postEvent (ControllerEvent event)
{
synchronized (olistLock)
{
ListenerList 1iter;
for (iter = olist; iter != null; iter = iter.next)
{
eventPoster.postEvent (iter.observer, event);
b
}
}

TimeLineController

TimeLineController.java

import javax.media.*;
import COM.yourbiz.media.BasicClock;

// This Controller uses two custom classes:

// The base class 1is EventPostingBase. It has three methods:
// public void addControllerListener (ControllerListener

// observer);

// public void removeControllerListener (ControllerListener
// observer);

// protected void postEvent (ControllerEvent event);

//

// This Controller posts TimelLineEvents. TimeLineEvent has
// two methods:

// public TimeLineEvent (Controller who, int
// segmentEntered);
// public final int getSegment ();

public class TimeLineController extends EventPostingBase
implements Controller, Runnable

{
Clock ourClock;

Appendix C: Sample Controller Implementation 59

// This simple controller really only has two states:
// Prefetched and Started.
int ourState;

Tong timeLine[];

int currentSegment = -1;
Tong duration;

Thread myThread;

// Create a TimeLineController giving it a sorted time line.
// The TimeLineController will post events indicating when

// it has passed to different parts of the time line.

public TimeLineController (long timeLine[])

{
this.timeLine = timelLine;
ourClock = new BasicClock ;
duration = timelLine[timelLine.length-1];
myThread = null;
// We always start off ready to go!
ourState = Controller.Prefetched;

}

// Binary search for which segment we are now in. Segment
// @ 1is considered to start at @ and end at timeLine[0Q].

// Segment timelLine.length is considered to start at

// timeLine[timeLine.length-1] and end at infinity. At the
// points of @ and timeLine[timeLine.Tlength-1] the

// Controller will stop (and post an EndOfMedia event).

int computeSegment (long time)

{
int max = timelLine.length;
int min = 0;
for (53)
{
if (min == max) return min;

int current = min + ((max - min) >> 1);
if (time < timeLine[current])

{
max = current;
}
else
{
min = current + 1;
}

60

Java Media Players — Version 1.0.1

// These are all simple...
public float setRate (float factor)

{
// We don't support a rate of 0.0. Not worth the extra math
// to handle something the user should do with the stop()
// method!
if (factor == 0.0f)
{
factor = 1.0f;
}
float newRate = ourClock.setRate (factor);
postEvent (new RateChangeEvent (this, newRate));
return newRate;
}

public void setTimeBase (TimeBase master)
throws IncompatibleTimeBaseException

{

ourClock.setTimeBase (master);
}
public Tong getStopTime ()
{

return ourClock.getStopTime (Q;
}
public Tong getSyncTime ()
{

return ourClock.getSyncTime Q;
}

public Tong mapToTimeBase (long t) throws ClockStoppedException
{

return ourClock.mapToTimeBase (t);

}

public long getMediaTime ()

! return ourClock.getMediaTime ();
}

public TimeBase getTimeBase ()

' return ourClock.getTimeBase ();
}

public float getRate ()
{

return ourClock.getRate ();

}

Appendix C: Sample Controller Implementation

// From Controller
public int getState ()

{
return ourState;
}
public int getTargetState ()
{
return ourState;
}
public void realize ()
{
postEvent (new RealizeCompleteEvent (this, ourState,
ourState, ourState));
}
public void prefetch (O
{

postEvent (new PrefetchCompleteEvent (this, ourState,
ourState, ourState));
}
public void deallocate () {
postEvent (new DeallocateEvent (this, ourState,
ourState, ourState, ourClock.getMediaTime ()));

}
public long getStartLatency (O
{
// We can start immediately, of course!
return 0;
}
public Control[] getControls ()
{
return new Control[0];
}
public Tong getDuration ()
{
return duration;
}

// This one takes a Tittle work as we need to compute if we
// changed segments.
public void setMediaTime (Time now)

{
ourClock.setMediaTime (now);
postEvent (new MediaTimeSetEvent (this, now));
checkSegmentChange (now);

}

// We now need to spin a thread to compute/observe the
// passage of time.

public synchronized void syncStart (Tong tbTime)

{

61

Java Media Players — Version 1.0.1

Tong startTime = ourClock.getMediaTime (Q;
// We may actually have to stop immediately with an
// EndOfMediaEvent. We compute that now. If we are already
// past end of media, then we
// first post the StartEvent then we post a EndOfMediaEvent
boolean endOfMedia;
float rate = ourClock.getRate ();
if ((startTime > duration && rate >= 0.0f) ||
(startTime < 0 && rate <= 0.0f))

{

endOfMedia = true;
} else
{

endOfMedia = false;
}

// We face the same possible problem with being past the stop
// time. If so, we stop immediately.
boolean pastStopTime;
Tong stopTime = ourClock.getStopTime ();
if ((stopTime != Long.MAX_VALUE) &&
((startTime >= stopTime && rate >= 0.0f) ||
(startTime <= stopTime && rate <= 0.0f)))

{
pastStopTime = true;
}
else
{
pastStopTime = false;
}
if (!endOfMedia && !pastStopTime)
{
ourClock.syncStart (tbTime);
ourState = Controller.Started;
}

postEvent (new StartEvent (this, Controller.Prefetched,
Controller.Started, Controller.Started,
startTime, tbTime));

if (endOfMedia)

{
postEvent (new EndOfMediaEvent (this,

Controller.Started,
Controller.Prefetched, Controller.Prefetched,
startTime));

}

else if (pastStopTime)

{

postEvent (new StopAtTimeEvent (this, Controller.Started,
Controller.Prefetched, Controller.Prefetched,
startTime));

Appendix C: Sample Controller Implementation 63

}

else

{
myThread = new Thread (this, "TimeLineController");
// Set thread to appopriate priority...
myThread.start (Q;

}

}

// Nothing really special here except that we need to notify
// the thread that we may have.
public synchronized void setStopTime (Time stopTime)

{
ourClock.setStopTime (stopTime);
postEvent (new StopTimeChangeEvent (this, stopTime));
notifyAll (;

}

// This one 1is also pretty easy. We stop and tell the running
// thread to exit.
public synchronized void stop ()

{
int previousState = ourState;
ourClock.stop Q;
ourState = Controller.Prefetched;
postEvent (new StopByRequestEvent (this, previousState,
Controller.Prefetched, Controller.Prefetched,
ourClock.getMediaTime ()));
notifyAll ;
// Wait for thread to shut down.
while (myThread != null)
{
try
{
wait O;
}
catch (InterruptedException e)
{
// NOT REACHED
}
}
}
protected void checkSegmentChange (long timeNow)
{
int segment = computeSegment (timeNow);
if (segment != currentSegment)
{

currentSegment = segment;

64

Java Media Players — Version 1.0.1

postEvent (new TimeLineEvent (this, currentSegment));

}

// Most of the real work goes here. We have to decide when
// to post events like EndOfMediaEvent and StopAtTimeEvent
// and TimelLineEvent.
public synchronized void run ()
{
for (53)
{
// First, have we changed segments? If so, post an event!
Tong timeNow = ourClock.getMediaTime (Q);
checkSegmentChange (timeNow) ;

// Second, have we already been stopped? If so, stop
// the thread.
if (ourState == Controller.Prefetched)
{
myThread = null;
// If someone is waiting for the thread to die, Tet them
// know.
notifyAll (;
break;

}

// Current rate. Our setRate() method prevents the value
// @ so we don't check for that here.
float ourRate = ourClock.getRate ();

// How long in clock time do we need to wait before doing
// something?

Tong mediaTimeToWait;

Tong endOfMediaTime;

// Next, are we past end of media?

if (ourRate > 0.0f)

{
mediaTimeToWait = duration - timeNow;
endOfMediaTime = duration;

B

else

{
mediaTimeToWait = timeNow;
endOfMediaTime = 0;

}

// If we are at (or past) time to stop due to EndOfMedia,
// we do that now!
if (mediaTimeToWait <= 0)
{
ourClock.stop Q;

Appendix C: Sample Controller Implementation 65

ourClock.setMediaTime (endOfMediaTime);
ourState = Controller.Prefetched;
postEvent (new EndOfMediaEvent (this, Controller.Started,
Controller.Prefetched, Controller.Prefetched,
endOfMediaTime));
continue;

}

// How long until we hit our stop time?
Tong stopTime = ourClock.getStopTime ();
if (stopTime != Long.MAX_VALUE)

{

long timeToStop;

if (ourRate > 0.0f)

{
timeToStop = stopTime - timeNow;

}

else

{
timeToStop = timeNow - stopTime;

3

// If we are at (or past) time to stop due to the stop

// time, we stop now!

if (timeToStop <= 0)

{
ourClock.stop QO;
ourClock.setMediaTime (stopTime);
ourState = Controller.Prefetched;
postEvent (new StopAtTimeEvent (this,

Controller.Prefetched, Controller.Prefetched,
stopTime));

continue;

}

else if (timeToStop < mediaTimeToWait)

{
mediaTimeToWait = timeToStop;

3

}

// How long until we pass into the next time line segment?
long timeToNextSegment;
if (ourRate > 0.0f)

{
timeToNextSegment = timeLine[currentSegment] - timeNow;
}
else
{

if (currentSegment == 0)

{

66

Java Media Players — Version 1.0.1

timeToNextSegment = timeNow;

}

else

{

timeToNextSegment = timeNow - timeLine[currentSegment-1];

}

}
if (timeToNextSegment < mediaTimeToWait)
{

mediaTimeToWait = timeToNextSegment;
}

// Do the ugly math to compute what value to pass to
// wait(Q):

Tong waitTime;

if (ourRate > 0)

{
waitTime = (long) ((float) mediaTimeToWait / ourRate) /
1000000;
}
else
{
waitTime = (long) ((float) mediaTimeToWait / -ourRate) /
1000000 ;
}

// Add one because we just rounded down and we don't
// really want to waste CPU being woken up early.
waitTime++;
if (waitTime > 0)
{
// Bug in some systems deals poorly with really large
// numbers. We will cap our wait() to 1000 seconds
// which point we will probably decide to wait again.
if (waitTime > 1000000) waitTime = 1000000;
try
{
wait (waitTime);
}
catch (InterruptedException e)

{
// NOT REACHED

Appendix D:
ControllerAdapter

This appendix describes an implementatiodwiftrollerListener, Control-
TerAdapter, that can be easily extended to respond to particular events.

Implementing ControllerAdapter

ControllerAdapter is an event adapter that reciezestrollerEvents and dis-
patches them to an appropriate stub-method. Classes use this adapter by extend-
ing it and replacing only the message handlers that they are interested in.

import javax.media.¥*;
public void cachingControl(CachingControlEvent e) {}

public
public
public
public
public

public
public
public
public
public
public
public
public
public
public
public
public

void
void
void
void
void

void
void
void
void
void
void
void
void
void
void
void
void

controllerClosed(ControllerClosedEvent e) {}
controllerError(ControllerErrorEvent e) {}
connectionError(ConnectionErrorEvent e) {}
internalError(InternalErrorEvent e) {}
resourceUnavailable(ResourceUnavailableEvent
e) {}

durationUpdate(DurationUpdateEvent e) {}
mediaTimeSet(MediaTimeSetEvent e) {}
rateChange(RateChangeEvent e) {}
stopTimeChange (StopTimeChangeEvent e) {}
transition(TransitionEvent e) {}
prefetchComplete(PrefetchCompleteEvent e) {}
realizeComplete(RealizeCompleteEvent e) {}
start(StartEvent e) {}

stop(StopEvent e) {}
dataStarved(DataStarvedEvent e) {}
deallocate(DeallocateEvent e) {}
endOfMedia(EndOfMediaEvent e) {}

67

68

Java Media Players — Version 1.0.1

public void restarting(RestartingEvent e) {}
public void stopAtTime(StopAtTimeEvent e) {}
public void stopByRequest(StopByRequestEvent e) {}

/-k-k
* Main dispatching function. Subclasses should not need to
* override this method, but instead subclass only
* the individual event methods listed above that they need
*/
public void controllerUpdate(ControllerEvent e) {

if (e instanceof CachingControlEvent) {
cachingControl ((CachingControlEvent)e);

} else if (e instanceof ControllerClosedEvent) {
controllerClosed((ControllerClosedEvent)e);

if (e instanceof ControllerErrorEvent) {
controllerError((ControllerErrorEvent)e);

if (e instanceof DatalLostErrorEvent) {
connectionError((ConnectionErrorEvent)e);

} else if (e instanceof InternalErrorEvent) {
internalError((InternalErrorEvent)e);

} else if (e instanceof ResourceUnavailableEvent) {
resourceUnavailable((ResourceUnavailableEvent)e);

}

}

} else if (e instanceof DurationUpdateEvent) {
durationUpdate((DurationUpdateEvent)e);

} else if (e instanceof MediaTimeSetEvent) {
mediaTimeSet((MediaTimeSetEvent)e);

} else if (e instanceof RateChangeEvent) {
rateChange ((RateChangeEvent)e);

} else if (e instanceof StopTimeChangeEvent) {
stopTimeChange ((StopTimeChangeEvent)e);

} else if (e instanceof TransitionEvent) {
transition((TransitionEvent)e);

Appendix D: ControllerAdapter
if (e instanceof PrefetchCompleteEvent) {
prefetchComplete((PrefetchCompleteEvent)e);

} else if (e instanceof RealizeCompleteEvent) {
realizeComplete((RealizeCompleteEvent)e);

} else if (e instanceof StartEvent) {
start((StartEvent)e);

} else if (e instanceof StopEvent) {
stop((StopEvent)e);

if(e instanceof DataStarvedEvent) {
dataStarved((DataStarvedEvent)e);

} else if (e instanceof DeallocateEvent) {
deallocate((DeallocateEvent)e);

} else if (e instanceof EndOfMediaEvent) {
endOfMedia((EndOfMediaEvent)e);

} else if (e instanceof RestartingEvent) {
restarting((RestartingEvent)e);

} else if (e instanceof StopAtTimeEvent) {
stopAtTime((StopAtTimeEvent)e);

} else if (e instanceof StopByRequestEvent) {
stopByRequest ((StopByRequestEvent)e);

Using ControllerAdapter

To implement th&ontrollerListener interface using &ontrollerAdapter,
you need to:

1. Subclasg€ontrollerAdapter and override the event methods for the events
that you're interested in.

2. Register yourControllerAdapter class as a listener for a particular

69

70

Java Media Players — Version 1.0.1
Controller by callingaddControllerListener.

When aController posts an event, it call®ntrollerUpdate on each regis-
tered listenerControllerAdapter automatically dispatches the event to the
appropriate event method, filtering out the events that you're not interested in.

For example, the following code extendSoatrollerAdapter with a JDK 1.1
anonymous inner-class to create a self-contabiager that is automatically
reset to the beginning of the media and deallocated wheidher reaches the
end of the media:

player.addControllerListener(new ControllerAdapter() {
public void endOfMedia(EndOfMediaEvent e) {
Controller controller = e.getSource();
controller.stop(Q);
controller.setMediaTime(0);
controller.deallocate();

If you register a singl€ontrollerAdapter as a listener for multiplelayers, in
your event method implementations you need to determine whigfer gener-
ated the eventontroller events come “stamped” with a reference to their
source that you can access by caljpgSource.

A

addController methq?9
added Controllers, managing0
adding a Controller30
adjusting audio gaijr6

applet 37

APPLET tag 10

AU, 2

AVI, 2

AWT, 15

B

blocking realize20
broadcast medj&
broadcast Played8

C
CachingContrql16
CachingControlEvent, 17
change notifications
clearing the stop time9
client programmersl
Clock, 4
getTimeBasg27
setTimeBasg27
close method23
closed eventsd
closing a Player23
ConnectionErrorEvenb
content package-prefig4
content-type name33
Control, 16

Index

control panel15
Controller, 4
adding 30
implementing 55
removing 31
state
prefetched?
prefetching 7
realized 7
realizing 6
started 6, 7
stopped 6
unrealized 6
ControllerAdapter69
ControllerClosedEvent
ControllerErrorEvent5
ControllerEvent5
getSource metho@4
state information24
ControllerListener5, 7, 17
implementing 17, 19, 23, 37, 67
registering 13, 23
Controllers
synchronizing multiple29
controllerUpdate method0
implementing 13, 23
controlling the media presentatictb
createDataSource meth@B
createPlayer method?2, 14, 32, 34
creating a Played 2, 14, 37

D
data source?2

71

72

DataSourcg2, 32

implementing 35, 43

integrating 35

locating 33

pull, 3

push 3
DataStarvedEvenb, 22
deallocate methqd. 3, 22
DeallocateEvent, 22, 23
default control panell5
defining a custom user-interfackb
destroy methodl3
determining a Player’s start laten@i
display propertiesl5
displaying a Playerl5
displaying download progreskt
Duration 4, 27

getting 27
DURATION_UNBOUNDED, 27
DURATION_UNKNOWN, 27
DurationUpdateEvenb

E

EndOfMediaEvent5, 22

error, 8

error handling9

event 4
change notificationsd
closed 5
Controller, 5
transition 5

example
adding a Controller30
blocking realize21
DataSource43
displaying a download progress bar
integrating a PlayeB4
managing Player synchronizati@v
PlayerApplet9, 37
removing a Controller32
starting a Playerl8
synchronizing Player27

exception8

exclusive-use resources

extending JMF1, 32

Java Media Players, Version 1.0.1

F

frame 25
frame rate25
FTP, 43

G
GainChangeEvent
GainChangelListened
GainContro| 4, 16

setLevel methodl6

setMute methodl6
getControlPanelComponent methd&
getControls methqdl6, 17
getMediaTime methqd®5
getRefTime methad26
getSource metho@4
getStartLatency metho@l
getSystemTimeBase methd#t
getTimeBase metho@7
getting a Player’s duratio27
getting a Player’s time-base tink6
getting the current time5
getVisualComponent methptl5

H

HTML tag
APPLET, 10
PARAM, 10

|
implementing
Controller, 55
ControllerListenerl7, 23, 37, 67
controllerUpdate23
DataSourcg35, 43
PullSourceStrean#3
initializing a player appletl2
integrating
DataSourcg35
Player 34
InternalErrorEvent5

J

Java Beanst

JMF 1.0 Player ARI1
JMF architecturg32

Index

JMF Player APJ2
JMF, extending32

L

layout managerl5

locating
DataSource33
Player 33

M
malfunctions 6
Manager
createDataSource meth@&8B
createPlayerl2, 32, 34
getSystemTimeBase4
managing
added Controllers30
Player 29, 30
Player statel9
timing, 24
managing and synchronizing Controlle28
mapping time24
mapToTimeBase methpd6
master TimeBase4
media event4
media frame25
media presentation, controllings
media streams, synchronizirigj/
media time4, 24
setting 25
media types2
MediaBase3
MedialLocator 2, 14, 32
MediaTimeSetEvent
MIDI, 2
MPEG, 2, 3
multicast media3

N

native methods2
notification, 4
NotRealizedErrar30

P
package prefix34
PackageManage84

PARAM tag 10
Player 2, 3, 4
addController methag®9, 30
broadcast18
close method23
control panel15
creating 12, 37
deallocate methq@2
display propertiesl5
displaying 15
getControls methqdl6, 17
getMediaTime methqd®5
getRefTime metha26
getStartLatency metho@l
integrating 15, 34
locating 33
managing 29
mapToTimeBase methpd6
media time 24
method restrictions3
prefetch method20
preparing to startl9
realize methog20
removeController metho@®9, 31
setRate methq®6
setStopTime method 8
setting media time25
start methodl17, 22
state, managind.9
states6
stop method18, 22
synchronizing 27
Player AP| 2
Player architecture32
PlayerApplet9, 11, 37
destroy methodl3
init method 12
start method13
stop methogd13
playing a media clip37
playing media in revers@6
Positionable35
prefetch method?, 20
PrefetchComplete29
PrefetchCompleteEvers, 20
prefetched state, 20

73

74

prefetching a PlayeR0
prefetching stater
preparing a player to stad9
progress barl6
componentl7
displaying 17
protocol 2
protocol handler35
protocol package-prefj33
pull data source3
PullDataSource35
PullSourceStrean85
implementing 43
push data sour¢8
PushDataSour¢&5
PushSourceStrear5

Q
QuickTime 2

R
rate 18

setting 26
rate method26
RateChangeEvenb
realize

blocking on 20
realize methogdb, 20
RealizeCompleteEven, 14, 20
realized state?, 20
realizing 6
realizing a Player20
realizing statg6
Real-time Transport Protocol (RT,R)
registering as a ControllerListends, 23
releasing resource$3, 22
removeController metho@9
removing a Controller31
resources, releasing2
ResourceUnavailableEver
responding to event§7
RestartingEvent, 22
return values9
reverse, playing in26
RTP, 3

Java Media Players, Version 1.0.1

S
sample program, PlayerApp)é&
Seekable35
setLevel methodl6
setMute methodl6
setRate methq®6
setSource metho34
setStopTime methed 9
setTimeBase metho@7
setting

audio gain16

media time 25

stop time 18
setting a Player’s rat@6
shutting down a Playe23
SourceStreanB85
start latency19

determining 21
start method7, 13, 17, 22
started states, 7, 22
StartEvent5, 17
starting a Playerl7, 22
state

managing 19

Player 6

prefetched?

prefetching 7

realized 7

started 6, 7

stopped 6

unrealized6
stop method13, 18, 22
stop time 18

clearing 19
StopAtTimeEvent5, 22
StopByRequestEven, 22
StopEvent5, 22
stopped states
stopping

broadcast Playef8

Player 18, 22
StopTimeChangeEverk
synchronizationl7
synchronizing Controller29
synchronizing media streaps/
syncStartl7, 28, 29

Index

system TimeBase4

T
technology providersl
temporal scale factp26
Time, 25
time

getting 25

mapping 24
TimeBase4, 24
time-base time4, 24

getting 26
transition eventsb
TransitionEvent5

]
unrealized states
URL, 2, 14, 32

instantiating 14
user-interfaced4, 14
custom 15

\%

validate methodl4
video-on-demand (VODB
visual component, displayin@g5
VOD (video-on-demand

W
WAV, 2

	Preface
	Java Media Players
	Future Releases
	Contact Information
	JavaSoft
	Silicon Graphics
	Intel Corporation

	Change History
	Version 1.0.3
	Version 1.0.2
	Version 1.0.1
	Version 1.0

	Java Media Players
	1.0 Overview
	1.1 Data Sources
	1.2 Players
	1.3 Media Events
	1.4 Player States
	1.5 Calling JMF Methods

	2.0 Example: Creating an Applet to Play a Media Fi...
	2.1 Overview of PlayerApplet
	2.2 PlayerApplet Code Listing
	2.3 Initializing the Applet
	2.4 Controlling the Player
	2.5 Responding to Media Events

	3.0 Creating and Displaying a Player
	3.1 Creating a Player
	3.2 Displaying a Player and Player Controls

	4.0 Controlling Media Players
	4.1 Starting a Player
	4.2 Stopping a Player

	5.0 Managing Player States
	5.1 Preparing a Player to Start
	5.2 Starting and Stopping a Player
	5.3 Releasing Player Resources
	5.4 Implementing the ControllerListener Interface

	6.0 Managing Timing
	6.1 Setting the Media Time
	6.2 Getting the Current Time
	6.3 Setting a Player’s Rate
	6.4 Getting a Player’s Duration

	7.0 Synchronizing Players
	8.0 Using a Player to Manage and Synchronize other...
	8.1 Adding a Controller
	8.2 Managing the Operation of Added Controllers
	8.3 Removing a Controller

	9.0 Extending JMF
	9.1 Understanding the Player Architecture
	9.2 Integrating a New Player Implementation
	9.3 Implementing a New Data Source
	9.4 Integrating a New Data Source Implementation

	Appendix A: Java Media Applet
	Appendix B: Sample Data Source Implementation
	Appendix C: Sample Controller Implementation
	Appendix D: ControllerAdapter

