Java Media Players

Version 1.0.5
May 11, 1998

Java Media Framework is being developed by
Sun Microsystems, Inc., Silicon Graphics Inc., and Intel Corporation.

SiliconGraphics i ntel o

Computer Systems

&V ~ ’ ;

0 1997-1998 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR
52.227-19.

The release described in this document may be protected by one or more U.S. patents, foreign
patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable,
perpetual, worldwide limited license (without the right to sublicense) under SUN's intellectual
property rights that are essential to practice this specification. This license allows and is limited to
the creation and distribution of clean-room implementations of this specification that (i) are
complete implementations of this specification, (ii) pass all test suites relating to this specification
that are available from SUN, (iii) do not derive from SUN source code or binary materials, and (iv)
do not include any SUN binary materials without an appropriate and separate license from SUN.

Java and JavaScript are trademarks of Sun Microsystems, Inc. Sun, Sun Microsystems, Sun
Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer Corporation
logo, Java and HotJava are trademarks or registered trademarks of Sun Microsystems, Irfe. UNIX
is a registered trademark in the United States and other countries, exclusively licensed through X/
Open Company, Ltd. All other product names mentioned herein are the trademarks of their
respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS PUBLICATION AT ANY TIME

Contents

Preface Vil
Java Media Players. 1
1 OVEIVIEBW .o e e 2
Data SOUICES 2
Players 3
MediaBEvents. 4
Player States 6
CallingJMF Methods 8
2 Example: Creating an Applet to Play a Media File 9
Overview of PlayerApplet. 10
PlayerApplet Code Listing 11
Initializingthe Applet 12
Controllingthe Player 13
Respondingto MediaEvents. 13
3 Creating and Displayinga Player 14
Creatinga Player. 14
Displaying a Player and Player Controls. 15
4 Controlling Media Players 17
Startinga Player. 17
Stoppinga Player. 18
5 Managing Player States 19
Preparinga Playerto Start. 19
Starting and Stoppinga Player 22
Releasing Player Resources.o.... 22
Implementing the ControllerListener Interface........... 23
6 Managing Timingc.iii i, 24

vi

Java Media Players — Version 1.0.5

Setting the MediaTime 25
Gettingthe CurrentTime. 25
Settinga PlayersRate. 26
Getting a Player's Duration 27
7 Synchronizing Players 27
8 Using a Player to Manage and Synchronize other Controllers 29
AddingaController 30
Managing the Operation of Added Controllers 30
RemovingaController. 31
9 ExtendingJMF 32
Understanding the Player Architecture 32
Integrating a New Player Implementation. 34
Implementing a New Data Source 35
Integrating a New Data Source Implementation 35
Appendix A:
Java Media Applet. 37
Appendix B:
Sample Data Source Implementation 43
Appendix C:
Sample Controller Implementation. 55
Appendix D:

ControllerAdapter. 73

Preface

The Java Media Framework (JMF) is an application programming interface (API)
for incorporating media data types into Java applications and applets. It is specifi-
cally designed to take advantage of Java platform features. The 1.0 version of IMF
provides APIs for media players; future versions will support media capture and
conferencing. This document describes the Java Media Player APls and how they
can be used to present time-based media such as audio and video.

Java Media Players

The 1.0 specification for Java Media Players addresses media display and the
concerns of the application builder in that domain, with an eye towards the other

application domains and other levels of developer. There are two parts to this

release: a user guide entitled “Java Media Players” and the accompanying API
documentation.

Future Releases

Javasoft and its partners are developing additional capabilities and features that
will appear in a future release of the JMF specification. The features that we are
considering for future releases include:

* Incomplete Players A JMF Player is self-contained and does not provide
access to its media data. Additional interfaces that provide access to media
data and allow selection of rendering components are in development and
intended for a future release.

« Rendering Interfaces Rendering interfaces for specific audio and video
formats and additional interfaces for audio and video renderers will be

Vii

viii

Java Media Players — Version 1.0.5
developed for a future release.

» Capture Semantics The JMF Player architecture does not support the media
capture capabilities required for authoring or conferencing applications.
Capture semantics will be addressed in a future release.

« Data Definitions— JMF 1.0 provides an overall structure for data
manipulation and format negotiation among generic formats. Future releases
will address specific interfaces for audio and video data.

» CODEC Architecture- A CODEC (coder-decoder) architecture will be
defined in a future release to provide a common API for using CODECs to
compress and decompress media data and a mechanism for installing
additional CODECSs into the system.

Contact Information

JavaSoft

To obtain information about the Java Media Framework, see the web site at:

HTTP://java.sun.com/products/java-media/jmf

Silicon Graphics

To obtain information about Java products for Silicon Graphics hardware, see the
web site at:

HTTP://www.sgi.com/Products/DevMagic/products/java.html

Intel Corporation

To obtain information about Java Media Framework implementations for Intel
hardware, see the web site at:

HTTP://developer.intel.com/ial/jmedia

Preface ix

Change History

Version 1.0.5

UpdatedTimeLineController example in Appendix C. The previous version
was not compatible with the JMF 1.0 API. Please note that this example has not
been fully tested or optimized for production use and is intended as a reference
for developers who are implementing their agemtrollers

Version 1.0.4

Fixed incorrect reference to constant vatleek. UNSET tO Clock.RESET .

Version 1.0.3

Updated contact info for SGI.

Version 1.0.2

Added attribution foblockingRealize example code in Section 5. Versions 1.0
and 1.0.1 of this document erroneously omitted this attribution. This example
code is used with the permission of Bill Day and JavaWorld magazine. It was first
published April 1997 in Bill Day’s article “Java Media Framework Player API:
Multimedia Comes to Java” in JavaWorld magazine, an online publication of Web
Publishing Inc.

Changed references ktayerClosedEvent andPlayer.close to Controller-
ClosedEvent andController.close in Section 5.

Changed java.media to javax.media in Appendix B.

Changed example in Appendix C to ugee objects as parameters f@tStop-
Time andsetMediaTime

Version 1.0.1

Fixed inconsistencies with IMF 1.0 API.

Java Media Players — Version 1.0.5

Version 1.0

Updated document for final IMF 1.0 API release.

Java Media Players

Sun Microsystems, Inc.
Silicon Graphics Inc.
Intel Corporation

Copyright © 1997-1998 by Sun Microsystems Inc.
All Rights Reserved

The Java Media Framework (JMF) 1.0 specification defines APIs for displaying
time-based media. This document describes these APIs and how they can be used
to present media such as audio and video.

Media display encompasses local and network playback of multimedia data
within an application or applet. The focus of the JMF 1.0 Player APIs is to support
the delivery of synchronized media data and to allow integration with the underly-
ing platform’s native environment and Java’s core packages, sich.ast .

The Player APIs support both cligptill protocols, such as HTTP, and serpeish
protocols, such as RTP.

JMF makes it easy to incorporate media in client applications and applets, while
maintaining the flexibility needed for more sophisticated applications and plat-
form customization:

 Client programmers can create and control Java Media Players for any
standard media type using a few simple method calls.

» Technology providers can extend JMF to support additional media formats or
perform custom operations by creating and integrating new types of media
controllers, media players, and media data sources. These extensions can be
used side-by-side with existing JMF objects.

Java Media Players — Version 1.0.5

“Extending JMF” on page 32 contains information about extending JMF; how-
ever, this document is intended primarily for application and applet developers.

1.0 Overview

JMF provides a platform-neutral framework for displaying time-based media. The
Java Media Player APIs are designed to support most standard media content
types, including MPEG-1, MPEG-2, QuickTime, AVI, WAV, AU, and MIDI.

Using JMF, you can synchronize and present time-based media from diverse
sources.

Existing media players for desktop computers are heavily dependent on native
code for computationally intensive tasks like decompression and rendering. The
JMF API provides an abstraction that hides these implementation details from the
developer. For example, a particular IMF Player implementation might choose to
leverage an operating system’s capabilities by using native methods. However, by
coding to the JMF API, the application or applet developer doesn’t need to know
whether or not that implementation uses native methods.

The JMF Player API:

» Scales across different protocols and delivery mechanisms
» Scales across different types of media data

» Provides an event model for asynchronous communication between JMF
Players and applications or applets

1.1 Data Sources

A DataSource encapsulates the location of media and the protocol and software
used to deliver the media. A Java Medimyer contains aDataSource . Once
obtained, the source cannot be reused to deliver other mediayé&'s data
source is identified by either a JMWediaLocator ~ Or a URL (universal resource
locator).

MediaLocator is a JMF class that describes the media tiratyar displays. A
MediaLocator is similar to aJRLand can be constructed fronvRL In Java, a

URL can only be constructed if the corresponding protocol handler is installed on
the systemMediaLocator ~doesn’t have this restriction.

Java Medialayers can present media data obtained from a variety of sources,
such as local or network files and live broadcasts. JMF supports two different
types of media sources:

Players 3

 Pull Data-Source-the client initiates the data transfer and controls the flow
of data from pull data-sources. Established protocols for this type of data
include Hypertext Transfer Protocol (HTTP) and FILE.

» Push Data-Source-the server initiates the data transfer and controls the flow
of data from a push data-source. Push data-sources include broadcast media,
multicast media, and video-on-demand (VOD). For broadcast data, one
protocol is the Real-time Transport Protocol (RTP), under development by
the Internet Engineering Task Force (IETF). The MediaBase protocol
developed by SGIl is one protocol used for VOD.

The degree of control that a client program can extend to the user depends on the
type of media source being presented. For example, an MPEG file can be reposi-
tioned and a client program could allow the user to replay the video clip or seek to

a new position in the video. In contrast, broadcast media is under server control
and cannot be repositioned. Some VOD protocols might support limited user con-
trol—for example, a client program might be able to allow the user to seek to a
new position, but not fast forward or rewind.

1.2 Players

A Java Medialayer is an object that processes a stream of data as time passes,
reading data from mataSource and rendering it at a precise time. A Java Media
Player implements thelayer interface.

Clock ‘%ﬂ TimeBase
sklncStart []
stop
getMediaTime
getTimeBase Duration
setTimeBase -
setRate getDuration

$extends éextends
Controller

prefetch

realize

deallocate

close

addControllerListener

4&3xtends
has a

Player —©°% __y[DataSource
start []
setSource
addController
getVisualComponent
getControlPanelComponent

$mplements

| JavaMediaPlayer |

Java Media Players — Version 1.0.5

 Clock defines the basic timing and synchronization operations thayer
uses to control the presentation of media data.

e Controller extend<Clock to provide methods for managing system
resources and preloading data and a listening mechanism that allows you to
receive notification of media events.

* Duration provides a way to determine the duration of the media being
played.

* Player supports standardized user control and relaxes some of the
operational restrictions imposed bick .

Players share a common model for timekeeping and synchronization. A
Players media timaepresents the current position in the media stream. Each
Player has arimeBase that defines the flow of time for theibyer . When a

Player is started, itgnedia times mapped to itime-base timeTo be synchro-
nized,Players must use the sanTéneBase .

A Player's user interface can include both a visual component and a control-
panel component. You can implement a custom user-interfaceriayea or use
thepPlayers default control-panel component.

A Player must perform a number of operations before it is capable of presenting
media. Because some of these operations can be time consuming, JMF allows you
to control when they occur by defining the operational states mfar and
providing a control mechanism for moving thieyer between those states.

1.3 Media Events

The JMF event reporting mechanism allows your program to respond to media-
driven error conditions, such as out-of-data or resource unavailable conditions.
The event system also provides an essential notification protocol; when your
program calls an asynchronous method dnager , it can only be sure that the
operation is complete by receiving the appropriate event.

Two types of JMF objects post everttainControl objects andtontroller
objectscController ~ andGainControl follow the established Java Beans patterns
for events.

A GainControl object posts only one type of eveBéjnChangeEvent . To
respond to gain changes, you implementdfieChangeListener interface.

Media Events

A Controller can post a variety of events that are derived ftontoller-

Event. To receive events fromGontroller ~ such as &layer , you implement
the ControllerListener interface. The following figure shows the events that
can be posted byGontroller

ControllerEvent

r
4' ResourceUnavaiIabIeEveint
4| InternalErrorEvent I
4|ConnectionErrorEvent I
4| DurationUpdateEventI
4| RateChangeEvent I
4| StopTimeChangeEve'ﬂ
4| MediaTimeSetEvent I
L] TransitionEvent |
Z§4| PrefetchCompIeteEveht
4| RealizeCompIeteEvedt
4| StartEvent I
4| StopEvent I
A4| DeallocateEvent I
I EndOfMediaEvent I
4| RestartingEvent I
4| StopAtTimeEvent I
4| StopByRequestEventI
4| DataStarvedEvent I

ControllerEvents fall into three categories: change natifications, closed events,
and transition events:

¢ Change notification events suchrageChangeEvent and
DurationUpdateEvent indicate that some attribute of thiayer has
changed, often in response to a method call. For examplejdjxe posts a
RateChangeEvent when its rate is changed by a calbémRate

Java Media Players — Version 1.0.5

* TransitionEvents allow your program to respond to changes mager’s
state. APlayer posts transition events whenever it moves from one state to
another. (See Section 1.4 for more information abayer states.)

* ControllerClosedEvents are posted by elayer when therlayer shuts
down. When @layer posts aControllerClosedEvent , itis no longer
usable. AControllerErrorEvent is a special case of
ControllerClosedEvent . You can listen focontrollerErrorEvents o]
that your program can respondrtayer malfunctions, minimizing the
impact on the user.

1.4 Player States

A Java Medialayer can be in one of six states. Ttleck interface defines the
two primary statesStoppedandStarted To facilitate resource managemendn-
troller breaks theStoppedstate down into five standby statéirealized Real-
izing, RealizedPrefetching andPrefetched

Stopped: Started

realize RCE prefetch PFCE

@—»{RealizinM RealizeMrefetchirg—»Grefetcheg—u»[Started]

deallocate StopEvent

deallocate, setMediaTime

RCE = RealizeCompleteEvent; PFCE = PrefetchCompleteEvent

In normal operation, alayer steps through each state until it reachesStested
state:

* APlayer intheUnrealizedstate has been instantiated, but does not yet know
anything about its media. When a mewl@yer s first created, it is
Unrealized

* Whenrealize is called, aPlayer moves from thaéJnrealizedstate into the
Realizingstate. ARealizingPlayer is in the process of determining its
resource requirements. During realizatiorjager acquires the resources
that it only needs to acquire once. These might include rendering resources

Player States 7

other than exclusive-use resources. (Exclusive-use resources are limited
resources such as particular hardware devices that can only be used by one
Player at a time; such resources are acquired duriedetching) A
RealizingPlayer often downloads assets over the net.

* When aplayer finishesRealizing it moves into th&kealizedstate. A
Realizedblayer knows what resources it needs and information about the
type of media itis to present. BecaudRealizedlayer knows how to render
its data, it can provide visual components and controls. Its connections to
other objects in the system are in place, but it does not own any resources that
would prevent anothanayer from starting.

¢ Whenprefetch is called, ePlayer moves from th&kealizedstate into the
Prefetchingstate. APrefetchingpPlayer is preparing to present its media.
During this phase, thelayer preloads its media data, obtains exclusive-use
resources, and anything else it needs to do to prepare itself to play.
Prefetchingmight have to recur if Blayers media presentation is
repositioned, or if a change in thiayer's rate requires that additional
buffers be acquired or alternate processing take place.

* When aplayer finishesPrefetching it moves into thérefetchedstate. A
PrefetchedPlayer is ready to be started; it is as ready to play as it can be
without actually beingtarted

e Callingstart puts aPlayer into theStartedstate. AStartedrlayers time-
base time and media time are mapped and its clock is running, though the
Player might be waiting for a particular time to begin presenting its media
data.

A Player postsTransitionEvents as it moves from one state to another. The
ControllerListener interface provides a way for your program to determine
what state ®layer is in and to respond appropriately.

Using this event reporting mechanism, you can marager latency by con-
trolling when aPlayer beginsRealizingandPrefetching It also enables you to
ensure that thelayer is in an appropriate state before calling methods on the
Player .

1.4.1 Methods Available in Each Player State

To prevent race conditions, not all methods can be calledragea in every
state. Table 1, “Restrictions on Player Methods” identifies the restrictions
imposed by JMF. If you call a method that is illegal mager's current state,
thepPlayer throws an error or exception.

Java Media Players — Version 1.0.5

Table 1: Restrictions on Player Methods

Method Unrealized Realized Prefetched Started

Player Player Player Player
getStartLatency NotRealizedError legal legal legal
getTimeBase NotRealizedError legal legal legal
setMediaTime NotRealizedError legal legal legal
setRate NotRealizedError legal legal legal
getVisualComponent NotRealizedError legal legal legal
getControlPanelComponent NotRealizedError legal legal legal
getGainControl NotRealizedError legal legal legal
setStopTime NotRealizedError legal legal StopTimeSetError

if previously set

syncStart NotPrefetchedError NotPrefetchedError legal ClockStartedError
setTimeBase NotRealizedError legal legal ClockStartedError
deallocate legal legal legal ClockStartedError
addController NotRealizedError legal legal ClockStartedError
removeController NotRealizedError legal legal ClockStartedError

mapToTimeBase ClockStoppedException ClockStoppedException ClockStoppedException legal

15 Calling JMF Methods

JMF uses the following convention for errors and exceptions:

» Java Media Errors are thrown when a program calls a method that is illegal in
the object’s current state. Errors are thrown in situations where you have
control over the state and the requested operation could result in a race
condition. For example, it is an error to call certain methodsStaréed
Player . It is your responsibility to ensure thaklayer is stopped before
using these methods. Applications should not catch JMF errors; well-written
applications will never encounter these errors.

» Java Media Exceptions are thrown when a program calls a method that cannot
be completed or is not applicable in the object’s current state. Exceptions are
thrown in situations where you do not necessarily have control over the state.
For example, an exception is thrown if you attempt to synchronize two
Players with incompatible time bases. This is not an error because you could

Calling JMF Methods 9

not determine ahead of time that the time bases were incompatible. Similarly,
if you call a method that is only applicable fastartedrlayer and the

Player is Stoppedan exception is thrown. Even if you just started the

Player , it might have already stopped in response to other conditions, such
as end of media.

Some JMF methods return values that indicate the results of the method call. In
some instances, these results might not be what you anticipated when you called
the method; by checking the return value, you can determine what actually hap-
pened. For example, the return value might indicate:

« The value that was actually set. For example, nGiakrs can present
media data at five times the normal rate. If you zailate(5.0) , the
Player Wwill setits rate as close as it can to 5.0 and return the rate it actually
set. That rate might be 5.0, or it might be 1.0; you need to check the return
value to find out.

¢ That the information you requested is not currently available. For example, a
Player might not know its duration until it has played its media stream once.
If you call getDuration ~ on such @layer before it has playedgetDuration
returnsDURATION_UNKNOWN you callgetDuration again after thelayer
has played, it might be able to return the actual duration of the media stream.

2.0 Example: Creating an Applet to Play a Media File

The sample prograrmiayerApplet ~ demonstrates how to create a Java Media
Player and present an MPEG movie from within a Java applet. This is a general
example that could easily be adapted to present other types of media streams.

Theplayers visual presentation and its controls are displayed within the
applet’s presentation space in the browser window. If you creadgea in a
Java application, you are responsible for creating the window to display the
Player's ~components.

Note: While PlayerApplet illustrates the basic usage of a Java Mediger |, it

does not perform the error handling necessary in a real applet or application. For a
more complete sample suitable for use as a template, see “Appendix A: Java
Media Applet” on page 37.

10

Java Media Players — Version 1.0.5

2.1 Overview of PlayerApplet

TheAPPLETtag is used to invokelayerApplet in anHTML file. ThewIDTH and
HEIGHT fields of the HTMLAPPLET tag determine the dimensions of the applet’s
presentation space in the browser window. PRRAM tag identifies the media file
to be played. For examplelayerApplet could be invoked with:

<APPLET CODE=ExampleMedia.PlayerApplet
WIDTH=320 HEIGHT=300>

<PARAM NAME=FILE VALUE="Astrnmy.mpg">
</APPLET>

When a user opens a web page containiagrApplet , the applet loads auto-
matically and runs in the specified presentation space, which contains the
Players visual component and default controls. Theyer starts and plays the
MPEG movie once. The user can use the defeaylér controls to stop, restart,

or replay the movie. If the page containing the applet is closed whileidhe is
playing the movie, thelayer automatically stops and frees the resources it was
using.

To accomplish thisplayerApplet — extendsApplet and implements theontrol-
lerListener interface PlayerApplet defines five methods:

 init —creates @layer for the file that was passed in through #reRAM tag
and registerglayerApplet as a controller listener so that it can observe
media events posted by thayer . (This causeBlayerApplet’s
controllerUpdate method to be called whenever thaeyer posts an
event.)

e start —starts theplayer whenPlayerApplet is started.
» stop —stops and deallocates thiayer whenPlayerApplet IS stopped.
e destroy —closes thelayer whenPlayerApplet is removed.

* controllerUpdate —responds t@layer events to display theayer's
components.

PlayerApplet Code Listing

2.2 PlayerApplet Code Listing

PlayerApplet.java:
package ExampleMedia;

import java.applet.*;
import java.awt.*;
import java.net.*;
import javax.media.*;

public class PlayerApplet extends Applet implements ControllerListener {
Player player = null;
public void init() {
setLayout(new BorderLayout());
String mediaFile = getParameter(“FILE");
try {
URL mediaURL = new URL(getDocumentBase(), mediaFile);
player = Manager.createPlayer(mediaURL);
player.addControllerListener(this);
}
catch (Exception e) {
System.err.printin("Got exception "+e);
}

}
public void start() {

player.start();
}
public void stop() {

player.stop();
player.deallocate();

}
public void destroy() {
player.close();
}
public synchronized void controllerUpdate(ControllerEvent event) {
if (event instanceof RealizeCompleteEvent) {
Component comp;
if ((comp = player.getVisualComponent()) != null)
add ("Center", comp);
if ((comp = player.getControlPanelComponent()) != null)
add ("South", comp);
validate();
}
}
}

11

12

Java Media Players — Version 1.0.5

2.3 Initializing the Applet

When a Java applet starts,itis method is invoked automatically. You override
init to prepare your applet to be starteldyerApplet performs four tasks in
init -

[EE

. Retrieves the applet's FILE parameter.

N

. Uses the FILE parameter to locate the media file and buildiaobject that
describes that media file.

w

. Creates &layer for the media file by callinglanager .createPlayer

N

. Registers the applet as a controller listener with the Pieyer by calling
addControllerListener . Registering as a listener causgsyerApplet's
controllerUpdate method to be called automatically whenever tger
posts a media event. Thaayer posts media events whenever its state
changes. This mechanism allows you to control #egers transitions
between states and ensure thatrtager is in a state in which it can process
your requests. (For more information, see “Player States” on page 6.)

public void init() {
setLayout(new BorderLayout());
/I 1. Get the FILE parameter.
String mediaFile = getParameter(“FILE");
try {
/I 2. Create a URL from the FILE parameter. The URL
/I class is defined in java.net.
URL mediaURL = new URL(getDocumentBase(), mediaFile);
/I 3. Create a player with the URL object.
player = Manager.createPlayer(mediaURL);
/I 4. Add PlayerApplet as a listener on the new player.
player.addControllerListener(this);
}
catch (Exception e) {
System.err.printin("Got exception "+e);
}
}

Controlling the Player 13

2.4 Controlling the Player

Theapplet class definestart andstop methods that are called automatically
when the page containing the applet is opened and closed. You override these
methods to define what happens each time your applet starts and stops.

PlayerApplet implementsstart to start theelayer whenever the applet is
started:

public void start() {
player.start();

}

Similarly, PlayerApplet overridesstop to stop and deallocate thayer :

public void stop() {

player.stop();
player.deallocate();

}

Deallocating theelayer releases any resources that would prevent another
Player from being started. For example, if thieyer uses a hardware device to
present its medialeallocate frees that device so that otlmyers can use it.

When an applet exitgestroy is called to dispose of any resources created by the
applet.PlayerApplet overridesdestroy to close thelayer . Closing aPlayer
releases all of the resources that it's using and shuts it down permanently.

public void destroy() {
player.close();

}

2.5 Responding to Media Events

PlayerApplet registers itself as @ontrollerListener initsinit method so
that it receives media events from theyer . To respond to these everigy-
erApplet implements theontrollerUpdate method, which is called automati-
cally when thePlayer posts an event.

Java Media Players — Version 1.0.5

PlayerApplet ~ responds to one type of eveRgalizeCompleteEvent . When the
Player pPOStS &RealizeCompleteEvent , PlayerApplet displays thePlayer's
components:

public synchronized void controllerUpdate(ControllerEvent event)
{
if (event instanceof RealizeCompleteEvent) {
Component comp;
if ((comp = player.getVisualComponent()) != null)
add ("Center", comp);
if ((comp = player.getControlPanelComponent()) != null)
add ("South", comp);
validate();

}

A Player's user-interface components cannot be displayed untiizhe is
RealizeglanUnrealizedplayer doesn’t know enough about its media stream to
provide access to its user-interface componenigerApplet waits for the

Player 1O post eRealizeCompleteEvent and then displays th#ayer's visual
component and default control panel by adding them to the applet container. Call-
ing validate triggers the layout manager to update the display to include the new
components.

3.0 Creating and Displaying a Player

You create aPlayer indirectly through the mediavanager. To display the
Player , you get thepPlayers components and add them to the applet's
presentation space or application window.

3.1 Creating a Player

When you need a newlayer , you request it from thevianager by calling
createPlayer . The Manager uses the mediaRL or MediaLocator that you
specify to create an approprisayer .

A URLcan only be successfully constructed if the appropriate corresponding
StreamHandler is installedMediaLocator ~doesn't have this restriction.

Displaying a Player and Player Controls 15

This level of indirection allows newlayers to be integrated seamlessly. From
the client perspective, a nemayer is always created the same way, even though
theplayer might actually be constructed from interchangeable parts or dynami-
cally loaded at runtime.

3.2 Displaying a Player and Player Controls

JMF specifies the timing and rendering model for displaying a media stream, but
aPlayers interface components are actually displayed ugirgwt , Java’s

core package for screen displayPiyer can have two types of AWT compo-
nents, its visual component and its control components.

3.2.1 Displaying a Player’s Visual Component

The component in whichlayer displays its media data is called its visual com-
ponent. Even an audimayer might have a visual component, such as a wave-
form display or animated character.

To display ePlayers visual component, you:

1. Get the component by calliggtvisualComponent

2. Add it to the applet’s presentation space or application window.

You can access thmayer's display properties, such asxtandy coordinates,
through its visual component. The layout of #ieyer components is controlled
through the AWT layout manager.

3.2.2 Displaying a Player’s Controls

A Player often has a control panel that allows the user to control the media pre-
sentation. For example payer might be associated with a set of buttons to

start, stop, and pause the media stream, and with a slider control to adjust the vol-
ume.

Every Java Medialayer provides a default control panel. To displafiayers

default control panel, you get it by callingtControlPanelComponent and add

it to the applet’s presentation space or application window. If you prefer to define

a custom user-interface, you have access to the interfaces through which the stan-
dard control panel is implemented.

A Players control-panel component often interacts with bothrilager and
thePlayers controls. For example, to start and stop Hger or set its media

16

Java Media Players — Version 1.0.5

time, the control panel calls tiayer directly. But manylayers have other
properties that can be managed by the user. For example, @\igeo might

allow the user to adjust brightness and contrast, which are not managed through
theplayer interface.To handle these types of controls, JIMF definesothel
interface.

A mediaPlayer can have any number obntrol objects that define control
behaviors and have corresponding user interface components. You can get these
controls by callingjetControls ~ on thePlayer . For example, to determine if a

Player supports theachingControl interface and get theachingControl if it

does, you can cajketControls

Control[] controls = player.getControls();
for (inti = 0; i < controls.length; i++) {
if (controls][i] instanceof CachingControl) {
cachingControl = (CachingControl) controls][i];
}
}

What controls are supported by a particiHayer depends on thelayer imple-
mentation.

3.2.3 Displaying a Gain Control Component

GainControl ~ extends th&ontrol interface to provide a standard API for adjust-
ing audio gain. To get this control, you must g@liGainControl ; getControls

does not return Rlayer's GainControl . GainControl ~ provides methods for
adjusting the audio volume, suchsagevel andsetMute . Like other controls,
theGainControl is associated with a GUI component that can be added to an
applet’s presentation space or an application window.

3.2.4 Displaying a Player’'s Download Progress

Downloading media data can be a time consuming process. In cases where the
user must wait while data is downloaded, a progress bar is often displayed to reas-
sure the user that the download is proceeding and to give some indication of how
long the process will take. TlmachingControl interface is a special type of

Control supported bylayers that can report their download progress. You can
use this interface to display a download progress bar to the user.

Starting a Player 17

You can caletControls ~ to determine whether or nopayer supports the
CachingControl interface. If it does, thelayer will post aCachingControlEv-

ent whenever the progress bar needs to be updated. If you implement your own
progress bar component, you can listen for this event and update the download
progress wheneverachingControlEvent is posted.

A CachingControl also provides a default progress bar component that is auto-
matically updated as the download progresses. To use the default progress bar in
an applet:

1. Implement theontrollerListener interface and listen for
CachingControlEvents in controllerUpdate

2. The first time you receive@achingControlEvent:
a. CallgetCachingControl on the event to get the caching control.

b. CallgetProgressBar on theCachingControl ~ to get the default progress
bar component.

c. Add the progress bar component to the applet’'s presentation space.

3. Each time you receive@chingControlEvent , check to see if the download
is complete. WhengetContentProgress returns the same value as
getContentLength , remove the progress bar.

4.0 Controlling Media Players

Theclock andPlayer interfaces define the methods for starting and stopping a
Player .

4.1 Starting a Player

You typically start ePlayer by callingstar t. Thestart method tells thelayer
to begin presenting media data as soon as possible. If necessaryprepares
thePlayer to start by performing the realize and prefetch operatiossvilf is
called on &tartedrlayer , the only effect is that s&tartEvent is posted in
acknowledgment of the method call.

Clock defines asyncstart method that can be used for synchronization. See
“Synchronizing Players” on page 27 for more information.

18

Java Media Players — Version 1.0.5
To start ePlayer at a specific point in a media stream:

1. Specify the point in the media stream at which you want to start by calling
setMediaTime

2. Callstart on thePlayer .

4.2 Stopping a Player

There are four situations in whictpayer will stop:

* When thestop method is called on th®ayer .

« When therlayer has reached the specified stop time.

* When therlayer has run out of media data.

« When therlayer is receiving data too slowly to allow acceptable playback.

When a non-broadcaBtayer is stopped, itgnedia timds frozen. If theStopped
Player is subsequently restarted, media time resumes from the stop time. When
you stop a broadcastayer , only the receipt of the media data is stopped; the
data continues to be broadcast. When you restart a broatgast, the play-

back will resume wherever the broadcast is at that point in time.

You use thetop method to stop mlayer immediately. If you calstop on a
Stoppecblayer , the only effect is that stopByRequestEvent is posted in
acknowledgment of the method call.

4.2.1 Stopping a Player at a Specified Time

You can callsetStopTime to indicate when a@layer should stop. Thelayer

stops when itsnedia timepasses the specified stop time. If theyers rate is
positive, thePlayer stops when the media time becomes greater than or equal to
the stop time. If theblayers rate is negative, thelayer stops when the media
time becomes less than or equal to the stop time.Pldyer stops immediately if

its current media time is already beyond the specified stop time.

For example, assume thaklayers media time is 5.0 argbtStopTime is

called to set the stop time to 6.0. If theyer's rate is positive, media time is
increasing and thelayer will stop when the media time becomes greater than or
equal to 6.0. However, if thelayer's rate is negative, itis playing in reverse and
theplayer will stop immediately because the media time is already beyond the

Preparing a Player to Start 19

stop time. (For more information abauayer rates, see “Setting a Player's
Rate” on page 26.)

You can always caletStopTime 0N a stoppeélayer . However, you can only
set the stop time onStartedrlayer if the stop time is not currently set. If the
Player already has a stop timetStopTime throws an error.

You can calbetStopTime to get the currently scheduled stop time. If the clock
has no scheduled stop timgeiStopTime returnsClock.RESET . To remove the
stop time so that theayer continues until it reaches end-of-media, call
setStopTime(RESET)

5.0 Managing Player States

The transitions between states are controlled with five methods:

 realize

« prefetch
* start

» deallocate

* stop

* close

By controlling when these methods are called, you can manage the state of a
Player . For example, you might want to minimize start-latency by preparing the
Player to start before you actually start it.

You can implement theontrollerListener interface to manage these control
methods in response to changes infthger's state. Listening for Rlayer's

state transitions is also important in other cases. For example, you cannot get a
Players ~components until thelayer has beemRealized By listening for a
RealizeCompleteEvent ~ you can get the components as soon aBlther is
Realized

5.1 Preparing a Player to Start

Most mediaPlayers cannot be started instantly. Before thyer can start,
certain hardware and software conditions must be met. For example pibike

has never been started, it might be necessary to allocate buffers in memory to
store the media data. Or, if the media data resides on a network devieyge

might have to establish a network connection before it can download the data.

20

Java Media Players — Version 1.0.5

Even if theplayer has been started before, the buffers might contain data that is
not valid for the current media position.

5.1.1 Realizing and Prefetching the Player

JMF breaks the process of preparirgager to start into two phaseRealizing
andPrefetchingRealizingandPrefetchingaPlayer before you start it minimizes

the time it takes thelayer to begin presenting media wheart is called and

helps create a highly-responsive interactive experience for the user. Implementing
the ControllerListener interface allows you to control when these operations
occur.

You callrealize to move therlayer into theRealizingstate and begin the real-
ization process. You caltefetch to move thePlayer into thePrefetchingstate
and initiate the prefetching process. Téwize andprefetch methods are
asynchronous and return immediately. Whenrtager completes the requested
operation, it posts RealizeCompleteEvent or PrefetchCompleteEvent

“Player States” on page 6 describes the operations thiaya performs in each
of these states.

A Player inthePrefetchedstate is prepared to start and its start-up latency cannot
be further reduced. However, setting the media time threugkediaTime might
return therlayer to theRealizedstate, increasing its start-up latency.

Keep in mind that &refetchedrlayer ties up system resources. Because some
resources, such as sound cards, might only be usable by one program at a time,
this might prevent otharayers from starting.

5.1.2 Blocking until a Player is Realized

Many of the methods that can be called orisger require that th@layer be in
the Realizedstate. One way to guarantee thatager is Realizedwvhen you call
these methods is to implement a method that ealigze and blocks until the
Player poOsts &RealizeCompleteEvent

Note: Be aware that blocking omalize can produce unsatisfactory results. For
example, if an applet blocks whileemyer is realizing Applet.start and
Applet.stop will not be able to interrupt the process.

To block until aPlayer is Realizedyou could implement a method calledck-
ingRealize that callsealize on yourPlayer and returns when ttmayer

posts eRealizeCompleteEvent and yourcontrollerUpdate method is called.
This requires that you implement tkentrollerListener interface and register
as a listener with thelayer . If you register as a listener with multiptayers

Preparing a Player to Start

your controllerUpdate method needs to determine whigthyer posted the
RealizeCompleteEvent

boolean realized = false;
public synchronized void blockingRealize()
{
myPlayer.realize();
while ('realized) {
try {
wait();
}
catch (java.lang.InterruptedException e) {
status.setText("Interrupted while waiting on
realize...exiting.");
System.exit(1);
}
}
}
public synchronized void controllerUpdate (ControllerEvent
event)
{
if (event instanceof RealizeCompleteEvent) {
realized = true;
notify();
}

else if (event instanceof EndOfMediaEvent) {
eomReached = true;
}
}

5.1.3 Determining a Player’s Start-up Latency

To determine how much time is required to stamager , you can calpet-
StartLatency . FOrPlayers that have a variable start latency, the return value of
getStartLatency represents the maximum possible start latency. For some
media typesgetStartLatency might returnLATENCY_UNKNOWN

1 This example code is used with the permission of Bill Day and JavaWorld magazine. The
blockingRealize example code was first published by Bill Day in “Java Media Framework
Player API: Multimedia Comes to Java” in JavaWorld magazine, an online publication of Web
Publishing Inc., April 1997. Please see http://www.javaworld.com/javaworld/jw-04-1997/jw-
04-jmf.html for the complete article, example code listing, and demonstration applets.

Java Media Players — Version 1.0.5

The start-up latency reported bytStartLatency might differ depending on the
Players current state. For example, aftgireéfetch operation, the value

returned byyetStartLatency is typically smaller. AController that can be

added to @layer will return a useful value once it Brefetched(For more infor-
mation about added Controllers, see “Using a Player to Manage and Synchronize
other Controllers” on page 29.)

5.2 Starting and Stopping a Player

Callingstart moves &layer into theStartedstate. As soon asart s called,
methods that are only legal for stoppedyers cannot be called until thelayer
has been stopped.

If start is called and thelayer has not been prefetchahrt performs the
realize and prefetch operations as needed to moveldhe into thePrefetched
state. ThePlayer posts transition events as it moves through each state.

Whenstop is called on @layer , thePlayer is considered to be stopped immedi-
ately;stop is synchronous. Howeverpayer can also stop asynchronously
when:

« The end of the media stream is reached.
» The stop time previously set withtStopTime IS reached.
* ThePlayer is data starved.

When aPlayer stops, it posts atopEvent . To determine why thelayer
stopped, you must listen for the specific stop evértslocateEvent , EndOf-
MediaEvent , RestartingEvent , StopAtTimeEvent , StopByRequestEvent, and
DataStarvedEvent

5.3 Releasing Player Resources

Thedeallocate method tells @layer to release any exclusive resources and
minimize its use of non-exclusive resources. Although buffering and memory
management requirements fosyers are not specified, most Java MeBliay-

ers allocate buffers that are large by the standards of Java objects. A well-imple-
mentedPlayer releases as much internal memory as possible ddagtrate

is called.

The deallocate method can only be called on StoppedpPlayer . To avoid
ClockStartedErrors , you should calktop before you calbieallocate . Calling
deallocate on aPlayer in the Prefetchingor Prefetchedstate returns it to the

Implementing the ControllerListener Interface 23

Realizedstate. Ifdeallocate is called while theplayer s realizing, theplayer
posts aeallocateEvent and returns to th&nrealizedstate. (Once alayer has
been realized, it can never return to theealizedstate.)

You generally callieallocate ~ when thePlayer is not being used. For example,
an applet should caldkallocate as part of itstop method. By callingleallo-

cate , the program can maintain references taortager , while freeing other
resources for use by the system as a whole. (JMF does not pr&esadizzed
Player that has formerly bedprefetchedr Startedfrom maintaining informa-
tion that would allow it to be started up more quickly in the future.)

When you are finished with®ayer (or otherController) and are not going to
use it anymore, you should calbse . Theclose method indicates that tlzan-
troller will no longer be used and can shut itself down. Callioig releases
all of the resources that tkwentroller ~ was using and causes the it to cease all
activity. When aontroller is closed, it posts @ontrollerClosedEvent A
closedcontroller ~ cannot be reopened and invoking methods on a closed
troller ~ might generate errors.

5.4 Implementing the ControllerListener Interface

ControllerListener is an asynchronous interface for handling events generated
by Controller objects. Using th&ontrollerListener interface enables you to
manage the timing of potentially time-consumirgyer operations such as
prefetching.

To implement theontrollerListener interface, you need to:
1. Implement theontrollerListener interface in a class.
2. Register that class as a listener by callédgControllerListener on the

Controller that you want to receive events from.

When aController ~ posts an event, it caldntrollerUpdate on each regis-
tered listener. TypicallyontrollerUpdate is implemented as a series of if-else
statements of the form:

if(event instanceof EventType){

} else if(event instanceof OtherEventType){

}

24

Java Media Players — Version 1.0.5

This filters out the events that you are not interested in. If you have registered as a
listener with multiplecontrollers , you also need to determine whicntrol-

ler posted the eventontrollerEvents come “stamped” with a reference to

their source that you can access by callisigource .

“Appendix D: ControllerAdapter” on page 73 provides the source for an imple-
mentation ofControllerListener that can be easily extended to respond to par-
ticularEvents .

When you receive events froncantroller , you might need to do some addi-
tional processing to ensure that ttwatroller s in the proper state before call-

ing a control method. For example, before calling any of the methods that are
restricted tdStoppedPlayers , you should check thmayer's target state by
callinggetTargetState . If start has been called, thmayer is considered to be

in the Startedstate, though it might be posting transition events as it prepares the
Player to present media.

Some types ofontrollerEvents are stamped with additional state information.
For example, thetartEvent andStopEvent classes each define a method that
allows you to retrieve the media time at which the event occurred.

6.0 Managing Timing

In many cases, instead of playing a single media stream from beginning to end,
you want to play a portion of the stream or synchronize the playback of multiple
streams. The JMRimeBase and Clock interfaces define the mechanism for
managing the timing and synchronization of media playback.

A TimeBase represents the flow of time. thne-base timeannot be transformed

or reset. A Java Med®layer uses itSTimeBase to keep time in the same way

that a quartz watch uses a crystal that vibrates at a known frequency to keep time.
The system maintains a masténeBase that measures time in nanoseconds from

a specified base time, such as January 1, 1970. The systeBase is driven by

the system clock and is accessible throughviiger .getSystemTimeBase

method.

A Player's media timerepresents a point in time within the stream that the
Player is presenting. Thenedia timecan be started, stopped, and reset much like
a stopwatch.

A Clock defines the mapping betweemi@eBase and theamedia time

Setting the Media Time 25

0 end of media

k- t — >e media time
“y 4 . —y > time-base time
start stop start stop

A Java MediaPlayer can answer several timing queries about the media source it
is presenting. Of course, timing information is subject to the physical
characteristics and limitations of both the media source and of the network device
on which it is stored.

A Time object represents a quantity of some time unit, such as nanoseconds. You
useTime objects when you query or seblayer's timing information.

6.1 Setting the Media Time

Setting aPlayer's media timeis equivalent to setting a read position within a
media stream. For a media data source such as a filmdléa timas bounded:;
the maximummedia timds defined by the end of the media stream.

To set theanedia timeyou callsetMediaTime and pass in @me object that rep-
resents the time you want to set.

6.2 Getting the Current Time

Calling getMediaTime returns arime object that represents tidayer's current
media time If the Player iS not presenting media data, this is the point from
which media presentation will commence. There is not a one-to-one
correspondence betweennaedia timeand a particular frame. Each frame is
presented for a certain period of time, and thedia timecontinues to advance
during that period.

For example, imagine you have a slide simuyer that displays each slide for 5
seconds—thelayer essentially has a frame rate of 0.2 frames per second.

Java Media Players — Version 1.0.5

getMediaTime
15 ——

| | |
! ! ! >Duration
5 10 15

N e Ny N)

frame 1 frame 2 frame 3

If you start therlayer at time 0.0, while the firdtameis displayed, the media
time advances from 0.0 to 5.0. If you start at time 2.0, the first frame is displayed
for 3 seconds, until time 5.0 is reached.

You can get @layers currenttime-base timéy getting thePlayer's TimeBase
and callinggetRefTime

myCurrentTBTime = playerl.getTimeBase().getRefTime();

When aPlayer is running, you can get thiene-base tim¢hat corresponds to a
particularmedia timeby callingmapToTimeBase .

6.3 Setting a Player’'s Rate

Theplayers rate determines howedia timechanges with respect to time-base
time; it defines how many unitsmayers media timeadvances for every unit of
time-base timeThePlayers rate can be thought of as a temporal scale factor.
For example, a rate of 2.0 indicates tma¢dia timepasses twice as fast as the
time-base timevhen therPlayer s started.

In theory, aPlayer's rate could be set to any real number, with negative rates
interpreted as playing the media in reverse. However, some media formats have
dependencies between frames that make it impossible or impractical to play them
in reverse or at non-standard rates.

WhensetRate is called on @®layer , the method returns the rate that is actually
set, even if it has not chang&thyers are only guaranteed to support a rate of
1.0.

Getting a Player's Duration 27

6.4 Getting a Player’s Duration

Since your program might need to determine how long a given media stream will
run, allControllers implement theuration interface. This interface comprises

a single methodjetDuration . Duration represents the length of time that a
media object would run, if played at the default rate of 1.0. A media stream’s
duration is accessible only through theyer .

If the duration can't be determined whg=Duration s called,
DURATION_UNKNoVisireturned. This can happen if theyer has not yet reached

a state where the duration of the media source is available. At a later time, the
duration might be available and a calbtmburation ~ would return the duration
value. If the media source does not have a defined duration, as in the case of a live
broadcastgetDuration returnSDURATION_UNBOUNDED

7.0 Synchronizing Players

To synchronize the playback of multiple media streams, you can synchronize the
Players by associating them with the sami@eBase . To do this, you use the
getTimeBase andsetTimeBase methods defined by thmock interface. For

example, you could synchronipyerl with player2 by settingplayerl to use
player2’s time base:

playerl.setTimeBase(player2.getTimeBase());

When you synchronizelayers by associating them with the sameeBase , you

must still manage the control of eamhyer individually. Because managing
synchronizedblayers in this way can be complicated, JMF provides a mecha-
nism that allows &layer to assume control over agyntroller . ThePlayer
manages the states of the controllers automatically, allowing you to interact with
the entire group through a single point of control. For more information, see
“Using a Player to Manage and Synchronize other Controllers” on page 29.

In a few situations, you might want to manage the synchronization of multiple
Players yourself so that you can control the rates or media times independently.
If you do this, you must:

* Register as a listener for each synchronmegkr .

« Determine whiclpPlayers time base is going to be used to drive the other
Players and setthe time base for the synchronizieglers . Not all Players
can assume a new time base. For example, if one d¢fitlhers you want to
synchronize has a push data-source, plgtrs time base must be used to

Java Media Players — Version 1.0.5

drive the othePlayer s.

» Set the rate for all of thelayers . If aPlayer cannot support the rate you
specify, it returns the rate that was used. (There is no mechanism for querying
the rates that Blayer supports.)

» Synchronize thelayers' states. (For example, stop all of theyers .)
» Synchronize the operation of thiayers :
- Set the media time for eaelayer .

- Prefetch all of thelayers
- Determine the maximum start latency among the synchronizagss

- Start therlayers by callingsyncStart ~ with a time that takes into account
the maximum latency.

You must listen for transition events for all of #eyers and keep track of
which ones have posted events. For example, when you prefetelayae , you
need to keep track of which ones have posteddichComplete events so that
you can be sure all of thelayers arePrefetchedefore callingsyncStart . Sim-
ilarly, when you request that the synchronieegers stop at a particular time,
you need to listen for the stop event posted by eagfer to determine when all
of thePlayers have actually stopped.

In some situations, you need to be careful about responding to events posted by
the synchronizedlayers . To be sure of thelayers’ states, you might need to
wait at certain stages for all of the synchronieeglers to reach the same state
before continuing.

For example, assume that you are usingreer to drive a group of synchro-
nizedplayers . A user interacting with thatayer sets the media time to 10,
starts theplayer , and then changes the media time to 20. You then:

» Pass along the firsttMediaTime call to all of the synchronizeelayers.

e Call prefetch on thePlayers to prepare them to start.

» Callstop ontherlayers when the second set mediatime requestis received.

» Call setMediaTime on therlayers with the new time.

» Restart the prefetching operation.

» When all of therlayers have been prefetched, start them by calling
syncStart , taking into account their start latencies.

Getting a Player's Duration 29

In this case, simply listening ferefetchComplete events from all of thelay-

ers before callingsyncStart isn't sufficient. You can't tell whether those events
were posted in response to the first or second prefetch operation. To avoid this
problem, you can block when you c&lp and wait for all of thelayers to

post stop events before continuing. This guarantees that therefexhCom-

plete events you receive are the ones that you are really interested in.

8.0 Using a Player to Manage and Synchronize other
Controllers

SynchronizingPlayers manually usingyncStart requires that you carefully
manage the states of all of the synchronieeglers . You must control each one
individually, listening for events and calling control methods on them as appropri-
ate. Even with only a fewlayers , this quickly becomes a difficult task. Through
thePlayer interface, JMF provides a simpler solutiorri@aer can be used to
manage the operation of aqyntroller

When you interact with a managir@yer , your instructions are automatically
passed along to the manageghtrollers as appropriate. The managipgyer
takes care of the state management and synchronization for all of thewther
trollers

This mechanism is implemented through dbéController ~ andremoveCon-
troller methods. When you caltidController ~ on aPlayer , theController

you specify is added to the list©fntrollers ~ managed by thelayer . Con-
versely, when you calémoveController , the specifiectontroller is removed
from the list of managedontrollers

Typically, when you need to synchronizeyers or otherControllers , you
should use thigddController mechanism. It is simpler, faster, and less error-
prone than attempting to manage synchronizggrs individually.

When aPlayer assumes control of@ontroller

* ThecController ~ assumes thelayers time-base.

e ThePlayers duration becomes the longer of thantroller's duration
and its own. If multiplecontrollers ~ are placed underrayer's control,
thePlayers duration is the longest of all of their durations.

» ThePlayers start latency becomes the longer of thetroller's start
latency and its own. If multipleontrollers are placed underRayer's
control, thePlayers start latency is the longest of all of their latencies.

Java Media Players — Version 1.0.5

A managingPlayer only posts completion events for asynchronous methods after
every addedontroller ~ has posted the event. The managilager reposts
other events generated by the managewgtollers as appropriate.

8.1 Adding a Controller

You use theaddController method to add aontroller to the list ofControl-

lers managed by a particulatayer . To be added, @ontroller ~ must be in the
Realizedstate; otherwise, otRealizedError is thrown. TwoPlayers cannot
be placed under control of each other. For examplgayerl is placed under the
control ofplayer2 , player2 cannot be placed under the controplajer1

without first removinglayerl from player2’s control.

Once acontroller ~ has been added tceayer , do not call methods directly on
the addectontroller . To control an addedontroller , you interact with the
managingPlayer .

To haveplayer2 assume control gfiayer1 , call:

player2.addController(playerl);

8.2 Managing the Operation of Added Controllers

To control the operation of a group@introllers ~ managed by a particular
Player , you interact directly with the managimgyer . Do not call control meth-
ods on the managexntrollers directly.

For example, to prepare all of the managedtrollers to start, calprefetch
on the managinglayer . Similarly, when you want to start them, cadit on
the managin@layer . The managin@layer makes sure that all of ti@antrol-
lers arePrefetcheddetermines the maximum start latency amongtheol-
lers , and callsyncStart to start them, specifying a time that takes the
maximum start latency into account.

When you call a&ontroller method on the managirgayer , thePlayer propa-
gates the method call to the managedtrollers as appropriate. Before calling
acontroller method on a manage&dntroller , thePlayer ensures that the
Controller is in the proper state. The following table describes what happens to
the managedontrollers ~ when you call control methods on the managing

Player .

Removing a Controller

Function

setMediaTime

setRate

start

realize

prefetch

stop

deallocate

setStopTime

syncStart

close

Stopped Player

InvokessetMediaTime on all man-
agedcontrollers

InvokessetRate on all managedon-

31

Started Player

Stops all manageControllers , in-
vokessetMediaTime , and restartson-
trollers

Stops all managedontrollers , in-

trollers . Returns the actual rate thavokessetRate , and restartgontrol-

was supported by atlontrollers
and set.

Ensures all managetbntrollers
arePrefetchedand invokesync-

lers . Returns the actual rate that was
supported by altontrollers and set.

Depends onthelayer implementation.
Player might immediately post a

start on each of them, taking into acstartEvent

count their start latencies.

The managin@layer immediately
posts &RealizeCompleteEvent . TO
be added, gontroller
be realized.

Invokesprefetch on all managed
Controllers

No effect.

Invokesdeallocate
Controllers

must already added, aontroller

The managinglayer immediately
posts &RealizeCompleteEvent . To be
must already be
realized.

The managinglayer immediately
posts &PrefetchCompleteEvent , indi-
cating that all managetbntrollers
arePrefetched

Invokestop on all managedontrol-
lers .

on all managed ltis illegal to calldeallocate on a

StartedPlayer .

InvokessetStopTime on all managed InvokessetStopTime on all managed

Controllers . (Player must beReal- Controllers

ized)

Invokessyncstart on all managed
Controllers

Invokesclose on all managedon-
trollers

8.3 Removing a Controller

You use theemoveController

controllers managed by a particuladyer

method to remove @ontroller

. (Can only be set once on
a Started Player .)

Itisillegal to callsyncstart on aStart-
edPlayer .

Itis illegal to callclose on aStarted
Player .

from the list of

32

Java Media Players — Version 1.0.5

To haveplayer2 release control gfiayer1 , call:

player2.removeController(playerl);

9.0 Extending JMF

The JMF architecture allows advanced developers to create and integrate new
types of controllers and data sources. For example, you might implement a new
Player that supports a special media format.

This section introduces the JMF Player architecture and describes horiayew
ers andDataSources can be integrated into JMF.

9.1 Understanding the Player Architecture

As described in “Creating a Player” on page 14, a client programmer calls
Manager.createPlayer to get a newplayer for a particular media source. When
createPlayer is called, an appropriatelayer is created and returned to the
caller.

Manager construct®layers for particular media sources.staSource s first
constructed from 8BRLoOr MediaLocator and then used to creat®layer. (A
DataSource is a protocol-specific source of media datayers usually use
DataSources t0 manage the transfer of media-content.)

When creating &layer , Manager:
* Obtains the connectaxhtaSource for the specified protocol

» Obtains therlayer for the content-type specified by thetaSource
» Attaches th@ataSource to thePlayer

PackageManager
getContentPrefixList
Manager &’ getProtocolPrefixList
4 creates | MediaHandler |
createDataSource —P DataSource extends p——
createPlayer getContentName -|J:

creates >|

Player |

crea_"tes MediaProxy

Understanding the Player Architecture 33

9.1.1 Locating a DataSource

ThecreateDataSource method locates and instantiates an appropbite
Source for a specifiedvediaLocator . To do this, it first creates a search list of
DataSource class names and then steps through each class in the list until a
usable data source is found. To construct the search batasurce class
namescreateDataSource

1. Obtains a vector of protocol package-prefixes fragkageManager .

2. Adds a class name of the form:
<package-prefix>.media.protocol.<protocol>.DataSource

for eachcpackage-prefix> in the protocol package-prefix-vector.

Manager Steps through each class in the list until it findsagaSource that it can
instantiate and to which it can attach kheliaLocator

9.1.2 Locating a Player

The createPlayer method uses a similar mechanism to locate and instantiate an
appropriatePlayer for a particulaDataSource . A Player is a type oMediaH-

andler , an object that reads data frormba@aSource . MediaHandlers —are identi-

fied by the content type that they suppmietnager uses the content type name
obtained from @ataSource to findMediaHandler objects. JMF supports two
types ofMediaHandlers , Player andMediaProxy .

A MediaProxy processes content from ob&aSource to create another. Typi-
cally, aMediaProxy reads a text configuration file that contains all of the informa-
tion needed to make a connection to a server and obtain media data.

WhencreatePlayer is called Manager first creates a search list of class names
using the content name from thetaSource and the list of installed packages
returned by theackageManager . It then steps through each class in the list until
it finds amediaHandler that can be constructed and to which it can attach the
DataSource .

If the MediaHandler is aPlayer , the process is finished aménager returns the
newPlayer . If the MediaHandler is aMediaProxy , Manager obtains a nevbata-
Source from theMediaProxy , creates a new list for the content type that the
DataSource supports and repeats the search process.

If an appropriat@layer cannot be found, the procedure is repeated, substituting
“unknown” for the content type name. The “unknown” content type is supported

34 Java Media Players — Version 1.0.5

by genericrlayers that are capable of handling a large variety of media types,
often in a platform dependent way.

To construct the search list @édiaHandler class namesreatePlayer

1. Obtains a vector of content package-prefixes firathageManager .

2. Adds a class name of the form:

<package-prefix>.media.content.<content-type>.Handler

for eachkpackage-prefix> in the content package-prefix-vector.

9.2 Integrating a New Player Implementation

You can create custom implementations@fer that can work seamlessly with
the rest of JMF. To integraterayer with JMF, you need to:

¢ ImplementpPlayer.setSource to check theatasource and determine
whether or not thelayer can handle that type of source. When the client
programmer callsreatePlayer , setSource is called as th&anager
searches for an appropriatayer .

* Install the package containing the nexyer class.

» Add the package prefix to the content package-prefix list controlled by the
PackageManager . TheManager queries the@ackageManager for the list of
content package-prefixes it uses to search fosyar .

For example, to integrate a neMayer for the content type mpeg.sys, you would
create and install a package called:

<package-prefix>.media.content.mpeg.sys

that contains the nemayer class. The package prefix is an identifier for your
code, such asOM.yourbiz . Your installation program also needs to add your
package prefix to the content package-prefix list managed IpgdkegjeMan-
ager .

Implementing a New Data Source 35

Vector packagePrefix = PackageManager.getContentPrefixList();
string myPackagePrefix = new String(“COM.yourbiz”);

/I Add new package prefix to end of the package prefix list.
packagePrefix.addElement(myPackagePrefix);
PackageManager.setContentPrefixList();

/I Save the changes to the package prefix list.
PackageManager.commitContentPrefixList();

9.3 Implementing a New Data Source

A DataSource iS an abstraction of a media protocol-handler. You can implement
new types of DataSources to support additional protocols by extending
PullDataSource Or PushDataSource . If your DataSource supports changing the
media position within the stream to a specified time, it should implement the
Positionable interface. If theDataSource supports seeking to a particular point

in the stream, the correspondisgurceStream should implement th&eekable
interface.

A DataSource manages a collection sburceStreams . A PullDataSource ~ only
supports pull data-streams; it manages a collectieGnlisburceStreams . A
PushDataSource only supports push data-streams; it manages a collection of
PushSourceStreams . When you implement a nemataSource , you also need to
implement the corresponding source streRumSourceStream Of Push-
SourceStream

See “Appendix B: Sample Data Source Implementation” on page 43 for an exam-
ple illustrating how a newullDataSource , FTPDataSource , could be imple-
mented.

9.4 Integrating a New Data Source Implementation

The mechanism for integrating a cust@aaSource implementation with JIMF
is similar to the one used for integratinglaer . You need to:

* Install the package containing the nesaSource class.

» Add the package prefix to the protocol package-prefix list controlled by the
PackageManager . TheManager queries theackageManager for the list of
protocol package prefixes it uses to search foatasource .

36

Java Media Players — Version 1.0.5

Appendix AI:
Java Media Applet

This Java Applet demonstrates proper error checking in a Java Media program.
Like PlayerApplet , it creates a simple media player with a media event listener.

When this applet is started, it immediately begins to play the media clip. When the
end of media is reached, the clip replays from the beginning.

import java.applet.Applet;

import java.awt.*;

import java.lang.String;

import java.net.URL;

import java.net.MalformedURLException;
import java.io.|OException;

import javax.media.*;

/**

* This is a Java Applet that demonstrates how to create a simple
* media player with a media event listener. It will play the

* media clip right away and continuously loop.

*

* <l-- Sample HTML

* <applet code=TypicalPlayerApplet width=320 height=300>
* <param name=file value="Astrnmy.avi">

* </applet>

* >

*

public class TypicalPlayerApplet extends Applet implements
ControllerListener

{

/I media player
Player player = null;

37

38

/I component in which video is playing
Component visualComponent = null;
/I controls gain, position, start, stop
Component controlComponent = null;
/I displays progress during download
Component progressBar = null;

/**

* Read the applet file parameter and create the media
* player.

*

public void init()
{
setLayout(new BorderLayout());
I/l input file name from html param
String mediaFile = null;
/I URL for our media file
URL url = null;
/I URL for doc containing applet
URL codeBase = getDocumentBase();

/I Get the media filename info.
/I The applet tag should contain the path to the
/I source media file, relative to the html page.

if ((mediaFile = getParameter("FILE")) == null)
Fatal("Invalid media file parameter");

try

{
/I Create an url from the file name and the url to the
/I document containing this applet.

if ((url = new URL(codeBase, mediaFile)) == null)
Fatal("Can't build URL for " + mediaFile);

/I Create an instance of a player for this media
if ((player = Manager.createPlayer(url)) == null)
Fatal("Could not create player for "+url);

/I Add ourselves as a listener for player's events
player.addControllerListener(this);
}
catch (MalformedURLException u)
{
Fatal("Invalid media file URL!");
}
catch(IOException i)
{

Java Media Players — Version 1.0.5

Appendix A: Java Media Applet 39

Fatal("lO exception creating player for "+url);

}

/I This applet assumes that its start() calls

I player.start(). This causes the player to become

/I Realized. Once Realized, the Applet will get

/I the visual and control panel components and add

/I them to the Applet. These components are not added
/I during init() because they are long operations that

// would make us appear unresposive to the user.

}

/**
* Start media file playback. This function is called the
* first time that the Applet runs and every
* time the user re-enters the page.
*
/

public void start()

{
/I Call start() to prefetch and start the player.

if (player != null) player.start();
}

/**

* Stop media file playback and release resources before
* leaving the page.

*

public void stop()
{
if (player != null)
{
player.stop();
player.deallocate();

}

/**

* This controllerUpdate function must be defined in order
* to implement a ControllerListener interface. This

* function will be called whenever there is a media event.
*

public synchronized void controllerUpdate(ControllerEvent event)

{
/I'If we're getting messages from a dead player,
/I just leave

40

Java Media Players — Version 1.0.5
if (player == null) return;

/I When the player is Realized, get the visual
/l and control components and add them to the Applet

if (event instanceof RealizeCompleteEvent)
{
if ((visualComponent = player.getVisualComponent()) != null)
add("Center", visualComponent);
if ((controlComponent = player.getControlPanelComponent()) '= null)
add("South",controlComponent);
/I force the applet to draw the components

validate();
}
else if (event instanceof CachingControlEvent)
{

/I Put a progress bar up when downloading starts,
/I take it down when downloading ends.

CachingControlEvent e = (CachingControlEvent) event;
CachingControl cc = e.getCachingControl();

long cc_progress = e.getContentProgress();

long cc_length = cc.getContentLength();

/I Add the bar if not already there ...

if (progressBar == null)
if ((progressBar = cc.getProgressBarComponent()) != null)
{
add("North", progressBar);
validate();

}

/I Remove bar when finished ownloading
if (progressBar != null)
if (cc_progress == cc_length)
{
remove (progressBar);
progressBar = null;

validate();
}
}
else if (event instanceof EndOfMediaEvent)
{

/I We've reached the end of the media; rewind and
/I start over

player.setMediaTime(new Time(0));
player.start();

Appendix A: Java Media Applet

}

else if (event instanceof ControllerErrorEvent)

{
/I Tell TypicalPlayerApplet.start() to call it a day

player = null;
Fatal (((ControllerErrorEvent)event).getMessage());
}
}

void Fatal (String s)

{
/I Applications will make various choices about what
// to do here. We print a message and then exit

System.err.printin("FATAL ERROR: " + s);

throw new Error(s); // Invoke the uncaught exception
/I handler System.exit() is another
/I choice

41

42

Java Media Players — Version 1.0.5

Appendix B:
Sample Data Source
Implementation

This sample demonstrates how to implement amw@asource to support an
additional protocol, the FTP protocol. There are two classes:

* DataSource extend®ullDataSource and implements
intel.media.protocol.PullProtocolHandler.

e FTPSourceStream implementsullSourceStream

FTP Data Source

package COM.intel. media.protocol.ftp;

import javax.media.protocol.PullDataSource;
import javax.media.protocol.SourceStream;
import javax.media.protocol.PullSourceStream;
import javax.media.Time;

import javax.media.Duration;

import java.io.*;

import java.net.*;

import java.util.Vector;

public class DataSource extends PullDataSource
{
public static final int FTP_PORT = 21;
public static final int FTP_SUCCESS = 1;
public static final int FTP_TRY_AGAIN = 2;

43

44

Java Media Players — Version 1.0.5

public static final int FTP_ERROR = 3;

// used to send commands to server
protected Socket controlSocket;

// used to receive file
protected Socket dataSocket;

/I wraps controlSocket's output stream
protected PrintStream controlOut;

/I wraps controlSocket's input stream
protected InputStream controlin;

// hold (possibly multi-line) server response
protected Vector response = new Vector(1);

I reply code from previous command
protected int previousReplyCode;

/I are we waiting for command reply?
protected boolean replyPending;

/I user login name
protected String user = "anonymous";

// user login password
protected String password = "anonymous";

/I FTP server name
protected String hostString;

/I file to retrieve
protected String fileString;

public void connect() throws IOException

{
initCheck(); // make sure the locator is set
if (controlSocket != null)
{
disconnect();
}

/I extract FTP server name and target filename from locator
parseLocator();
controlSocket = new Socket(hostString, FTP_PORT);
controlOut = new PrintStream(new BufferedOutputStream(

Appendix B: Sample Data Source Implementation

controlSocket.getOutputStream()), true);
controlln = new
BufferedinputStream(controlSocket.getinputStream());

if (readReply() == FTP_ERROR)
{

throw new IOException("connection failed");

}

if (issueCommand("USER " + user) == FTP_ERROR)
{

controlSocket.close();
throw new I0Exception("USER command failed");

}

if (issueCommand("PASS " + password) == FTP_ERROR)
{

controlSocket.close();
throw new I0OException("PASS command failed");

}
}

public void disconnect()

{

if (controlSocket == null)

{

return;

}

try
{
issueCommand("QUIT");

controlSocket.close();

}

catch (IOException e)
{

// do nothing, we just want to shutdown

}

controlSocket = null;
controlln = null;
controlOut = null;

public void start() throws IOException

46

Java Media Players — Version 1.0.5

ServerSocket serverSocket;
InetAddress myAddress = InetAddress.getLocalHost();
byte[] address = myAddress.getAddress();

String portCommand = "PORT ";
serverSocket = new ServerSocket(0, 1);

/l append each byte of our address (comma-separated)

for (inti=0; i < address.length; i++)
{

portCommand = portCommand + (address[i] & OxFF) + ".";

}

/I append our server socket's port as two comma-separated
/l hex bytes
portCommand = portCommand +
((serverSocket.getLocalPort() >>> 8)
& OxFF) + "" + (serverSocket.getLocalPort() & OXFF);

[/l issue PORT command
if (issueCommand(portCommand) == FTP_ERROR)
{

serverSocket.close();

throw new I0Exception("PORT");

}

/l issue RETRieve command
if (issueCommand("RETR " + fileString) == FTP_ERROR)
{

serverSocket.close();

throw new IOException("RETR");

}

dataSocket = serverSocket.accept();
serverSocket.close();

}

public void stop()
{

try

{

/I issue ABORt command
issueCommand("ABOR");
dataSocket.close();

Appendix B: Sample Data Source Implementation

}
catch(IOException e) {}

}

public String getContentType()
{
/' We don't get MIME info from FTP server. This
/I implementation makes an attempt guess the type using
/I the File name and returns "unknown" in the default case.
/I A more robust mechanisms should
/I be supported for real-world applications.

String locatorString = getLocator().toExternalForm();
int dotPos = locatorString.lastindexOf(".");

String extension = locatorString.substring(dotPos + 1);
String typeString = "unknown";

if (extension.equals("avi))
typeString = "video.x-msvideo";
else if (extension.equals("mpg") ||
extension.equals("mpeg"))
typeString = "video.mpeg";
else if (extension.equals("mov"))
typeString = "video.quicktime";
else if (extension.equals("wav"))
typeString = "audio.x-wav";
else if (extension.equals("au"))
typeString = "audio.basic";
return typeString;

}

public PullSourceStream[] getStreams()

{
PullSourceStream|[] streams = new PullSourceStream[1];
try
{

streams[0] = new
FTPSourceStream(dataSocket.getinputStream());

}

catch(IOException e)
{

System.out.printin("error getting streams");

}

return streams;

}

a7

48

public Time getDuration()
{
return Duration.DURATION_UNKNOWN;

}

public void setUser(String user)

{

this.user = user;

}

public String getUser()
{

return user;

}

public void setPassword(String password)

{

this.password = password;

}

public String getPassword()
{

return password;

}

private int readReply() throws IOException
{
previousReplyCode = readResponse();
System.out.printin(previousReplyCode);
switch (previousReplyCode / 100)
{
case 1:
replyPending = true;
// fall through
case 2:
case 3:
return FTP_SUCCESS;
case 5:
if (previousReplyCode == 530)
{
if (user == null)

{

Java Media Players — Version 1.0.5

Appendix B: Sample Data Source Implementation

throw new IOException("Not logged in");

}
return FTP_ERROR,;
}
if (previousReplyCode == 550)
{
throw new FileNotFoundException();
}
}
return FTP_ERROR;
}
/**

* Pulls the response from the server and returns the code as a
* number. Returns -1 on failure.
*/

private int readResponse() throws IOException

{
StringBuffer buff = new StringBuffer(32);

String responsestr;

int c;
int continuingCode = -1;
int code =0;

response.setSize(0);

while (true)

{

while ((c = controlln.read()) != -1)
{
if (c=="r)
{
if ((c = controlin.read()) !="\n")
{
buff.append('\r');
}

}
buff.append((char)c);

if (c =="n")
{

break;

}

}
responseStr = buff.toString();

49

Java Media Players — Version 1.0.5

buff.setLength(0);
try
{
code = Integer.parselnt(responseStr.substring(0, 3));

}
catch (NumberFormatException €)
{

code =-1;
}
catch (StringlndexOutOfBoundsException e)
{

[* this line doesn't contain a response code, so
* we just completely ignore it
*/
continue;
}
response.addElement(responsesStr);
if (continuingCode != -1)
{
[* we've seen a XXX- sequence */
if (code != continuingCode ||
(responseStr.length() >= 4 &&
responseStr.charAt(3) =="-")
{

continue;

}

else

{
[* seen the end of code sequence */
continuingCode = -1;
break;

}

}
else if (responseStr.length() >= 4 &&

responsesStr.charAt(3) == '-')
{

continuingCode = code;

continue;

}

else
{
break;
}
}

previousReplyCode = code;
return code;

Appendix B: Sample Data Source Implementation 51

}
private int issueCommand(String cmd) throws IOException
{
int reply;
if (replyPending)
{
if (readReply() == FTP_ERROR)
{
System.out.print("Error reading pending reply\n®);
}
}
replyPending = false;
do
{

System.out.printin(cmd);
controlOut.print(cmd + "\r\n");
reply = readReply();
} while (reply == FTP_TRY_AGAIN);
return reply;

}

/**

* Parses the mediaLocator field into host and file strings
*/

protected void parselLocator()

{
initCheck();
String rest = getLocator().getRemainder();
System.out.printin("Begin parsing of: " + rest);
int p1, p2 = 0;
pl = rest.indexOf("//");
p2 = rest.indexOf("/", p1+2);
hostString = rest.substring(pl + 2, p2);
fileString = rest.substring(p2);
System.out.printin("host: " + hostString + " file: "

+ fileString);

Source Stream

52

Java Media Players — Version 1.0.5

package intel.media.protocol.ftp;

import java.io.*;

import javax.media.protocol. ContentDescriptor;
import javax.media.protocol.PullSourceStream;
import javax.media.protocol.SourceStream;

public class FTPSourceStream implements PullSourceStream

{

protected InputStream dataln;
protected boolean eofMarker;
protected ContentDescriptor cd;

public FTPSourceStream(InputStream in)

{
this.dataln = in;
eofMarker = false;
cd = new ContentDescriptor("unknown");

}

/I SourceSteam methods

public ContentDescriptor getContentDescriptor()

{

return cd;

}

public void close() throws IOException

{

dataln.close();

}

public boolean endOfStream()

{

return eofMarker;

}

/I PullSourceStream methods

public int available() throws IOException

{

return dataln.available();

}

Appendix B: Sample Data Source Implementation

public int read(byte[] buffer, int offset, int length) throws
IOException
{
int n = dataln.read(buffer, offset, length);
if (n==-1)
{
eofMarker = true;
}

return n;

}

public boolean willReadBlock() throws IOException

{
if(eofMarker)

{

return true;

}

else

{
return dataln.available() == 0;
}
}

public long getContentLength()

{
return SourceStream.LENGTH_UNKNOWN;
}
}

53

54

Java Media Players — Version 1.0.5

Appendix C:
Sample Controller
Implementation

This sample illustrates how a simple time-libentroller ~ can be implemented in
JMF. This sample is provided as a reference for developers who are implementing

their owncontrollers . Please note that it has not been tested or optimized for
production use.

This sample consists of four classes:
¢ TimeLineController.java

Thecontroller . You give it an array of time values (representing a time
line) and it keeps track of which segment in the time line you are in.

TimeLineEvent.java

An event posted by thBmeLineController when the segment in the time
line changes.

« EventPostingBase.java

A base class used bymeLineController that handles theontroller
methodsaddControllerListener andremoveControllerListener .talso
provides gostEvent method that can be used by the subclass to post events.

« ListenerList.java

A class used to maintain a list ©ntrollerListener objects that the
TimeLineController needs to post events to.

55

56

Java Media Players — Version 1.0.5

This implementation also uses two additional classes whose implementations are
not shown here.

* EventPoster

A class that spins a thread to post eventsdenaollerListener

 BasicClock
A simplecClock implementation that implements all of theck methods.

Appendix C: Sample Controller Implementation

TimeLineController.java

import javax.media.*;
import com.sun.media.MediaClock;

/I This Controller uses two custom classes:

i
I
I
I
i
i
i

I
1
"
"
i

The base class is EventPostingBase. It has three methods:

public void addControllerListener (ControllerListener
observer);

public void removeControllerListener (ControllerListener
observer);

protected void postEvent (ControllerEvent event);

This Controller posts TimeLineEvents. TimeLineEvent has
two methods:
public TimeLineEvent (Controller who, int
segmentEntered);
public final int getSegment ();

public class TimeLineController extends EventPostingBase

implements Controller, Runnable
Clock ourClock;

/I This simple controller really only has two states:
/I Prefetched and Started.

int ourState;

long timeLine[];

int currentSegment = -1;
long duration;

Thread myThread;

/I Create a TimeLineController giving it a sorted time line.
/I The TimeLineController will post events indicating when
Il it has passed to different parts of the time line.

public TimeLineController (long timeLine[])
{
this.timeLine = timeLine;
ourClock = new MediaClock ();
duration = timeLine[timeLine.length-1];
myThread = null;

Il We always start off ready to go!
ourState = Controller.Prefetched;

57

58

Java Media Players — Version 1.0.5

/I Binary search for which segment we are now in. Segment
/1 0 is considered to start at 0 and end at timeLine[0].

/I Segment timeLine.length is considered to start at

/I timeLine[timeLine.length-1] and end at infinity. At the

/ points of 0 and timeLine[timeLine.length-1] the

/I Controller will stop (and post an EndOfMedia event).

int computeSegment (long time)

{ int max = timeLine.length;
int min = 0;
for ()
{
if (min == max) return min;
int current = min + ((max - min) >> 1);
if (time < timeLine[current])
{
max = current;
}
else
{
min = current + 1;
}
}
}

/I These are all simple...

public float setRate (float factor)

{
/l We don't support a rate of 0.0. Not worth the extra math
// to handle something the user should do with the stop()
/I method!

if (factor == 0.0f)
{
factor = 1.0f;

}

float newRate = ourClock.setRate (factor);
postEvent (new RateChangeEvent (this, newRate));
return newRate;

Appendix C: Sample Controller Implementation

public void setTimeBase (TimeBase master)
throws IncompatibleTimeBaseException

{

ourClock.setTimeBase (master);

}

public Time getStopTime ()
{

return ourClock.getStopTime ();

public Time getSyncTime ()
{

return ourClock.getSyncTime ();

public Time mapToTimeBase (Time t) throws ClockStoppedException

{

return ourClock.mapToTimeBase (t);

public Time getMediaTime ()
{

return ourClock.getMediaTime ();

}

public TimeBase getTimeBase ()

{

return ourClock.getTimeBase ();

}

public float getRate ()
{

return ourClock.getRate ();

/I From Controller

public int getState ()
{

return ourState;

public int getTargetState ()
{

return ourState;

59

60

public void realize ()

{

postEvent (new RealizeCompleteEvent (this, ourState,
ourState, ourState));

public void prefetch ()
{

postEvent (new PrefetchCompleteEvent (this, ourState,
ourState, ourState));

public void deallocate ()

{

postEvent (new DeallocateEvent (this, ourState,
ourState, ourState, ourClock.getMediaTime ()));

public Time getStartLatency ()
{

/l We can start immediately, of course!

return new Time(0);

}

public Control[] getControls ()
{

return new Control[0];

public Time getDuration ()

{

return new Time(duration);

/I This one takes a little work as we need to compute if we
/I changed segments.

public void setMediaTime (Time now)

{
ourClock.setMediaTime (now);
postEvent (new MediaTimeSetEvent (this, now));
checkSegmentChange (now.getNanoseconds());

}

Java Media Players — Version 1.0.5

Appendix C: Sample Controller Implementation 61

Il We now need to spin a thread to compute/observe the
I/l passage of time.

public synchronized void syncStart (Time tbTime)

{

long startTime = ourClock.getMediaTime().getNanoseconds();

/I We may actually have to stop immediately with an

/I EndOfMediaEvent. We compute that now. If we are already
/I past end of media, then we
/I first post the StartEvent then we post a EndOfMediaEvent

boolean endOfMedia;
float rate = ourClock.getRate ();

if ((startTime > duration && rate >= 0.0f) ||
(startTime < 0 && rate <= 0.0f))

{
endOfMedia = true;

}

else

{
endOfMedia = false;

}

/I We face the same possible problem with being past the stop
/[time. If so, we stop immediately.

boolean pastStopTime;
long stopTime = ourClock.getStopTime().getNanoseconds();

if ((stopTime != Long.MAX_VALUE) &&
((startTime >= stopTime && rate >= 0.0f) ||
(startTime <= stopTime && rate <= 0.0f)))

{

pastStopTime = true;

}

else

{

pastStopTime = false;

}

if (lendOfMedia && !pastStopTime)

{
ourClock.syncStart (tbTime);

ourState = Controller.Started;

Java Media Players — Version 1.0.5

postEvent (new StartEvent (this, Controller.Prefetched,
Controller.Started, Controller.Started,
new Time(startTime), tbTime));

if (endOfMedia)
{
postEvent (new EndOfMediaEvent (this,
Controller.Started,
Controller.Prefetched, Controller.Prefetched,
new Time(startTime)));

else if (pastStopTime)
{
postEvent (new StopAtTimeEvent (this, Controller.Started,
Controller.Prefetched, Controller.Prefetched,
new Time(startTime)));

else

{

myThread = new Thread (this, "TimeLineController");

/I Set thread to appopriate priority...
myThread.start ();

/I Nothing really special here except that we need to notify
/I the thread that we may have.

public synchronized void setStopTime (Time stopTime)

{
ourClock.setStopTime (stopTime);
postEvent (new StopTimeChangeEvent (this, stopTime));
notifyAll ();

Appendix C: Sample Controller Implementation

/I This one is also pretty easy. We stop and tell the running
/I thread to exit.

public synchronized void stop ()
{
int previousState = ourState;
ourClock.stop ();
ourState = Controller.Prefetched,;
postEvent (new StopByRequestEvent (this, previousState,
Controller.Prefetched, Controller.Prefetched,
ourClock.getMediaTime ()));
notifyAll ();

/I Wait for thread to shut down.

while (myThread != null)
{
try
{
wait ();
}
catch (InterruptedException e)
{
/I NOT REACHED
}
}
}

protected void checkSegmentChange (long timeNow)
{
int segment = computeSegment (timeNow);
if (segment = currentSegment)
{
currentSegment = segment;
postEvent (new TimeLineEvent (this, currentSegment));

}

63

64

Java Media Players — Version 1.0.5

/I Most of the real work goes here. We have to decide when
I to post events like EndOfMediaEvent and StopAtTimeEvent
/I and TimeLineEvent.

public synchronized void run ()

{

long timeToNextSegment = 0;
long mediaTimeToWait = 0;
float ourRate = 1.0f;

for (;;)

{

/I First, have we changed segments? If so, post an event!

long timeNow = ourClock.getMediaTime ().getNanoseconds ();
checkSegmentChange (timeNow);

/I Second, have we already been stopped? If so, stop
/I the thread.

if (ourState == Controller.Prefetched)
{

myThread = null;

/I If someone is waiting for the thread to die, let them
Il know.

notifyAll ();
break;
/I Current rate. Our setRate() method prevents the value
/I 0 so we don't check for that here.

ourRate = ourClock.getRate ();

/I How long in clock time do we need to wait before doing
/I something?

long endOfMediaTime;
/I Next, are we past end of media?
if (ourRate > 0.0f)

{

mediaTimeToWait = duration - timeNow;
endOfMediaTime = duration;

Appendix C: Sample Controller Implementation 65

else

{

mediaTimeToWait = timeNow;
endOfMediaTime = 0;

/I If we are at (or past) time to stop due to EndOfMedia,

// we do that now!

if (mediaTimeToWait <= 0)

{

ourClock.stop ();
ourClock.setMediaTime (new Time(endOfMediaTime));
ourState = Controller.Prefetched,;
postEvent (new EndOfMediaEvent (this, Controller.Started,
Controller.Prefetched, Controller.Prefetched,
new Time(endOfMediaTime)));
continue;

// How long until we hit our stop time?

long stopTime = ourClock.getStopTime ().getNanoseconds();
if (stopTime != Long.MAX_VALUE)

{

long timeToStop;
if (ourRate > 0.0f)
{
timeToStop = stopTime - timeNow;
}
else
{

timeToStop = timeNow - stopTime;

}

/I If we are at (or past) time to stop due to the stop
/l time, we stop now!

if (timeToStop <= 0)
{
ourClock.stop ();
ourClock.setMediaTime (new Time(stopTime));
ourState = Controller.Prefetched;
postEvent (new StopAtTimeEvent (this,
Controller.Started,
Controller.Prefetched, Controller.Prefetched,
new Time(stopTime)));
continue;

66

Java Media Players — Version 1.0.5
else if (timeToStop < mediaTimeToWait)

{

mediaTimeToWait = timeToStop;

/I How long until we pass into the next time line segment?

if (ourRate > 0.0f)

{ timeToNextSegment = timeLine[currentSegment] - timeNow;
}
else if (currentSegment == 0)
{
timeToNextSegment = timeNow;
}
else
{
timeToNextSegment = timeNow - timeLine[currentSegment-1];
}
}
if (timeToNextSegment < mediaTimeToWait)
{
mediaTimeToWait = timeToNextSegment;
}

/I Do the ugly math to compute what value to pass to
11 wait():

long waitTime;
if (ourRate > 0)
{
waitTime = (long) ((float) mediaTimeToWait / ourRate) /
1000000;
}

else
{
waitTime = (long) ((float) mediaTimeToWait / -ourRate) /
1000000;

Appendix C: Sample Controller Implementation

}

/I Add one because we just rounded down and we don't
/I really want to waste CPU being woken up early.

waitTime++;

if (waitTime > 0)

{
/I Bug in some systems deals poorly with really large
/I numbers. We will cap our wait() to 1000 seconds
/I which point we will probably decide to wait again.

if (waitTime > 1000000) waitTime = 1000000;
try
{
wait (waitTime);
}

catch (InterruptedException e)

{
/I NOT REACHED

}

public void close()

public Control getControl(String type)

return null;

public long getMediaNanoseconds()

return O;

67

Java Media Players — Version 1.0.5

TimeLineEvent

import javax.media.*;

/I TimeLineEvent is posted by TimeLineController when we have
/I switched segments in the time line.

public class TimeLineEvent extends ControllerEvent

{

protected int segment;

public TimeLineEvent (Controller source, int currentSegment)
{

super (source);

segment = currentSegment;

}

public final int getSegment ()
{

return segment;
}
}

EventPostingBase.java

import javax.media.*;
/l import COM.yourbiz.media.EventPoster;

/I The implementation of the EventPoster class is not included as part
/I of this example. EventPoster supports two methods:

/I public EventPoster ();

/I public void postEvent (ControllerListener who, ControllerEvent

I what);

public class EventPostingBase

{
protected ListenerList olist;
protected Object olistLock;
protected EventPoster eventPoster;

Appendix C: Sample Controller Implementation

/l We sync around a new object so that we don't mess with
/I the super class synchronization.

EventPostingBase ()

{

olistLock = new Object ();

}

public void addControllerListener (ControllerListener observer)

{

synchronized (olistLock)

{

if (eventPoster == null)

{

eventPoster = new EventPoster ();

ListenerList iter;
for (iter = olist; iter != null; iter = iter.next)
{

if (iter.observer == observer) return;

iter = new ListenerList ();
iter.next = olist;
iter.observer = observer;
olist = iter;

public void removeControllerListener (ControllerListener

{

synchronized (olistLock)

{
if (olist == null)

{

return;

}

else if (olist.observer == observer)

{

olist = olist.next;

observer)

69

70 Java Media Players — Version 1.0.5

else

{

ListenerList iter;
for (iter = olist; iter.next != null; iter = iter.next)

{
if (iter.next.observer == observer)
{
iter.next = iter.next.next;
return;
}
}

protected void postEvent (ControllerEvent event)

{
synchronized (olistLock)
{
ListenerList iter;
for (iter = olist; iter != null; iter = iter.next)
{
eventPoster.postEvent (iter.observer, event);
}
}
}
}
ListenerList.java

/I A list of controller listeners that we are supposed to send
/I events to.

class ListenerList

{
ControllerListener observer;
ListenerList next;

Appendix C: Sample Controller Implementation

EventPoster.java

class EventPoster

{

void postEvent(Object object, ControllerEvent evt)

{

I/l Post event.

}
}

71

72

Java Media Players — Version 1.0.5

Appendix D:
ControllerAdapter

This appendix describes an implementatioga@irollerListener , Control-
lerAdapter , that can be easily extended to respond to particular events.

Implementing ControllerAdapter

ControllerAdapter is an event adapter that reciev@mtrollerEvents and dis-
patches them to an appropriate stub-method. Classes use this adapter by extend-
ing it and replacing only the message handlers that they are interested in.

import javax.media.*;

public void cachingControl(CachingControlEvent e) {}
public void controllerClosed(ControllerClosedEvent e) {}
public void controllerError(ControllerErrorEvent e) {}
public void connectionError(ConnectionErrorEvent e) {}
public void internalError(InternalErrorEvent e) {}
public void resourceUnavailable(ResourceUnavailableEvent

e) {}

public void durationUpdate(DurationUpdateEvent e) {}
public void mediaTimeSet(MediaTimeSetEvent e) {}
public void rateChange(RateChangeEvent e) {}
public void stopTimeChange(StopTimeChangeEvent e) {}
public void transition(TransitionEvent e) {}
public void prefetchComplete(PrefetchCompleteEvent e) {}
public void realizeComplete(RealizeCompleteEvent e) {}
public void start(StartEvent e) {}
public void stop(StopEvent e) {}
public void dataStarved(DataStarvedEvent e) {}
public void deallocate(DeallocateEvent e) {}
public void endOfMedia(EndOfMediaEvent e) {}

73

74

Java Media Players — Version 1.0.5

public void restarting(RestartingEvent e) {}
public void stopAtTime(StopAtTimeEvent e) {}
public void stopByRequest(StopByRequestEvent e) {}

/**

* Main dispatching function. Subclasses should not need to
* override this method, but instead subclass only

* the individual event methods listed above that they need
*/
public void controllerUpdate(ControllerEvent e) {

if (e instanceof CachingControlEvent) {
cachingControl((CachingControlEvent)e);

} else if (e instanceof ControllerClosedEvent) {
controllerClosed((ControllerClosedEvent)e);

if (e instanceof ControllerErrorEvent) {
controllerError((ControllerErrorEvent)e);

if (e instanceof DataLostErrorEvent) {
connectionError((ConnectionErrorEvent)e);

} else if (e instanceof InternalErrorEvent) {
internalError((InternalErrorEvent)e);

} else if (e instanceof ResourceUnavailableEvent) {
resourceUnavailable((ResourceUnavailableEvent)e);

}
}

} else if (e instanceof DurationUpdateEvent) {
durationUpdate((DurationUpdateEvent)e);

} else if (e instanceof MediaTimeSetEvent) {
mediaTimeSet((MediaTimeSetEvent)e);

} else if (e instanceof RateChangeEvent) {
rateChange((RateChangeEvent)e);

} else if (e instanceof StopTimeChangeEvent) {
stopTimeChange((StopTimeChangeEvent)e);

} else if (e instanceof TransitionEvent) {
transition((TransitionEvent)e);

Appendix D: ControllerAdapter

if (e instanceof PrefetchCompleteEvent) {
prefetchComplete((PrefetchCompleteEvent)e);

} else if (e instanceof RealizeCompleteEvent) {
realizeComplete((RealizeCompleteEvent)e);

} else if (e instanceof StartEvent) {
start((StartEvent)e);

} else if (e instanceof StopEvent) {
stop((StopEvent)e);

if(e instanceof DataStarvedEvent) {
dataStarved((DataStarvedEvent)e);

} else if (e instanceof DeallocateEvent) {
deallocate((DeallocateEvent)e);

} else if (e instanceof EndOfMediaEvent) {
endOfMedia((EndOfMediaEvent)e);

} else if (e instanceof RestartingEvent) {
restarting((RestartingEvent)e);

} else if (e instanceof StopAtTimeEvent) {
stopAtTime((StopAtTimeEvent)e);

} else if (e instanceof StopByRequestEvent) {
stopByRequest((StopByRequestEvent)e);

Using ControllerAdapter

To implement theontrollerListener interface using &ontrollerAdapter :
you need to:

1. Subclas€ontrollerAdapter and override the event methods for the events
that you're interested in.

2. Register yourControllerAdapter class as a listener for a particular

76

Java Media Players — Version 1.0.5
Controller by callingaddControllerListener

When aController ~ posts an event, it calientrollerUpdate on each regis-
tered listenerControllerAdapter automatically dispatches the event to the
appropriate event method, filtering out the events that you're not interested in.

For example, the following code extendsaatrollerAdapter with a JDK 1.1
anonymous inner-class to create a self-contamsdr that is automatically
reset to the beginning of the media and deallocated whemetlee reaches the
end of the media:

player.addControllerListener(new ControllerAdapter() {
public void endOfMedia(EndOfMediaEvent e) {
Controller controller = e.getSource();
controller.stop();
controller.setMediaTime(0);
controller.deallocate();
}
}

If you register a singl€ontrollerAdapter as a listener for multiplelayers , in
your event method implementations you need to determine \whigh gener-
ated the eventontroller events come “stamped” with a reference to their
source that you can access by calljagource

A

addController methq?9
added Controllers, managing0
adding a Controller30
adjusting audio gaijr6

applet 37

APPLET tag 10

AU, 2

AVI, 2

AWT, 15

B

blocking realize20
broadcast medj&
broadcast Played8

C
CachingContrql16
CachingControlEvent, 17
change notifications
clearing the stop time9
client programmersl
Clock, 4
getTimeBasg27
setTimeBasg27
close method23
closed eventsd
closing a Player23
ConnectionErrorEvenb
content package-prefig4
content-type name33
Control, 16

Index

control panel15
Controller, 4
adding 30
implementing 55
removing 31
state
prefetched?
prefetching 7
realized 7
realizing 6
started 6, 7
stopped 6
unrealized 6
ControllerAdapter75
ControllerClosedEvent
ControllerErrorEvent5
ControllerEvent5
getSource metho@4
state information24
ControllerListener5, 7, 17
implementing 17, 19, 23, 37, 73
registering 13, 23
Controllers
synchronizing multiple29
controllerUpdate method@6
implementing 13, 23
controlling the media presentatictb
createDataSource meth@B
createPlayer method?2, 14, 32, 34
creating a Played 2, 14, 37

D
data source?2

77

78

DataSourcg2, 32

implementing 35, 43

integrating 35

locating 33

pull, 3

push 3
DataStarvedEvenb, 22
deallocate methqd. 3, 22
DeallocateEvent, 22, 23
default control panell5
defining a custom user-interfackb
destroy methodl3
determining a Player’s start laten@i
display propertiesl5
displaying a Playerl5
displaying download progreskt
Duration 4, 27

getting 27
DURATION_UNBOUNDED, 27
DURATION_UNKNOWN, 27
DurationUpdateEvenb

E

EndOfMediaEvent5, 22

error, 8

error handling9

event 4
change notificationsd
closed 5
Controller, 5
transition 5

example
adding a Controller30
blocking realize21
DataSource43
displaying a download progress bar
integrating a PlayeB4
managing Player synchronizati@v
PlayerApplet9, 37
removing a Controller32
starting a Playerl8
synchronizing Player27

exception8

exclusive-use resources

extending JMF1, 32

Java Media Players, Version 1.0.5

F

frame 25
frame rate25
FTP, 43

G
GainChangeEvent
GainChangelListened
GainContro| 4, 16

setLevel methodl6

setMute methodl6
getControlPanelComponent methd&
getControls methqdl6, 17
getMediaTime methqd®5
getRefTime methad26
getSource metho@4
getStartLatency metho@l
getSystemTimeBase methd#t
getTimeBase metho@7
getting a Player’s duratio27
getting a Player’s time-base tink6
getting the current time5
getVisualComponent methptl5

H

HTML tag
APPLET, 10
PARAM, 10

|
implementing
Controller, 55
ControllerListenerl7, 23, 37, 73
controllerUpdate23
DataSourcg35, 43
PullSourceStrean#3
initializing a player appletl2
integrating
DataSourcg35
Player 34
InternalErrorEvent5

J

Java Beanst

JMF 1.0 Player ARI1
JMF architecturg32

Index

JMF Player APJ2
JMF, extending32

L

layout managerl5

locating
DataSource33
Player 33

M
malfunctions 6
Manager
createDataSource meth@&8B
createPlayerl2, 32, 34
getSystemTimeBase4
managing
added Controllers30
Player 29, 30
Player statel9
timing, 24
managing and synchronizing Controlle28
mapping time24
mapToTimeBase methpd6
master TimeBase4
media event4
media frame25
media presentation, controllings
media streams, synchronizirigj/
media time4, 24
setting 25
media types2
MediaBase3
MedialLocator 2, 14, 32
MediaTimeSetEvent
MIDI, 2
MPEG, 2, 3
multicast media3

N

native methods2
notification, 4
NotRealizedErrar30

P
package prefix34
PackageManage84

PARAM tag 10
Player 2, 3, 4
addController methag®9, 30
broadcast18
close method23
control panel15
creating 12, 37
deallocate methq@2
display propertiesl5
displaying 15
getControls methqdl6, 17
getMediaTime methqd®5
getRefTime metha26
getStartLatency metho@l
integrating 15, 34
locating 33
managing 29
mapToTimeBase methpd6
media time 24
method restrictions3
prefetch method20
preparing to startl9
realize methog20
removeController metho@®9, 31
setRate methq®6
setStopTime method 8
setting media time25
start methodl17, 22
state, managind.9
states6
stop method18, 22
synchronizing 27
Player AP| 2
Player architecture32
PlayerApplet9, 11, 37
destroy methodl3
init method 12
start method13
stop methogd13
playing a media clip37
playing media in revers@6
Positionable35
prefetch method?, 20
PrefetchComplete29
PrefetchCompleteEvers, 20
prefetched state, 20

79

80

prefetching a PlayeR0
prefetching stater
preparing a player to stad9
progress barl6
componentl7
displaying 17
protocol 2
protocol handler35
protocol package-prefj33
pull data source3
PullDataSource35
PullSourceStrean85
implementing 43
push data sour¢8
PushDataSour¢&5
PushSourceStrear5

Q
QuickTime 2

R
rate 18

setting 26
rate method26
RateChangeEvenb
realize

blocking on 20
realize methogdb, 20
RealizeCompleteEven, 14, 20
realized state?, 20
realizing 6
realizing a Player20
realizing statg6
Real-time Transport Protocol (RT,R)
registering as a ControllerListends, 23
releasing resource$3, 22
removeController metho@9
removing a Controller31
resources, releasing2
ResourceUnavailableEver
responding to event33
RestartingEvent, 22
return values9
reverse, playing in26
RTP, 3

Java Media Players, Version 1.0.5

S
sample program, PlayerApp)é&
Seekable35
setLevel methodl6
setMute methodl6
setRate methq®6
setSource metho34
setStopTime methed 9
setTimeBase metho@7
setting

audio gain16

media time 25

stop time 18
setting a Player’s rat@6
shutting down a Playe23
SourceStreanB85
start latency19

determining 21
start method7, 13, 17, 22
started states, 7, 22
StartEvent5, 17
starting a Playerl7, 22
state

managing 19

Player 6

prefetched?

prefetching 7

realized 7

started 6, 7

stopped 6

unrealized6
stop method13, 18, 22
stop time 18

clearing 19
StopAtTimeEvent5, 22
StopByRequestEven, 22
StopEvent5, 22
stopped states
stopping

broadcast Playef8

Player 18, 22
StopTimeChangeEverk
synchronizationl7
synchronizing Controller29
synchronizing media streaps/
syncStartl7, 28, 29

Index

system TimeBase4

T
technology providersl
temporal scale factp26
Time, 25
time

getting 25

mapping 24
TimeBase4, 24
time-base time4, 24

getting 26
transition eventsb
TransitionEvent5

]
unrealized states
URL, 2, 14, 32

instantiating 14
user-interfaced4, 14
custom 15

\%

validate methodl4
video-on-demand (VODB
visual component, displayin@g5
VOD (video-on-demand

W
WAV, 2

	Preface
	Java Media Players
	Future Releases
	Contact Information
	JavaSoft
	Silicon Graphics
	Intel Corporation

	Change History
	Version 1.0.5
	Version 1.0.4
	Version 1.0.3
	Version 1.0.2
	Version 1.0.1
	Version 1.0

	Java Media Players
	1.0 Overview
	1.1 Data Sources
	1.2 Players
	1.3 Media Events
	1.4 Player States
	1.5 Calling JMF Methods

	2.0 Example: Creating an Applet to Play a Media File
	2.1 Overview of PlayerApplet
	2.2 PlayerApplet Code Listing
	2.3 Initializing the Applet
	2.4 Controlling the Player
	2.5 Responding to Media Events

	3.0 Creating and Displaying a Player
	3.1 Creating a Player
	3.2 Displaying a Player and Player Controls

	4.0 Controlling Media Players
	4.1 Starting a Player
	4.2 Stopping a Player

	5.0 Managing Player States
	5.1 Preparing a Player to Start
	5.2 Starting and Stopping a Player
	5.3 Releasing Player Resources
	5.4 Implementing the ControllerListener Interface

	6.0 Managing Timing
	6.1 Setting the Media Time
	6.2 Getting the Current Time
	6.3 Setting a Player’s Rate
	6.4 Getting a Player’s Duration

	7.0 Synchronizing Players
	8.0 Using a Player to Manage and Synchronize other Controllers
	8.1 Adding a Controller
	8.2 Managing the Operation of Added Controllers
	8.3 Removing a Controller

	9.0 Extending JMF
	9.1 Understanding the Player Architecture
	9.2 Integrating a New Player Implementation
	9.3 Implementing a New Data Source
	9.4 Integrating a New Data Source Implementation

	Appendix A: Java Media Applet
	Appendix B: Sample Data Source Implementation
	Appendix C: Sample Controller Implementation
	Appendix D: ControllerAdapter

