Java Media Players

Version .96, May 27, 1997

Java Media Framework is being developed by
Sun Microsystems, Inc., Silicon Graphics Inc., and Intel Corporation.

@::@ Sun é% SiliconGraphics intel .

microsystems N CampUtE’/'Sj/SfemS

00 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR
52.227-19.

The release described in this document may be protected by one or more U.S. patents, foreign
patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable,
perpetual, worldwide limited license (without the right to sublicense) under SUN's intellectual
property rights that are essential to practice this specification. This license allows and is limited to
the creation and distribution of clean-room implementations of this specification that (i) are
complete implementations of this specification, (ii) pass all test suites relating to this specification
that are available from SUN, (iii) do not derive from SUN source code or binary materials, and (iv)
do not include any SUN binary materials without an appropriate and separate license from SUN.

Java and JavaScript are trademarks of Sun Microsystems, Inc. Sun, Sun Microsystems, Sun
Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer Corporation

logo, Java and HotJava are trademarks or registered trademarks of Sun Microsystems, Ific. UNIX

is a registered trademark in the United States and other countries, exclusively licensed through X/
Open Company, Ltd. All other product names mentioned herein are the trademarks of their

respective owners.

THIS PUBLICATION IS PROVIDED *AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR

TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE

IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS PUBLICATION AT ANY TIME

Contents

Preface 7
Java Media Players. 1
1 OVEIVIEBW .o e e 2
Media SOUICESot 2
Players 3
Media Events. 4
Player States 6
CallingJMF Methods 8
2 Example: Creating an Applet to Play a Media File 9
Overview of PlayerApplet. 9
PlayerApplet Code Listing 11
Initializingthe Applet 12
Controllingthe Player 13
Respondingto MediaEvents. 13
3 Creating and Displayinga Player 14
Creatinga Player. 14
Displaying a Player and Player Controls. 14
4 Controlling Media Players 17
Startinga Player. 17
Stoppinga Player. 17
5 Managing Player States 18
Preparinga Playerto Start. 19
Starting and Stoppinga Player 20
Releasing Player Resources.oo... 21
Implementing the ControllerListener Interface........... 21
6 Managing Timing and Synchronization 22

Java Media Players — Version 0.95, January 31, 1997

Setting the MediaTime 23
Gettingthe CurrentTime. i, 23
Settinga PlayersRate. 24

Getting a Player's Duration 25

Synchronizing Players 25
7 Using a Player to Manage and Synchronize other Controllers 27

AddingaController 28

Managing the Operation of Added Controllers 28

Removinga Controller. 29
8 Extending JMF 29

Understanding the Player Factory Architecture. 30

Appendix A:

Java Media Applet 31

Preface

The Java Media Framework (JMF) is an application programming interface (API)
for incorporating media data types into Java applications and applets. It is specifi-
cally designed to take advantage of of Java platform features. The JMF provides
APIs for media players, media capture, and conferencing. This document
describes the Java Media Player APIs and how they can be used to present time-
based media such as audio and video.

Java Media Players

The 1.0 specification for Java Media Players addresses media display, and the
concerns of the application builder in that domain, with an eye towards the other
application domains and other levels of developer. There are two parts to this
release: a user guide entitled Java Media Players, and the accompanying API
documentation.

Status of Future Releases

Javasoft and its partners are developing new capabilities and features that will
appear in a future release of the JMF specification. The features that we are
considering for future releases include:

* Incomplete Players A JMF Player is self-contained, and provides no access
to media data. Additional interfaces that provide access to media data and
allow selection of rendering components are in development and intended for
a future release.

« Rendering Interfaces Rendering interfaces for specific audio and video
formats have to be finalized. Additional interfaces for a video or audio

Java Media Framework — Version 1.0 Draft May 14, 1997
renderer have not yet been fully developed or documented.

» Capture Semantics The JMF Player architecture does not yet provide for
media capture of the kind required for authoring or conferencing applications.

» Data Definitions— Audio and video formats have yet to be finalized. An
overall structure for data manipulation and format negotiation among generic
formats has been defined, but the specific interfaces for audio and video data
have not yet been defined.

» CODEC Architecture- An architecture for CODECs needs to be defined in
order to provide a common API for using CODECs and a mechanism to allow
the installation of additional CODECSs into the system.

Contact Information

JavaSoft

To obtain information about the Java Media Framework, see the web site at:

HTTP://www.javasoft.com/products/java-media/mediaplayer

Silicon Graphics

To obtain information about Java Media Framework implementations for Silicon
Graphics hardware send mail to:

cosmo-motion-info@sgi.com

Intel Corporation

To obtain information about Java Media Framework Implementations for Intel
hardware, see the web site at:

HTTP://developer.intel.com/ial/jmedia

Java Media Players

Sun Microsystems, Inc.
Silicon Graphics Inc.
Intel Corporation

Copyright © 1997 by Sun Microsystems Inc.
All Rights Reserved

The Java Media Framework (JMF) provides APIs for media players, media cap-
ture, and conferencing. This document describes the Java Media Player APIs and
how they can be used to present time-based media such as audio and video.

The JMF API covers a wide range of applications, and addresses the requirements
of developers working at different levels. Interest in JMF can be divided roughly
across three application domains and three categories of developer. We have iden-
tified the following application domains:

* Media Display- Encompasses local and network playback of multimedia
data within an application or applet. The focus of IMF in this area is to support
the delivery of statically stored, synchronized media data, and to allow
integration with the underlying platform’s native environment and Java’s core
packages, such gsva.awt. This area also encompasses streaming protocols
such as RTP. The 1.0 Java Media Player APIs support media display.

* Media Capture- This domain imposes additional requirements above and
beyond those of media display. Support for media capture implies the ability
to record, save, and transfer data through local capture devices, such as
microphones and cameras. A future release of JMF will define classes to
represent renderers, capture devices, capture objects, and media data.

Java Media Framework — Version 1.0 Draft May 14, 1997

» Media Conferencing This application domain encompasses conferencing,
computer telephony integration, and simple authoring applications for media
data. A future release of JMF will address media conferencing.

The Java Media Player APIs support three levels of use:

 Client leveta client programmer can create and control a Java Media Player
for any standard media type by using a few simple method calls.

« Enhancement leveh programmer can modify an existing player to add new
functionality by replacing selected player parts, such as renderers. By making
it possible to replace individual player parts, JMF provides a way to add
functionality to a player without building one from scratch.

» Design leveta programmer can add new players to support additional media
formats. New players are created by extending the JMF, allowing new players
to be used side-by-side with existing players.

By providing three distinct programming levels, JMF makes it easy to incorporate
media in client applications and applets, while maintaining the flexibility needed
for more sophisticated applications and platform customization. This document is
intended primarily for client programmers.

1.0 Overview

JMF provides a platform-neutral framework for building media players. It is
designed to support many media content types, including MPEG-1, MPEG-2,
QuickTime, AVI, WAV, AU, and MIDI. Using Java Media Players, a programmer
can synchronize and present time-based media from diverse sources.

Existing players on desktop computers are heavily dependent on native code for
computationally intensive tasks like decompression and rendering. Some Java
Media Players require native code to support the features of a specific hardware
device or operating system, or to maintain compatibility with existing multimedia
standards. Since Java accommodates both Java bytecode and native methods,
developers and users can choose among different player implementations that use
both Java and native objects.

1.1 Media Sources

A Java Media player encapsulates its media source; it is constructed to present a
particular media source, identified by a universal resource locator (URL), and
cannot be reused to present other media streams.

Java Media Players - Players 3

Java Media Players can present media data obtained from a variety of sources,
such as local or network files and live broadcasts. JMF categorizes media sources
according to whether or not the client is guaranteed to receive all of the data:

» Pull Data Source-the client is guaranteed to receive every packet from the
data source, such as a local or network file. Established protocols for this type
of data include Hypertext Transfer Protocol (HTTP) and FILE.

e Push Data Soureethe data from the media source is not guaranteed to be
delivered reliably and clients are expected to recover from gaps in the data.
Push data sources include broadcast media, multicast media, and video-on-
demand (VOD). For broadcast data, one protocol is the Real-time Transport
Protocol (RTP), under development by the Internet Engineering Task Force
(IETF). The MediaBase protocol developed by SGI is a protocol used for
VOD.

The degree of control that a client program can extend to the user depends on the
type of media source being presented. For example, a media source such as a file
can be repositioned, allowing the user to replay the media stream or seek to a new
location in the stream. A broadcast media source, however, is under server control
and cannot be repositioned. Similarly, a VOD source might support limited user
control, but probably not the degree of control available with a pull data source.

1.2 Players

A player is a software machine that processes a stream of data over time, reading
data from a media source and rendering it at a precise time. A Java Media Player
implements the methods defined by four interfaces:

* Clock defines the basic timing and synchronization operations that a player
uses to control the presentation of media data.

e Controller extend<lock to provide methods for obtaining system
resources and preloading data and a listening mechanism that allows you to
receive notification of media events.

* Duration provides a way to determine the duration of the media being
played.

e Player extend€ontroller andClock to support standardized user controls.
Player also relaxes some of the operational restrictions impose&tidak.

Players share a common model for timekeeping and synchronization. A player’s
media timaepresents the current position in the media stream. Each player has a

Java Media Framework — Version 1.0 Draft May 14, 1997

time basdhat defines the flow of time for the player. When a player is started, its
media time is mapped to its time-base time. To be synchronized, players must use
the same time base.

A player’s user interface can include both a visual component and a control-panel
component. You can implement a custom user-interface for a player or use the
player’s default control-panel component.

A player must perform a number of operations before it is capable of presenting
media. Because some of these operations can be time consuming, JMF allows you
to control when they occur by defining the operational states of a player and
providing a control mechanism for moving the player between those states.

1.3 Media Events

The JMF event reporting mechanism allows your program to respond to media-
driven error conditions, such as out-of-data or resource unavailable conditions.
The event system also provides an essential notification protocol; when your
program calls an asynchronous method on a player, it can only be sure that the
operation is complete by listening for the appropriate event.

Two type of JIMF objects post eventaiinControl objects andontroller
objects.

A GainControl object posts only one type of evetd;jnChangeEvent. To
respond to gain changes, you implemeniGisChangeListener interface.

A Controller can post a variety of events that are derived ftontroller-
Event. To receive events from@ntroller such as &layer, you implement
theControllerListener interface. The following figure shows the events that
can be posted by@ntroller.

Java Media Players - Media Events 5

ControllerEvent|

: CachingControIEvei

ControllerErrorEve

_l DataLostErrorEvent |
_I ResourceUnavaiIableEV(lnt
_| InternalErrorEvent |

TransitionEvent

_l PrefetchCompIeteEveIn

_l RealizeCompleteEvent |
1 StartEvent |
1 StopEvent |

A—l DeallocateEvent |
_I EndOfMediaEvent I
_l RestartingEvent |
_l StopAtTimeEvent |
_I StopByRequestEver‘

Controller events fall into three categories: change notifications, error events, and
transition events:

< Change notification events suchrageChangeEvent and
DurationUpdateEvent indicate that some attribute of the player has changed,
often in response to a method call. For example, the player posts a
RateChangeEvent when its rate is changed witlsatRate call.

e TransitionEvents allow your program to respond to changes in a player’'s
state. A player posts transition events whenever it moves from one state to
another. (See Section 1.4 for more information about player states.)

e ControllerErrorEvents are posted by a player when it has encountered a
problem and cannot recover. When a player po&tgierollerErrorEvent,
itis no longer usable. You can listen @htrollerErrorEvent so that your

Java Media Framework — Version 1.0 Draft May 14, 1997
program can respond to player malfunctions, minimizing the impact on the

user.

1.4 Player States

A Java Media Player can be in one of six states.CThek interface defines the
two primary statesStoppedandStarted Controller breaks the stopped state
down into five standby statddnrealized Realizing Realized Prefetching and
Prefetched

Stopped; Started

realize RCE prefetch PFCE

@—»{Realizingﬁ—»{ RealizeMrefetchin Prefetcheg—:—{ Started]
deallocate w StopEvent

deallocate, setMediaTime X

R

RCE = RealizeCompleteEvent; PFCE = PrefetchCompleteEvent

In normal operation, a player steps through each state until it reacl&tartieel
state:

» A player in theUnrealizedstate has been instantiated, but does not yet know
anything about its media other than its URL. When a media player is first
created, it idJnrealized

* Whenrealize is called, a player moves from thkarealizedstate into the
Realizingstate. ARealizingplayer is in the process of determining its

resource requirements. During realization, a player acquires the resources that
it only needs to acquire once. These might include rendering resources other
than exclusive-use resources. (Exclusive-use resources are limited resources
such as particular hardware devices that can only be used by one player at a

time; such resources are acquired dufngfetching)
* When a player finishes realizing, it moves intofRealizedstate. ARealized

player knows what resources it needs and something about the media it is to

present. BecauseRealizedblayer knows how to render itself, it can provide
its visual components and controls. Its connections to other objects in the

Java Media Players - Player States 7

system are in place, but it does not own any resources that would prevent
another player from starting.

 Whenprefetch is called, a player moves from tRealizedstate into the
Prefetchingstate. APrefetchingplayer is preparing to present its media.
During this phase, the player can preload its media data, obtain exclusive-use
resources, and anything else that it must do every time it prepares to play.
Prefetching might have to recur if a player’'s media presentation is
repositioned, or if a change in the player’s rate requires that additional buffers
be acquired or alternate processing take place.

* When a player finishes prefetching, it moves intoRhefetchedstate. A
Prefetchedblayer is ready to be started; it is as ready to play as it can be
without actually being started.

« Calling start puts a player into th8tartedstate. AStartedplayer’s time-
base time and media time have been mapped and its clock is running, though
the player might be waiting for a particular time to begin presenting its media
data.

A player postSransitionEvents as it moves from one state to another. The
controllerListener interface provides a way for your program to determine
what state a player is in and to respond appropriately.

This mechanism allows you to manage player latency by controlling when a
player begins realizing and prefetching. It also provides a way that you can ensure
that the player is in an appropriate state before calling methods on the player.

1.4.1 Methods Available in Each Player State

To prevent race conditions and deadlocks, not all methods can be called on a
player in every state. The following table identifies the restrictions imposed by the
JMF. If you call a method that is illegal in a player’s current state, the player
throws an error or exception.

Table 1: Restrictions on Player Methods

Method Unrealized Realized Prefetched Started
Player Player Player Player

getStartLatency NotRealizedError legal legal legal

getTimeBase NotRealizedError legal legal legal

setMediaTime NotRealizedError legal legal legal

Java Media Framework — Version 1.0 Draft May 14, 1997

Method Unrealized Realized Prefetched Started

Player Player Player Player
setRate NotRealizedError legal legal legal
getVisualComponent NotRealizedError legal legal legal
getControlPanelComponent NotRealizedError legal legal legal
getGainControl NotRealizedError legal legal legal
setStopTime NotRealizedError legal legal StopTimeSetError

if previously set

syncStart NotPrefetchedError NotPrefetchedError legal ClockStartedError
setTimeBase NotRealizedError legal legal ClockStartedError
deallocate legal legal legal ClockStartedError
addController NotRealizedError legal legal ClockStartedError
removeController NotRealizedError legal legal ClockStartedError

mapToTimeBase

ClockStoppedException ClockStoppedException ClockStoppedException legal

15 Calling JMF Methods

JMF uses the following convention for errors and exceptions:

» Java Media Errors are thrown when a program calls a method that is illegal in
the current context. Errors are thrown in situations where you have control
over the context and the requested operation could result in a race condition
or deadlock. For example, it is an error to call certain method<sSteri@d
player. It is your responsibility to ensure that a player is stopped before using
these methods.

» Java Media Exceptions are thrown when a program calls a method that cannot
be completed or is not applicable in the current context. Exceptions are
thrown in situations where you do not necessarily have control over the
current context. For example, an exception is thrown if you attempt to
synchronize two players with incompatible time bases. This is not an error
because you could not determine ahead of time that the time bases were
incompatible. Similarly, if you call a method that is only applicable for a
Startedplayer and the player is stopped, an exception is thrown. Even if you
just started the player, it might have already stopped in response to other
conditions, such as end of media.

Java Media Players - Overview of PlayerApplet 9

Some JMF methods return values that indicate the results of the method call. In
some instances, these results might not be what you anticipated when you called
the method; by checking the return value, you can determine what actually hap-
pened. For example, the return value might indicate:

* What value was actually set. For example, not all players can present media
data at five times the normal rate. If you caltRate(5.0), the player will
set its rate as close as it can to 5.0 and return the rate it actually set. That rate
might be 5.0, or it might be 1.0; you need to check the return value to find out.

« That the operation could not be completed. For example, when you call
createPlayer, the method returnsu11 if the requested player could not be
created.

» That the information you requested is not currently available. For example, a
player might not know its duration until it has played its media stream once.
If you callgetDuration on such a player before it has playgetDuration
returnsDURATION_UNKNOWN. If you callgetDuration again after the player
has played, it might be able to return the actual duration of the media stream.

2.0 Example: Creating an Applet to Play a Media File

The sample programlayerApplet demonstrates how to create a Java Media
Player and present an MPEG movie from within a Java applet. This is a general
example that could easily be adapted to present other types of media streams.

The player’s visual presentation and its controls are displayed within the applet’s
presentation space in the browser window. If you create a player in a Java applica-
tion, you are responsible for creating the window to display the player’'s compo-
nents.

Note: While PlayerApplet illustrates the basic usage of a Java Media Player, it
does not perform the error handling necessary in a real applet or application. For a
more complete sample suitable for use as a template, see “Appendix A: Java
Media Applet” on page 31.

2.1 Overview of PlayerApplet

TheAPPLETtag is used to invok@layerApplet in anHTML file. ThewIDTH and
HEIGHT fields of the HTMLAPPLET tag determine the dimensions of the applet’s
presentation space in the browser window. fArAM tag identifies the media file
to be played. For examplelayerApplet could be invoked with:

10

Java Media Framework — Version 1.0 Draft May 14, 1997

<APPLET CODE=ExampleMedia.PlayerApplet
WIDTH=320 HEIGHT=300>

<PARAM NAME=FILE VALUE="Astrnmy.mpg">
</APPLET>

When an user opens a web page contaipingerApplet, the applet loads auto-
matically and runs in the specified presentation space, which contains the player’s
visual component and default controls. The player starts and plays the MPEG
movie once. The user can use the default player controls to stop, restart, or replay
the movie. If the page containing the applet is closed while the player is playing
the movie, the player automatically stops and frees the resources it was using.

To accomplish thise1ayerApplet extendsipplet and implements théontrol-
lerListener interface, defining four methods:

* init—creates a player for the file that was passed in througintrev tag
and registerg8layerApplet as a controller listener so that it can observe
media events posted by the playeiaferApplet’s controllerUpdate
method is called whenever the player posts an event.)

* start—starts the player whefayerApplet is started.
+ stop—stops and deallocates the player wherpihwgerApplet is stopped.

* controllerUpdate—responds to player events to display the player's
components.

Java Media Players - PlayerApplet Code Listing 11

2.2 PlayerApplet Code Listing

PlayerApplet.java:
package ExampleMedia

import java.applet.*;
import java.awt.*;
import java.net.*;
import java.media.*;

public class PlayerApplet extends Applet implements
ControllerListener {
Player player = null;
public void init() {
setLayout(new BorderLayout());
String mediaFile = getParameter(“FILE”);
try {
URL mediaURL = new URL(getDocumentBase(),
mediaFile);
player = Manager.createPlayer(mediaURL);
player.addControllerListener(this);
} catch (Exception e) {
System.err.printin("Got exception "+e);
}
}
public void start() {
player.start(Q);
}
public void stop() {
player.stop();
player.deallocate();
}
public synchronized void controllerUpdate(ControllerEvent
event) {
if (event instanceof RealizeCompleteEvent) {
Component comp;
if ((comp = player.getVisualComponent()) != null)
add ("Center", comp);
if ((comp = player.getControlPanelComponent()) != null)
add ("South", comp);
validate();

12

Java Media Framework — Version 1.0 Draft May 14, 1997

2.3 Initializing the Applet

When a Java applet starts,iits t method is invoked automatically. You override
init to prepare your applet to be startethyerApplet performs four tasks in
init:

1. Retrieves the applet’s FILE parameter.

2. Uses the FILE parameter to locate the media file and buitd abject that
describes that media file.

3. Creates a player for the media file by caliagager.createPlayer.

4. Registers the applet as a controller listener with the new player by calling
addControllerListener. Registering as a listener caugésyerApplet’s
controllerUpdate method to be called automatically whenever the player
posts a media event. The player posts media events whenever its state
changes. This mechanism allows you to control the player’s transitions
between states and ensure that the player is in a state in which it can process
your requests. (For more information, see “Player States” on page 6.)

public void init() {
setLayout(new BorderLayout());
// 1. Get the FILE parameter.
String mediaFile = getParameter(“FILE”);
try {
// 2. Create a URL from the FILE parameter. The URL
class is defined in java.net.
URL mediaURL = new URL(getDocumentBase(), mediaFile);
// 3. Create a player with the URL object.
player = Manager.createPlayer(mediaURL);
// 4. Add PlayerApplet as a listener on the new player.
player.addControllerListener(this);
} catch (Exception e) {
System.err.println("Got exception "+e);

}

Java Media Players - Controlling the Player 13

2.4 Controlling the Player

TheApplet class definestart andstop methods that are called automatically
when the page containing the applet is opened and closed. You override these
methods to define what happens each time your applet starts and stops.

PlayerApplet implementstart to start the player whenever the applet is
started:

public void start() {
player.start(Q);
}

Similarly, P1ayerApplet overridesstop to stop and deallocate the player:

public void stop() {
player.stop();
player.deallocate();

Deallocating the player releases any resources that would prevent another player
from being started. For example, if the player uses a hardware device to present its
media,deallocate frees that device so that other players can use it.

25 Responding to Media Events

PlayerApplet registers itself as@ntrollerListener in itsinit method so
that it receives media events from the player. To respond to these evews -
Applet implements theontrollerUpdate method, which is called automati-
cally when the player posts an event.

PlayerApplet responds to one type of evekdalizeCompleteEvent. When the
player posts 8ealizeCompleteEvent, PlayerApplet displays the player's com-
ponents:

public synchronized void controllerUpdate(ControllerEvent
event) {
if (event instanceof RealizeCompleteEvent) {
Component comp;
if ((comp = player.getVisualComponent()) != null)

14

Java Media Framework — Version 1.0 Draft May 14, 1997

add ("Center", comp);
if ((comp = player.getControlPanelComponent()) != null)
add ("South", comp);
validate();

A player’s user-interface components cannot be displayed until the player is real-
ized; an unrealized player doesn’t know enough about its media stream to provide
access to its user-interface componeritasyerApplet waits for the player to

post aRealizeCompleteEvent and then displays the player’s visual component
and default control panel by adding them to the applet container. Galling

date triggers the layout manager to update the display to include the new compo-
nents.

3.0 Creating and Displaying a Player

You create a player indirectly through the mextiaager. To display the player,
you get the player's components and add them to the applet’s presentation space
or application window.

3.1 Creating a Player

When you need a new player, you request it from Mlaeager by calling
createPlayer. TheManager uses the media URL that you specify to create an
appropriate player.

This mechanism allows new players to be integrated seamlessly. From the client
perspective, a new player is always created the same way, even though the player
might actually be constructed from interchangeable parts or dynamically loaded

at runtime.

3.2 Displaying a Player and Player Controls

JMF specifies the timing and rendering model for displaying a media stream, but
a player’s interface components are actually displayed gsirg awt, Java’s

core package for screen display. A player can have two types of components, its
visual component and its control components.

Java Media Players - Displaying a Player and Player Controls 15

3.2.1 Displaying a Player’s Visual Component

The component in which a player displays its media data is called its visual com-
ponent. Even an audio player might be associated with a visual component, such
as a speaker icon or an animated character.

To display a player’s visual component, you:

1. Get the component by callingtVisualComponent.

2. Add it to the applet’'s presentation space or application window.

You can access the player’s display properties, suchaariidy coordinates,
through its visual component. The layout of the player components is controlled
through the layout manager.

3.2.2 Displaying a Player’s Controls

A player is often associated with a control panel that allows the user to control the
media presentation. For example, a player might be associated with a set of but-
tons to start, stop, and pause the media stream, and with a slider control to adjust
the volume.

Every Java Media Player provides a default control panel. To display a player’s
default control panel, you get it by callipgtControlPanelComponent and add

it to the applet’s presentation space or application window. If you prefer to define

a custom user-interface, you have access to the interfaces through which the stan-
dard control panel is implemented.

A player’s control-panel component is often a client of two different classes of
objects. For example, to start and stop the player or set its media time, the control
panel calls the player directly. But many players have other properties that can be
managed by the user. For example, a video player might allow the user to adjust
brightness and contrast, which are not managed through 4her interface.To

handle these types of controls, JMF define<thherol interface.

A media player can have any numberceitrol objects that define control
behaviors and have corresponding user interface components. You can get these
controls by callingyetControls on the player. For example, to determine if a
player supports theachingControl interface and get th&achingControl if it

does, you can cafletControls:

Control[] controls = player.getControls ();

16

Java Media Framework — Version 1.0 Draft May 14, 1997

for (int i = 0; i < controls.length; i++) {
if (controls[i] instanceof CachingControl) {
cachingControl = (CachingControl) controls[i];

}

The controls that are supported by a particular player depends on the player
implementation.

3.2.3 Displaying a Gain Control Component

GainControl extends th€ontrol interface to provide a standard API for adjust-
ing audio gain. To get this control, you must galtP1ayerGainControl; get-
Controls does not return a playecainControl. GainControl provides

methods for adjusting the audio volume, sucheatevel andsetMute. Like

other controls, th@ainControl is associated with a GUI component that can be
added to an applet’s presentation space or an application window

3.2.4 Displaying a Player’'s Download Progress

Downloading media data can be a time consuming process. In cases where the
user must wait while data is downloaded, a progress bar is often displayed to reas-
sure the user that the download is proceeding and to give some indication of how
long the process will take. TltachingControl interface is a special type of con-

trol supported by players that can report their download progress. You can use this
interface to display a download progress bar to the user.

You can calgetControls to determine whether or not a player supports the
CachingControl interface. If it does, the player will postachingControlEv-

ent whenever the progress bar needs to be updated. If you implement your own
progress bar component, you can listen for this event and update the download
progress whenev@achingControlEvent is posted.

A CachingControl also provides a default progress bar component that is auto-
matically updated as the download progresses. To use the default progress bar in
an applet:

1. Implement the ControllerListener interface and listen for
CachingControlEvents in controllerUpdate.

2. The first time you receive@chingControlEvent:

a. CallgetCachingControl on the event to get the caching control.

Java Media Players - Starting a Player 17

b. CallgetProgressBar on theCachingControl to get the default progress
bar component.

c. Add the progress bar component to the applet’'s presentation space.

3. Each time you receiveCachingControlEvent, check to see if the download
is complete. WhengetContentProgress returns the same value as
getContentLength, remove the progress bar.

4.0 Controlling Media Players

The Clock andPlayer interfaces define the methods for starting and stopping a
player.

4.1 Starting a Player

You typically start a player by callifgjayer.start.Thestart method tells the
player to begin presenting media data as soon as possible. If necassarpre-
pares the player to start by performing the realize and prefetch operations. If
start is called on &tartedplayer, the only effect is thatsaartEvent is posted
in acknowledgment of the method call.

Clock defines asyncStart method that can be used for synchronization. See
“Synchronizing Players” on page 25 for more information.

To start a player at a specific point in a media stream:

1. Specify the point in the media stream at which you want to start by calling
setMediaTime.

2. Callstart on the player.

4.2 Stopping a Player

There are three situations in which a player will stop:

* When thestop method is called on the player.
* When the player has reached the specified stop time.
* When the player has run out of media data.

18

Java Media Framework — Version 1.0 Draft May 14, 1997

When a non-broadcast player is stopped, its media time is frozen. If the stopped
player is subsequently restarted, media time resumes from the stop time. When
you stop a broadcast player, however, only the receipt of the media data is
stopped, the data continues to be broadcast. When you restart the broadcast
player, the playback will resume wherever the broadcast is at that point in time.

You use thestop method to stop a player immediately. If you calbp on a
Stoppedplayer, the only effect is thatSaopByRequestEvent is posted in
acknowledgment of the method call.

4.2.1 Stopping a Player at a Specified Time

You can calketStopTime to indicate when a player should stop. The player stops
when its media time passes the specified stop time. If the player’s rate is positive,
the player stops when the media time becomes greater or equal to the stop time. If
the player’s rate is negative, the player stops when the media time becomes less
than or equal to the stop time. The player stops immediately if its current media
time is already beyond the specified stop time.

For example, assume that media time is 5.0 andett®xopTime is called to set

the stop time to 6.0. If the player’s rate is positive, media time is increasing and
the player will stop when the media time becomes greater than 6.0. However, if
the player’s rate is negative, it is playing in reverse and the player will stop imme-
diately because the media time is already beyond the stop time. (For more infor-
mation about player rates, see “Setting a Player's Rate” on page 24.)

You can always calletStopTime on a stopped player. However, you can only set
the stop time on &tartedplayer if the stop time is not currently set. If the player
already has a stop timsgtStopTime throws an error.

You can callgetStopTime to get the currently scheduled stop time. If the clock
has no scheduled stop timyetStopTime returnsLong.MAX_VALUE. To remove
the stop time so that the player continues until it reaches end-of-mediatcall
StopTime(Long.MAX_VALUE).

5.0 Managing Player States

The transitions between states are controlled with five methods:

e realize
o prefetch
e start

Java Media Players - Preparing a Player to Start 19

e deallocate
e stop

By controlling when these methods are called, you can manage the state of a
player. For example, you might want to minimize start-latency by preparing the
player to start before you actually start it.

You can implement theontrollerListener interface to manage these control
methods in response to changes in the player’s state. Listening for a player’'s state
transitions is also important in other cases. For example, you cannot get a player’s
components until the player has bé&alized By listening for &RealizeCom-
pleteEvent you can get the components as soon as the plaRealized

5.1 Preparing a Player to Start

Most media players cannot be started instantly. Before the player can start, certain
hardware and software conditions must be met. For example, if the player has
never been started, it might be necessary to allocate buffers in memory to store the
media data. Or if the media data resides on a network device, the player might
have to establish a network connection before it can download the data. Even if
the player has been started before, the buffers might contain data that is not valid
for the current media position.

5.1.1 Realizing and Prefetching the Player

JMF breaks the process of preparing a player to start into two pRasdizjng
andPrefetching Realizing and prefetching a player before you start it minimizes
the time it takes the player to begin presenting media whett is called and

helps create a highly-responsive interactive experience for the user. Implementing
theControllerListener interface allows you to control when these operations
occur.

You callrealize to move the player into tHeealizingstate and begin the real-
ization process. You callrefetch to move the player into tHerefetchingstate

and initiate the prefetching process. “Player States” on page 6 describes the oper-
ations that a player performs in each of these states. You cannot synchronously
move the player directly into thHRealizedor Prefetchedstate. When it completes

the operation, the player postRealizeCompleteEvent Or PrefetchComple-

teEvent.

20

Java Media Framework — Version 1.0 Draft May 14, 1997

A player in thePrefetchedstate is prepared to start and its start-up latency cannot
be further reduced. However, setting the media time threergediaTime might
return the player to thRealizedstate, increasing its start-up latency.

Keep in mind that &refetchedolayer ties up system resources. Because some
resources, such as sound cards, might only be usable by only one program at a
time, this might prevent other players from starting.

5.1.2 Determining a Player’s Start-up Latency

To determine how much time is required to start a player, you cageeaflart-
Latency. For players that have a variable start latency, the return vayee-of
StartLatency represents the maximum possible start latency.

The start-up latency reported ytStartLatency might differ depending on the
player’s current state. For example, afterafetch operation, the value returned
by getStartLatency is typically smaller.

A player is not guaranteed to start at a specified time unless you have established
that the start time is feasible by calliggrStartLatency. For some media types,
getStartLatency might be unable to return a useful value.

5.2 Starting and Stopping a Player

Calling start moves a player into thetartedstate. As soon asart is called,
methods that are only legal for stopped players cannot be called until the player
has been stopped.

If start is called and the player has not been prefetcdwatt performs the real-
ize and prefetch operations as needed to move the player iftefbtchedstate.
The player posts transition events as it moves through each state.

Whenstop is called on a player, the player is considered to be stopped immedi-
ately;stop is synchronous. However, a player can also stop asynchronously when
it reaches either the end of its media stream or the stop time previously set with
setStopTime.

When a player stops, it postSwpEvent. To determine why the player stopped,
you must listen for the specific stop evebtsillocateEvent, EndOfMed1aE-
vent, RestartingEvent, StopAtTimeEvent, Or StopByRequestEvent.

Java Media Players - Releasing Player Resources 21

5.3 Releasing Player Resources

Thedeallocate method tells a player to release any exclusive resources and min-
imize its use of non-exclusive resources. Although buffering and memory man-
agement requirements for players are not specified, most Java Media Players
allocate buffers that are large by the standards of Java objects. A well-imple-
mented player releases as much internal memory as possible#dhéoacate is

called.

The deallocate method can only be called on Stoppedplayer. To avoid
ClockStartedErrors, you should calktop before you callleallocate. Calling
deallocate on a player in thérefetchingor Prefetchedstate returns it to the
Realizedstate. Ifdeallocate is called while the player is realizing, the player
posts adeallocateEvent and returns to thEnrealizedstate. (Once a player has
been realized, it can never return to theealizedstate.)

You generally calieallocate when the player is not being used. For example,
an applet should cadleallocate as part of itstop method. By callingleallo-
cate, the program can maintain references to the player, while freeing other
resources for use by the system as a whole. (JMF does not pr&esadized
player that has formerly be@mefetchedr Startedfrom maintaining information
that would allow it to be started up more quickly in the future.)

5.4 Implementing the ControllerListener Interface

ControllerListener is an asynchronous interface for handling events generated
by Controller objects. By implementing th@ntrollerListener interface and
using the player control methods, you can manage the timing of potentially time-
consuming player operations such as prefetching.

To implement th&ontrollerListener interface, you need to:

1. Register your class as a listener by caliiddControllerListener.

2. Implement the&ontrollerUpdate method.

When a controller posts an event, it cabatrollerUpdate on each registered
listener. TypicallycontrollerUpdate is implemented as a seriesidfelse
statements of the form:

if(instanceof EventType){

22

Java Media Framework — Version 1.0 Draft May 14, 1997

} else if (instanceof OtherEventType){

This filters out the events that you are not interested in. If you have registered as a
listener with multiple players, you also need to determine which player generated
the event. Controller events come “stamped” with a reference to their source that
you can access by callirgtSource.

You should also check the target state by cabigxJargetState before calling
any of the methods that are restricte&toppedlayers. Ifstart has been called,
the player is considered to be in Bartedstate, though it might be posting tran-
sition events as it prepares the player to present media.

Some classes of controller event are stamped with additional state information.
For example, thetartEvent andStopEvent classes each define a method that
allows you to retrieve the media time at which the event occurred.

6.0 Managing Timing and Synchronization

In many cases, instead of playing a single media stream from beginning to end,
you want to play a portion of the stream or synchronize the playback of a stream.
The JMFTimeBase andClock interfaces define the mechanism for managing the
timing and synchronization of media playback.

A time baseaepresents the flow of time. thne-base timeannot be transformed

or reset. A Java Media Player uses its time base to keep time in the same way that
a quartz watch uses a crystal that vibrates at a known frequency to keep time. The
system maintains a master time-base that measures time in nanoseconds from a
specified base time, such as January 1, 1970. The system time-base is driven by
the system clock and is accessible throughvéihager.getSystemTimeBase

method.

A playersmedia timerepresents a point in time within the stream that the player
is presenting. The media time can be started, stopped, and reset, much like a stop-
watch.

A clock defines the mapping between a time base and the media time.

Java Media Players - Setting the Media Time 23

0 end of media

k- — — >0 media time
4 4 4 4 > time-base time
start stop start stop

A Java Media Player can answer several useful timing queries about the media
source it is presenting. Of course, timing information is subject to the physical
characteristics and limitations of both the media source and of the network device
on which it is stored.

6.1 Setting the Media Time

Setting a player’s media time is equivalent to setting a read position within a
media stream. For a media data source such as a file, the media time is bounded;
the maximum media time is defined by the end of the media stream.

To set the media time you caltMediaTime, specifying a time in nanoseconds.

6.2 Getting the Current Time

Calling getMediaTime returns the player’s current media time in nanoseconds. If
the player is not presenting media data, this is the point from which media
presentation will commence. There is not a one-to-one correspondence between a
media time and a particular frame. Each frame is presented for a certain period of
time, and the media time continues to advance during this period.

For example, imagine you have a slide show player that displays each slide for 5
seconds—the player essentially has a frame rate of 0.2 frames per second.

24

Java Media Framework — Version 1.0 Draft May 14, 1997

A
getMediaTime
15 m—t—

10 =~

| | |
I | |)
5 10 15 Duration

N e Ny N)

frame 1 frame 2 frame 3

If you start the player at time 0.0, while the first “frame” is displayed, the media
time advances from 0.0 to 5.0. If you start at time 2.0, the first frame is displayed
for 3 seconds, until time 5.0 is reached.

Media time is measured in hanoseconds because different types of media with
varying frame rates can be presented together.

You can get a player’s current time-base time by getting the player’s time base
and callinggetRefTime:

myCurrentTBTime = playerl.getTimeBase().getRefTime();

When a player is running, you can get the time-base time that corresponds to a
particular media time by callingapToTimeBase.

6.3 Setting a Player’'s Rate

The player’s rate determines how media time changes with respect to time-base
time; it defines how many units a player’'s media time advances for every unit of
time-base time. The player’s rate can be thought of as a temporal scale factor. For
example, a rate of 2.0 indicates that media time passes twice as fast as the time-
base time when the player is started.

In theory, a player’s rate could be set to any real number, with negative rates inter-
preted as playing the media in reverse. However, some media formats have depen-
dencies between frames that make it impossible or impractical to play them in
reverse, or at non-standard rates.

Java Media Players - Getting a Player’s Duration 25

WhensetRate is called on a player, the method returns the rate that is actually
set, even if it has not changed. Player’s are only guaranteed to support a rate of
1.0.

6.4 Getting a Player’s Duration

Since your program might need to determine how long a given media stream will
run, all players implement tliration interface. This interface comprises a sin-
gle methodgetDuration. Duration represents the length of time that a media
object would run for, if played at the default rate of 1.0. A media stream’s dura-
tion is accessible only through the player itself. The value returngdtbyra-

tion is an absolute value that represents time in nanoseconds.

If the duration cannot be determingdtDuration returnsDURATION_UNKNOWN.

This can happen if the player has not yet reached a state where the duration of the
media source is available, or if the media source does not have a defined duration,
as in the case of a live broadcast.

6.5 Synchronizing Players

To synchronize the playback of multiple media streams, you can synchronize the
players by associating them with the same time base. To do this, you gse-the
TimeBase andsetTimeBase methods defined by th&ock interface. For exam-

ple, you could synchronizglayerl with player2 by settingplayerl to use
player2’s time base:

playerl.setTimeBase(player2.getTimeBase());

When you synchronize players by associating them with the same time base, you
must still manage the control of each player individually. Because managing syn-
chronized players in this way can be complicated, JMF provides a mechanism
that allows &@1ayer to assume control over adyntroller. The player manages

the states of the controllers automatically, allowing you to interact with the entire
group through a single point of control. For more information, see “Using a
Player to Manage and Synchronize other Controllers” on page 27.

In a few situations, you might want to manage the synchronization of multiple
players yourself so that you can control the rates or media times independently. If
you do this, you must:

» Register as a listener for each synchronized player.

» Determine which player’s time base is going to be used to drive the other
players and set the time base for the synchronized players. Not all players can

26

Java Media Framework — Version 1.0 Draft May 14, 1997

assume a new time base. For example, if one of the players you want to
synchronize has a push data source, that player’s time base must be used to
drive the other players.

» Set the rate for all of the players. If a player cannot support the rate you
specify, it returns the rate that was used. (There is no mechanism for querying
the rates that a player supports.)

« Synchronize the players’ states. (For example, stop all of the players.)
» Synchronize the operation of the players:
» Set the media time for each player.

» Prefetch all of the players.
» Determine the maximum start latency among the synchronized players.

» Start the players by callingyncStart with a time that takes into account
the maximum latency.

You must listen for transition events for all of the players and keep track of which
ones have posted events. For example, when you prefetch the players, you need to
keep track of which ones have poskedfetchComplete events so that you can

be sure all of the players are prefetched before callingStart. Similarly,

when you request that the synchronized players stop at a particular time, you need
to listen for the stop event posted by each player to determine when all of the
players have actually stopped.

In some situations, you need to be careful about responding to events posted by
the synchronized players. To be sure of the players’ states, you might need to wait
at certain stages for all of the synchronized players to reach the same state before
continuing.

For example, assume that you are using one player to drive a group of synchro-
nized players. A user interacting with that player sets the media time to 10, starts
the player, and then changes the media time to 20. You then:

» Pass along the firsketMediaTime call to all of the synchronized players

» Call prefetch on the players to prepare them to start

» Call stop on the players when the second set media time request is received.

» Call setMediaTime on the players with the new time.

» Restart the prefetching operation.

* When all of the players have been prefetched, start them by calling
syncStart, taking into account their start latencies.

Java Media Players - Synchronizing Players 27

In this case, simply listening ferefetchComplete events from all of the players
before callingsyncStart isn't sufficient. You can’t tell whether those events were
posted in response to the first or second prefetch operation. To avoid this problem,
you can block when you calkop and wait for all of the players to post stop

events before continuing. This guarantees that thePnexétchComplete events

you receive are the ones you are really interested in.

7.0 Using a Player to Manage and Synchronize other
Controllers

Synchronizing players manually usiagncStart requires that you carefully
manage the states of all of the synchronized players. You must control each one
individually, listening for events and calling control methods on them as appropri-
ate. Even with only a few players, this quickly becomes a difficult task. Through
thePlayer interface, JMF provides a simpler solutiorPlayer can be used to
manage the operation of adyntroller.

When you interact with a managifgayer, your instructions are automatically
passed along to the managed controllers as appropriate. The managing player
takes care of the state management and synchronization for all of the other Con-
trollers.

This mechanism is implemented through Rheyer.addController and
Player.removeController methods. When you calidController on a

Player, theController you specify is added to the list of controllers managed by
the player. Conversely, when you callnoveController, the specifiedontrol-

ler is removed from the list of managed controllers.

Typically when you need to synchronize players or other controllers, you should
use thisaddController mechanism. It is simpler, faster, and less error-prone than
attempting to manage synchronized players individually.

When aPlayer assumes control of@ntroller:

* TheController assumes thelayer’s time-base.

e ThePlayer’s duration becomes the longer of the controller’s duration and
its own. If multiple controllers are placed under a player’s control, the
player’'s duration is the longest of all of their durations.

« The Player’s start latency becomes the longer of the controller’s duration and
its own. If multiple controllers are placed under a player’s control, the
player’s start latency is the longest of all of their latencies.

28

Java Media Framework — Version 1.0 Draft May 14, 1997

A managingPlayer only posts completion events for asynchronous methods after
every addedontroller has posted the event. The mana@ihgyer reposts
other events generated by the mana@edrollers as appropriate.

7.1 Adding a Controller

You use th&ontroller.addController method to add @ntroller to the list
of controllers managed by a particutaayer. To be added, @ntroller must
be in theRealizedstate; otherwise, dotRealizedError is thrown. Two players
cannot be placed under control of each other.

Once &ontroller has been added tcPaayer, do not call methods directly on
the addedontroller. To control an addetbntroller, you interact with the
managingPlayer.

To haveplayer2 assume control gflayerl, call:

player2.addController(playerl)

7.2 Managing the Operation of Added Controllers

To control the operation of a group of controllers managed by a partidajar,
you interact directly with the managim@ayer. Do not call control methods on
the managed controllers directly.

For example, to prepare all of the managetktrollers to start, calprefetch

on the managinglayer. Similarly, when you want to start them, cathrt on

the managin@layer. The managing@layer makes sure that all of the controllers
arePrefetcheddetermines the maximum start latency among the controllers, and
callssyncStart to start them, specifying a time that takes the maximum start
latency into account.

When you call @ontroller method on the managimdayer, thePlayer propa-
gates the method call to the managedkrollers as appropriate. Before calling
aController method on a manag€dntrolier, thePlayer ensures that the
Controller is in the proper state. The following table showstdrecroller
methods that affect manageshtrollers.

Function Stopped Player Started Player

setMediaTime InvokessetMediaTime on all man- Stops all managed Controllers, invokes
aged Controllers. setMediaTime, and restarts Controllers.

Java Media Players - Removing a Controller 29

setRate InvokessetRate on all managed Stops all managed Controllers, invokes
Controllers. Returns the actual rate setRate, and restarts Controllers. Re-
that was supported by all Controllergurns the actual rate that was supported
and set. by all Controllers and set.

start Ensures all managed Controllers ardllegal.
Prefetched and invokegncStart on
each of them, taking into account their
start latencies.

realize Invokesrealize on all managed llegal.
Controllers.

prefetch Invokesprefetch on all managed lllegal.
Controllers.

stop No effect. Invokestop on all managed Control-

lers.

deallocate Invokesdeallocate on all managed Invokesdeallocate on all managed
Controllers. Controllers.

setStopTime InvokessetStopTime on all managed InvokessetStopTime on all managed
Controllers. P1ayer must beReal- Controllers. (Can only be set once on a
ized) Started P1ayer.)

syncStart InvokessyncStart on all managed lllegal.
Controllers. P1ayer must be
Prefetcheg

7.3 Removing a Controller

You use th&ontroller. removeController method to remove @ntroller
from the list of controllers managed by a partic@lbtyer.

To haveplayer? release control gilayerl, call:

player2.removeController(playerl)

8.0 Extending JMF

The JMF architecture allows advanced developers to create and integrate new
types of controllers and data sources. For example, you might implement a new
Player that supports a special media format.

This section introduces the JMF Player Factory architecture and describes how
JMF can be extended.

30

8.1

Java Media Framework — Version 1.0 Draft May 14, 1997

Understanding the Player Factory Architecture

Appendix AI:
Java Media Applet

This Java Applet demonstrates proper error checking in a Java Media program.
Like PlayerApplet, it creates a simple media player with a media event listener.

When this applet is started, it immediately begins to play the media clip. When the
end of media is reached, the clip replays from the beginning.

import
import
import
import
import
import
import

/:“:7‘:

java.
java.
java.
java.
java.
java.
java.

applet.Applet;

awt.*;

Tang.String;

net.URL;
net.MalformedURLException;
i0.I0Exception;

media.*;

* This is a Java Applet that demonstrates how to create a simple

media player with a media event listener. It will play the
media clip right away and continuously Tloop.

* <l-- Sample HTML

-=>

-.‘:/

<applet code=TypicalPlayerApplet width=320 height=300>
<param name=file value="Astrnmy.avi">
</applet>

public class TypicalPlayerApplet extends Applet implements
ControllerListener {

// media player

31

32

Java Media Players — Version 0.95, January 31, 1997

Player player = null;
// component in which video is playing
Component visualComponent = null;
// controls gain, position, start, stop
Component controlComponent = null;
// displays progress during download
Component progressBar = null;
/:“::‘r
* Read the applet file parameter and create the media
* player.
*/
public void init() {
setLayout(new BorderLayout());
// input file name from html param
String mediaFile = null;
// URL for our media file
URL url = null;
// URL for doc containing applet
URL codeBase = getDocumentBase();

// Get the media filename info.
// The applet tag should contain the path to the
// source media file, relative to the html page.

if ((mediaFile = getParameter("FILE")) == null)
Fatal("Invalid media file parameter");

try {
// Create an url from the file name and the url to the
// document containing this applet.

if (Curl = new URL(codeBase, mediaFile)) == null)
Fatal("Can't build URL for " + mediaFile);

// Create an instance of a player for this media
if ((player = Manager.createPlayer(url)) == null)
Fatal("Could not create player for "+url);

// Add ourselves as a Tistener for player's events
player.addControllerListener(this);
} catch (MalformedURLException e) {
Fatal("Invalid media file URL!");
} catch(IOException e) {
Fatal("IO exception creating player for "+url);

}

// This applet assumes that its start() calls

// player.start().This causes the player to become

// Realized. Once Realized, the Applet will get

// the visual and control panel components and add

// them to the Applet. These components are not added
// during init() because they are Tong operations that
// would make us appear unresposive to the user.

}

/:’: %*
* Start media file playback. This function is called the
* first time that the Applet runs and every
* time the user re-enters the page.
*/
public void start() {
// Call start() to prefetch and start the player.
if (player != null)
player.start(Q);
}

Vi
* Stop media file playback and release resources before
* Teaving the page.
*/
public void stop() {
if (player !'= null){
player.stop();
player.deallocate();

}
/7‘: *

* This controllerUpdate function must be defined in order
* to implement a ControllerListener interface. This
* function will be called whenever there is a media event.
7‘:/
public synchronized void

controllerUpdate(ControllerEvent event) {

// If we're getting messages from a dead player,
// just leave
if (player == null)

return;

// When the player is Realized, get the visual
// and control components and add them to the Applet

33

34 Java Media Players — Version 0.95, January 31, 1997

if (event instanceof RealizeCompleteEvent) {

if ((visualComponent =
player.getVisualComponent()) != null)
add("Center", visualComponent);

if ((controlComponent =
player.getControlPanelComponent()) !'= null)
add("South",controlComponent) ;

// force the applet to draw the components
validate();

}
else if (event instanceof CachingControlEvent) {

// Put a progress bar up when downloading starts,
// take it down when downloading ends.

CachingControlEvent e = (CachingControlEvent) event;
CachingControl cc = e.getCachingControl();
long cc_progress = e.getContentProgress();
long cc_length cc.getContentLength();

// Add the bar if not already there ...
if (progressBar == null)
if ((progressBar =
cc.getProgressBarComponent()) != null) {
add("North", progressBar);
validate();
}

// Remove bar when finished ownloading
if (progressBar != null)
if (cc_progress == cc_length) {
remove (progressBar);
progressBar = null;
validate();

}

else if (event instanceof EndOfMediaEvent) {
// We've reached the end of the media; rewind and
// start over
player.setMediaTime(0) ;
player.start(Q);

35
}

else if (event instanceof ControllerErrorEvent) {
// Tell TypicalPlayerApplet.start() to call it a day
player = null;
Fatal (((ControllerErrorEvent)event).getMessage());

}

void Fatal (String s) {
// Applications will make various choices about what
// to do here. We print a message and then exit
System.err.println("FATAL ERROR: " + s);
throw new Error(s); // Invoke the uncaught exception
// handler System.exit() is another
// choice

	Preface
	Java Media Players
	Status of Future Releases
	Contact Information
	JavaSoft
	Silicon Graphics
	Intel Corporation

	Java Media Players
	1.0 Overview
	1.1 Media Sources
	1.2 Players
	1.3 Media Events
	1.4 Player States
	1.5 Calling JMF Methods

	2.0 Example: Creating an Applet to Play a Media Fi...
	2.1 Overview of PlayerApplet
	2.2 PlayerApplet Code Listing
	2.3 Initializing the Applet
	2.4 Controlling the Player
	2.5 Responding to Media Events

	3.0 Creating and Displaying a Player
	3.1 Creating a Player
	3.2 Displaying a Player and Player Controls

	4.0 Controlling Media Players
	4.1 Starting a Player
	4.2 Stopping a Player

	5.0 Managing Player States
	5.1 Preparing a Player to Start
	5.2 Starting and Stopping a Player
	5.3 Releasing Player Resources
	5.4 Implementing the ControllerListener Interface

	6.0 Managing Timing and Synchronization
	6.1 Setting the Media Time
	6.2 Getting the Current Time
	6.3 Setting a Player’s Rate
	6.4 Getting a Player’s Duration
	6.5 Synchronizing Players

	7.0 Using a Player to Manage and Synchronize other...
	7.1 Adding a Controller
	7.2 Managing the Operation of Added Controllers
	7.3 Removing a Controller

	8.0 Extending JMF
	8.1 Understanding the Player Factory Architecture

	Appendix A: Java Media Applet

