JDBC™ Guide:
Getting Started

JDBC GUIDE

Copyright Information

0 1996, 1997, Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This document is protected by copyright. No part of this document may be reproduced in
any form by any means without prior written authorization of Sun and its licensors, if any.

The information described in this document may be protected by one or more U.S.
patents, foreign patents, or pending applications.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaBeans, JDK, Java, HotJava, HotJava Views,
Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM,
SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun
Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing,
Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop, the
Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

UNIX®is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd.

Adobe ®is a registered trademark of Adobe Systems, Inc.

Netscape Navigator™ is a trademark of Netscape Communications Corporation.

All other product names mentioned herein are the trademarks of their respective owners.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE DOCUMENT. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

INTRODUCTION

Table of Contents

Introduction. e 1
1.1 What ISIDBC ™ 2. . 1
1.1.1 WhatDoesJIDBC DO?vii it 2
1.1.2 JDBC Is a Low-level API and a Base for Higher-level APIs. 3
1.1.3 JDBCversus ODBCandotherAPIs 4
1.1.4 Two-tier and Three-tierModels. 5
1.1.5 SQLConformance. e 6
1.2 JDBC ProduCtS oo e 7
1.2.1 JavaSoft Framework. 8
1.2.2 JIDBCDHVEr TYPES . . oottt e e e 9
1.2.3 Obtaining IDBC Drivers 10
124 OtherProducCtst e 10
CoONNECHION. 13
2.1 OV IV BW & . ittt 13
211 OpeningaConnectionuuiiuiininnnnnnnnn. 13
21.2 URLsinGeneralUse........ ..., 14
2.1.3 IDBC URLS. ...ttt e e e 15
2.1.4 The"odbc” Subprotocol. 17
2.1.5 Registering Subprotocols. 17
2.1.6 Sending SQL Statements. i 18
217 Transactions 19
2.1.8 Transaction IsolationLevels 20
DriverManager 21
Bl OVEIVIEBW oot e 21
3.1.1 Keeping Track of Available Drivers. 21
3.1.2 EstablishingaConnection 23
Statement. 25
4.1 OVEBIVIBW . . ittt 25
41.1 Creatingbtatement Objects............. 25
4.1.2 Executingptatement Objects. 26
4.1.3 Using the MethoBixecute 27
4.1.4 Statement Completion........... 29
4.15 SQL Escape Syntax$tatement Objects. 30

Vi

ResUltSet 33

5.1 OVEBIVIBW . o ottt 33
51,1 ROWSANd CUISOIS . . . v v ittt i e e 34
5.1.2 ColUMNS ... 34
5.1.3 DataTypesand CONVersionS.ouueeuennnnnnn.. 35
5.1.4 Using Streams for Very Large Row Values. 37
5.1.5 NULLResultValues. 38
5.1.6 Optional or Multiple ResultSets. 38
PreparedStatement 39
6.1 OV IV W . . o 39
6.1.1 Creatin®PreparedStatement Objects. 40
6.1.2 PassindN Parameters. 40
6.1.3 Data Type Conformance on IN Parameters. 41
6.1.4 UsingsetObject i, 42
6.1.5 SendindQL NULL as an IN parameter. 42
6.1.6 Sending Very Large IN Parameters. 42
CallableStatement 45
7.1 OVEIVIBW . .ot e 45
7.1.1 Creating &allableStatement Object.................. 46
7.1.2 INand OUT Parameters . ..ot 46
7.1.3 INOUT Parameterst e a7
7.1.4 Retrieve OUT Parameters afterResults 48
7.1.5 Retrieving NULL Values as OUT Parameters. 48
Mapping SQLandJavaTypes, 49
8.1 OVEIVIBW . e e 49
8.2 Mapping SQL Data TypesintoJavaciiinnnnnnnnnn.. 49
8.3 SOL TYPES . . ottt 50
8.3.1 CHAR, VARCHAR, andLONGVARCHAR. 50
8.3.2 DECIMALandNUMERIC................iiinnnnn.. 50
8.3.3 BINARY, VARBINARY, andLONGVARBINARY 51
8.3.4 BIT ... 51
8.3.5 TINYINT, SMALLINT, INTEGER, andBIGINT 51
8.3.6 REAL, FLOAT, andDOUBLE. coov.... 52
8.3.7 DATE, TIME, andTIMESTAMP 52
8.4 Examples of Mappingo 53
8.4.1 Simple SQL Statement 53
8.4.2 SQL Statement with IN Parameters 54
8.4.3 SQL Statement with INOUT Parameters 54
8.5 Tablesfor Data Type Mapping 56
8.5.1 SQL Types MappedtoJavaTypesccuuuenunnn. 57
8.5.2 JavaTypes Mappedto SQLTypesccovivi.... 58
8.5.3 SQL Types Mapped to Java Object Types. 59
8.5.4 Java Object Types Mapped to SQL Types. 60

8.5.5 Conversions byetObject 61

8.5.6 SQL Types Retrieved ResultSet.getXXX Methods 62
9 Sample Codet 63
10 JDBC-ODBC Release NOteS.ovi i 69
10.1 JDBC-ODBC BAQEttt e 69
10.1.1 What Isthe IDBC-ODBC Bridge?covuvv.... 69
10.1.2 What Version of ODBC Is Supported? 69
10.1.3 The Bridge Implementation. 69
10.1.4 Installation 70
10.2 Usingthe Bridge. 70
10.2.1 Using the Bridge from an Applet. 70
10.2.2 Most Browsers Do Not Supportthe Bridge. 70
10.2.3 Tested Configurations. i 71
10.2.4 ODBC Drivers Known to Work with the Bridge 71
10.2.5 ODBC Driver Incompatibilities. 71
10.2.6 What Is the JDBC URL Supported by the Bridge? 71
10.2.7 Debugging e 72
10.3 General NOteS.ot 72

Vii

viii

.INTRODUCTION 1

1

Introduction

THIS introduction is excerpted frodDBC™ Database Access with Java™: A
Tutorial and Annotated Referencgjrrently in progress at JavaSoft. This book,
both a tutorial and the definitive reference manual for JDBC, will be published in
the spring of 1997 by Addison-Wesley Publishing Company as part of the Java
series.

1.1 What Is JDBC™?

JDBC™ is a Java™ API for executing SQL statements. (As a point of interest,
JDBC is a trademarked name and is not an acronym; nevertheless, JDBC is often
thought of as standing for “Java Database Connectivity”.) It consists of a set of
classes and interfaces written in the Java programming language. JDBC provides a
standard API for tool/database developers and makes it possible to write database
applications using a pure Java API.

Using JDBC, it is easy to send SQL statements to virtually any relational
database. In other words, with the JDBC API, it isn’t necessary to write one pro-
gram to access a Sybase database, another program to access an Oracle database,
another program to access an Informix database, and so on. One can write a single
program using the JDBC API, and the program will be able to send SQL state-
ments to the appropriate database. And, with an application written in the Java
programming language, one also doesn’t have to worry about writing different
applications to run on different platforms. The combination of Java and JDBC
lets a programmer write it once and run it anywhere.

Java, being robust, secure, easy to use, easy to understand, and automatically
downloadable on a network, is an excellent language basis for database applica-
tions. What is needed is a way for Java applications to talk to a variety of different
databases. JDBC is the mechanism for doing this.

INTRODUCTION

JDBC extends what can be done in Java. For example, with Java and the
JDBC API, it is possible to publish a web page containing an applet that uses
information obtained from a remote database. Or an enterprise can use JDBC to
connect all its employees (even if they are using a conglomeration of Windows,
Macintosh, and UNIX machines) to one or more internal databases via an intra-
net. With more and more programmers using the Java programming language, the
need for easy database access from Java is continuing to grow.

MIS managers like the combination of Java and JDBC because it makes dis-
seminating information easy and economical. Businesses can continue to use
their installed databases and access information easily even if it is stored on differ-
ent database management systems. Development time for new applications is
short. Installation and version control are greatly simplified. A programmer can
write an application or an update once, put it on the server, and everybody has
access to the latest version. And for businesses selling information services, Java
and JDBC offer a better way of getting out information updates to external cus-
tomers.

1.1.1 What Does JDBC Do?
Simply put, JDBC makes it possible to do three things:

1. establish a connection with a database
2. send SQL statements

3. process the results.

The following code fragment gives a basic example of these three steps:

Connection con = DriverManager.getConnection (
"jdbc:odbc:wombat", "login", "password");

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Tablel");
while (rs.next()) {

int x = getInt("a");

String s = getString("b");

float f = getFloat("c");

.INTRODUCTION 3

1.1.2 JDBC Is a Low-level APl and a Base for Higher-level APIls

JDBC is a “low-level” interface, which means that it is used to invoke (or “call”)
SQL commands directly. It works very well in this capacity and is easier to use than
other database connectivity APIs, but it was designed also to be a base upon which
to build higher-level interfaces and tools. A higher-level interface is “user-friendly,”
using a more understandable or more convenient API that is translated behind the
scenes into a low-level interface such as JDBC. At the time of this writing, two
kinds of higher-level APIs are under development on top of JDBC:

1. an embedded SQL for Java. At least one vendor plans to build this. DBMSs
implement SQL, a language designed specifically for use with databases.
JDBC requires that the SQL statements be passed as Strings to Java methods.
An embedded SQL preprocessor allows a programmer to instead mix SQL
statements directly with Java: for example, a Java variable can be used in a
SQL statement to receive or provide SQL values. The embedded SQL prepro-
cessor then translates this Java/SQL mix into Java with JDBC calls.

2. a direct mapping of relational database tables to Java classes. JavaSoft and
others have announced plans to implement this. In this “object/relational”
mapping, each row of the table becomes an instance of that class, and each col-
umn value corresponds to an attribute of that instance. Programmers can then
operate directly on Java objects; the required SQL calls to fetch and store data
are automatically generated “beneath the covers.” More sophisticated map-
pings are also provided, for example, where rows of multiple tables are com-
bined in a Java class.

As interest in JDBC has grown, more developers have been working on
JDBC-based tools to make building programs easier, as well. Programmers have
also been writing applications that make accessing a database easier for the end
user. For example, an application might present a menu of database tasks from
which to choose. After a task is selected, the application presents prompts and
blanks for filling in information needed to carry out the selected task. With the
requested input typed in, the application then automatically invokes the necessary
SQL commands. With the help of such an application, users can perform database
tasks even when they have little or no knowledge of SQL syntax.

INTRODUCTION

1.1.3 JDBC versus ODBC and other APIs

At this point, Microsoft's ODBC (Open DataBase Connectivity) API is probably
the most widely used programming interface for accessing relational databases. It
offers the ability to connect to almost all databases on almost all platforms. So why
not just use ODBC from Java?

The answer is that yaianuse ODBC from Java, but this is best done with
the help of JDBC in the form of the JDBC-ODBC Bridge, which we will cover
shortly. The question nhow becomes, “Why do you need JDBC?” There are several
answers to this question:

1. ODBC is not appropriate for direct use from Java because it uses a C interface.
Calls from Java to native C code have a number of drawbacks in the security,
implementation, robustness, and automatic portability of applications.

2. A literal translation of the ODBC C API into a Java APl would not be desir-
able. For example, Java has no pointers, and ODBC makes copious use of
them, including the notoriously error-prone generic pointer “void *”. You can
think of JDBC as ODBC translated into an object-oriented interface that is nat-
ural for Java programmers.

3. ODBC is hard to learn. It mixes simple and advanced features together, and
it has complex options even for simple queries. JDBC, on the other hand, was
designed to keep simple things simple while allowing more advanced capabil-
ities where required.

4. A Java API like JDBC is needed in order to enable a “pure Java” solution.
When ODBC is used, the ODBC driver manager and drivers must be manually
installed on every client machine. When the JDBC driver is written complete-
ly in Java, however, JDBC code is automatically installable, portable, and se-
cure on all Java platforms from network computers to mainframes.

In summary, the JDBC API is a natural Java interface to the basic SQL
abstractions and concepts. It builds on ODBC rather than starting from scratch, so
programmers familiar with ODBC will find it very easy to learn JDBC. JDBC
retains the basic design features of ODBC; in fact, both interfaces are based on
the X/Open SQL CLI (Call Level Interface). The big difference is that JDBC
builds on and reinforces the style and virtues of Java, and, of course, it is easy to
use.

More recently, Microsoft has introduced new APIs beyond ODBC: RDO,
ADO, and OLE DB. These designs move in the same direction as JDBC in many
ways, that is, in being an object-oriented database interface based on classes that

.INTRODUCTION 5

can be implemented on ODBC. However, we did not see compelling functionality
in any of these interfaces to make them an alternative basis to ODBC, especially
with the ODBC driver market well-established. Mostly they represent a thin
veneer on ODBC. This is not to say that JDBC does not need to evolve from the
initial release; however, we feel that most new functionality belongs in higher-
level APIs such as the object/relational mappings and embedded SQL mentioned
in the previous section.

1.1.4 Two-tier and Three-tier Models

The JDBC API supports both two-tier and three-tier models for database access.

In the two-tier model, a Java applet or application talks directly to the data-
base. This requires a JDBC driver that can communicate with the particular data-
base management system being accessed. A user's SQL statements are delivered
to the database, and the results of those statements are sent back to the user. The
database may be located on another machine to which the user is connected via a
network. This is referred to as dient/serverconfiguration, with the user’s
machine as the client, and the machine housing the database as the server. The
network can be an intranet, which, for example, connects employees within a cor-
poration, or it can be the Internet.

Java
Application Client machine

JDBC

¢ DBMS-proprietary protocol

DBMS Database server

In the three-tier model, commands are sent to a “middle tier” of services,
which then send SQL statements to the database. The database processes the SQL
statements and sends the results back to the middle tier, which then sends them to
the user. MIS directors find the three-tier model very attractive because the mid-
dle tier makes it possible to maintain control over access and the kinds of updates
that can be made to corporate data. Another advantage is that when there is a mid-
dle tier, the user can employ an easy-to-use higher-level API which is translated

INTRODUCTION

by the middle tier into the appropriate low-level calls. Finally, in many cases the
three-tier architecture can provide performance advantages.

Java applet of

Client machine (GUI)
HTML browser|

¢ HTTP, RMI, or CORBA calls

Application _ _ _
Server (Java Server machine (business logic)

JDBC

¢ DBMS-proprietary protocol

DBMS Database server

Until now the middle tier has typically been written in languages such as C or
C++, which offer fast performance. However, with the introduction of optimizing
compilers that translate Java bytecode into efficient machine-specific code, it is
becoming practical to implement the middle tier in Java. This is a big plus, mak-
ing it possible to take advantage of Java’'s robustness, multithreading, and security
features. JDBC is important to allow database access from a Java middle tier.

1.1.5 SQL Conformance

Structured Query Language (SQL) is the standard language for accessing relational
databases. One area of difficulty is that although most DBMSs (DataBase Manage-
ment Systems) use a standard form of SQL for basic functionality, they do not con-
form to the more recently-defined standard SQL syntax or semantics for more
advanced functionality. For example, not all databases support stored procedures or
outer joins, and those that do are not consistent with each other. It is hoped that the
portion of SQL that is truly standard will expand to include more and more func-
tionality. In the meantime, however, the JDBC APl must support SQL as it is.

One way the JDBC API deals with this problem is to allow any query string to
be passed through to an underlying DBMS driver. This means that an application
is free to use as much SQL functionality as desired, but it runs the risk of receiv-
ing an error on some DBMSs. In fact, an application query need not even be SQL,

.INTRODUCTION 7

or it may be a specialized derivative of SQL designed for specific DBMSs (for
document or image queries, for example).

A second way JDBC deals with problems of SQL conformance is to provide
ODBC-style escape clauses, which are discussed in section 4.1.5, “SQL Escape
Syntax in Statement Objects.”

. The escape syntax provides a standard JDBC syntax for several of the more
common areas of SQL divergence. For example, there are escapes for date literals
and for stored procedure calls.

For complex applications, JDBC deals with SQL conformance in a third way.

It provides descriptive information about the DBMS by means ofptha-
baseMetaData interface so that applications can adapt to the requirements and
capabilities of each DBMS.

Because the JDBC API will be used as a base API for developing higher-level
database access tools and APIs, it also has to address the problem of conformance
for anything built on it. The designation “JDBC COMPLIANT™” was created to
set a standard level of JDBC functionality on which users can rely. In order to use
this designation, a driver must support at least ANSI SQL-2 Entry Level. (ANSI
SQL-2 refers to the standards adopted by the American National Standards Insti-
tute in 1992. Entry Level refers to a specific list of SQL capabilities.) Driver
developers can ascertain that their drivers meet these standards by using the test
suite available with the JDBC API.

The “JDBC COMPLIANT™” designation indicates that a vendor’s JDBC
implementation has passed the conformance tests provided by JavaSoft. These
conformance tests check for the existence of all of the classes and methods
defined in the JDBC API, and check as much as possible that the SQL Entry Level
functionality is available. Such tests are not exhaustive, of course, and JavaSoft is
not currently branding vendor implementations, but this compliance definition
provides some degree of confidence in a JDBC implementation. With wider and
wider acceptance of the JDBC API by database vendors, connectivity vendors,
Internet service vendors, and application writers, JDBC is quickly becoming the
standard for Java database access.

1.2 JDBC Products

The JDBC API is a natural choice for Java developers because it offers easy data-
base access for Java applications and applets.

INTRODUCTION

At the time of this writing, a number of JDBC-based products have already
been deployed or are under development. Some description of these products will
put JDBC in perspective. Of course, the information in this section will quickly
become dated, so the reader should consult the JDBC web page for the latest
information. It can be found by navigating from the following URL:

http://www.javasoft.com/products/jdbc

1.2.1 JavaSoft Framework

JavaSoft provides three JDBC product components as part of the Java Developer’s
Kit (JDK):

 the JDBC driver managetr,
» the JDBC driver test suite, and
» the JDBC-ODBC bridge.

The JDBC driver manager is the backbone of the JDBC architecture. It actu-
ally is quite small and simple; its primary function is to connect Java applications
to the correct JDBC driver and then get out of the way.

The JDBC driver test suite provides some confidence that JDBC drivers will
run your program. Only drivers that pass the JDBC driver test suite can be desig-
nated JDBC COMPLIANT™,

The JDBC-ODBC bridge allows ODBC drivers to be used as JDBC drivers.
It was implemented as a way to get JDBC off the ground quickly, and long term
will provide a way to access some of the less popular DBMSs if JDBC drivers are
not implemented for them.

Java Application

JDBC API
JDBC Driver Manager
JDBC-Net %DEC'%DBC Driver Driver
Driver ridge Driver A B
ODBC and JDBC
DB Drivers Drivers
JDBC Proprietary database access protocols

Middleware
protocol

.INTRODUCTION 9

1.2.2 JDBC Driver Types

The JDBC drivers that we are aware of at this time fit into one of four categories:

1. JDBC-ODBC bridge plus ODBC drivefhe JavaSoft bridge product provides
JDBC access via ODBC drivers. Note that ODBC binary code, and in many
cases database client code, must be loaded on each client machine that uses
this driver. As a result, this kind of driver is most appropriate on a corporate
network where client installations are not a major problem, or for application
server code written in Java in a three-tier architecture.

2. Native-API partly-Java driverThis kind of driver converts JDBC calls into
calls on the client API for Oracle, Sybase, Informix, DB2, or other DBMS.
Note that, like the bridge driver, this style of driver requires that some binary
code be loaded on each client machine.

3. JDBC-Net pure Java driveithis driver translates JDBC calls into a DBMS-
independent net protocol which is then translated to a DBMS protocol by a
server. This net server middleware is able to connect its pure Java clients to
many different databases. The specific protocol used depends on the vendor.
In general, this is the most flexible JDBC alternative. It is likely that all ven-
dors of this solution will provide products suitable for Intranet use. In order for
these products to also support Internet access, they must handle the additional
requirements for security, access through firewalls, and so on, that the Web im-
poses. Several vendors are adding JDBC drivers to their existing database
middleware products.

4. Native-protocol pure Java driverT:his kind of driver converts JDBC calls into
the network protcol used by DBMSs directly. This allows a direct call from the
client machine to the DBMS server and is a practical solution for Intranet ac-
cess. Since many of these protocols are proprietary, the database vendors
themselves will be the primary source, and several database vendors have these
in progress.

Eventually, we expect that driver categories 3 and 4 will be the preferred way
to access databases from JDBC. Driver categories 1 and 2 are interim solutions
where direct pure Java drivers are not yet available. Category 4 is in some sense
the ideal, although there are a few cases where Category 3 may be better. (Cate-
gory 3 might be preferred if a thin DBMS-independent client is desired or if a
DBMS-independent protocol is standardized and implemented directly by many
DBMS vendors.)

10

INTRODUCTION

The following chart shows the four categories and their properties:

DRIVER CATEGORY | ALLJAVA? NET PROTOCOL
1 - JDBC-OCBC Bridge No Direct
2 - Native API as basis No Direct
3 - JDBC-Net Yes Requires Connedgor
4 - Native protocol as basis Yes Direct

1.2.3 Obtaining JDBC Drivers

At the time of this writing, there are dozens of drivers in Category 1: ODBC drivers
that can be used with JavaSoft's bridge. There are currently about a dozen Category
2 drivers built on top of native APIs for DBMSs. There are a few Category 3 driv-
ers. Currently there are at least two Category 4 drivers, but by the end of 1997, we
expect that there will be Category 4 drivers for all of the major DBMSs.

To get the latest information on drivers, check the JDBC web pagepay/ /
www . javasoft.com/products/jdbc. The first vendors with Category 3 drivers
available were SCO, Open Horizon, Visigenic, and WebLogic. JavaSoft and
Intersolv, a leading database connectivity vendor, worked together to produce the
JDBC-ODBC Bridge and the JDBC Driver Test Suite.

1.2.4 Other Products

Various JDBC application development tools are under way. Watch the JavaSoft
pages for updates.

JavaSoft or a standards group may attempt to standardize on a network proto-
col that is DBMS-independent. In that case, JavaSoft could bundle the “client

.INTRODUCTION

side” implementation of the protocol with the JDK (Java Developer’s Kit), and

various vendors could provide the server side:

JavaCode

JDBC-Net

Client machine or application server

¢ DBMS-independent protocol

Listener/
Translator

DBMS

Database server

11

12

INTRODUCTION

JAVA.SQL.CONNECTION 13

2

Connection

This overview is excerpted frodDBC™ Database Access with Java™: A Tutorial
and Annotated Referenaayrrently in progress at JavaSoft. This book, both a tuto-
rial and the definitive reference manual for JDBC, will be published in the spring of
1997 by Addison-Wesley Publishing Company as part of the Java series.

2.1 Overview

A Connection object represents a connection with a database. A connection ses-
sion includes the SQL statements that are executed and the results that are returned
over that connection. A single application can have one or more connections with a
single database, or it can have connections with many different databases.

2.1.1 Opening a Connection

The standard way to establish a connection with a database is to call the method
DriverManager.getConnection. This method takes a string containing a URL. The
DriverManager class, referred to as the JDBC management layer, attempts to locate
a driver than can connect to the database represented by that URLDri vidie

Manager class maintains a list of registerediver classes, and when the method
getConnection is called, it checks with each driver in the list until it finds one that
can connect to the database specified in the URLDrilver methodconnect uses

this URL to actually establish the connection.

A user can bypass the JDBC management layer andrcakr methods
directly. This could be useful in the rare case that two drivers can connect to a
database and the user wants to explicitly select a particular driver. Normally, how-
ever, it is much easier to just let theiverManager class handle opening a con-
nection.

14

JAVA.SQL.CONNECTION

The following code exemplifies opening a connection to a database located at
the URL"jdbc:odbc:wombat" with a user ID of oboy" and“12Java” as the pass-
word :

String url = "jdbc:odbc:wombat";
Connection con = DriverManager.getConnection(url, "oboy", "12Java");

2.1.2 URLs in General Use

Since URLs often cause some confusion, we will first give a brief explanation of
URLs in general and then go on to a discussion of JDBC URLSs.

A URL (Uniform Resource Locator) gives information for locating a resource on the
Internet. It can be thought of as an address. For general use, a URL is made up of three
parts, with only the first part being required for all URLs. (Boldface in the examples below
is used to indicate the part being described; it is not part of the URL.)

A URL has three parts:

1. Protocol used to access the informatiorhe protocol is always followed
by a colon. Some common protocols &g, which specifies “file transfer
protocol,” anchttp, which specifies “hypertext transfer protocol.” If the pro-
tocol isfile, it indicates that the resource is in a local file system rather than
on the Internet.

ftp://javasoft.com/docs/IDK-1_apidocs.zip
http://java.sun.com/products/JDK/1.1
file:/home/haroldw/docs/tutorial.html

2. Host information. This part gives the information needed to find and access
the host where the resource resides. The host information begins with a dou-
ble slash (“//") if this is an Internet application, such as ftp or http, and a single
slash (“/") if it is not. The host information ends with a single slash (“/").
Host information is itself divided into three parts:

= Domain name of the host if the resource resides on the Internet; if the resource is a
local file, there is no host name. Instead there is just the path of the file.

= User login name and password, which are included if needed.

= Port number, which is included if needed. A port number follows the host name
and a colon (*:").

JAVA.SQL.CONNECTION 15
The most common case is to have double slashes and only the hostname:

http://java.sun.com

The following URL contains the port number 80:

http://java.sun.com:80/doc/tutorial.html

The following is an example of a URL with a login nameppy" and pass-
word "1234" included as part of the hostname:

http://netsmile.grin.com."happy"."1234" /news/latest

In the domain namegava. sun.com, com indicates thajava.sun is a commer-
cial venture. Some other designations afiefor an educational institution,
org for a non-profit organization, an@dv for governmental organization.

3. Path of what is to be accessedn the following examplegroducts andibk
are directories, antl.e.2 is a file. This URL gives the location of the Java
Developer’s Kit, version 1.0.2:

http://java.sun.com/products/JDK/1.0.2

2.1.3 JDBC URLs

A JDBC URL provides a way of identifying a database so that the appropriate driver
will recognize it and establish a connection with it. A driver needs to understand
only one URL naming syntax and can happily reject any other URLs that are pre-
sented to it. It is the driver writers themselves who determine the format of a JDBC
URL. The first part will always bgdbc. The second part will be the subprotocol,
which the driver writer provides. The rest of a JDBC URL is the datasource. Infor-
mation needed to access the data source, such as the user’s login name and pass-
word, may be part of the JDBC URL, or it may be supplied separately. Users trying
to connect to a database just follow the format provided with a driver and supply the
information needed to access a database. JDBC's role is simply to recommend
some conventions for driver writers to use in structuring JDBC URLSs.

Since JDBC URLs are used with various kinds of drivers, the conventions are
of necessity very flexible. First, they allow different drivers to use different

16

JAVA.SQL.CONNECTION

schemes for naming databases. ddie subprotocol, for example, lets the URL
contain attribute values after the subname (but does not require them).

Second, JDBC URLs allow driver writers to encode all necessary connection
information within them. This makes it possible, for example, for an applet that
wants to talk to a given database to open the database connection without requir-
ing the user to do any system administration chores.

Third, JDBC URLs allow a level of indirection. This means that the JDBC
URL may refer to a logical host or database name that is dynamically translated to
the actual name by a network naming system. This allows system administrators
to avoid specifying particular hosts as part of the JDBC name. There are a num-
ber of different network name services (such as DNS, NIS, and DCE), and there is
no restriction about which ones can be used.

Since the standard URL naming mechanism already provides many of the
features needed in JDBC URLs, the JDBC URL conventions just add a new syn-
tax. The standard syntax for JDBC URLSs is:

jdbc:<subprotocol>:<subname>
A JDBC URL has three parts, which are separated by colons:

1. jdbc is the protocol. The protocol in a JDBC URL is alwagtsc.

2. <subprotocol> is usually the driver or the database connectivity mechanism,
which may be supported by one or more drivers. A prominent example of a
subprotocol name isdbc, which has been reserved for URLs that specify
ODBC-style data source names. For example, to access a database through a
JDBC-ODBC bridge, one might use a URL such as the following:

jdbc:odbc: fred

In this example, the subprotocol dgsbc, and the subnamered is a local
ODBC data source.

3. <subname> is a way to identify the database. The subname can vary, depending
on the subprotocol, and it can have a subsubname with any internal syntax the
driver writer chooses. The point of a subname is to give enough information
to locate the database. In the previous exampde is enough because ODBC
provides the remainder of the information. A database on a remote server re-

JAVA.SQL.CONNECTION 17

quires more information, however. If the database is to be accessed over the
Internet, for example, the network address should be included in the JDBC
URL as part of the subname and should follow the standard URL naming con-
vention of //hostname:port/subsubname. Supposing thatbnet is a protocol

for connecting to a host on the Internet, a JDBC URL might look like this:

jdbc:dbnet://wombat:356/fred

2.1.4 The “odbc” Subprotocol

The subprotocobdbc is a special case. It has been reserved for URLs that
specify ODBC-style data source names and has the special feature of allowing any
number of attribute values to be specified after the subname (the data source
name). The full syntax for the odbc subprotocol is:

jdbc:odbc:<data-source-name > [;<attribute-name> =<attribute-value >1*

Thus all of the following are valigdbc: odbc names:

jdbc:odbc:qeor?

jdbc:odbc:wombat
jdbc:odbc:wombat;CacheSize=20;ExtensionCase=LOWER
jdbc:odbc:qgeora;UID=kgh;PWD=fooey

2.1.5 Registering Subprotocols

A driver developer can reserve a name to be used as the subprotocol in a JDBC
URL. When thebriverManager class presents this name to its list of registered
drivers, the driver for which this name is reserved should recognize it and establish a
connection to the database it identifies. For exarviite,is reserved for the JDBC-
ODBC Bridge. If there were, for another example, a Miracle Corporation, it might
want to register “miracle” as the subprotocol for the JDBC driver that connects to its
Miracle DBMS so that no one else would use that name.

JavaSoft is acting as an informal registry for JDBC subprotocol names. To
register a subprotocol name, send email to:

jdbc@wombat.eng.sun.com

18

JAVA.SQL.CONNECTION

2.1.6 Sending SQL Statements

Once a connection is established, it is used to pass SQL statements to its underlying
database. JDBC does not put any restrictions on the kinds of SQL statements that
can be sent; this provides a great deal of flexibility, allowing the use of database-spe-
cific statements or even non-SQL statements. It requires, however, that the user be
responsible for making sure that the underlying database can process the SQL state-
ments being sent and suffer the consequences if it cannot. For example, an applica-
tion that tries to send a stored procedure call to a DBMS that does not support stored
procedures will be unsuccessful and generate an exception. JDBC requires that a
driver provide at least ANSI SQL-2 Entry Level capabilities in order to be desig-
nated JDBC COMPLIANT™. This means that users can count on at least this stan-
dard level of functionality.

JDBC provides three classes for sending SQL statements to the database, and
three methods in th€onnection interface create instances of these classes.
These classes and the methods which create them are listed below:

1. Statement- -created by the methagteateStatement. A Statement objectis
used for sending simple SQL statements.

2. PreparedStatement- -created by the meth@aepareStatement. A Prepared-
Statement Object is used for SQL statements that take one or more parameters
as input arguments (IN parameter®jeparedStatement has a group of meth-
ods which set the value of IN parameters, which are sent to the database when
the statement is executed. InstanceBreparedStatement extendStatement
and therefore includetatement methods. APreparedStatement oObject has
the potential to be more efficient thasswatement Object because it has been
pre-compiled and stored for future use.

3. CallableStatement- -created by the meth@ttepareCall. CallableState-
ment Objects are used to execute SQL stored procedures- -a group of SQL state-
ments that is called by name, much like invoking a function. A
CallableStatement Object inherits methods for handling IN parameters from
PreparedStatement; it adds methods for handling OUT and INOUT parame-
ters.

The following list gives a quick way to determine wh@linection method
is appropriate for creating different types of SQL statements:

createStatement method is used for

JAVA.SQL.CONNECTION 19

» simple SQL statements (no parameters)

prepareStatement method is used for
« SQL statements with one or more IN parameters
* simple SQL statements that are executed frequently

prepareCall method is used for
« call to stored procedures

2.1.7 Transactions

A transaction consists of one or more statements that have been executed, com-
pleted, and then either committed or rolled back. When the methadic or
rollback is called, the current transaction ends and another one begins.

A new connection is in auto-commit mode by default, meaning that when a
statement is completed, the methwemit will be called on that statement auto-
matically. In this case, since each statement is committed individually, a transac-
tion consists of only one statement. If auto-commit mode has been disabled, a
transaction will not terminate until the methaeémmit or rollback is called
explicitly, so it will include all the statements that have been executed since the
last invocation of theommit or rol1back method. In this second case, all the
statements in the transaction are committed or rolled back as a group.

The methodtommit makes permanent any changes an SQL statement makes
to a database, and it also releases any locks held by the transaction. The method
rol1back will discard those changes.

Sometimes a user doesn’t want one change to take effect unless another one
does also. This can be accomplished by disabling auto-commit and grouping both
updates into one transaction. If both updates are successful, theomite
method is called, making the effects of both updates permanent; if one fails or
both fail, then theo11back method is called, restoring the values that existed
before the updates were executed.

Most JDBC drivers will support transactions. In fact, a JDBC-compliant
driver must support transactions.DatabaseMetaData supplies information
describing the level of transaction support a DBMS provides.

20

JAVA.SQL.CONNECTION

2.1.8 Transaction Isolation Levels

If a DBMS supports transaction processing, it will have some way of managing
potential conflicts that can arise when two transactions are operating on a database
at the same time. A user can specify a transaction isolation level to indicate what
level of care the DBMS should exercise in resolving potential conflicts. For exam-
ple, what happens when one transaction changes a value and a second transaction
reads that value before the change has been committed or rolled back? Should that
be allowed, given that the changed value read by the second transaction will be
invalid if the first transaction is rolled back? A JDBC user can instruct the DBMS to
allow a value to be read before it has been committed (“dirty reads”) with the fol-
lowing code, whereon is the current connection:

con.setTransactionIsolation(TRANSACTION_READ_UNCOMMITTED) ;

The higher the transaction isolation level, the more care is taken to avoid con-
flicts. ThecConnection interface defines five levels, with the lowest specifying
that transactions are not supported at all and the highest specifying that while one
transaction is operating on a database, no other transactions may make any
changes to the data read by that transaction. Typically, the higher the level of iso-
lation, the slower the application executes (due to increased locking overhead and
decreased concurrency between users). The developer must balance the need for
performance with the need for data consistency when making a decision about
what isolation level to use. Of course, the level that can actually be supported
depends on the capabilities of the underlying DBMS.

When a newcConnection oObject is created, its transaction isolation level
depends on the driver, but normally it is the default for the underlying database. A
user may call the methadtIsolationLevel to change the transaction isolation
level, and the new level will be in effect for the rest of the connection session. To
change the transaction isolation level for just one transaction, one needs to set it
before the transaction begins and reset it after the transaction terminates. Chang-
ing the transaction isolation level during a transaction is not recommended, for it
will trigger an immediate call to the methaemmit, causing any changes up to
that point to be made permanent.

JAVA.SQL.DRIVERMANAGER 21

3

DriverManager

This overview is excerpted frodDBC™ Database Access with Java™: A Tutorial
and Annotated Referenaayrrently in progress at JavaSoft. This book, both a tuto-
rial and the definitive reference manual for JDBC, will be published in the spring of
1997 by Addison-Wesley Publishing Company as part of the Java series.

3.1 Overview

THE DriverManager class is the management layer of JDBC, working between
the user and the drivers. It keeps track of the drivers that are available and handles
establishing a connection between a database and the appropriate driver. In addition,
theDriverManager class attends to things like driver login time limits and the print-
ing of log and tracing messages.

For simple applications, the only method in this class that a general program-
mer needs to use directlynsiverManager.getConnection. AS its name implies,
this method establishes a connection to a database. JDBC allows the user to call
theDriverManager methodsyetDriver, getDrivers, andregisterDriver as well
as thedriver methodconnect, but in most cases it is better to let théverMan-
ager class manage the details of establishing a connection.

3.1.1 Keeping Track of Available Drivers

The DriverManager class maintains a list afriver classes that have registered
themselves by calling the methodiverManager.registerDriver. All Driver

classes should be written with a static section that creates an instance of the class
and then registers it with tleiverManager class when it is loaded. Thus, a user
would not normally callbriverManager.registerDriver directly; it should be

JAVA.SQL.DRIVERMANAGER

called automatically by a driver when it is loaded.brAver class is loaded, and
therefore automatically registered with théverManager, in two ways:

1. By calling the methodiass.forName. This explicitly loads the driver class.
Since it does not depend on any external setup, this way of loading a driver is
recommended. The following code loads the ciags.db.Driver:

Class.forName("acme.db.Driver");

If acme.db.Driver has been written so that loading it causes an instance to be
created and also callgiverManager. registerDriver with that instance as

the parameter (as it should do), then it is inbthi@erManager’s list of drivers

and available for creating a connection.

2. By adding the driver to thiava.lang.System propertyjdbc.drivers. Thisis
a list of driver classnames, separated by colons, thattkerManager class
loads. When theriverManager class is intialized, it looks for the system
propertyjdbc.drivers, and if the user has entered one or more drivers, the
DriverManager class attempts to load them. The following code illustrates
how a programmer might enter three driver classeg iRotjava/properties
(HotJava loads these into the system properties list on startup):

jdbc.drivers=foo.bah.Driver:wombat.sql.Driver:bad.test.ourDriver;

The first call to @riverManager method will automatically cause these driver
classes to be loaded.

Note that this second way of loading drivers requires a preset environment
that is persistent. If there is any doubt about that being the case, it is safer to call
the method1ass. forName to explicitly load each driver. This is also the method
to use to bring in a particular driver since oncedihieerManager class has been
initialized, it will never recheck thgdbc.drivers property list.

In both of the cases listed above, it is the responsibility of the newly-loaded
Driver class to register itself by callinDriverManager.registerDriver. AS
mentioned above, this should be done automatically when the class is loaded.

For security reasons, the JDBC management layer will keep track of which
class loader provided which driver. Then whentthiverManager class is open-
ing a connection, it will use only drivers that come from the local file system or
from the same class loader as the code issuing the request for a connection.

JAVA.SQL.DRIVERMANAGER 23

3.1.2 Establishing a Connection

Once thepriver classes have been loaded and registered withriv@rManager

class, they are available for establishing a connection with a database. When a
request for a connection is made with a call tob#i@erManager.getConnection
method, theriverManager tests each driver in turn to see if it can establish a con-
nection.

It may sometimes be the case that more than one JDBC driver is capable of
connecting to a given URL. For example, when connecting to a given remote
database, it might be possible to use a JDBC-ODBC bridge driver, a JDBC-to-
generic-network-protocol driver, or a driver supplied by the database vendor. In
such cases, the order in which the drivers are tested is significant because the
DriverManager Will use the first driver it finds that can successfully connect to the
given URL.

First thebriverManager tries to use each of the drivers in the order they were
registered. (The drivers listedjabc.drivers are always registered first.) It will
skip any drivers which are untrusted code, unless they have been loaded from the
same source as the code that is trying to open the connection.

It tests the drivers by calling the methmdver. connect on each one in turn,
passing them the URL that the user originally passed to the methagMan-
ager.getConnection. The first driver that recognizes the URL makes the connec-
tion.

At first glance this may seem inefficient, but it requires only a few procedure
calls and string comparisons per connection since it is unlikely that dozens of
drivers will be loaded concurrently.

The following code is an example of all that is normally needed to set up a
connection with a driver such as a JDBC-ODBC bridge driver:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); //loads the driver
String url = "jdbc:odbc:fred";
DriverManager.getConnection(url, "userID", "passwd");

24

JAVA.SQL.DRIVERMANAGER

JAVA.SQL.STATEMENT 25

A4

Statement

This overview is excerpted frodDBC™ Database Access with Java™: A Tutorial
and Annotated Referenaayrrently in progress at JavaSoft. This book, both a tuto-
rial and the definitive reference manual for JDBC, will be published in the spring of
1997 by Addison-Wesley Publishing Company as part of the Java series.

4.1 Overview

A Statement Object is used to send SQL statements to a database. There are actu-
ally three kinds oftatement objects, all of which act as containers for executing
SQL statements on a given connectioftatement, PreparedStatement, Which

inherits fromsStatement, andCallableStatement, which inherits fromPrepared-
Statement. They are specialized for sending particular types of SQL statements: a
Statement Object is used to execute a simple SQL statement with no parameters; a
PreparedStatement object is used to execute a precompiled SQL statement with or
without IN parameters; andcallableStatement Object is used to execute a call to

a database stored procedure.

Thestatement interface provides basic methods for executing statements and
retrieving results. ThereparedStatement interface adds methods for dealing
with IN parametersgallableStatement adds methods for dealing with OUT
parameters.

4.1.1 Creatingstatement Objects

Once a connection to a particular database is established, that connection can be
used to send SQL statements.S#tement Object is created with th®nnection
methodcreateStatement, as in the following code fragment:

26

JAVA.SQL.STATEMENT

Connection con = DriverManager.getConnection(url, "sunny", "'");
Statement stmt

con.createStatement();

The SQL statement that will be sent to the database is supplied as the argu-
ment to one of the methods for executirg@tement object:

ResultSet rs = stmt.executeQuery(“SELECT a, b, c FROM Table2);

4.1.2 Executingstatement Objects

The statement interface provides three different methods for executing SQL
statementsexecuteQuery, executeUpdate, andexecute. The one to use is deter-
mined by what the SQL statement produces.

The methodexecuteQuery is designed for statements that produce a single
result set. For the sake of clarity, we will distinguish between the tetons
value which is what the execution of a method returns,raadlt which is what
the SQL statement produces. For example, the methatteQuery returns a
ResultSet object. The SQL statement that it executes produces a result set. So in
this case, the return valueR@ultSet object which contains the result set gener-
ated by the SQL statement) is the same as the result.

The situation is different for the methegdecuteUpdate, however. It is used
t0 exeCUteINSERT, UPDATE, Or DELETE statements and also SQL DDL (Data Defini-
tion Language) statements lIkREATE TABLE andDROP TABLE. Theresultof an
INSERT, UPDATE, Or DELETE Statement is a modification of one or more columns in
zero or more rows in a table. Tregurn valueof executeUpdate is an integer indi-
cating the number of rows that were affected (referred to as the update count),
which is quite different from theesultsof executing an update statement. A state-
ment like CREATE TABLE presents yet another situation; it produces a new table,
which is its result, but it returns nothing. In this case, the methadteUpdate
returns zero. Consequently, when zero is the return valusdeiiteUpdate, it
can mean one of two things: 1) the SQL statement executed WHRESERT,
UPDATE, Or DELETE statement that affected no rows, or 2) the SQL statement exe-
cuted was a DDL statement.

All of the methods for executing statements close the caflingement
object’s current result set if there is one open. This means that one needs to com-
plete any processing of the currestultSet object before re-executingsaate-
ment Object.

JAVA.SQL.STATEMENT 27

It should be noted that tlreeparedStatement interface, which inherits all of
the methods in thetatement interface, has its own versions of the methods
cuteQuery, executeUpdate andexecute. Statement Objects do not themselves
contain an SQL statement; therefore, one must be provided as the argument to the
Statement.execute methods. PreparedStatement Objects do not supply an SQL
statement as a parameter to these methods because they already contain a precom-
piled SQL statementCallableStatement Objects inherit th@reparedStatement
forms of these methods. Using a query parameter RviéhredStatement Of
CallableStatement versions of these methods will causesarException to be
thrown.

4.1.3 Using the MethodExecute

The execute method should be used only when it is possible that a statement may
return more than orfesultSet object, more than one update count, or a combina-
tion of ResultSet objects and update counts. These multiple possibilities for
results, though rare, are possible when one is executing certain stored procedures or
dynamically executing an unknown SQL string (that is, unknown to the application
programmer at compile time). For example, a user might execute a stored procedure
(using acallableStatement Object—see Section 7, “CallableStatement,” of this
JDBC Guidg, and that stored procedure could perform an update, then a select, then
an update, then a select, and so on. Typically someone using a stored procedure will
know what it returns.

Because the methadecute handles the cases that are out of the ordinary, it
is no surprise that retrieving its results requires some special handling. For
instance, suppose it is known that a procedure returns two result sets. After using
the methodexecute to execute the procedure, one must call the medlaerk-
sultSet to get the first result set and then the appropgat&xx methods to
retrieve values from it. To get the second result set, one needsdettaHere-
sults and thengetResultSet a second time. |If it is known that a procedure
returns an update count, the metleeupdateCount is called.

Those cases where one does not know what will be returned are more compli-
cated. The methoexecute returnstrue if the result is &esultSet object and
false if it is @ Javaint. If it returns anint, that means that the result is either an
update count or that the statement executed was a DDL command. The first thing
to do after calling the methogkecute, is to call eithelgetResultSet Or getUp-
dateCount. The methodetResultSet is called to get what might be the first of

28

JAVA.SQL.STATEMENT

two or moreresultSet objects; the methogktUpdateCount is called to get what
might be the first of two or more update counts.

When the result of an SQL statement is not a result set, the metired
sultSet will returnnul11. This can mean that the result is an update count or that
there are no more results. The only way to find out whaiuthiereally means in
this case is to call the methgétupdateCount, which will return an integer. This
integer will be the number of rows affected by the calling statementtorindi-
cate either that the result is a result set or that there are no results. If the method
getResultSet has already returne€h11, which means that the result is not a
ResultSet object, then a return value ef has to mean that there are no more
results. In other words, there are no results (or no more results) when the follow-
ing is true:

((stmt.getResultSet() == null) && (stmt.getUpdateCount() == -1))

If one has called the methagttResultSet and processed thResultSet
object it returned, it is necessary to call the metwadoreResults to see if there
is another result set or update count.gelfMoreResults returnstrue, then one
needs to again calletResultSet to actually retrieve the next result set. As
already stated above, dktResultSet returnsnull, one has to caljetUpdate-
Count to find out whethenu11 means that the result is an update count or that
there are no more results.

When getMoreResults returns false, it means that the SQL statement
returned an update count or that there are no more results. So one needs to call the
methodgetUpdateCount to find out which is the case. In this situation, there are
no more results when the following is true:

((stmt.getMoreResults() == false) & & (stmt.getUpdateCount() == -1))

The code below demonstrates one way to be sure that one has accessed all the
result sets and update counts generated by a call to the ragthotk:

stmt.execute(queryStringWithUnknownResults);
while(true) {
int rowCount = stmt.getUpdateCount();
if(rowCount > 0) { // this is an update count
System.out.printIn("Rows changed = "
stmt.getMoreResults();
continue;

+ count);

JAVA.SQL.STATEMENT 29

}
if(rowCount = 0) { // DDL command or @ updates
System.out.printin(" No rows changed or statement was DDL
command™) ;
stmt.getMoreResults();
continue;

// if we have gotten this far, we have either a result set
// or no more results

ResultSet rs = stmt.getResultSet;
if(rs !'= null) {
// use metadata to get info about result set columns
while(rs.next()) {
// process results
stmt.getMoreResults();
continue;
}

break; // there are no more results

4.1.4 statement Completion

When a connection is in auto-commit mode, the statements being executed within it
are committed or rolled back when they are completed. A statement is considered
complete when it has been executed and all its results have been returned. For
almost all cases, this occurs when one calls the metteedteQuery (and retrieves

the ResultSet rows) or the methodxecuteUpdate. In the rare cases where the
methodexecute is called, however, a statement is not complete until all of the
result sets or update counts it generated have been retrieved.

Some DBMSs treat each statement in a stored procedure as a separate state-
ment; others treat the entire procedure as one compound statement. This differ-
ence becomes important when auto-commit is enabled because it affects when the
methodcommit is called. In the first case, each statement is individually commit-
ted; in the second, all are committed together.

JAVA.SQL.STATEMENT

4.15 SQL Escape Syntax istatement Objects

Statement Objects may contain SQL statements that use SQL escape syntax.
Escape syntax signals the driver that the code within it should be handled differ-
ently. The driver will scan for any escape syntax and translate it into code that the
particular database understands. This makes escape syntax DBMS-independent and
allows a programmer to use features that might not otherwise be available.

An escape clause is demarcated by curly braces and a key word:

{keyword . . . parameters . . . }
The keyword indicates the kind of escape clause, as shown below.

» escape for LIKE escape characters

The characters “%"” and “_" work like wild cards in SQIKE clauses

(“%” matches zero or more characters, and “_" matches exactly one charac-
ter). In order to interpret them literally, they can be preceded by a backslash
(“\"), which is a special escape character in strings. One can specify which

character to use as the escape character by including the following syntax at

the end of a query:

{escape 'escape-character'?}

For example, the following query, using the backslash character as an
escape character, finds identifier names that begin with an underbar:

stmt.executeQuery(“SELECT name FROM Identifiers
WHERE Id LIKE ‘_%’ {escape ‘\’};

* n for scalar functions

Almost all DBMSs have numeric, string, time, date, system, and conver-
sion functions on scalar values. One of these functions can be used by putting
it in escape syntax with the keywofd followed by the name of the desired
function and its arguments. For example, the following code calls the func-
tion concat with two arguments to be concatenated:

{fn concat(“Hot”, “Java”)};

JAVA.SQL.STATEMENT 31

The name of the current database user can be obtained with the following
syntax:

{fn user(Q};

Scalar functions may be supported by different DBMSs with slightly dif-
ferent syntax, and they may not be supported by all drivers. Variaus
baseMetaData methods will list the functions that are supported. For example,
the methodgetNumericFunctions returns a comma-separated list of the
names of numeric functions, the methe@stringFunctions returns string
functions, and so on.

The driver will either map the escaped function call into the appropriate
syntax or implement the function directly itself.

e d, t, andts for date and time literals

DBMSs differ in the syntax they use for date, time, and timestamp liter-
als. JDBC supports ISO standard format for the syntax of these literals, using
an escape clause that the driver must translate to the DBMS representation.

For example, a date is specified in a JDBC SQL statement with the fol-
lowing syntax:

{d ‘yyyy-mm-dd’}

In this syntaxyyyy is the yearmm is the month, andd is the day. The
driver will replace the escape clause with the equivalent DBMS-specific rep-
resentation. For example, the driver might repkaic@999-02-283 with '28-
FEB-99' if that is the appropriate format for the underlying database.

There are analogous escape clausesIfagr andTIMESTAMP:

{t ‘hh:mm:ss’}
{ts ‘yyyy-mm-dd hh:mm:ss.f . . .’}

The fractional secondsf . . .) portion of theTIMESTAMP can be omit-
ted.

e callor ? = call for stored procedures

If a database supports stored procedures, they can be invoked from JDBC
with the following syntax:

JAVA.SQL.STATEMENT

{call procedure_name[(?, ?, . . .)]}

or, where a procedure returns a result parameter:

{? = call procedure_name[(?, 7, . . .)]1}

The square brackets indicate that the material enclosed between them is
optional. They are not part of the syntax.

Input arguments may be either literals or parameters. See Section 7,
“CallableStatement,” of thiSDBC Guidefor more information.

One can call the meth@dtabaseMetaData.supportsStoredProcedures
to see if the database supports stored procedures.

oj for outer joins

The syntax for an outer join is

{oj outer-join}

whereouter-join is of the form

table LEFT OUTER JOIN {table | outer-join} ON search-condition

Outer joins are an advanced feature, and one can check the SQL grammar
for an explanation of them. JDBC provides threebaseMetabata methods
for determining the kinds of outer joins a driver suppafigportsOuter-
Joins, supportsFullOuterJoins, andsupportsLimitedOuterloins

The methodtatement.setEscapeProcessing tUrns escape processing on
or off; the default is for it to be on. A programmer might turn it off to cut
down on processing time when performance is paramount, but it would nor-
mally be turned on. It should be noted thé@tEscapeProcessing does not
work for PreparedStatement Objects because the statement may have already
been sent to the database before it can be calledpPrSgea-edStatement
regarding precompilation.

JAVA.SQL.RESULTSET 33

5

ResultSet

T HIS overview is excerpted frodDBC™ Database Access with Java™: A Tuto-
rial and Annotated Referenceirrently in progress at JavaSoft. This book, both a
tutorial and the definitive reference manual for JDBC, will be published in the
spring of 1997 by Addison-Wesley Publishing Company as part of the Java series.

5.1 Overview

A ResultSet contains all of the rows which satisfied the conditions in an SQL
statement, and it provides access to the data in those rows throughg seteth-
ods that allow access to the various columns of the current rowReEbet-
Set.next method is used to move to the next row ofRédwm1tSet, making the next
row become the current row.

The general form of a result set is a table with column headings and the corre-
sponding values returned by a query. For example, if your qQUSEYEST a, b,
c FROM Tablel, your result set will have the following form:

a b C

12345 Cupertino CA
83472 Redmond WA
83492 Boston MA

The following code fragment is an example of executing an SQL statement
that will return a collection of rows, with column 1 asiar, column 2 as a
String, and column 3 as an array of bytes:

java.sql.Statement stmt = conn.createStatement();

JAVA.SQL.RESULTSET

ResultSet r = stmt.executeQuery("SELECT a, b, c FROM Tablel™);
while (r.next())

{

// print the values for the current row.

int i = r.getInt("a");

String s = r.getString("b");

float f = r.getFloat("c");

System.out.printIn(“ROW = " + i + " " + s + " " + f);
}

5.1.1 Rows and Cursors

A ResuTltSet maintains a cursor which points to its current row of data. The cursor
moves down one row each time the methed is called. Initially it is positioned
before the first row, so that the first calhtat puts the cursor on the first row, mak-
ing it the current row.ResultSet rows are retrieved in sequence from the top row
down as the cursor moves down one row with each successivereadt to

A cursor remains valid until thresultSet object or its parenstatement
object is closed.

In SQL, the cursor for a result table is named. If a database allows positioned
updates or positioned deletes, the name of the cursor needs to be supplied as a
parameter to the update or delete command. This cursor name can be obtained by
calling the methodetCursorName.

Note that not all DBMSs support positioned update and delete.pakhe
baseMetaData.supportsPositionedDelete and supportsPositionedUpdate
methods can be used to discover whether a particular connection supports these
operations. When they are supported, the DBMS/driver must ensure that rows
selected are properly locked so that positioned updates do not result in update
anomalies or other concurrency problems.

5.1.2 Columns

The getxxXx methods provide the means for retrieving column values from the cur-
rent row. Within each row, column values may be retrieved in any order, but for
maximum portability, one should retrieve values from left to right and read column
values only once.

Either the column name or the column number can be used to designate the
column from which to retrieve data. For example, if the second column of a
ResultSet objectrs is named “title” and stores values as strings, either of the fol-
lowing will retrieve the value stored in that column:

JAVA.SQL.RESULTSET 35

String s = rs.getString(“title”);
String s = rs.getString(2);

Note that columns are numbered from left to right starting with column 1.
Also, column names used as inpugéaxxx methods are case insensitive.

The option of using the column name was provided so that a user who speci-
fies column names in a query can use those same names as the arguments to
getxXxx methods. If, on the other hand, #@ect statement does not specify col-
umn names (as insélect * from tablel” Or in cases where a column is
derived), column numbers should be used. In such situations, there is no way for
the user to know for sure what the column names are.

In some cases, it is possible for a SQL query to return a result set that has
more than one column with the same name. If a column name is used as the
parameter to getxxx method,getxxx will return the value of the first matching
column name. Thus, if there are multiOple columns with the same name, one
needs to use a column index to be sure that the correct column value is retrieved.
It may also be slightly more efficient to use column numbers.

Information about the columns inRasultSet is available by calling the
methodResultSet.getMetaData. TheResultSetMetaData Object returned gives
the number, types, and properties oRésultSet object’'s columns.

If the name of a column is known, but not its index, the metiadColumn
can be used to find the column number.

5.1.3 Data Types and Conversions

For thegetxxx methods, the JDBC driver attempts to convert the underlying
data to the specified Java type and then returns a suitable Java value. For example,
if the getxxx method igetString, and the data type of the data in the underlying
database iSARCHAR, the JDBC driver will converfARCHAR to Javastring. The
return value ofetString will be a Javatring object.

The following table shows which SQL typegeXxxx method isallowedto
retrieve and which SQL types asxommendetbr it to retrieve. A smalk indi-
cates a legajetxxx method for a particular data type; a lakxgedicates the rec-
ommendedgetxxx method for a data type. For example, aayxxx method
exceplgetBytes OF getBinaryStream can be used to retrieve the value abeG-
VARCHAR, butgetAsciiStream Or getUnicodeStream are recommended, depending
on which data type is being returned. The meigwdbject will return any data
type as a Javabject and is useful when the underlying data type is a database-

JAVA.SQL.RESULTSET

specific abstract type or when a generic application needs to be able to accept any
data type.
Use ofResultSet.getXXX methods to retrieve common SQL data types.

An “x” indicates that thggetXXX method may legally be used to retrieve the given SQL type.
An “X” indicates that thegetXXX method is recommended for retrieving the given SQL type.

T|S|I |B|R|F|DIDIN|B|C|V|L|B|V|L|D|T|T
I IM[N|I [E|L|O|E|U|I [HIA[O|I |A|O|A]|I |I
N|AIT|IG|A|OJU|CIM|T|A|R|[N|N|R|N|T|M|M
Y|L|E LIA|B|I |E R|C|G|A|B|G|E|E|E
I [L|G|N T|L|M|R HIVIR|I |V S
NI [E|T E|A|I A|A|Y|N|A T
T|IN|R L|C RIR AR A
T C R|B M
H Yl P
A N
R A
R
Y
getByte XXX [X|X[X[X[X]|X][X[X]|X]X
getShort XXX [XX [X[X[X]|X[X|[X]|X]|X
getint X| X[XX [X[X[X|X[X]|X]|X]|X]|X
getLong X[X| X[X[X|X[X[X[X]|X][X]|X]|X
getFloat XX X[X[X|X|X|X|[X]|X][X|[X]|X
getDouble XX X[X |X[X|X[X[X]|X|X][X]|X
getBigDecimal XX X[X |X[X|X[X[X]|X|[X][X]|X
getBoolean XX X[X[X|X|X|X|[X]|X][X|X]|X
getString XX XX XX [X[X[X[X[X|[X]|X[|X[X]|X]|X|X]|X
getBytes X[X|x
getDate x| X| X X X
getTime X| X| X X | x
getTimestamp X X X X X
getAsciiStream X X X|X|[X]|X
getUnicodeStream XX [x|x
getBinaryStream X XX
getObject XX XX [X[X[X[X[X|X[X[X]|X[X]|X|[X][X]|X]|X

JAVA.SQL.RESULTSET 37

5.1.4 Using Streams for Very Large Row Values

ResultSet makes it possible to retrieve arbitrarily lar@@GVARBINARY OF LONGVAR-
CHAR data. The methodgtBytes andgetString return data as one large chunk (up
to the limits imposed by the return valueseftement.getMaxFieldSize). How-
ever, it may be more convenient to retrieve very large data in smaller, fixed-size
chunks. This is done by having tkesultSet class returjava.io.Input Streams
from which data can be read in chunks. Note that these streams must be accessed
immediately because they will be closed automatically on thegaexxx call on
ResultSet. (This behavior is imposed by underlying implementation constraints on
large blob access.)

The JDBC API has three separate methods for getting streams, each with a
different return value:

* getBinaryStream returns a stream which simply provides the raw bytes from
the database without any conversion.

* getAsciiStream returns a stream which provides one-byte ASCII characters.

* getUnicodeStream returns a stream which provides two-byte Unicode charac-
ters.

Note that this differs from Java streams, which return untyped bytes and can
(for example) be used for both ASCII and Unicode characters.
The following code gives an example of usge@AsciiStream:

java.sql.Statement stmt = con.createStatement();
ResultSet r = stmt.executeQuery(“SELECT x FROM Table2”);
// Now retrieve the column 1 results in 4 K chunks:
byte buff = new byte[4096];
while (r.next()) {

Java.io.InputStream fin = r.getAsciiStream(l);

for ;) {
int size = fin.read(buff);
if (size == -1) { // at end of stream
break;
}

// Send the newly-filled buffer to some ASCII output stream:
output.write(buff, 0, size);

JAVA.SQL.RESULTSET

5.1.5 NuLL Result Values

To determine if a given result values@ NULL, one must first read the column
and then use theesultSet.wasNull method to discover if the read returned an
SQLNULL.

When one has read an SQWLL using one of th@esultSet.getXXX meth-
ods, the methoelasNu11 will return one of the following:

* A Javanull value for thosgetxxx methods that return Java objects (methods
such agetString, getBigDecimal, getBytes, getDate, getTime, getTimes-
tamp, getAsciiStream, getUnicodeStream, getBinaryStream, getObject).

* A zero value fogetByte, getShort, getInt, getlLong, getFloat, andgetDou-
ble.

* A false value forgetBoolean.

5.1.6 Optional or Multiple Result Sets

Normally SQL statements are executed using eithecuteQuery (which
returns a singl@esultSet) or executeUpdate (which can be used for any kind of
database modification statement and which returns a count of the rows updated).
However, under some circumstances an application may not know whether a
given statement will return a result set until the statement has executed. In addi-
tion, some stored procedures may return several different result sets and/or update
counts.

To accommodate these situations, JDBC provides a mechanism so that an
application can execute a statement and then process an arbitrary collection of
result sets and update counts. This mechanism is based on first calling a fully gen-
eralexecute method, and then calling three other methgé&ResultSet, getUp-
dateCount, andgetMoreResults. These methods allow an application to explore
the statement results one at a time and to determine if a given resukayasta
Set or an update count.

You do not need to do anything to clos®eaultSet; it is automatically
closed by thetatement that generated it when thetatement is closed, is re-exe-
cuted, or is used to retrieve the next result from a sequence of multiple results.

JAVA.SQL.PREPAREDSTATEMENT 39

6

PreparedStatement

T HIS overview is excerpted frodDBC™ Database Access with Java™: A Tuto-
rial and Annotated Referenceirrently in progress at JavaSoft. This book, both a
tutorial and the definitive reference manual for JDBC, will be published in the
spring of 1997 by Addison-Wesley Publishing Company as part of the Java series.

6.1 Overview

The PreparedStatement interface inherits fronstatement and differs from it in
two ways:

1. Instances ofreparedStatement contain an SQL statement that has already
been compiled. This is what makes a statement “prepared.”

2. The SQL statement contained iPraparedStatement object may have one or
more IN parameters. An IN parameter is a parameter whose value is not spec-
ified when the SQL statement is created. Instead the statement has a question
mark (“?"”) as a placeholder for each IN parameter. A value for each question
mark must be supplied by the appropriatexxx method before the statement
is executed.

Becausereparedstatement Objects are precompiled, their execution can be faster
than that ofStatement oObjects. Consequently, an SQL statement that is executed
many times is often created aBraparedStatement object to increase efficiency.

Being a subclass oftatement, PreparedStatement inherits all the function-
ality of statement. In addition, it adds a whole set of methods which are needed
for setting the values to be sent to the database in place of the placeholders for IN

40

JAVA.SQL.PREPAREDSTATEMENT

parameters. Also, the three methedscute, executeQuery, andexecuteUpdate

are modified so that they take no argument. Sidaeement forms of these meth-

ods (the forms that take an SQL statement parameter) should never be used with a
PreparedStatement Object.

6.1.1 CreatingPreparedStatement Objects

The following code fragment, whek®n is aConnection object, creates Bre-
paredStatement Object containing an SQL statement with two placeholders for IN
parameters:

PreparedStatement pstmt = con.prepareStatement(
"UPDATE table4 SET m = ? WHERE x = ?");

The objectpstmt now contains the statementPDATE table4 SET m = ?
WHERE x = ?", which has already been sent to the DBMS and been prepared for
execution.

6.1.2 PassingN Parameters

Before aPreparedStatement object is executed, the value of eacharameter

must be set. This is done by callingeaxxx method, wherexx is the appropri-

ate type for the parameter. For example, if the parameter has a Java type, of

the method to use isetLong. The first argument to thatxxx methods is the
ordinal positionof the parameter to be set, and the second argumentvis tie¢o

which the parameter is to be set. For example, the following code sets the first
parameter ta23456789 and the second parameternee000000:

pstmt.setlLong(l, 123456789);
pstmt.setlLong(2, 100000000) ;

Once a parameter value has been set for a given statement, it can be used for
multiple executions of that statement until it is cleared by a call to the method
clearParameters.

In the default mode for a connection (auto-commit enabled), each statement is
commited or rolled back automatically when it is completed.

The samerreparedStatement Object may be executed multiple times if the
underlying database and driver will keep statements open after they have been

JAVA.SQL.PREPAREDSTATEMENT 41

committed. Unless this is the case, however, there is no point in trying to improve

performance by usingrxeparedStatement object in place of atatement object.
Usingpstmt, thePreparedStatement Object created above, the following code

illustrates setting values for the two parameter placeholders and exggittifng

10 times. As stated above, for this to work, the database must nogglese In

this example, the first parameter is setHt” and remains constant. The second

parameter is set to a different value each time arountbthieop, starting witle

and ending witl®.

pstmt.setString(l, "Hi");

for (int i =0; i < 10; i++) {
pstmt.setInt(2, i);
int rowCount = pstmt.executeUpdate();

6.1.3 Data Type Conformance on IN Parameters

ThexxXx in asetxxX method is a Java type. It is implicitly an SQL type because the

driver will map the Java type to its corresponding SQL type (following the mapping
specified in the table in Section 8.5.2 of “Mapping Java and SQL Types” in this
JDBC Guidé and send that SQL type to the database. For example, the following
code fragment sets the second parameter @#réparedStatement objectpstmt to

44, with a Java type afhort:

pstmt.setShort(2, 44);

The driver will send 44 to the database as an SQ@LLINT, which is the standard
mapping from a Javshort.

It is the programmer’s responsibility to make sure that the Java type of each
IN parameter maps to an SQL type that is compatible with the SQL data type
expected by the database. Consider the case where the database expects an SQL
SMALLINT. If the methodsetByte is used, the driver will send an SQINYINT to
the database. This will probably work because many databases convert from one
related type to another, and generallyiigyINT can be used anywheresmaLLINT
is used. However, for an application to work with the most databases possible, it
is best to use Java types that correspond to the exact SQL types expected by the
database. If the expected SQL typesi®LLINT, usingsetShort instead oket-
Byte will make an application more portable.

42

JAVA.SQL.PREPAREDSTATEMENT

6.1.4 UsingsetObject

A programmer can explicitly convert an input parameter to a particular SQL
type by using the methogktobject. This method can take a third argument,
which specifies the target SQL type. The driver will convert the Qia\at to
the specified SQL type before sending it to the database.

If no SQL type is given, the driver will simply map the Jawgect to its
default SQL type (using the table in Section 8.5.4) and then send it to the data-
base. This is similar to what happens with the regidexxx methods; in both
cases, the driver maps the Java type of the value to the appropriate SQL type
before sending it to the database. The difference is thattkex methods use
the standard mapping from Java types to SQL types (see the table in Section
8.5.2), whereas theetobject method uses the mapping from Jawgect types
to SQL types (see the table in Section 8.5.4).

The capability of the methogktobject to accept any Java object allows an
application to be generic and accept input for a parameter at run time. In this situ-
ation the type of the input is not known when the application is compiled. By
usingsetObject, the application can accept any Java object type as input and con-
vert it to the SQL type expected by the database. The table in Section 8.5.5 shows
all the possible conversions thatobject can perform.

6.1.5 SendingsqQL NULL as an IN parameter

The setNu11 method allows a programmer to send an SQlL value to the data-
base as an IN parameter. Note, however, that one must still specify the SQL type of
the parameter.

An SQL NuLL will also be sent to the database when a Java value is
passed to aetxxx method (if it takes Java objects as arguments). The method
setObject, however, can takera11 value only if the SQL type is specified.

6.1.6 Sending Very Large IN Parameters

The methodsetBytes andsetString are capable of sending unlimited amounts of
data. Sometimes, however, programmers prefer to pass in large blobs of data in
smaller chunks. This can be accomplished by setting an IN parameter to a Java
input stream. When the statement is executed, the JDBC driver will make repeated
calls to this input stream, reading its contents and transmitting those contents as the
actual parameter data.

JAVA.SQL.PREPAREDSTATEMENT 43

JDBC provides three methods for setting IN parameters to input streams:
setBinaryStream for streams containing uninterpreted bytsAsciiStream for
streams containing ASCII characters, aa¢lnicodeStream for streams contain-
ing Unicode characters. These methods take one more argument than the other
setXXX methods because the total length of the stream must be specified. This is
necessary because some databases need to know the total transfer size before any
data is sent.

The following code illustrates using a stream to send the contents of a file as
an IN parameter:

java.io.File file = new java.io.File(“/tmp/data”);

int fileLength = file.lengthQ);

java.io.InputStream fin = new java.io.FileInputStream(file);

java.sql.PreparedStatement pstmt = con.prepareStatement(
“UPDATE Table5 SET stuff = ? WHERE index = 47);

pstmt.setBinaryStream (1, fin, filelLength);

pstmt.executeUpdate();

When the statement executes, the input streianwill get called repeatedly
to deliver up its data.

44

JAVA.SQL.PREPAREDSTATEMENT

JAVA.SQL.CALLABLESTATEMENT 45

v

CallableStatement

T HIS overview is excerpted frodDBC™ Database Access with Java™: A Tuto-
rial and Annotated Referenceirrently in progress at JavaSoft. This book, both a
tutorial and the definitive reference manual for JDBC, will be published in the
spring of 1997 by Addison-Wesley Publishing Company as part of the Java series.

7.1 Overview

A CallableStatement Object provides a way to call stored procedures in a standard
way for all DBMSs. A stored procedure is stored in a databasegltie the stored
procedure is what @l1lableStatement Object contains. This call is written in an
escape syntax that may take one of two forms: one form with a result parameter,
and the other without one. (See Section 4, “Statement,” for information on escape
syntax.) A result parameter, a kind of OUT parameter, is the return value for the
stored procedure. Both forms may have a variable number of parameters used for
input (IN parameters), output (OUT parameters), or both (INOUT parameters). A
guestion mark serves as a placeholder for a parameter.

The syntax for invoking a stored procedure in JDBC is shown below. Note
that the square brackets indicate that what is between them is optional; they are
not themselves part of the syntax.

{call procedure_name[(?, ?, ...)]1}
The syntax for a procedure that returns a result parameter is:
{? = call procedure_name[(?, 7, ...)]}

The syntax for a stored procedure with no parameters would look like this:

46

JAVA.SQL.CALLABLESTATEMENT

{call procedure_name}

Normally, anyone creating @11ableStatement Object would already know
that the DBMS being used supports stored procedures and what those procedures
are. If one needed to check, however, varmsbaseMetaData methods will
supply such information. For instance, the methagportsStoredProcedures
will return true if the DBMS supports stored procedure calls, and the method
getProcedures Will return a description of the stored procedures available.
CallableStatement inheritsStatement methods, which deal with SQL state-
ments in general, and it also inhemtsparedStatement methods, which deal
with IN parameters. All of the methods definedtaniableStatement deal with
OUT parameters or the output aspect of INOUT parameters: registering the SQL
types of the OUT parameters, retrieving values from them, or checking whether a
returned value wasqL NULL.

7.1.1 Creating aCcallableStatement Object

CallableStatement Objects are created with thennection methodprepareCall.

The example below creates an instancadfableStatement that contains a call to
the stored procedugtTestData, which has two arguments and no result parame-
ter:

CallableStatement cstmt = con.prepareCall(
“{call getTestData(?, 7)}");

Whether the? placeholders are IN, OUT, or INOUT parameters depends on
the stored procedug@tTestData.

7.1.2 IN and OUT Parameters

Passing in any IN parameter values taHableStatement Object is done using the
setXXX methods inherited frorAreparedStatement. The type of the value being
passed in determines whightxxx method to usesétFloat to pass in &loat
value, and so on).

If the stored procedure returns OUT parameters, the SQL type of each OUT
parameter must be registered before dhidableStatement Object can be exe-
cuted. (This is necessary because some DBMSs require the SQL type.) Register-
ing the SQL type is done with the methadisteroutParameter. Then after the

JAVA.SQL.CALLABLESTATEMENT 47

statement has been executedl,1ableStatement’s getXXX methods retrieve the
parameter value. The corregttxxx method to use is the Java type that corre-
sponds to the SQL type registered for that parameter. (The standard mapping
from SQL types to Java types is shown in the table in Section 8.5.1.) In other
words,registerOutParameter Uses an SQL type (so that it matches the SQL type
that the database will return), atekxxx casts this to a Java type.

To illustrate, the following code registers the OUT parameters, executes the
stored procedure called lgtmt, and then retrieves the values returned in the
OUT parameters. The methgdtByte retrieves a Java byte from the first OUT
parameter, andetBigDecimal retrieves aBigbDecimal object (with three digits
after the decimal point) from the second OUT parameter:

CallableStatement cstmt = con.prepareCall(

“{call getTestData(?, ?)}7);
cstmt.registerOutParameter(l, java.sql.Types.TINYINT);
cstmt.registerOutParameter(2, java.sql.Types.DECIMAL, 3);
cstmt.executeQuery();
byte x = cstmt.getByte(l);
java.math.BigDecimal n = cstmt.getBigDecimal(2, 3);

Unlike ResultSet, CallableStatement does not provide a special mechanism
for retrieving large OUT values incrementally.

7.1.3 INOUT Parameters

A parameter that supplies input as well as accepts output (an INOUT parame-
ter) requires a call to the appropriatecxxx method (inherited fronfrepared-
Statement) In addition to a call to the methotkgisterOutParameter. The
setXXX method sets a parameter’s value as an input parameter, and the method
registerOutParameter registers its SQL type as an output parameter. sdexx
method provides a Java value which the driver converts to an SQL value before
sending it to the database. The SQL type of this IN value and the SQL type sup-
plied to the methodegisteroutParameter should be the same. Then to retrieve
the output value, a correspondigigxxX method is used. For example, a parame-
ter whose Java type iste should use the methagtByte to assign the input
value, should supply @aINYINT as the SQL type teegisterOutParameter, and
should useyetByte to retrieve the output value. (Section 8, “Mapping SQL and
Java Types,” gives more information and contains tables of type mappings.)

48

JAVA.SQL.CALLABLESTATEMENT

The following example assumes that there is a stored procegliraTotal
whose only parameter is an INOUT parameter. The mether)te sets the
parameter tas, which the driver will send to the database as an SIQLINT.
Next registerOutParameter registers the parameter as an SQLYINT. After the
stored procedure is executed, a new SQUYINT value is returned, and the
method getByte will retrieve this new value as a Jabseae.

CallableStatement cstmt = con.prepareCall(
“{call reviseTotal(?)}”);
cstmt.setByte(1l, 25);
cstmt.registerQutParameter(l, java.sql.Types.TINYINT);
cstmt.executeUpdate();
byte x = cstmt.getByte(l);

7.1.4 Retrieve OUT Parameters after Results

Because of limitations imposed by some DBMSs, it is recommended that for maxi-
mum portability, all of the results generated by the executiorcaflableState-
ment Object should be retrieved before OUT parameters are retrieved using
CallableStatement.getXXX methods.

If a callableStatement object returns multipl@esultSet objects (using a
call to the metho@xecute), all of the results should be retrieved before OUT
parameters are retrieved. In this case, to be sure that all results have been
accessed, thetatement methodsgetResultSet, getUpdateCount, andgetMore-
Results need to be called until there are no more results.

After this is done, values from OUT parameters can be retrieved using the
CallableStatement.getXXX methods.

7.1.5 Retrieving NULL Values as OUT Parameters

The value returned to an OUT parameter magQbanuLL. When this happens, the
SQL NULL value will be converted so that the value returned dtaxx method will

be nu11, 9, or false, depending on thgetxxx method type. As witResultSet
objects, the only way to know if a valueeobr false was originally SQL NULL is to
test it with the methodasNu11, which returnstrue if the last value read by a
getXXX method wasqQL NULL andfalse otherwise. Section 5, “ResultSet,” contains
more information.

MAPPING SQL AND JAVA TYPES 49

8

Mapping SQL and Java Types

T HIS overview is excerpted frodDBC™ Database Access with Java™: A Tuto-
rial and Annotated Referenceirrently in progress at JavaSoft. This book, both a
tutorial and the definitive reference manual for JDBC, will be published in the
spring of 1997 by Addison-Wesley Publishing Company as part of the Java series.

8.1 Overview

Since SQL data types and Java data types are not identical, there needs to be some
mechanism for reading and writing data between an application using Java types
and a database using SQL types.

To accomplish this, JDBC provides setsgetxxx andsetxxx methods, the
methodregisterOutParameter, and the classypes.

This section brings together information about data types affecting various
classes and interfaces and puts all the tables showing the mappings between SQL
types and Java types in one place for easy reference.

8.2 Mapping SQL Data Types into Java

JDBC provides a standard mapping from the common SQL data types to Java types.
For example, an SQINTEGER is normally mapped to a Javat. This supports a
simple interface for reading and writing SQL values as simple Java types.

The Java types do not need to be exactly isomorphic to the SQL types; they
just need to be able to represent them with enough type information to correctly
store and retrieve parameters and recover results from SQL statements. For exam-
ple, a Javatring object does not precisely match any ofdeCHAR types, but it
gives enough type information to represe#mRr, VARCHAR, Of LONGVARCHAR SucC-
cessfully.

50

MAPPING JAVA AND SQL TYPES
8.3 SQL Types

This section describes the common SQL types and how they are mapped to Java
types.

8.3.1 CHAR, VARCHAR, and LONGVARCHAR

Java programmers do not need to distinguish among the three types of SQL strings,
CHAR, VARCHAR, andLONGVARCHAR. Each can be expressed as a Jawing, and it is
possible to read and write an SQL statement correctly without knowing the exact
data type that was expected.

CHAR, VARCHAR, andLONGVARCHAR could have been mapped to eitkering or
char[], butstring is more appropriate for normal use. Also, sheing class
makes it easy to convert betwestring andchar[]. There is a method for con-
verting astring object to achar[] and also a constructor for turningclear[]
into astring object.

One issue that had to be addressed is how to handle fixed-length SQL strings
of typeCHAR(n). The answer is that JDBC drivers (or the DBMS) perform appro-
priate padding with spaces. Thus, whema (n) field is retrieved from the data-
base, the driver will convert it to a Jasaring object of lengthn, which may
include some padding spaces at the end. Conversely, vgheing object is sent
to aCHAR(n) field, the driver and/or the database will add any necessary padding
spaces to the end of the string to bring it up to leagth

The methokesultSet.getString, which allocates and returns a ngwving
object, is recommended for retrieving data fraimRr, VARCHAR, andLONGVARCHAR
fields. This is suitable for retrieving normal data, but can be unwieldy if the type
SQL LONGVARCHAR is being used to store multimegabyte strings. To handle this
case, two methods in theesultSet interface allow programmers to retrieve a
LONGVARCHAR value as a Java input stream from which they can subsequently read
data in whatever size chunks they prefer. These methodstagziiStream and
getUnicodeStream, which deliver the data stored inLGNGVARCHAR column as a
stream of ASCII or Unicode characters.

8.3.2 DECIMAL and NUMERIC

The SQL data typeBECIMAL andNUMERIC, used to express fixed-point numbers
where absolute precision is required, can be expressed identically in Java. They are
mapped tgava.math.BigDecimal, a Java type that also expresses fixed-point hum-
bers with absolute precision. Th#va.math.BigDecimal type provides math oper-

MAPPING SQL AND JAVA TYPES 51

ations to allowsigbecimal types to be added, subtracted, multiplied, and divided
with otherBigDecimal types, with integer types, and with floating point types.

The method recommended for retrievBwy DECIMAL andsqQL NUMERIC values
IS ResultSet.getBigDecimal. JDBC also allows access to these SQL types as
simplestrings or arrays okhar. Thus, Java programmers can y&estring to
receive alUMERIC Or DECIMAL result. However, this makes the common case where
NUMERIC or DECIMAL are used for currency values rather awkward, since it means
that application writers have to perform math on strings. It is also possible to
retrieve these SQL types as any of the Java numeric types.

8.3.3 BINARY, VARBINARY, and LONGVARBINARY

The SQL data types include three versions of raw binary vabi@srY, VARBINARY,
andLONGVARBINARY. They can all be expressed identicallypgse arrays in Java.
Since it is possible to read and write SQL statements correctly without knowing the
eXactBINARY data type that was expected, there is no need for Java programmers to
distinguish among them.

The method recommended for retrieviBINARY and VARBINARY values is
ResultSet.getBytes. If a column of typesQL LONGVARBINARY stores a byte array
that is many megabytes long, however, the metadinaryStream is recom-
mended. Similar to the situation witleNGVARCHAR, this method allows a Java
programmer to retrieve IBNGVARBINARY value as a Java input stream that can be
read later in smaller chunks.

8.3.4 BIT
The SQL types1T is mapped directly to the Java tya@1ean.

8.3.5 TINYINT, SMALLINT, INTEGER, andBIGINT

The SQL typeSINYINT, SMALLINT, INTEGER, andBIGINT are mapped as follows:

SQL TINYINT represents 8-bit values and is mapped to bava
SQL SMALLINT represents 16-bit values and is mapped to skavea.
SQL INTEGER represents 32-bit values and is mapped to ilava
SQL BIGINT represents 64-bit values and is mapped to Uana

52

MAPPING JAVA AND SQL TYPES

8.3.6 REAL, FLOAT, and DOUBLE

SQL defines three floating-point data tyreL, FLOAT, andDOUBLE; whereas Java
defines two:FLOAT andDOUBLE.

SQL REAL is required to support 7 digits of mantissa precision and is
mapped to JavBloat.

SQL FLOAT andsQL DOUBLE are required to support 15 digits of mantissa
precision and are mapped to Javeble.

8.3.7 DATE, TIME, and TIMESTAMP

There are three SQL types relating to time:

 DATE consists of day, month, and year.
* TIME consists of of hours, minutes, and seconds.

* TIMESTAMP consists 0DATE plusTIME plus a nanosecond field.

Because the standard Java chasa.util.Date does not match any of these
three SQL types exactly (it includes batkre andTIME information but has no
nanoseconds), JDBC defines three subclassps@futil.Date to correspond to
the SQL types. They are:

* java.sql.Date for SQL DATE information. The hour, minute, second, and mil-
lisecond fields of thgava.util.Date base class are set to zero.

e java.sql.Time for sqL TIME information. The year, month, and day fields of
thejava.util.Date base class are setto 1970, January, and 1. This is the “ze-
ro” date in the Java epoch.

* java.sql.Timestamp for SQL TIMESTAMP information. This class extendls-
va.util.Date by adding a nanosecond field.

All three of the JDBC time-related classes are subclassgsafutil.Date,
and as such, they can be used wheys/a.util.Date is expected. For example,
internationalization methods takejava.util.Date oObject as an argument, so
they can be passed instances of any of the JDBC time-related classes.
A JDBC Timestamp object has its parent’s date and time components and
also a separate nanoseconds componentjdfzasql.Timestamp Object is used
where ajava.util.Date Object is expected, the nanoseconds component is lost.

MAPPING SQL AND JAVA TYPES 53

However, since aya.util.Date Object is stored with a precision of one millisec-
ond, it is possible to maintain this degree of precision when converting a
java.sql.Timestamp Object to gjava.util.Date Object. This is done by convert-

ing the nanoseconds in the nanoseconds component to whole milliseconds (by
dividing the number of nanoseconds by 1,000,000) and then adding the result to
the thejava.util.Date oObject. Up to 999,999 nanoseconds may be lost in this
conversion, but the resultingva.uti1.Date object will be accurate to within one
millisecond.

8.4 Examples of Mapping

In any situation where a Java program retrieves data from a database, there has to be
some form of mapping and data conversion. In most cases, JDBC programmers will
be programming with knowledge of their target database’s schema. They would
know, for example, what tables the database contains and the data type for each col-
umn in those tables. They can therefore use the strongly-typed access methods in
the interface®esultSet, PreparedStatement, andCallableStatement. This sec-

tion presents three different scenarios, describing the data mapping and conversion
required in each.

8.4.1 Simple SQL Statement

In the most common case, a user executes a simple SQL statement and gets back a
ResultSet object with the results. The value returned by the database and stored in
aResultSet column will have an SQL data type. A call t@eultSet.getXXX
method will retrieve that value as a Java data type. For exampkesifiaSet col-

umn contains an SQELOAT value, the methogetbouble will retrieve that value as

a Javadouble. The table in Section 8.5.6 shows whightxxx methods may be

used to retrieve which SQL types. (A user who does not know the tyme afia-

Set column can get that information by calling the metkexdi1tSet . getMetaData

and then invoking thResultSetMetaData methodgetColumnType Or getColumn-
TypeName.) The following code fragment demonstrates getting the column type
names for the columns in a result set:

String query = “select * from Tablel”;
ResultSet rs = stmt.executeQuery(query);
ResultSetMetaData rsmd = rs.getMetaData();
int columnCount = rsmd.getColumnCount();

54

MAPPING JAVA AND SQL TYPES

for (int i = 1; i <= columnCount; i++) {
String s = rsmd.getColumnTypeName(i);
System.out.println (“Column

+ i+ is type + S);

8.4.2 SQL Statement with IN Parameters

In another possible scenario, the user sends an SQL statement which takes input
parameters. In this case, the user call®thgaredStatement.setXXX methods to

assign a value to each input parameter. For examiaredStatement.set-

Long(1, 2345678) will assign the value345678 to the first parameter as a Java
Tong. The driver will convere345678 to an SQLBIGINT in order to send it to the
database. Which SQL type the driver sends to the database is determined by the
standard mapping from Java types to SQL types, which is shown in the table in Sec-
tion 8.5.2.

8.4.3 SQL Statement with INOUT Parameters

In yet another scenario, a user wants to call a stored procedure, assign values
to its INOUT parameters, retrieve values from the results, and retrieve values from
the parameters. This case is rather uncommon and more complicated than most,
but it gives a good illustration of mapping and data conversion.

In this scenario, the first thing to do is to assign values to the INOUT parame-
ters usingPreparedStatement.setXXX methods. In addition, since the parameters
will also be used for output, the programmer must register each parameter with
the SQL type of the value that the database will return to it. This is done with the
methodCallableStatement.registerOutParameter, Which takes one of the SQL
types defined in the claggpes. A programmer retrieves the results returned to a
ResultSet object withresultSet.getxxx methods and retrieves the values stored
in the output parameters with1lableStatement.getXXX methods.

The xxX type used foResultSet.getXXX methods is fairly flexible in some
cases. The table in Section 8.5.6 shows wkégh1tSet.getXXx methods can be
used to retrieve which SQL types.

Thexxx type used forallableStatement.getXXX must map to the SQL type
registered for that parameter. For example, if the database is expected to return an
output value whose type $8L REAL, the parameter should have been registered as
java.sql.Types.REAL. Then to retrieve theqL REAL value, the methodal1-
ableStatement.getFloat should be called (the mapping from SQL types to Java
types is shown in the table in Section 8.5.1). The meghed oat will return the
value stored in the output parameter after converting it from anr&QLto a Java

MAPPING SQL AND JAVA TYPES 55

float. To accommodate various databases and make an application more porta-
ble, it is recommended that values be retrieved fresn1tSet objects before val-
ues are retrieved from output parameters.

The following code demonstrates calling a stored procedure ngstbe -

Data, Which has two parameters that are both INOUT parameters. Fitshthe
nection Object con creates theCallableStatement Object cstmt. Then the
methodsetByte sets the first parameter 2pas a Javayte. The driver will con-
vert25 to an SQLTINYINT and send it to the database. The me#wadigbeci-

mal sets the second parameter with an input value3ofs. The driver will
convert thisjava.math.BigDecimal object to an SQINUMERIC value. Next the
two parameters are registered as OUT parameters, the first parameter as an SQL
TINYINT and the second parameter as an SEIMAL with two digits after the
decimal point. Afterstmt is executed, the values are retrieved fromrésalt-

Set object usingrResultSet.getXXX methods. The methogktString gets the
value in the first column as a Jataing object,getInt gets the value in the sec-
ond column as a Javat, andgetInt gets the value in the third column as a Java
int.

Then CallableStatement.getXXX methods retrieve the values stored in the
output parameters. The methgdByte retrieves theqQL TINYINT as a Javayte,
andgetBigDecimal retrieves thesqQL DECIMAL as ajava.math.BigDecimal object
with two digits after the decimal point. Note that when a parameter is both an
input and an output parameter, teexxx method uses the same Java type as the
getXXX method (as iRetByte andgetByte). TheregisterOutParameter method
registers it to the SQL type that is mapped from the Java type (aydavaaps to
an SQLTINYINT, as shown in the table in Section 8.5.2).

CallableStatement cstmt = con.prepareCall(
“{call getTestData(?, ?)}");

cstmt.setByte(1l, 25);
cstmt.setBigDecimal(2, 83.75);
// register the first parameter as an SQL TINYINT and the second
//parameter as an SQL DECIMAL with two digits after the decimal point
cstmt.registerOutParameter(l, java.sql.Types.TINYINT);
cstmt.registerQutParameter(2, java.sql.Types.DECIMAL, 2);
ResultSet rs = cstmt.executeUpdate();
// retrieve and print values 1in result set
while(rs.next()) {

String name = rs.getString(l);

int score = rs.getInt(2);

int percentile = rs.getInt(3);

56

MAPPING JAVA AND SQL TYPES

System.out.print(“name = “ + name + “, score = “ + score + “, “
System.out.println(“percentile = “ + percentile);

// retrieve values in output parameters

byte x = cstmt.getByte(l);

java.math.BigDecimal n = cstmt.getBigDecimal(2, 2);

To generalize, thexxx in CallableStatement.getXXX and PreparedState-
ment.setXXX methods is a Java type. Fsettxxx methods, the driver converts the
Java type to an SQL type before sending it to the database (using the standard
mappings shown in the table in Section 8.5.2). de@kxx methods, the driver
converts the SQL type returned by the database to a Java type (using the standard
mappings shown in the table in Section 8.5.1) before returning it tgethix
method.

The methodregisterOutParameter always takes an SQL type as an argu-
ment, and the methoeletobject may take an SQL type as an argument.

Note that if an SQL type is supplied in its optional third argument, the method
setObject will cause an explicit conversion of the parameter value from a Java
type to the SQL type specified. If no target Sql type is supplieettbject, the
parameter value will be converted to the SQL type that is the standard mapping
from the Java type (as shown in Section 8.5.2). The driver will perform the
explicit or implicit conversion before sending the parameter to the database.

8.5 Tables for Data Type Mapping
This section contains the following tables relating to SQL and Java data types:
Section 8.5.1—SQL Types Mapped to Java Types
Section 8.5.2—Java Types Mapped to SQL Types
Section 8.5.3—SQL Types Mapped to Javgect Types
Section 8.5.4—Jav@bject Types Mapped to SQL Types
Section 8.5.5— Conversions bytobject

Section 8.5.6—SQL Types RetrievediagultSet.getxxx methods

MAPPING SQL AND JAVA TYPES

8.5.1 SQL Types Mapped to Java Types

SQL type Java type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal
DECIMAL java.math.BigDecimal
BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time
TIMESTAMP java.sql.Timestamp

58

8.5.2 Java Types Mapped to SQL Types

This table shows the reverse mapping of Table 8.5.1, from Java types to SQL

types.

MAPPING JAVA AND SQL TYPES

Java Type SQL type

String VARCHAR or LONGVARCHAR
java.math.BigDecimal NUMERIC

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

Tong BIGINT

float REAL

double DOUBLE

byte[] VARBINARY or LONGVARBINARY
java.sql.Date DATE

java.sql.Time TIME
java.sql.Timestamp TIMESTAMP

The mapping for String will normally b&rcHArR but will turn
INto LONGVARCHAR if the given value exceeds the driver’s limit on
VARCHAR values. The same is true fgre[] andvARBINARY and

LONGVARBINARY values.

MAPPING SQL AND JAVA TYPES 59

8.5.3 SQL Types Mapped to Java Object Types

Since the Java built-in types suchmslean andint are not subtypes of
Object, there is a slightly different mapping from SQL types to Java object types
for the getObject/setObject methods. This mapping is shown in the following
table:

SQL Type Java Object Type
CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal
DECIMAL java.math.BigDecimal
BIT Boolean

TINYINT Integer

SMALLINT Integer

INTEGER Integer

BIGINT Long

REAL Float

FLOAT Double

DOUBLE Double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time
TIMESTAMP java.sql.Timestamp

60

MAPPING JAVA AND SQL TYPES

8.5.4 Java Object Types Mapped to SQL Types

Java Object Type SQL Type

String VARCHAR or LONGVARCHAR
java.math.BigDecimal NUMERIC

Boolean BIT

Integer INTEGER

Long BIGINT

Float REAL

Double DOUBLE

byte[] VARBINARY or LONGVARBINARY
java.sql.Date DATE

java.sql.Time TIME
java.sql.Timestamp TIMESTAMP

Note that the mapping fartring will normaly bevARCHAR but will turn into
LONGVARCHAR if the given value exceeds the driver’s limit\WRCHAR values. The
case is similar fobyte[] andvARBINARY andLONGVARBINARY values.

MAPPING SQL AND JAVA TYPES

8.5.5 Conversions byetObject

The methodetobject converts Java object types to SQL types.

T|S|I |[B|R|F|D|IDIN|B|C|V|L|B|V|L|D|T|T
Il IM|N|I |E|L|O|E|[U|[lI [HIA|O|I [A|O|A]|I |I
NIA|T|G|A|O|U|C|M|T|A|RININ|IR|N|T|M|M
Y|L|E|I |[L|A|B]|I |E R|C|G|A|B|G|E|E|E
| |[L|G|N T|L|M|R HIV|IRI|I |V S
NI |E|T E|A]|I A|A|Y|N|A T
T|N|R L|C R|R AR A
T C R|B M
H Y I P
A N
R A
R
Y
String X X X [X | X [X |X|X[X][|X
java.math.Big-| x
Decimal
Boolean XX [X [X [X[X[X|[X|[X|[X|X]|X]|X
Integer XX [X [X [X[X[X|[X[X|[X|X]|X]|X
Long X | X [X [X [X[X[X|[X|[X|[X|[X]|xX]|x
Float XX [X [X [X[X[X|[X|[X|[X|X]|X]|X
Double XX [X [X [X[X[X|[X[X|[X|X]|X]|X
byte(] X | x| x
java.sql.Date X X X X X
java.sql.Time x| X| X X
java.sql.Time- X | X | X X | X |X
stamp

Conversion from Java object types to SQL types.

61

MAPPING JAVA AND SQL TYPES

8.5.6 SQL Types Retrieved bRresultSet.getxxx Methods

An “X” means that the methazhn retrieve the SQL type. An “X” means that the
method isecommendetbr the SQL type.

—X>m>
>0
mmr™mC OO
—r>Z - 0Omo

O—-aoxmZZC2z2
m-2>»0

_|
TI>TO
D>ITOO>
m=z — -
s> m=z —

-zZ2—-0 - ®
D>ITODP>P<OZ0rC

<Trz- 0
<VrTZTO0IOrXL
<VPTZ-®IOIP>P<OZ2Z0TC

4z—-=<z—4
4z-rr>»zo0n
TmMEOmM—AZ—

getByte
getShort
getint

w | x| x| x

X | X | X| X| X| X| X| X| X

getLong
getFloat

getDouble

getBigDecimal

getBoolean

| x| x| x| x| x| 5| X
X[x| x| x| x| 5| x| x| x
x| x| x| x| x| x| x| x]|x
x| x| x| x| x| x| x| x]|x
x| x| x| x| x| x| x]|x]|x
x| x| x| x| x| x| x]|x]|x
x| x| x| x| x| x| x]|x]|x
x| x| x| x| x| x| x| x]|x
X| x| x| x| x| x| x| x]|x
X[x| x| x| x| x| x| x]|x
X| x| x| x| x| x| x]|x]|x

X | X[X]| X| X

getString

getBytes X[X|x
getDate

P
P
P
x

>
>
x
x

getTime X

getTimestamp

X | x
X | x
X
X
X

getAsciiStream

getUnicodeStream XX [x

getBinaryStream X X

x| x| x| x

getObject XXX [X[X|X|X[|X[X]|X][X|[X]|X][|X][X

SAMPLE CODE 63

Sample Code

// The following code can be used as a template. Simply
// substitute the appropriate url, Togin, and password, and then substitute the
// SQL statement you want to send to the database.

//

// Module:SimpleSelect.java

//

// Description:Test program for ODBC API interface. This java application
// will connect to a JDBC driver, issue a select statement
// and display all result columns and rows

//

// Product:JDBC to ODBC Bridge

//

// Author:Karl Moss

//

// Date:February, 1996

//

// Copyright:1990-1996 INTERSOLV, Inc.

// This software contains confidential and proprietary

// information of INTERSOLV, Inc.

import java.net.URL;
import java.sql.*;
class SimpleSelect {
public static void main (String args[]) {

String url = "jdbc:odbc:my-dsn";
String query = "SELECT * FROM emp";

64

try {

// Load the jdbc-odbc bridge driver
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver™);
DriverManager.setlLogStream(System.out);

// Attempt to connect to a driver. Each one

// of the registered drivers will be loaded until

// one is found that can process this URL

Connection con = DriverManager.getConnection (
url, "my-user", "my-passwd");

// If we were unable to connect, an exception
// would have been thrown. So, if we get here,

// we are successfully connected to the URL

// Check for, and display and warnings generated
// by the connect.

checkForWarning (con.getWarnings ());

// Get the DatabaseMetaData object and display
// some information about the connection

DatabaseMetaData dma = con.getMetaData ();

System.out.printin("\nConnected to " + dma.getURL(Q));

System.out.printin("Driver "o+
dma.getDriverName());
System.out.printIn("Version "o+

dma.getDriverVersion(Q));
System.out.printin("");

// Create a Statement object so we can submit
// SQL statements to the driver

Statement stmt = con.createStatement ();

// Submit a query, creating a ResultSet object

ResultSet rs = stmt.executeQuery (query);

SAMPLE CODE

SAMPLE CODE
// Display all columns and rows from the result set
dispResultSet (rs);
// Close the result set
rs.close();
// Close the statement
stmt.close();
// Close the connection

con.close(Q);

}
catch (SQLException ex) {

// A SQLException was generated. Catch it and

// display the error information. Note that there
// could be multiple error objects chained

// together

System.out.printin ("\n*** SQLException caught ***\n");

while (ex != null) {
System.out.println ("SQLState: " +
ex.getSQLState ());
System.out.println ("Message: + ex.getMessage ());
System.out.printin ("Vendor: "o+
ex.getErrorCode ());
ex = ex.getNextException (Q;
System.out.println ("");
}

}

catch (java.lang.Exception ex) {
// Got some other type of exception. Dump it.

ex.printStackTrace ();

// checkForWarning
// Checks for and displays warnings. Returns true if a warning

65

66 SAMPLE CODE

// existed

private static boolean checkForWarning (SQLWarning warn)
throws SQLException {
boolean rc = false;

// If a SQLWarning object was given, display the
// warning messages. Note that there could be
// multiple warnings chained together

if (warn !'= null) {
System.out.println ("\n *** Warning ***\n");
rc = true;
while (warn != null) {
System.out.println ("SQLState: " +
warn.getSQLState ());

System.out.printin ("Message: " +
warn.getMessage ());
System.out.println ("Vendor: "oy

warn.getErrorCode ());
System.out.println ("");
warn = warn.getNextWarning Q;

}

return rc;

// dispResultSet
// Displays all columns and rows in the given result set

private static void dispResultSet (ResultSet rs)
throws SQLException
int 1i;

// Get the ResultSetMetaData. This will be used for
// the column headings

ResultSetMetaData rsmd = rs.getMetaData () ;
// Get the number of columns in the result set

int numCols = rsmd.getColumnCount Q);

SAMPLE CODE

// Display column headings

for (i=1; i<=numCols; i++) {
if (i > 1) System.out.print(",™);
System.out.print(rsmd.getColumnLabel(i));

}
System.out.printin("");

// Display data, fetching until end of the result set

boolean more = rs.next Q;
while (more) {

// Loop through each column, getting the
// column data and displaying

for (i=1; i<=numCols; i++) {
if (i > 1) System.out.print(",");
System.out.print(rs.getString(i));
}

System.out.printin("");

// Fetch the next result set row

more = rs.next ;

67

68

SAMPLE CODE

JDBC-ODBC RELEASE NOTES 09

10

JDBC-ODBC Release Notes

10.1 JDBC-ODBC Bridge

If possible, use a Pure Java JDBC driver instead of the Bridge and an ODBC driver.
This completely eliminates the client configuration required by ODBC. It also elim-
inates the potential that the Java VM could be corrupted by an error in the native
code brought in by the Bridge (that is, the Bridge native library, the ODBC driver
manager library, the ODBC driver library, and the database client library).

10.1.1 What Is the JDBC-ODBC Bridge?

The JDBC-ODBC Bridge is a JDBC driver which implements JDBC operations by
translating them into ODBC operations. To ODBC it appears as a normal applica-
tion program. The Bridge implements JDBC for any database for which an ODBC
driver is available. The Bridge is implemented assthe jdbc.odbc Java package

and contains a native library used to access ODBC. The Bridge is a joint develop-
ment of Intersolv and JavaSoft.

10.1.2 What Version of ODBC Is Supported?

The bridge supports ODBC 2.x. This is the version that most ODBC drivers cur-
rently support. It will also likely work with maost forthcoming ODBC 3.x drivers;
however, this has not been tested.

10.1.3 The Bridge Implementation

The Bridge is implemented in Java and uses Java native methods to call ODBC.

70

JDBC-ODBC RELEASE NOTES

10.1.4 Installation

The Bridge is installed automatically with the JDK as packagejdbc.odbc. See

your ODBC driver vendor for information on installing and configuring ODBC. No
special configuration is required for the Bridge. See your database vendor for client
installation and configuration information. On Solaris, some ODBC driver manag-
ers name their libgibodbcinst.so and Tibodbc.so. The Bridge expects these
libraries to be nametibodbcinst.so.1 andlibodbc.so.1, SO symbolic links for

these names must be created.

10.2 Using the Bridge

The Bridge is used by opening a JDBC connection using a URL withithesub-
protocol. See below for URL examples. Before a connection can be established, the
bridge driver classsun.jdbc.odbc.JdbcOdbcDriver, must either be added to the
java.lang.System property nameddbc.drivers, or it must be explicitly loaded

using the Java class loader. Explicitloading is done with the following line of code:

Class.forName(sun.jdbc.odbc.JdbcOdbcDriver);

When loaded, the ODBC driver (like all good JDBC drivers) creates an
instance of itself and registers this with the JDBC driver manager.

10.2.1 Using the Bridge from an Applet

JDBC used with a Pure Java JDBC driver works well with applets. The Bridge
driver does not work well with applets.

10.2.2 Most Browsers Do Not Support the Bridge

Since the Bridge is an optional component of the JDK, it may not be provided by a
browser. Even if it is provided, only trusted applets (those allowed to write to files)

will be able to use the Bridge. This is required in order to preserve the security of the
applet sandbox. Finally, even if the applet is trusted, ODBC and the DBMS client

library must be configured on each client.

JDBC-ODBC RELEASE NOTES /1

10.2.3 Tested Configurations

From Solaris, we have used the Bridge to access Oracle 7.1.6 and Sybase Version 10
running on Solaris. From NT, we have used the Bridge to access SQL Server 6.x.

10.2.4 ODBC Drivers Known to Work with the Bridge

Visigenic provides ODBC drivers which have been tested with the the Bridge. Driv-
ers are available for Oracle, Sybase, Informix, Microsoft SQL Server, and Ingres. To
purchase the ODBC DriverSet 2.0, please contact Visigenic sales at 415-312-7197,
or visit the web siteww.visigenic.com. The INTERSOLV ODBC driver suite
should be completely compatible with the JDBC-ODBC Bridge. The following
drivers have successfully passed a minimal test suite: Oracle, XBASE, Sybase (Win-
dows NT/95 only), Microsoft SQL-Server, and Informix. To evaluate or purchase
INTERSOLV ODBC drivers, please contact INTERSOLV DataDirect Sales at 1-
800-547-4000 Option 2 or via the World Wide Web@ap: \\www.intersolv.com.

The MS SQL Server driver has also been used successfully on NT. Many other
ODBC drivers will likely work.

10.2.5 ODBC Driver Incompatibilities

On Solaris, we have found that the Sybase ctlib-based drivers don't work because
ctlib has a signal-handling conflict with the Java VM. This is likely not a problem on
NT due to differences in the NT Java VM; however, this has not been verified. Some
ODBC drivers only allow a single result set to be active per connection.

10.2.6 What Is the JIDBC URL Supported by the Bridge?

The Bridge driver uses thelbc subprotocol. URLs for this subprotocol are of the
form:

jdbc:odbc:<data-source-name>[<attribute-name>=<attribute-value>]*
For example:
jdbc:odbc:sybase

jdbc:odbc:mydb;UID=me;PWD=secret
jdbc:odbc:oral23;Cachesize=300

72

JDBC-ODBC RELEASE NOTES

10.2.7 Debugging

The Bridge provides extensive tracing winefiverManager tracing is enabled. The
following line of code enables tracing and sends it to standard out:

java.sql.DriverManager.setlLogStream(java.lang.System.out);

10.3 General Notes

The Bridge assumes that ODBC drivers are not reentrant. This means the Bridge
must synchronize access to these drivers. The result is that the Bridge provides lim-
ited concurrency. This is a limitation of the Bridge. Most Pure Java JDBC drivers
provide the expected level of concurrent access.

	1.1 What Is JDBC™?
	1.1.1 What Does JDBC Do?
	1.1.2 JDBC Is a Low-level API and a Base for Highe...
	1.1.3 JDBC versus ODBC and other APIs
	1.1.4 Two-tier and Three-tier Models
	1.1.5 SQL Conformance

	1.2 JDBC Products
	1.2.1 JavaSoft Framework
	1.2.2 JDBC Driver Types
	1.2.3 Obtaining JDBC Drivers
	1.2.4 Other Products

	2.1 Overview
	2.1.1 Opening a Connection
	2.1.2 URLs in General Use
	2.1.3 JDBC URLs
	2.1.4 The “odbc” Subprotocol
	2.1.5 Registering Subprotocols
	2.1.6 Sending SQL Statements
	2.1.7 Transactions
	2.1.8 Transaction Isolation Levels

	3.1 Overview
	3.1.1 Keeping Track of Available Drivers
	3.1.2 Establishing a Connection

	4.1 Overview
	4.1.1 Creating Statement Objects
	4.1.2 Executing Statement Objects
	4.1.3 Using the Method Execute
	4.1.4 Statement Completion
	4.1.5 SQL Escape Syntax in Statement Objects

	5.1 Overview
	5.1.1 Rows and Cursors
	5.1.2 Columns
	5.1.3 Data Types and Conversions
	5.1.4 Using Streams for Very Large Row Values
	5.1.5 NULL Result Values
	5.1.6 Optional or Multiple Result Sets

	6.1 Overview
	6.1.1 Creating PreparedStatement Objects
	6.1.2 Passing IN Parameters
	6.1.3 Data Type Conformance on IN Parameters
	6.1.4 Using setObject
	6.1.5 Sending SQL NULL as an IN parameter
	6.1.6 Sending Very Large IN Parameters

	7.1 Overview
	7.1.1 Creating a CallableStatement Object
	7.1.2 IN and OUT Parameters
	7.1.3 INOUT Parameters
	7.1.4 Retrieve OUT Parameters after Results
	7.1.5 Retrieving NULL Values as OUT Parameters

	8.1 Overview
	8.2 Mapping SQL Data Types into Java
	8.3 SQL Types
	8.3.1 CHAR, VARCHAR, and LONGVARCHAR
	8.3.2 DECIMAL and NUMERIC
	8.3.3 BINARY, VARBINARY, and LONGVARBINARY
	8.3.4 BIT
	8.3.5 TINYINT, SMALLINT, INTEGER, and BIGINT
	8.3.6 REAL, FLOAT, and DOUBLE
	8.3.7 DATE, TIME, and TIMESTAMP

	8.4 Examples of Mapping
	8.4.1 Simple SQL Statement
	8.4.2 SQL Statement with IN Parameters
	8.4.3 SQL Statement with INOUT Parameters

	8.5 Tables for Data Type Mapping
	8.5.1 SQL Types Mapped to Java Types
	8.5.2 Java Types Mapped to SQL Types
	8.5.3 SQL Types Mapped to Java Object Types
	8.5.4 Java Object Types Mapped to SQL Types
	8.5.5 Conversions by setObject
	8.5.6 SQL Types Retrieved by ResultSet.getXXX Meth...

	10.1 JDBC-ODBC Bridge
	10.1.1 What Is the JDBC-ODBC Bridge?
	10.1.2 What Version of ODBC Is Supported?
	10.1.3 The Bridge Implementation
	10.1.4 Installation

	10.2 Using the Bridge
	10.2.1 Using the Bridge from an Applet
	10.2.2 Most Browsers Do Not Support the Bridge
	10.2.3 Tested Configurations
	10.2.4 ODBC Drivers Known to Work with the Bridge
	10.2.5 ODBC Driver Incompatibilities
	10.2.6 What Is the JDBC URL Supported by the Bridg...
	10.2.7 Debugging

	10.3 General Notes

