Java Native Interface Specification

Release 1.1 (Revised May, 1997)

D)
2550 Garcia Avenue

Mountain View, CA 94043 U.S.A.
408-343-1400

May 1997

Copyright Information

0 1996, 1997 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This document is protected by copyright. No part of this document may be reproduced in any form by any means without prior
written authorization of Sun and its licensors, if any.

The information described in this document may be protected by one or more U.S. patents, foreign patents, or pending
applications.

TRADEMARKS

Sun, Sun Microsystems, Sun Microelectronics, the Sun Logo, SunXTL, JavaSoft, JavaOS, the JavaSoft Logo, Java, HotJava,
JavaChips, picoJava, microJava, Ultralava, JDBC, the Java Cup and Steam Logo, “Write Once, Run Anywhere” and Solaris are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX®is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
Adobe ®is a registered trademark of Adobe Systems, Inc.

Netscape Navigator™ is a trademark of Netscape Communications Corporation.

All other product names mentioned herein are the trademarks of their respective owners.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE DOCUMENT. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

&o
Please
Recycle

Contents

1.

Introduction
Java Native Interface Overview.
Background.

JDK 1.0 Native Method Interface.
Java Runtime Interface
Raw Native Interface and Java/COM Interface.
ODbJeCtiVES . . o
Java Native Interface Approach.
Programmingtothe JNI
ChangesinJDK 1.1.2. i e e

Design OVEeIVIEW i

© ©O© o O A W W O wWw NN NN P

JNI Interface Functions and Pointers.
Loading and Linking Native Methods 10
Resolving Native Method Names 11
Native Method Arguments. 12

ReferencingJava Objects. 14

Global and Local References 14
Implementing Local References. 15
AccessingJava Objectsc i 15
Accessing Primitive Arrays 16
Accessing Fieldsand Methods. 17
Reporting Programming Errors. 17
Java EXCeptions 18
Exceptionsand Error Codes. 18
Asynchronous Exceptions 19
Exception Handling. 19
JNI Types and Data Structures 21
Primitive Typeso 21
Reference Typesot 22
Fieldand Method IDs i 23
The Value Type. 23
Type Signaturest 23
UTF-8 Stringso e 24
INFFUNCLIONS 27
Interface Function Table 28
Version Information. i 34
GetVersion 34
Class Operations ...t 34
DefineClass. 34

Java Native Interface Specification—May 1997

FINACIass 35

GetSuperclass. 36
IsAssignableFrom L 36
EXCEPLioNs. 37
Throw 37
ThrowNew 37
ExceptionOccurred i 38
ExceptionDescribe 38
ExceptionClear. i 38
FatalError 39
Global and Local References. 39
NewGlobalRef 39
DeleteGlobalRef. i 39
DeleteLocalRef 40
Object Operations ... 40
AllocObject 40
NewObject
NewObjectA
NewObjectV 41
GetObjectClass. 42
IsinstanceOf 43
IsSameObject 43
Accessing Fieldsof Objects. 44
GetFieldID 44
Get<type>Field Routines 44
Contents \%

Vi

Set<type>Field Routines. 45
Calling Instance Methods 47
GetMethodID 47

Call<type>Method Routines
Call<type>MethodA Routines
Call<type>MethodV Routines. 48

CallNonvirtual<type>Method Routines
CallNonvirtual<type>MethodA Routines

CallNonvirtual<type>MethodV Routines 51
Accessing Static Fields. o 54
GetStaticFieldID. 54
GetStatic<type>Field Routines 54
SetStatic<type>Field Routines........................ 55
Calling StaticMethods 56
GetStaticMethodID L. 56

CallStatic<type>Method Routines
CallStatic<type>MethodA Routines

CallStatic<type>MethodV Routines 57

String Operations. e 60
NeWSHIING. . ..o 60
GetStringLength. 60
GetStringChars. 61
ReleaseStringChars 61
NewStringUTF. 62
GetStringUTFLength., 62
GetStringUTFChars. 62

Java Native Interface Specification—May 1997

ReleaseStringUTFChars 63

Array Operations.t 63
GetArrayLength. 63
NewObjectArray ... 64
GetObjectArrayElement 64
SetObjectArrayElement. 65
New<PrimitiveType>Array Routines. 65
Get<PrimitiveType>ArrayElements Routines 66
Release<PrimitiveType>ArrayElements Routines. 68
Get<PrimitiveType>ArrayRegion Routines............. 69
Set<PrimitiveType>ArrayRegion Routines 70

Registering Native Methods. 72
RegisterNatives i i 72
UnregisterNatives 72

Monitor Operations. i 73
MonitorEnter 73
MoOnNItorEXit. 74

JavaVM Interface. 74
GetlavaVM 74

5. Thelnvocation APL. 75

OVEIVIBW. . o i 75
Creatingthe VM. 76
Attachingtothe VM 76
Unloadingthe VM. 76

Contents Vii

Initialization Structures. i 77

Invocation APl Functions 79
JNI_GetDefaultlavaVMInitArgs 79
JNI_GetCreatedJavaVMs 80
JNI _CreateJavaVM. i e e 80
DestroylavaVM 81
AttachCurrentThread 81
DetachCurrentThread 82

viii Java Native Interface Specification—May 1997

Acknowledgments

The Java Native Interface (JNI) specification was formed as a result of a series
of discussions among JavaSoft and Java licensees. The goal is to achieve a
native interface standard.

Sheng Liang at JavaSoft is responsible for the JNI design and specification. JNI
is partly evolved from Netscape’s Java Runtime Interface (JRI), which was
designed by Warren Harris. Warren Harris also helped to improve the JNI
design. Simon Nash at IBM and Patrick Beard at Apple provided extensive
feedbacks that shaped the JNI design in many ways.

In addition, the JNI benefited greatly from JavaSoft internal design reviews.
These design reviews were conducted by James Gosling, Peter Kessler, Tim
Lindholm, Mark Reinhold, Derek White, and Frank Yellin.

We also want to acknowledge the helpful comments and suggestions we
received from numerous people on various drafts of the specification.

Lastly, Beth Stearns improved the presentation of this document.

Java Native Interface Specification—May 1997

Introduction 1

This chapter introduces the Java Native Interface (JNI). The JNI is a native
programming interface. It allows Java code that runs inside a Java Virtual
Machine (VM) to interoperate with applications and libraries written in other
programming languages, such as C, C++, and assembly.

The most important benefit of the JNI is that it imposes no restrictions on the
implementation of the underlying Java VM. Therefore, Java VM vendors can
add support for the JNI without affecting other parts of the VM. Programmers
can write one version of a native application or library and expect it to work
with all Java VMs supporting the JNI.

This chapter covers the following topics:
® Java Native Interface Overview

® Background

® Objectives

® Java Native Interface Approach

® Programming to the JNI

® Changes in JDK 1.1.2

Java Native Interface Overview

While you can write applications entirely in Java, there are situations where
Java alone does not meet the needs of your application. Programmers use the
JNI to write Java native methods to handle those situations when an application
cannot be written entirely in Java.

1]l
H

Background

The following examples illustrate when you need to use Java native methods:

® The standard Java class library does not support the platform-dependent
features needed by the application.

® You already have a library written in another language, and wish to make it
accessible to Java code through the JNI.

® You want to implement a small portion of time-critical code in a lower-level
language such as assembly.

By programming through the JNI, you can use native methods to:

® Create, inspect, and update Java objects (including arrays and strings).
® Call Java methods.

® Catch and throw exceptions.

® |Load classes and obtain class information.

¢ Perform runtime type checking.

You can also use the JNI with the Invocation API to enable an arbitrary native
application to embed the Java VM. This allows programmers to easily make
their existing applications Java-enabled without having to link with the VM
source code.

Currently, VMs from different vendors offer different native method interfaces.
These different interfaces force programmers to produce, maintain, and
distribute multiple versions of native method libraries on a given platform.

We briefly examine some of the existing native method interfaces, such as:
® JDK 1.0 native method interface
® Netscape’s Java Runtime Interface

® Microsoft’s Raw Native Interface and JavaZCOM interface

JDK 1.0 Native Method Interface

JDK 1.0 shipped with a native method interface. Unfortunately, there are two
major reasons that this interface is unsuitable for adoption by other Java VMs.

Java Native Interface Specification —May 1997

[EEN
I

Objectives

First, the native code accesses fields in Java objects as members of C structures.
However, the Java Language Specification does not define how objects are laid
out in memory. If a Java VM lays out objects differently in memory, then the
programmer would have to recompile the native method libraries.

Second, JDK 1.0’s native method interface relies on a conservative garbage
collector. The unrestricted use of the unhand macro, for example, makes it
necessary to conservatively scan the native stack.

Java Runtime Interface

Netscape proposed the Java Runtime Interface (JRI), a general interface for
services provided in the Java virtual machine. JRI is designed with portability
in mind---it makes few assumptions about the implementation details in the
underlying Java VM. The JRI addresses a wide range of issues, including
native methods, debugging, reflection, embedding (invocation), and so on.

Raw Native Interface and Java/COM Interface

The Microsoft Java VM supports two native method interfaces. At the low
level, it provides an efficient Raw Native Interface (RNI). The RNI offers a high
degree of source-level backward compatibility with the JDK’s native method
interface, although it has one major difference. Instead of relying on
conservative garbage collection, the native code must use RNI functions to
interact explicitly with the garbage collector.

At a higher level, Microsoft's JavaZ/COM interface offers a language-
independent standard binary interface to the Java VM. Java code can use a
COM object as if it were a Java object. A Java class can also be exposed to the
rest of the system as a COM class.

We believe that a uniform, well-thought-out standard interface offers the
following benefits for everyone:

® Each VM vendor can support a larger body of native code.

® Tool builders will not have to maintain different kinds of native method
interfaces.

Introduction—May 1997 3

® Application programmers will be able to write one version of their native
code and this version will run on different VMs.

The best way to achieve a standard native method interface is to involve all
parties with an interest in Java VMs. Therefore we organized a series of
discussions among the Java licensees on the design of a uniform native method
interface. It is clear from the discussions that the standard native method
interface must satisfy the following requirements:

® Binary compatibility - The primary goal is binary compatibility of native
method libraries across all Java VM implementations on a given platform.
Programmers should maintain only one version of their native method
libraries for a given platform.

® Efficiency - To support time-critical code, the native method interface must
impose little overhead. All known techniques to ensure VM-independence
(and thus binary compatibility) carry a certain amount of overhead. We
must somehow strike a compromise between efficiency and VM-
independence.

® Functionality - The interface must expose enough Java VM internals to
allow native methods to accomplish useful tasks.

Java Native Interface Approach

We hoped to adopt one of the existing approaches as the standard interface,
because this would have imposed the least burden on programmers who had
to learn multiple interfaces in different VMs. Unfortunately, no existing
solutions are completely satisfactory in achieving our goals.

Netscape’s JRI is the closest to what we envision as a portable native method
interface, and was used as the starting point of our design. Readers familiar
with the JRI will notice the similarities in the APl naming convention, the use
of method and field IDs, the use of local and global references, and so on.
Despite our best efforts, however, the JNI is not binary-compatible with the JRI,
although a VM can support both the JRI and the JNI.

Microsoft’s RNI is an improvement over JDK 1.0 because it solves the problem
of native methods working with a nonconservative garbage collector. The RNI,
however, is not suitable as a VM-independent native method interface. Like the
JDK, RNI native methods access Java objects as C structures. This leads to two
problems:

®* RNI exposes the layout of internal Java objects to native code.

Java Native Interface Specification —May 1997

[EEN
I

® Direct access of Java objects as C structures makes it impossible to efficiently
incorporate “write barriers,” which are necessary in advanced garbage
collection algorithms.

As a binary standard, COM ensures complete binary compatibility across
different VMs. Invoking a COM method requires only an indirect call, which
carries little overhead. In addition, COM objects are a great improvement over
dynamic-link libraries in solving versioning problems.

The use of COM as the standard Java native method interface, however, is
hampered by a few factors:

® First, the Java/COM interface lacks certain desired functions, such as
accessing private fields and raising general exceptions.

® Second, the Java/COM interface automatically provides the standard
IUnknown and IDispatch COM interfaces for Java objects, so that native
code can access public methods and fields. Unfortunately, the IDispatch
interface does not deal with overloaded Java methods and is case-
insensitive in matching method names. Furthermore, all Java methods
exposed through the IDispatch interface are wrapped to perform dynamic
type checking and coercion. This is because the IDispatch interface is
designed with weakly-typed languages (such as Basic) in mind.

® Third, instead of dealing with individual low-level functions, COM is
designed to allow software components (including full-fledged applications)
to work together. We believe that it is not appropriate to treat all Java classes
or low-level native methods as software components.

® Fourth, the immediate adoption of COM is hampered by the lack of its
support on UNIX platforms.

Although we do not expose Java objects to the native code as COM objects, the
JNI interface itself is binary-compatible with COM. We use the same jump
table structure and calling convention that COM does. This means that, as soon
as cross-platform support for COM is available, the JNI can become a COM interface
to the Java VM.

We do not believe that the JNI should be the only native method interface
supported by a given Java VM. A standard interface benefits programmers
who would like to load their native code libraries into different Java VMs. In
some cases, the programmer may have to use a lower-level, VM-specific
interface to achieve top efficiency. In other cases, the programmer might use a
higher-level interface to build software components. Indeed, we hope that, as

Introduction—May 1997 5

1]l
H

the Java environment and component software technologies become more
mature, native methods will gradually lose their significance.

Programming to the JNI

Native method programmers should start programming to the JNI.
Programming to the JNI insulates you from unknowns, such as the vendor’s
VM that the end user might be running. By conforming to the JNI standard,
you will give a native library the best chance to run in a given Java VM. For
example, although JDK 1.1 will continue to support the old-style native
method interface that was implemented in JDK 1.0, it is certain that future
versions of the JDK will stop supporting the old-style native method interface.
Native methods relying on the old-style interface will have to be rewritten.

If you are implementing a Java VM, you should implement the JNI. We
(Javasoft and the licensees) have tried our best to ensure that the JNI does not
impose any overhead or restrictions on your VM implementation, including
object representation, garbage collection scheme, and so on. Please let us know
if you run into any problems we might have overlooked.

ChangesinJDK 1.1.2

To better support the Java Runtime Environment (JRE), the Invocation API has
been extended in JDK 1.1.2 in a few minor ways. The changes do not break any
existing code. The JNI Native Method Interface has not been changed.

® The reserved0 field in the JDK1_1lnitArgs structure has been renamed to
version . The JDK1_1InitArgs structure holds the initialization
arguments to JNI_CreateJavaVM . Callers of

JNI_GetDefaultJavaVMInitArgs and JNI_CreateJavaVM must set
the version field to 0x00010001 . JNI_GetDefaultJavaVMInitArgs has
been changed to return a jint indicating whether the requested version is
supported.

® Thereservedl field in the JDK1_1InitArgs structure has been renamed
to properties . This is a NULL-terminated array of strings. Each string has
the format:

name=value

indicating a system property. (This facility corresponds to the -D option in
the java command line.)

6 Java Native Interface Specification —May 1997

[EEN
I

In JDK 1.1.1, the thread calling DestroyJavaVM must be the only user
thread in the VM. JDK 1.1.2 has lifted this restriction. If DestroyJavaVM is
called when there is more than one user thread, the VM waits until the
current thread is the only user thread, and then tries to destroy itself.

Introduction—May 1997

Java Native Interface Specification —May 1997

Design Overview 2

This chapter focuses on major design issues in the JNI. Most design issues in
this section are related to native methods. The design of the Invocation API is
covered in Chapter 5, “The Invocation API.”

JNI Interface Functions and Pointers

Native code accesses Java VM features by calling JNI functions. JNI functions
are available through an interface pointer. An interface pointer is a pointer to a
pointer. This pointer points to an array of pointers, each of which points to an
interface function. Every interface function is at a predefined offset inside the
array. Figure 2-1 illustrates the organization of an interface pointer.

. . Array of pointers
JNI interface pointer to JNI functions

k’ Pointer Pointer 4 a?JRE?{g%CG

per-thread JNI Pointer T—

data structure Point an interface
ointer function

"\

an interface
function
Figure 2-1 Interface Pointer

The JNI interface is organized like a C++ virtual function table or a COM
interface. The advantage to using an interface table, rather than hard-wired

function entries, is that the JNI name space becomes separate from the native
code. A VM can easily provide multiple versions of JNI function tables. For
example, the VM may support two JNI function tables:

® one performs thorough illegal argument checks, and is suitable for
debugging;

® the other performs the minimal amount of checking required by the JNI
specification, and is therefore more efficient.

The JNI interface pointer is only valid in the current thread. A native method,
therefore, must not pass the interface pointer from one thread to another. A
VM implementing the JNI may allocate and store thread-local data in the area
pointed to by the JNI interface pointer.

Native methods receive the JNI interface pointer as an argument. The VM is
guaranteed to pass the same interface pointer to a native method when it
makes multiple calls to the native method from the same Java thread.
However, a native method can be called from different Java threads, and
therefore may receive different JNI interface pointers.

Loading and Linking Native Methods

10

Native methods are loaded with the System.loadLibrary method. In the
following example, the class initialization method loads a platform-specific
native library in which the native method f is defined:

package pkg;
class Cls {
native double f(int i, String s);
static {
System.loadLibrary(“pkg_CIs");
}
}

The argument to System.loadLibrary is a library name chosen arbitrarily
by the programmer. The system follows a standard, but platform-specific,
approach to convert the library name to a native library name. For example, a
Solaris system converts the name pkg_Cls to libpkg_Cls.so , While a Win32
system converts the same pkg_Cls name to pkg_Cls.dll

The programmer may use a single library to store all the native methods
needed by any number of classes, as long as these classes are to be loaded with
the same class loader. The VM internally maintains a list of loaded native

Java Native Interface Specification—May 1997

2

libraries for each class loader. Vendors should choose native library names that
minimize the chance of name clashes.

If the underlying operating system does not support dynamic linking, all
native methods must be prelinked with the VM. In this case, the VM completes
the System.loadLibrary call without actually loading the library.

The programmer can also call the JNI function RegisterNatives() to
register the native methods associated with a class. The RegisterNatives()
function is particularly useful with statically linked functions.

Resolving Native Method Names

Dynamic linkers resolve entries based on their names. A native method name
is concatenated from the following components:

® the prefix Java_
®* a mangled fully-qualified class name

® an underscore (“_") separator

® a mangled method name

® for overloaded native methods, two underscores (“__) followed by the
mangled argument signature

The VM checks for a method name match for methods that reside in the native
library. The VM looks first for the short name; that is, the name without the
argument signature. It then looks for the long name, which is the name with
the argument signature. Programmers need to use the long name only when a
native method is overloaded with another native method. However, this is not
a problem if the native method has the same name as a nonnative method. A
nonnative method (a Java method) does not reside in the native library.

In the following example, the native method g does not have to be linked using
the long name because the other method g is not a native method, and thus is
not in the native library.

class Cls1 {

int g(int i);

native int g(double d);
}

We adopted a simple name-mangling scheme to ensure that all Unicode
characters translate into valid C function names. We use the underscore (“_")

Design Overview—May 1997 11

12

character as the substitute for the slash (“/ ”) in fully qualified class names.
Since a name or type descriptor never begins with a number, we can use _0, ...,
_9 for escape sequences, as Table 2-1 illustrates:

Table 2-1 Unicode Character Translation

Escape Sequence Denotes

_OXXXX a Unicode character XXXX

1 the character “_”

2 the character “;” in signatures
_3 the character “[* in signatures

Both the native methods and the interface APIs follow the standard library-
calling convention on a given platform. For example, UNIX systems use the C
calling convention, while Win32 systems use __stdcall

Native Method Arguments

The JNI interface pointer is the first argument to native methods. The JNI
interface pointer is of type JNIEnv. The second argument differs depending on
whether the native method is static or nonstatic. The second argument to a
nonstatic native method is a reference to the object. The second argument to a
static native method is a reference to its Java class.

The remaining arguments correspond to regular Java method arguments. The
native method call passes its result back to the calling routine via the return
value. Chapter 3, “JNI Types and Data Structures,” describes the mapping
between Java and C types.

Code Example 2-1 illustrates using a C function to implement the native
method f . The native method f is declared as follows:

package pkg;
class Cls {
native double f(int i, String s);

}
The C function with the long mangled name
Java_pkg Cls _f ILjava_lang_String_2 implements native method f:

Java Native Interface Specification—May 1997

N
1]

Code Example 2-1 Implementing a Native Method Using C

jdouble Java_pkg_Cls_f__ILjava_lang_String_2 (
JNIEnv *env, [* interface pointer */
jobject obj, /* "this" pointer */
jint i, [* argument #1 */
jstring s) /* argument #2 */

/* Obtain a C-copy of the Java string */
const char *str = (*env)->GetStringUTFChars(env, s, 0);
[* process the string */

/* Now we are done with str */
(*env)->ReleaseStringUTFChars(env, s, str);
return ...

}

Note that we always manipulate Java objects using the interface pointer env .
Using C++, you can write a slightly cleaner version of the code, as shown in
Code Example 2-2:

Code Example 2-2 Implementing a Native Method Using C++

extern "C" /* specify the C calling convention */
jdouble Java_pkg_Cls_f__ILjava_lang_String_2 (

JNIEnv *env, [* interface pointer */
jobject obj, /* "this" pointer */

jinti, [* argument #1 */

jstring s) /* argument #2 */

const char *str = env->GetStringUTFChars(s, 0);

env->ReleaseStringUTFChars(s, str);
return ...

}

With C++, the extra level of indirection and the interface pointer argument
disappear from the source code. However, the underlying mechanism is
exactly the same as with C. In C++, JNI functions are defined as inline member
functions that expand to their C counterparts.

Design Overview—May 1997 13

2

Referencing Java Objects

14

Primitive types, such as integers, characters, and so on, are copied between
Java and native code. Arbitrary Java objects, on the other hand, are passed by
reference. The VM must keep track of all objects that have been passed to the
native code, so that these objects are not freed by the garbage collector. The
native code, in turn, must have a way to inform the VM that it no longer needs
the objects. In addition, the garbage collector must be able to move an object
referred to by the native code.

Global and Local References

The JNI divides object references used by the native code into two categories:
local and global references. Local references are valid for the duration of a native
method call, and are automatically freed after the native method returns.
Global references remain valid until they are explicitly freed.

Obijects are passed to native methods as local references. All Java objects
returned by JNI functions are local references. The JNI allows the programmer
to create global references from local references. JNI functions that expect Java
objects accept both global and local references. A native method may return a
local or global reference to the VM as its result.

In most cases, the programmer should rely on the VM to free all local
references after the native method returns. However, there are times when the
programmer should explicitly free a local reference. Consider, for example, the
following situations:

® A native method accesses a large Java object, thereby creating a local
reference to the Java object. The native method then performs additional
computation before returning to the caller. The local reference to the large
Java object will prevent the object from being garbage collected, even if the
object is no longer used in the remainder of the computation.

® A native method creates a large number of local references, although not all
of them are used at the same time. Since the VM needs a certain amount of
space to keep track of a local reference, creating too many local references
may cause the system to run out of memory. For example, a native method
loops through a large array of objects, retrieves the elements as local
references, and operates on one element at each iteration. After each
iteration, the programmer no longer needs the local reference to the array
element.

Java Native Interface Specification—May 1997

2

The JNI allows the programmer to manually delete local references at any
point within a native method. To ensure that programmers can manually free
local references, JNI functions are not allowed to create extra local references,
except for references they return as the result.

Local references are only valid in the thread in which they are created. The
native code must not pass local references from one thread to another.

Implementing Local References

Accessing Java Objects

To implement local references, the Java VM creates a registry for each
transition of control from Java to a native method. A registry maps
nonmovable local references to Java objects, and keeps the objects from being
garbage collected. All Java objects passed to the native method (including
those that are returned as the results of JNI function calls) are automatically
added to the registry. The registry is deleted after the native method returns,
allowing all of its entries to be garbage collected.

There are different ways to implement a registry, such as using a table, a linked
list, or a hash table. Although reference counting may be used to avoid
duplicated entries in the registry, a JNI implementation is not obliged to detect
and collapse duplicate entries.

Note that local references cannot be faithfully implemented by conservatively
scanning the native stack. The native code may store local references into
global or heap data structures.

The JNI provides a rich set of accessor functions on global and local references.
This means that the same native method implementation works no matter how
the VM represents Java objects internally. This is a crucial reason why the JNI
can be supported by a wide variety of VM implementations.

The overhead of using accessor functions through opaque references is higher
than that of direct access to C data structures. We believe that, in most cases,
Java programmers use native methods to perform nontrivial tasks that
overshadow the overhead of this interface.

Design Overview—May 1997 15

16

Accessing Primitive Arrays

This overhead is not acceptable for large Java objects containing many
primitive data types, such as integer arrays and strings. (Consider native
methods that are used to perform vector and matrix calculations.) It would be
grossly inefficient to iterate through a Java array and retrieve every element
with a function call.

One solution introduces a notion of “pinning” so that the native method can
ask the VM to pin down the contents of an array. The native method then
receives a direct pointer to the elements. This approach, however, has two
implications:

® The garbage collector must support pinning.

®* The VM must lay out primitive arrays contiguously in memory. Although
this is the most natural implementation for most primitive arrays, boolean
arrays can be implemented as packed or unpacked. Therefore, native code
that relies on the exact layout of boolean arrays will not be portable.

We adopt a compromise that overcomes both of the above problems.

First, we provide a set of functions to copy primitive array elements between a
segment of a Java array and a native memory buffer. Use these functions if a
native method needs access to only a small number of elements in a large
array.

Second, programmers can use another set of functions to retrieve a pinned-
down version of array elements. Keep in mind that these functions may require
the Java VM to perform storage allocation and copying. Whether these
functions in fact copy the array depends on the VM implementation, as
follows:

® |f the garbage collector supports pinning, and the layout of the array is the
same as expected by the native method, then no copying is needed.

® Otherwise, the array is copied to a nonmovable memory block (for example,
in the C heap) and the necessary format conversion is performed. A pointer
to the copy is returned.

Lastly, the interface provides functions to inform the VM that the native code
no longer needs to access the array elements. When you call these functions,
the system either unpins the array, or it reconciles the original array with its
non-movable copy and frees the copy.

Java Native Interface Specification—May 1997

2

Our approach provides flexibility. A garbage collector algorithm can make
separate decisions about copying or pinning for each given array. For example,
the garbage collector may copy small objects, but pin the larger objects.

A JNI implementation must ensure that native methods running in multiple
threads can simultaneously access the same array. For example, the JNI may
keep an internal counter for each pinned array so that one thread does not
unpin an array that is also pinned by another thread. Note that the JNI does
not need to lock primitive arrays for exclusive access by a native method.
Simultaneously updating a Java array from different threads leads to
nondeterministic results.

Accessing Fields and Methods

The JNI allows native code to access the fields and to call the methods of Java
objects. The JNI identifies methods and fields by their symbolic names and
type signatures. A two-step process factors out the cost of locating the field or
method from its name and signature. For example, to call the method f in class
cls , the native code first obtains a method ID, as follows:

jmethodID mid =
env->GetMethodID(cls, “f", “(ILjava/lang/String;)D");

The native code can then use the method ID repeatedly without the cost of
method lookup, as follows:

jdouble result = env->CallDoubleMethod(obj, mid, 10, str);

A field or method ID does not prevent the VM from unloading the class from
which the ID has been derived. After the class is unloaded, the method or field
ID becomes invalid. The native code, therefore, must make sure to:

® keep a live reference to the underlying class, or

® recompute the method or field ID
if it intends to use a method or field ID for an extended period of time.

The JNI does not impose any restrictions on how field and method IDs are
implemented internally.

Reporting Programming Errors

The JNI does not check for programming errors such as passing in NULL
pointers or illegal argument types. lllegal argument types includes such things

Design Overview—May 1997 17

1]l
N

Java Exceptions

18

as using a normal Java object instead of a Java class object. The JNI does not
check for these programming errors for the following reasons:

® Forcing JNI functions to check for all possible error conditions degrades the
performance of normal (correct) native methods.

® In many cases, there is not enough runtime type information to perform
such checking.

Most C library functions do not guard against programming errors. The
printf() function, for example, usually causes a runtime error, rather than
returning an error code, when it receives an invalid address. Forcing C library
functions to check for all possible error conditions would likely result in such
checks to be duplicated--once in the user code, and then again in the library.

The programmer must not pass illegal pointers or arguments of the wrong type
to JNI functions. Doing so could result in arbitrary consequences, including a
corrupted system state or VM crash.

The JNI allows native methods to raise arbitrary Java exceptions. The native
code may also handle outstanding Java exceptions. The Java exceptions left
unhandled are propagated back to the VM.

Exceptions and Error Codes

Certain JNI functions use the Java exception mechanism to report error
conditions. In most cases, JNI functions report error conditions by returning an
error code and throwing a Java exception. The error code is usually a special
return value (such as NULL) that is outside of the range of normal return
values. Therefore, the programmer can:

® quickly check the return value of the last JNI call to determine if an error
has occurred, and

® call a function, ExceptionOccurred() , to obtain the exception object that
contains a more detailed description of the error condition.

There are two cases where the programmer needs to check for exceptions
without being able to first check an error code:

Java Native Interface Specification—May 1997

2

® The JNI functions that invoke a Java method return the result of the Java
method. The programmer must call ExceptionOccurred() to check for
possible exceptions that occurred during the execution of the Java method.

® Some of the JNI array access functions do not return an error code, but may
throw an ArraylndexOutOfBoundsException or
ArrayStoreException

In all other cases, a non-error return value guarantees that no exceptions have
been thrown.

Asynchronous Exceptions

In cases of multiple threads, threads other than the current thread may post an
asynchronous exception. An asynchronous exception does not immediately
affect the execution of the native code in the current thread, until:

® the native code calls one of the JNI functions that could raise synchronous
exceptions, or

® the native code uses ExceptionOccurred() to explicitly check for
synchronous and asynchronous exceptions.

Note that only those JNI function that could potentially raise synchronous
exceptions check for asynchronous exceptions.

Native methods should insert ExceptionOccurred() checks in necessary
places (such as in a tight loop without other exception checks) to ensure that
the current thread responds to asynchronous exceptions in a reasonable
amount of time.

Exception Handling

There are two ways to handle an exception in native code:

® The native method can choose to return immediately, causing the exception
to be thrown in the Java code that initiated the native method call.

® The native code can clear the exception by calling ExceptionClear() , and
then execute its own exception-handling code.

After an exception has been raised, the native code must first clear the
exception before making other JNI calls. When there is a pending exception,
the only JNI functions that are safe to call are ExceptionOccurred(),
ExceptionDescribe() , and ExceptionClear() . The

Design Overview—May 1997 19

20

ExceptionDescribe() function prints a debugging message about the
pending exception.

Java Native Interface Specification—May 1997

Primitive Types

JNI Typesand Data Structures 3

This chapter discusses how the JNI maps Java types to native C types.

Table 3-1 describes Java primitive types and their machine-dependent native
equivalents.

Table 3-1 Primitive Types and Native Equivalents

Java Type Native Type Description
boolean jboolean unsigned 8 bits
byte jbyte signed 8 bits
char jchar unsigned 16 bits
short jshort signed 16 bits
int jint signed 32 bits
long jlong signed 64 bits
float jfloat 32 bits

double jdouble 64 bits

void void N/A

The following definition is provided for convenience.

#define INI_FALSE 0
#define INI_TRUE 1

21

1]l
w

Reference Types

22

The jsize integer type is used to describe cardinal indices and sizes:

typedef jint jsize;

The JNI includes a number of reference types that correspond to different
kinds of Java objects. JNI reference types are organized in the hierarchy shown
in Figure 3-1.

jobject (all Java objects)
- jclass (java.lang.Class objects)
L Jstring (java.lang.String objects)
L jarray (arrays)
L jobjectArray (object arrays)
L jbooleanArray (boolean arrays)
L JbyteArray (byte arrays)
- jcharArray (char arrays)
L JshortArray (short arrays)
L jintArray (int arrays)
L jlongArray (long arrays)
L jfloatArray (float arrays)
L jdoubleArray (double arrays)
L— jthrowable (java.lang.Throwable objects)

Figure 3-1 Reference Type Hierarchy

In C, all other JNI reference types are defined to be the same as jobject . For
example:

typedef jobject jclass;

In C++, JNI introduces a set of dummy classes to enforce the subtyping
relationship. For example:

class _jobject {};
class _jclass : public _jobject {};

typedef _jobject *jobject;
typedef _jclass *jclass;

Java Native Interface Specification—May 1997

Field and Method IDs

The Value Type

Type Signatures

Method and field IDs are regular C pointer types:

struct _jfieldID; /* opaque structure */
typedef struct _jfieldID *jfieldID; /* field IDs */

struct _jmethodID; /* opaque structure */
typedef struct _jmethodID *jmethodID; /* method IDs */

The jvalue union type is used as the element type in argument arrays. It is
declared as follows:

typedef union jvalue {
jboolean z;
jbyte b;
jchar c;
jshort s;
jint i
jlong j;
jfloat f;
jdouble d;
jobject I;

} jvalue;

The JNI uses the Java VM'’s representation of type signatures. Table 3-2 shows

these type signatures.

Table 3-2 Java VM Type Signatures
Type Signature Java Type
z boolean

B byte

C char

S short

JNI Types and Data Structures—May 1997

23

1]l
w

UTF-8 Strings

24

Table 3-2 Java VM Type Signatures

Type Signature Java Type

| int

J long

F float

D double

L fully-qualified-class ; fully-qualified-class
[type type(]

(‘arg-types) ret-type method type

For example, the Java method:
long f (int n, String s, int[] arr);

has the following type signature:
(ILjava/lang/String;[1)J

The JNI uses UTF-8 strings to represent various string types. UTF-8 strings are
the same as those used by the Java VM. UTF-8 strings are encoded so that
character sequences that contain only nonnull ASCII characters can be
represented using only one byte per character, but characters of up to 16 bits
can be represented. All characters in the range \u0001 to \uOO7F are
represented by a single byte, as follows:

0 bits 0-6

The seven bits of data in the byte give the value of the character that is
represented. The null character (\u000) and characters in the range \u0080
to \uO7FF are represented by a pair of bytes, x and y, as follows:

x: |1]1]0 bits 6-10 y: |12 10 bits 0-5

The bytes represent the character with the value ((x&0x1f)<<6)+(y&0x3f)

Java Native Interface Specification—May 1997

3

Characters in the range \u0800 to \uFFFF are represented by three bytes, X, y,
and z:

x:{1{1{1|0] bits12-15| y:{ 1| 0| bits6-11 z:[1 0 | bits0-5

The character with the value ((x&0xf)<<12)+(y&0x3f)<<6)+(z&0x3f) is
represented by the three bytes.

There are two differences between this format and the “standard” UTF-8
format. First, the null byte (byte)0 is encoded using the two-byte format
rather than the one-byte format. This means that Java VM UTF-8 strings never
have embedded nulls. Second, only the one-byte, two-byte, and three-byte
formats are used. The Java VM does not recognize the longer UTF-8 formats.

JNI Types and Data Structures—May 1997 25

26

Java Native Interface Specification—May 1997

JNI Functions 4

This chapter serves as the reference section for the JNI functions. It provides a
complete listing of all the JNI functions. It also presents the exact layout of the
JNI function table.

Note the use of the term “must” to describe restrictions on JNI programmers.
For example, when you see that a certain JNI function must receive a non-NULL
object, it is your responsibility to ensure that NULL is not passed to that JNI
function. As a result, a JNI implementation does not need to perform NULL
pointer checks in that JNI function.

A portion of this chapter is adapted from Netscape’s JRI documentation.

The reference material groups functions by their usage. The reference section is
organized by the following functional areas:

® Version Information

® Class Operations

® Exceptions

® Global and Local References
® Object Operations

® Accessing Fields of Objects
® Calling Instance Methods

® Accessing Static Fields

® Calling Static Methods

® String Operations

27

Array Operations
® Registering Native Methods

® Monitor Operations

Java VM Interface

Interface Function Table

28

Each function is accessible at a fixed offset through the JNIEnv argument. The
JNIEnNv type is a pointer to a structure storing all JNI function pointers. It is
defined as follows:

typedef const struct ININativelnterface *INIEnv;

The VM initializes the function table, as shown by Code Example 4-1. Note that
the first three entries are reserved for future compatibility with COM. In
addition, we reserve a number of additional NULLentries near the beginning of
the function table, so that, for example, a future class-related JNI operation can
be added after FindClass , rather than at the end of the table.

Note that the function table can be shared among all NI interface pointers.

Code Example 4-1

const struct JNINativelnterface ... = {
NULL,
NULL,
NULL,
NULL,
GetVersion,

DefineClass,
FindClass,

NULL

NULL

NULL
GetSuperclass,
IsAssignableFrom,

NULL

Throw,
ThrowNew,

ExceptionOccurred,

Java Native Interface Specification—May 1997

Code Example 4-1

ExceptionDescribe,
ExceptionClear,
FatalError,

NULL,

NULL

NewGlobalRef,
DeleteGlobalRef,
DeleteLocalRef,
IsSameObject,
NULL
NULL

AllocObiject,
NewObject,
NewObjectV,
NewObjectA,

GetObjectClass,
IsInstanceOf,

GetMethodID,

CallObjectMethod,
CallObjectMethodV,
CallObjectMethodA,
CallBooleanMethod,
CallBooleanMethodV,
CallBooleanMethodA,
CallByteMethod,
CallByteMethodV,
CallByteMethodA,
CallCharMethod,
CallCharMethodV,
CallCharMethodA,
CallShortMethod,
CallShortMethodV,
CallShortMethodA,
CallintMethod,
CallintMethodV,
CallintMethodA,
CallLongMethod,
CallLongMethodV,
CallLongMethodA,

JNI Functions—May 1997

29

Code Example 4-1

CallFloatMethod,
CallFloatMethodV,
CallFloatMethodA,
CallDoubleMethod,
CallDoubleMethodV,
CallDoubleMethodA,
CallVoidMethod,
CallVoidMethodV,
CallVoidMethodA,

CallNonvirtualObjectMethod,
CallNonvirtualObjectMethodV,
CallNonvirtualObjectMethodA,
CallNonvirtualBooleanMethod,
CallNonvirtualBooleanMethodV,
CallNonvirtualBooleanMethodA,
CallNonvirtualByteMethod,
CallNonvirtualByteMethodV,
CallNonvirtualByteMethodA,
CallNonvirtualCharMethod,
CallNonvirtualCharMethodV,
CallNonvirtualCharMethodA,
CallNonvirtualShortMethod,
CallNonvirtualShortMethodV,
CallNonvirtualShortMethodA,
CallNonvirtualintMethod,
CallNonvirtualintMethodV,
CallNonvirtuallntMethodA,
CallNonvirtualLongMethod,
CallNonvirtualLongMethodV,
CallNonvirtualLongMethodA,
CallNonvirtualFloatMethod,
CallNonvirtualFloatMethodV,
CallNonvirtualFloatMethodA,
CallNonvirtualDoubleMethod,
CallNonvirtualDoubleMethodV,
CallNonvirtualDoubleMethodA,
CallNonvirtualVoidMethod,
CallNonvirtualVoidMethodV,
CallNonvirtualVoidMethodA,

GetFieldID,

GetObjectField,

Java Native Interface Specification—May 1997

Code Example 4-1

GetBooleanField,
GetByteField,
GetCharField,
GetShortField,
GetlntField,
GetLongField,
GetFloatField,
GetDoubleField,
SetObjectField,
SetBooleanField,
SetByteField,
SetCharField,
SetShortField,
SetintField,
SetlLongField,
SetFloatField,
SetDoubleField,

GetStaticMethodID,

CallStaticObjectMethod,
CallStaticObjectMethodV,
CallStaticObjectMethodA,
CallStaticBooleanMethod,
CallStaticBooleanMethodV,
CallStaticBooleanMethodA,
CallStaticByteMethod,
CallStaticByteMethodV,
CallStaticByteMethodA,
CallStaticCharMethod,
CallStaticCharMethodV,
CallStaticCharMethodA,
CallStaticShortMethod,
CallStaticShortMethodV,
CallStaticShortMethodA,
CallStaticIntMethod,
CallStaticIntMethodV,
CallStaticIntMethodA,
CallStaticLongMethod,
CallStaticLongMethodV,
CallStaticLongMethodA,
CallStaticFloatMethod,
CallStaticFloatMethodV,
CallStaticFloatMethodA,

JNI Functions—May 1997

31

32

Code Example 4-1

CallStaticDoubleMethod,
CallStaticDoubleMethodV,
CallStaticDoubleMethodA,
CallStaticVoidMethod,
CallStaticVoidMethodV,
CallStaticVoidMethodA,

GetStaticFieldID,

GetStaticObjectField,
GetStaticBooleanField,
GetStaticByteField,
GetStaticCharField,
GetStaticShortField,
GetStaticIntField,
GetStaticLongField,
GetStaticFloatField,
GetStaticDoubleField,

SetStaticObjectField,
SetStaticBooleanField,
SetStaticByteField,
SetStaticCharField,
SetStaticShortField,
SetStaticIntField,
SetStaticLongField,
SetStaticFloatField,
SetStaticDoubleField,

NewsString,
GetStringLength,
GetStringChars,
ReleaseStringChars,

NewStringUTF,
GetStringUTFLength,
GetStringUTFChars,
ReleaseStringUTFChars,

GetArrayLength,
NewObjectArray,

GetObjectArrayElement,
SetObjectArrayElement,

Java Native Interface Specification—May 1997

Code Example 4-1

NewBooleanArray,
NewByteArray,
NewCharArray,
NewShortArray,
NewlintArray,
NewLongArray,
NewFloatArray,
NewDoubleArray,

GetBooleanArrayElements,
GetByteArrayElements,
GetCharArrayElements,
GetShortArrayElements,
GetintArrayElements,
GetLongArrayElements,
GetFloatArrayElements,
GetDoubleArrayElements,

ReleaseBooleanArrayElements,
ReleaseByteArrayElements,
ReleaseCharArrayElements,
ReleaseShortArrayElements,
ReleaselntArrayElements,
ReleaseLongArrayElements,
ReleaseFloatArrayElements,
ReleaseDoubleArrayElements,

GetBooleanArrayRegion,
GetByteArrayRegion,
GetCharArrayRegion,
GetShortArrayRegion,
GetintArrayRegion,
GetLongArrayRegion,
GetFloatArrayRegion,
GetDoubleArrayRegion,
SetBooleanArrayRegion,
SetByteArrayRegion,
SetCharArrayRegion,
SetShortArrayRegion,
SetintArrayRegion,
SetlLongArrayRegion,
SetFloatArrayRegion,
SetDoubleArrayRegion,

JNI Functions—May 1997

33

1]l
AN

Code Example 4-1

RegisterNatives,
UnregisterNatives,

MonitorEnter,
MonitorExit,

GetJavaVM,

Version Information

Class Operations

34

Get\Version
jint GetVersion(JNIEnv *env);
Returns the version of the native method interface.

PARAMETERS:
env: the JNI interface pointer.

RETURNS:

Returns the major version number in the higher 16 bits and the minor version
number in the lower 16 bits.

In JDK1.1, GetVersion() returns 0x00010001 .

DefineClass

jclass DefineClass(JNIEnv *env, jobject loader,
const jbyte *buf, jsize bufLen);

Loads a class from a buffer of raw class data.

PARAMETERS:
env: the JNI interface pointer.

Java Native Interface Specification—May 1997

N
1]

loader: a class loader assigned to the defined class.
buf: buffer containing the .class file data.
bufLen: buffer length.

RETURNS:
Returns a Java class object or NULL if an error occurs.

THROWS:
ClassFormatError: if the class data does not specify a valid class.
ClassCircularityError: if a class or interface would be its own superclass
or superinterface.
OutOfMemoryError: if the system runs out of memory.

FindClass

jclass FindClass(JNIEnv *env, const char *name);

This function loads a locally-defined class. It searches the directories and zip
files specified by the CLASSPATH:nvironment variable for the class with the
specified name.

PARAMETERS:
env: the JNI interface pointer.
name: a fully-qualified class name (that is, a package name, delimited by “/ ”,

followed by the class name). If the name begins with “[“ (the array signature
character), it returns an array class.

RETURNS:

Returns a class object from a fully-qualified name, or NULL if the class cannot
be found.

THROWS:

ClassFormatError: if the class data does not specify a valid class.
ClassCircularityError: if a class or interface would be its own superclass

or superinterface.

JNI Functions—May 1997 35

NoClassDefFoundError: if no definition for a requested class or interface
can be found.

OutOfMemoryError: if the system runs out of memory.

GetSuperclass
jclass GetSuperclass(JNIEnv *env, jclass clazz);

If clazz represents any class other than the class Object , then this function
returns the object that represents the superclass of the class specified by clazz .

If clazz specifies the class Object , or clazz represents an interface, this
function returns NULL

PARAMETERS:
env: the JNI interface pointer.
clazz: aJava class object.

RETURNS:
Returns the superclass of the class represented by clazz , or NULL

IsAssignableFrom

jboolean IsAssignableFrom(JNIEnv *env, jclass clazzl,
jclass clazz?2);

Determines whether an object of clazz1l can be safely cast to clazz2
PARAMETERS:

env: the JNI interface pointer.

clazzl: the first class argument.

clazz2: the second class argument.

RETURNS:
Returns JNI_TRUE if either of the following is true:

® The first and second class arguments refer to the same Java class.

Java Native Interface Specification—May 1997

N
1]

® The first class is a subclass of the second class.

® The first class has the second class as one of its interfaces.

Exceptions

Throw
jint Throw(JNIEnv *env, jthrowable obj);
Causes a java.lang.Throwable object to be thrown.
PARAMETERS:
env: the JNI interface pointer.
obj: ajava.lang.Throwable object.

RETURNS:
Returns 0 on success; a negative value on failure.

THROWS:
the java.lang.Throwable object obj .

ThrowNew

jint ThrowNew(JNIEnv *env, jclass clazz,
const char *message);

Constructs an exception object from the specified class with the message
specified by message and causes that exception to be thrown.

PARAMETERS:

env: the JNI interface pointer.

clazz: a subclass of java.lang.Throwable

message: the message used to construct the java.lang.Throwable object.

RETURNS:
Returns 0 on success; a negative value on failure.

JNI Functions—May 1997 37

THROWS:
the newly constructed java.lang.Throwable object.

ExceptionOccurred
jthrowable ExceptionOccurred(JNIEnv *env);

Determines if an exception is being thrown. The exception stays being thrown
until either the native code calls ExceptionClear() , or the Java code handles
the exception.

PARAMETERS:
env: the JNI interface pointer.

RETURNS:
Returns the exception object that is currently in the process of being thrown, or

NULL if no exception is currently being thrown.
ExceptionDescribe
void ExceptionDescribe(JNIEnv *env);

Prints an exception and a backtrace of the stack to a system error-reporting
channel, such as stderr . This is a convenience routine provided for
debugging.

PARAMETERS:

env: the JNI interface pointer.

ExceptionClear
void ExceptionClear(JNIEnv *env);

Clears any exception that is currently being thrown. If no exception is currently
being thrown, this routine has no effect.

PARAMETERS:
env: the JNI interface pointer.

Java Native Interface Specification—May 1997

N
1]

FatalError

void FatalError(JNIEnv *env, const char *msg);

Raises a fatal error and does not expect the VM to recover. This function does
not return.

PARAMETERS:
env: the JNI interface pointer.

msg: an error message.

Global and Local References

NewGlobalRef

jobject NewGlobalRef(JNIEnv *env, jobject obj);

Creates a new global reference to the object referred to by the obj argument.
The obj argument may be a global or local reference. Global references must
be explicitly disposed of by calling DeleteGlobalRef()

PARAMETERS:
env: the JNI interface pointer.

obj: a global or local reference.

RETURNS:
Returns a global reference, or NULL if the system runs out of memory.

DeleteGlobalRef

void DeleteGlobalRef(JNIEnv *env, jobject globalRef);

Deletes the global reference pointed to by globalRef

PARAMETERS:
env: the JNI interface pointer.

globalRef: a global reference.

JNI Functions—May 1997 39

1]l
N

DeleteLocalRef

Object Operations

void DeleteLocalRef(JNIEnv *env, jobject localRef);
Deletes the local reference pointed to by localRef
PARAMETERS:

env: the JNI interface pointer.

localRef: a local reference.

AllocObject

40

jobject AllocObject(JNIEnv *env, jclass clazz);

Allocates a new Java object without invoking any of the constructors for the
object. Returns a reference to the object.

The clazz argument must not refer to an array class.
PARAMETERS:

env: the JNI interface pointer.

clazz: aJava class object.

RETURNS:
Returns a Java object, or NULL if the object cannot be constructed.

THROWS:
InstantiationException: if the class is an interface or an abstract class.

OutOfMemoryError: if the system runs out of memory.

Java Native Interface Specification—May 1997

N
1]

NewObject
NewObjectA
NewObjectV

jobject NewObject(JNIEnv *env, jclass clazz,
jmethodID methodID, ...);

jobject NewObjectA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args);

jobject NewObjectV(INIEnv *env, jclass clazz,
jmethodID methodID, va_list args);

Constructs a new Java object. The method ID indicates which constructor
method to invoke. This ID must be obtained by calling GetMethodID() with
<init> as the method name and void (V) as the return type.

The clazz argument must not refer to an array class.

NewObject

Programmers place all arguments that are to be passed to the constructor
immediately following the methodID argument. NewObject() accepts these
arguments and passes them to the Java method that the programmer wishes to
invoke.

NewObjectA

Programmers place all arguments that are to be passed to the constructor in an
args array of jvalues that immediately follows the methodID argument.
NewObjectA() accepts the arguments in this array, and, in turn, passes them
to the Java method that the programmer wishes to invoke.

NewObjectV

Programmers place all arguments that are to be passed to the constructor in an
args argument of type va_list that immediately follows the methodID
argument. NewObjectV() accepts these arguments, and, in turn, passes them
to the Java method that the programmer wishes to invoke.

PARAMETERS:
env: the JNI interface pointer.

JNI Functions—May 1997 41

42

clazz: aJava class object.

methodID: the method ID of the constructor.

Additional Parameter for NewObject:
arguments to the constructor.

Additional Parameter for NewObjectA:
args: an array of arguments to the constructor.

Additional Parameter for NewObjectV:
args: ava_list of arguments to the constructor.

RETURNS:
Returns a Java object, or NULL if the object cannot be constructed.

THROWS:
InstantiationException: if the class is an interface or an abstract class.
OutOfMemoryError; if the system runs out of memory.

Any exceptions thrown by the constructor.

GetObjectClass

jclass GetObjectClass(JNIEnv *env, jobject obj);

Returns the class of an object.

PARAMETERS:
env: the JNI interface pointer.

obj: aJava object (must not be NULL).

RETURNS:
Returns a Java class object.

Java Native Interface Specification—May 1997

N
1]

IsInstanceOf

jboolean IsinstanceOf(JNIEnv *env, jobject obj,
jclass clazz);

Tests whether an object is an instance of a class.
PARAMETERS:

env: the JNI interface pointer.

obj: aJava object.

clazz: aJava class object.

RETURNS:

Returns JNI_TRUE if obj can be cast to clazz ; otherwise, returns
JNI_FALSE . A NULL object can be cast to any class.

IsSameObiject

jboolean IsSameObject(JNIEnv *env, jobject refl,
jobject ref2);

Tests whether two references refer to the same Java object.
PARAMETERS:

env: the JNI interface pointer.

refl: aJava object.

ref2: aJava object.

RETURNS:

Returns JNI_TRUE ifrefl and ref2 refer to the same Java object, or are
both NULL; otherwise, returns JNI_FALSE .

JNI Functions—May 1997 43

A

Accessing Fields of Objects

44

GetFieldID

jfieldID GetFieldID(JNIEnv *env, jclass clazz,
const char *name, const char *sig);

Returns the field ID for an instance (nonstatic) field of a class. The field is
specified by its name and signature. The Get<type>Field and Set<type>Field
families of accessor functions use field IDs to retrieve object fields.

GetFieldID() causes an uninitialized class to be initialized.

GetFieldID() cannot be used to obtain the length field of an array. Use
GetArrayLength() instead.

PARAMETERS:

env: the JNI interface pointer.

clazz: aJava class object.

name: the field name in a 0-terminated UTF-8 string.
sig: the field signature in a 0-terminated UTF-8 string.

RETURNS:
Returns a field ID, or NULL if the operation fails.

THROWS:

NoSuchFieldError: if the specified field cannot be found.
ExceptionininitializerError: if the class initializer fails due to an
exception.

OutOfMemoryError: if the system runs out of memory.

Get<type>Field Routines

NativeType Get<type>Field(JNIEnv *env, jobject obj,
jfieldID fieldID);

Java Native Interface Specification—May 1997

4

This family of accessor routines returns the value of an instance (nonstatic)
field of an object. The field to access is specified by a field ID obtained by
calling GetFieldID()

The following table describes the Get<type>Field routine name and result type.
You should replace type in Get<type>Field with the Java type of the field, or use
one of the actual routine names from the table, and replace NativeType with the
corresponding native type for that routine.

Table 4-1 Get<type>Field Family of Accessor Routines

Get<type>Field Routine Name Native Type

GetObjectField() jobject
GetBooleanField() jboolean
GetByteField() jbyte
GetCharField() jchar
GetShortField() jshort
GetintField() jint
GetLongField() jlong
GetFloatField() jfloat
GetDoubleField() jdouble
PARAMETERS:

env: the JNI interface pointer.
obj: aJava object (must not be NULL).
fieldID: a valid field ID.

RETURNS:
Returns the content of the field.

Set<type>Field Routines

void Set<type>Field(JNIEnv *env, jobject obj, jfieldID fieldID,
NativeType value);

JNI Functions—May 1997 45

1]l
AN

This family of accessor routines sets the value of an instance (nonstatic) field of
an object. The field to access is specified by a field ID obtained by calling
GetFieldID()

The following table describes the Set<type>Field routine name and value type.
You should replace type in Set<type>Field with the Java type of the field, or use
one of the actual routine names from the table, and replace NativeType with the
corresponding native type for that routine.

Table 4-2 Set<type>Field Family of Accessor Routines

Set<type>Field Routine Native Type
SetObjectField() jobject
SetBooleanField() jboolean
SetByteField() jbyte
SetCharField() jchar
SetShortField() jshort
SetintField() jint
SetLongField() jlong
SetFloatField() jfloat
SetDoubleField() jdouble
PARAMETERS:

env: the JNI interface pointer.
obj: aJava object (must not be NULL).
fieldID: a valid field ID.

value: the new value of the field.

46 Java Native Interface Specification—May 1997

N
1]

Calling Instance Methods

GetMethodID

jmethodID GetMethodID(IJNIEnv *env, jclass clazz,
const char *name, const char *sig);

Returns the method ID for an instance (nonstatic) method of a class or
interface. The method may be defined in one of the clazz ’s superclasses and
inherited by clazz . The method is determined by its name and signature.

GetMethodID() causes an uninitialized class to be initialized.

To obtain the method ID of a constructor, supply <init> as the method name
and void (V) as the return type.

PARAMETERS:

env: the JNI interface pointer.

clazz: aJava class object.

name: the method name in a O0-terminated UTF-8 string.
sig: the method signature in 0-terminated UTF-8 string.

RETURNS:
Returns a method ID, or NULL if the specified method cannot be found.

THROWS:
NoSuchMethodError: if the specified method cannot be found.

ExceptionininitializerError: if the class initializer fails due to an
exception.
OutOfMemoryError: if the system runs out of memory.

JNI Functions—May 1997 47

Call<type>Method Routines
Call<type>MethodA Routines
Call<type>MethodV Routines

NativeType Call<type>Method(INIEnv *env, jobject obj,
jmethodID methodID, ...);

NativeType Call<type>MethodA(INIEnv *env, jobject obj,
jmethodID methodID, jvalue *args);

NativeType Call<type>MethodV(INIEnv *env, jobject obj,
jmethodID methodID, va_list args);

Methods from these three families of operations are used to call a Java instance
method from a native method.They only differ in their mechanism for passing
parameters to the methods that they call.

These families of operations invoke an instance (nonstatic) method on a Java
object, according to the specified method ID. The methodID argument must be
obtained by calling GetMethodID () .

When these functions are used to call private methods and constructors, the
method ID must be derived from the real class of obj , not from one of its
superclasses.

Call<type>Method Routines

Programmers place all arguments that are to be passed to the method
immediately following the methodID argument. The Call<type>Method routine
accepts these arguments and passes them to the Java method that the
programmer wishes to invoke.

Call<type>MethodA Routines

Programmers place all arguments to the method in an args array of jvalues
that immediately follows the methodID argument. The Call<type>MethodA

routine accepts the arguments in this array, and, in turn, passes them to the
Java method that the programmer wishes to invoke.

Call<type>MethodV Routines

Programmers place all arguments to the method in an args argument of type
va_list that immediately follows the methodID argument. The

Java Native Interface Specification—May 1997

4

Call<type>MethodV routine accepts the arguments, and, in turn, passes them to
the Java method that the programmer wishes to invoke.

The following table describes each of the method calling routines according to
their result type. You should replace type in Call<type>Method with the Java
type of the method you are calling (or use one of the actual method calling
routine names from the table) and replace NativeType with the corresponding
native type for that routine.

Table 4-3 Instance Method Calling Routines

Call<type>Method Routine Name Native Type

CallVoidMethod() void
CallVoidMethodA()
CallVoidMethodV()

CallObjectMethod() jobject
CallObjectMethodA()
CallObjectMethodV()

CallBooleanMethod() jboolean
CallBooleanMethodA()
CallBooleanMethodV()

CallByteMethod() jbyte
CallByteMethodA()
CallByteMethodV/()

CallCharMethod() jchar
CallCharMethodA()
CallCharMethodV()

CallShortMethod() jshort
CallsShortMethodA()
CallShortMethodV()

CallintMethod() jint
CallintMethodA()
CallintMethod V()

JNI Functions—May 1997 49

Table 4-3 Instance Method Calling Routines

Call<type>Method Routine Name Native Type

CallLongMethod() jlong
CallLongMethodA()
CallLongMethodV()

CallFloatMethod() jfloat
CallFloatMethodA()
CallFloatMethodV()

CallDoubleMethod() jdouble
CallDoubleMethodA()
CallDoubleMethodV()

PARAMETERS:
env: the JNI interface pointer.

obj: aJava object.

methodID: a method ID.

Additional Parameter for Call<type>Method Routines:
arguments to the Java method.

Additional Parameter for Call<type>MethodA Routines:
args: an array of arguments.

Additional Parameter for Call<type>MethodV Routines:
args: ava_list of arguments.

RETURNS:
Returns the result of calling the Java method.

THROWS:
Exceptions raised during the execution of the Java method.

Java Native Interface Specification—May 1997

N
1]

CallNonvirtual<type>Method Routines
CallNonvirtual<type>MethodA Routines
CallNonvirtual<type>MethodV Routines

NativeType CallNonvirtual<type>Method(JNIEnv *env, jobject obj,
jclass clazz, jmethodID methodID, ...);

NativeType CallNonvirtual<type>MethodA(JNIEnv *env, jobject obj,
jclass clazz, jmethodID methodID, jvalue *args);

NativeType CallNonvirtual<type>MethodV(IJNIEnv *env, jobject obj,
jclass clazz, jmethodID methodID, va_list args);

These families of operations invoke an instance (nonstatic) method on a Java
object, according to the specified class and method ID. The methodID
argument must be obtained by calling GetMethodID () on the class clazz .

The CallNonvirtual<type>Method families of routines and the Call<type>Method
families of routines are different. Call<type>Method routines invoke the method
based on the class of the object, while CallNonvirtual<type>Method routines
invoke the method based on the class, designated by the clazz parameter,
from which the method ID is obtained. The method ID must be obtained from
the real class of the object or from one of its superclasses.

CallNonvirtual<type>Method Routines

Programmers place all arguments that are to be passed to the method
immediately following the methodID argument. The
CallNonvirtual<type>Method routine accepts these arguments and passes them
to the Java method that the programmer wishes to invoke.

CallNonvirtual<type>MethodA Routines

Programmers place all arguments to the method in an args array of jvalues
that immediately follows the methodID argument. The
CallNonvirtual<type>MethodA routine accepts the arguments in this array, and,
in turn, passes them to the Java method that the programmer wishes to invoke.

CallNonvirtual<type>MethodV Routines

Programmers place all arguments to the method in an args argument of type
va_list that immediately follows the methodID argument. The

JNI Functions—May 1997 51

52

CallNonvirtualMethodV routine accepts the arguments, and, in turn, passes
them to the Java method that the programmer wishes to invoke.

The following table describes each of the method calling routines according to
their result type. You should replace type in CallNonvirtual<type>Method with
the Java type of the method, or use one of the actual method calling routine
names from the table, and replace NativeType with the corresponding native

type for that routine.

Table 4-4 CallNonvirtual<type>Method Routines

CallNonvirtual<type>Method Routine Name

Native Type

CallNonvirtualVoidMethod()
CallNonvirtualVoidMethodA()
CallNonvirtualVoidMethodV()

CallNonvirtualObjectMethod()
CallNonvirtualObjectMethodA()
CallNonvirtualObjectMethodV()

CallNonvirtualBooleanMethod()
CallNonvirtualBooleanMethodA()
CallNonvirtualBooleanMethodV()

CallNonvirtualByteMethod()
CallNonvirtualByteMethodA()
CallNonvirtualByteMethodV()

CallNonvirtualCharMethod()
CallNonvirtualCharMethodA()
CallNonvirtualCharMethodV/()

CallNonvirtualShortMethod()
CallNonvirtualShortMethodA()
CallNonvirtualShortMethodV()

CallNonvirtualintMethod()
CallNonvirtuallntMethodA()
CallNonvirtuallintMethodV/()

void

jobject

jboolean

jbyte

jchar

jshort

jint

Java Native Interface Specification—May 1997

DS
1]

Table 4-4 CallNonvirtual<type>Method Routines

CallNonvirtual<type>Method Routine Name Native Type

CallNonvirtualLongMethod() jlong
CallNonvirtualLongMethodA()
CallNonvirtualLongMethodV()

CallNonvirtualFloatMethod() jfloat
CallNonvirtualFloatMethodA()
CallNonvirtualFloatMethodV()

CallNonvirtualDoubleMethod() jdouble
CallNonvirtualDoubleMethodA()
CallNonvirtualDoubleMethodV/()

PARAMETERS:
env: the JNI interface pointer.

clazz: alava class.
obj: aJava object.
methodID: a method ID.

Additional Parameter for CallNonvirtual<type>Method Routines:

arguments to the Java method.

Additional Parameter for CallNonvirtual<type>MethodA Routines:
args: an array of arguments.

Additional Parameter for CallNonvirtual<type>MethodV Routines:
args: ava_list of arguments.

RETURNS:

Returns the result of calling the Java method.

THROWS:
Exceptions raised during the execution of the Java method.

JNI Functions—May 1997 53

A

Accessing Static Fields

GetStaticFieldID

jfieldID GetStaticFieldID(JNIEnv *env, jclass clazz,
const char *name, const char *sig);

Returns the field ID for a static field of a class. The field is specified by its name
and signature. The GetStatic<type>Field and SetStatic<type>Field families of
accessor functions use field IDs to retrieve static fields.

GetStaticFieldID() causes an uninitialized class to be initialized.
PARAMETERS:

env: the JNI interface pointer.

clazz: aJava class object.

name: the static field name in a O-terminated UTF-8 string.

sig: the field signature in a 0-terminated UTF-8 string.

RETURNS:
Returns a field ID, or NULL if the specified static field cannot be found.

THROWS:

NoSuchFieldError: if the specified static field cannot be found.
ExceptionininitializerError: if the class initializer fails due to an
exception.

OutOfMemoryError: if the system runs out of memory.

GetStatic<type>Field Routines

NativeType GetStatic<type>Field(JNIEnv *env, jclass clazz,
jfieldID fieldID);

This family of accessor routines returns the value of a static field of an object.
The field to access is specified by a field ID, which is obtained by calling
GetStaticFieldID()

54 Java Native Interface Specification—May 1997

4

The following table describes the family of get routine names and result types.
You should replace type in GetStatic<type>Field with the Java type of the field,
or one of the actual static field accessor routine names from the table, and
replace NativeType with the corresponding native type for that routine.

Table 4-5 GetStatic<type>Field Family of Accessor Routines

GetStatic<type>Field Routine Name Native Type

GetStaticObjectField 0 jobject
GetStaticBooleanField 0 jboolean
GetStaticByteField 0 joyte
GetStaticCharField 0 jchar
GetStaticShortField 0 jshort
GetStaticIntField 0 jint
GetStaticLongField 0 jlong
GetStaticFloatField 0 jfloat
GetStaticDoubleField 0 jdouble
PARAMETERS:

env: the JNI interface pointer.
clazz: aJava class object.
fieldlD: a static field ID.

RETURNS:
Returns the content of the static field.

SetStatic<type>Field Routines

void SetStatic<type>Field(JNIEnv *env, jclass clazz,
jfieldID fieldID, NativeType value);

This family of accessor routines sets the value of a static field of an object. The
field to access is specified by a field ID, which is obtained by calling
GetStaticFieldID()

JNI Functions—May 1997 55

Calling Static Methods

56

The following table describes the set routine name and value types. You should
replace type in SetStatic<type>Field with the Java type of the field, or one of the
actual set static field routine names from the table, and replace NativeType with
the corresponding native type for that routine.

Table 4-6 SetStatic<type>Field Family of Accessor Routines

SetStatic<type>Field Routine Name NativeType

SetStaticObjectField 0 jobject
SetStaticBooleanField 0 jboolean
SetStaticByteField 0 joyte
SetStaticCharField 0 jchar
SetStaticShortField 0 jshort
SetStaticIntField 0 jint
SetStaticLongField 0 jlong
SetStaticFloatField 0 jfloat
SetStaticDoubleField 0 jdouble
PARAMETERS:

env: the JNI interface pointer.
clazz: aJava class object.
fieldID: a static field ID.

value: the new value of the field.

GetStaticMethodID

jmethodID GetStaticMethodID(JNIEnv *env, jclass clazz,
const char *name, const char *sig);

Returns the method ID for a static method of a class. The method is specified
by its name and signature.

GetStaticMethodID() causes an uninitialized class to be initialized.

Java Native Interface Specification—May 1997

N
1]

PARAMETERS:
env: the JNI interface pointer.

clazz: aJava class object.
name: the static method name in a O-terminated UTF-8 string.
sig: the method signature in a 0-terminated UTF-8 string.

RETURNS:
Returns a method ID, or NULL if the operation fails.

THROWS:
NoSuchMethodError: if the specified static method cannot be found.

ExceptionininitializerError: if the class initializer fails due to an
exception.
OutOfMemoryError; if the system runs out of memory.

CallStatic<type>Method Routines
CallStatic<type>MethodA Routines
CallStatic<type>MethodV Routines

NativeType CallStatic<type>Method(JNIEnv *env, jclass clazz,
jmethodID methodID, ...);

NativeType CallStatic<type>MethodA(IJNIENnv *env, jclass clazz,
jmethodID methodID, jvalue *args);

NativeType CallStatic<type>MethodV(INIEnv *env, jclass clazz,
jmethodID methodID, va_list args);

This family of operations invokes a static method on a Java object, according to
the specified method ID. The methodID argument must be obtained by calling
GetStaticMethodID 0.

The method ID must be derived from clazz , not from one of its superclasses.
CallStatic<type>Method Routines

Programmers should place all arguments that are to be passed to the method
immediately following the methodID argument. The CallStatic<type>Method

JNI Functions—May 1997 57

58

routine accepts these arguments and passes them to the Java method that the
programmer wishes to invoke.

CallStatic<type>MethodA Routines

Programmers should place all arguments to the method in an args array of
jvalues that immediately follows the methodID argument. The
CallStaticMethodA routine accepts the arguments in this array, and, in turn,
passes them to the Java method that the programmer wishes to invoke.

CallStatic<type>MethodV Routines

Programmers should place all arguments to the method in an args argument
of type va_list that immediately follows the methodID argument. The
CallStaticMethodV routine accepts the arguments, and, in turn, passes them to
the Java method that the programmer wishes to invoke.

The following table describes each of the method calling routines according to
their result types. You should replace type in CallStatic<type>Method with the
Java type of the method, or one of the actual method calling routine names
from the table, and replace NativeType with the corresponding native type for
that routine.

Table 4-7 CallStatic<type>Method Calling Routines

CallStatic<type>Method Routine Name Native Type

CallStaticVoidMethod 0 void
CallStaticVoidMethodA 0
CallStaticVoidMethod V()

CallStaticObjectMethod 0 jobject
CallStaticObjectMethod A()
CallStaticObjectMethod V()

CallStaticBooleanMethod 0 jboolean
CallStaticBooleanMethod A(Q)
CallStaticBooleanMethod V()

CallStaticByteMethod 0 jbyte
CallStaticByteMethod A(
CallStaticByteMethod V()

Java Native Interface Specification—May 1997

DS
1]

Table 4-7 CallStatic<type>Method Calling Routines

CallStatic<type>Method Routine Name Native Type

CallStaticCharMethod 0 jchar
CallStaticCharMethod A()
CallStaticCharMethod V()

CallStaticShortMethod 0 jshort
CallStaticShortMethod AQ
CallStaticShortMethod V()

CallStaticIntMethod 0 jint
CallStaticintMethod AQ
CallStaticIntMethod V()

CallStaticLongMethod 0 jlong
CallStaticLongMethod AQ
CallStaticLongMethod V()

CallStaticFloatMethod 0 jfloat
CallStaticFloatMethod A
CallStaticFloatMethod V()
CallStaticDoubleMethod 0 jdouble

CallStaticDoubleMethod A()
CallStaticDoubleMethod V()

PARAMETERS:
env: the JNI interface pointer.

clazz: aJava class object.

methodID: a static method ID.

Additional Parameter for CallStatic<type>Method Routines:
arguments to the static method.

Additional Parameter for CallStatic<type>MethodA Routines:
args: an array of arguments.

Additional Parameter for CallStatic<type>MethodV Routines:
args: ava_list of arguments.

JNI Functions—May 1997 59

1]l
N

String Operations

RETURNS:
Returns the result of calling the static Java method.

THROWS:
Exceptions raised during the execution of the Java method.

NewString

jstring NewString(JNIEnv *env, const jchar *unicodeChars,
jsize len);

Constructs a new java.lang.String object from an array of Unicode
characters.

PARAMETERS:

env: the JNI interface pointer.
unicodeChars: pointer to a Unicode string.
len: length of the Unicode string.

RETURNS:
Returns a Java string object, or NULL if the string cannot be constructed.

THROWS:
OutOfMemoryError: if the system runs out of memory.

GetStringLength

60

jsize GetStringLength(JNIEnv *env, jstring string);

Returns the length (the count of Unicode characters) of a Java string.

PARAMETERS:
env: the JNI interface pointer.

string: a Java string object.

Java Native Interface Specification—May 1997

N
1]

RETURNS:
Returns the length of the Java string.

GetStringChars

const jchar * GetStringChars(JNIEnv *env, jstring string,
jboolean *isCopy);

Returns a pointer to the array of Unicode characters of the string. This pointer
is valid until ReleaseStringchars() is called.

If isCopy is not NULL, then *isCopy is set to JNI_TRUE if a copy is made; or
it is set to JNI_FALSE if no copy is made.

PARAMETERS:

env: the JNI interface pointer.
string: aJava string object.
isCopy: a pointer to a boolean.

RETURNS:
Returns a pointer to a Unicode string, or NULL if the operation fails.

ReleaseStringChars

void ReleaseStringChars(JNIEnv *env, jstring string,
const jchar *chars);

Informs the VM that the native code no longer needs access to chars . The
chars argument is a pointer obtained from string using
GetStringChars()

PARAMETERS:
env: the JNI interface pointer.

string: a Java string object.

chars: a pointer to a Unicode string.

JNI Functions—May 1997 61

NewStringUTF

jstring NewStringUTF(JNIEnv *env, const char *bytes);

Constructs a new java.lang.String object from an array of UTF-8
characters.

PARAMETERS:
env: the JNI interface pointer, or NULL if the string cannot be constructed.
bytes: the pointer to a UTF-8 string.

RETURNS:
Returns a Java string object, or NULL if the string cannot be constructed.

THROWS:
OutOfMemoryError: if the system runs out of memory.

GetStringUTFLength

jsize GetStringUTFLength(JNIEnv *env, jstring string);
Returns the UTF-8 length in bytes of a string.
PARAMETERS:

env: the JNI interface pointer.

string: a Java string object.

RETURNS:
Returns the UTF-8 length of the string.

GetStringUTFChars

const jbyte* GetStringUTFChars(IJNIEnv *env, jstring string,
jboolean *isCopy);

Returns a pointer to an array of UTF-8 characters of the string. This array is
valid until it is released by ReleaseStringUTFChars()

Java Native Interface Specification—May 1997

4

If isCopy is not NULL then *isCopy is set to JNI_TRUE if a copy is made; or
it is set to JNI_FALSE if no copy is made.

PARAMETERS:

env: the JNI interface pointer.
string: a Java string object.
isCopy: a pointer to a boolean.

RETURNS:
Returns a pointer to a UTF-8 string, or NULL if the operation fails.

ReleaseStringUTFChars

Array Operations

void ReleaseStringUTFChars(INIEnv *env, jstring string,
const char *utf);

Informs the VM that the native code no longer needs access to utf . The utf
argument is a pointer derived from string using GetStringUTFChars()

PARAMETERS:
env: the JNI interface pointer.
string: a Java string object.

utf: a pointer to a UTF-8 string.

GetArraylLength

jsize GetArrayLength(JNIEnv *env, jarray array);

Returns the number of elements in the array.

PARAMETERS:
env: the JNI interface pointer.

array: aJava array object.

JNI Functions—May 1997 63

RETURNS:
Returns the length of the array.

NewObjectArray

jarray NewObjectArray(JNIEnv *env, jsize length,
jclass elementClass, jobject initialElement);

Constructs a new array holding objects in class elementClass . All elements
are initially set to initialElement

PARAMETERS:

env: the JNI interface pointer.

length: array size.

elementClass: array element class.
initialElement: initialization value.

RETURNS:
Returns a Java array object, or NULL if the array cannot be constructed.

THROWS:
OutOfMemoryError: if the system runs out of memory.

GetObjectArrayElement

jobject GetObjectArrayElement(JNIEnv *env,
jobjectArray array, jsize index);

Returns an element of an Object array.
PARAMETERS:

env: the JNI interface pointer.

array: alJava array.

index: array index.

Java Native Interface Specification—May 1997

N
1]

RETURNS:
Returns a Java object.

THROWS:

ArraylndexOutOfBoundsException: if index does not specify a valid
index in the array.

SetObjectArrayElement

void SetObjectArrayElement(JNIEnv *env, jobjectArray array,
jsize index, jobject value);

Sets an element of an Object array.
PARAMETERS:

env: the JNI interface pointer.
array: alJava array.

index: array index.

value: the new value.

THROWS:

ArraylndexOutOfBoundsException: if index does not specify a valid
index in the array.

ArrayStoreException: if the class of value is not a subclass of the element
class of the array.

New<PrimitiveType>Array Routines

ArrayType New<PrimitiveType>Array(JNIEnv *env, jsize length);

A family of operations used to construct a new primitive array object. Table 4-8
describes the specific primitive array constructors. You should replace
New<PrimitiveType>Array with one of the actual primitive array constructor
routine names from the following table, and replace ArrayType with the
corresponding array type for that routine.

JNI Functions—May 1997 65

Table 4-8 New<PrimitiveType>Array Family of Array Constructors

New<PrimitiveType>Array Routines Array Type
NewBooleanArray() jbooleanArray
NewByteArray() jbyteArray
NewCharArray() jcharArray
NewShortArray() jshortArray
NewiIntArray() jintArray
NewLongArray() jlongArray
NewFloatArray() jfloatArray
NewDoubleArray() jdoubleArray
PARAMETERS:

env: the JNI interface pointer.
length: the array length.

RETURNS:
Returns a Java array, or NULL if the array cannot be constructed.

Get<PrimitiveType>ArrayElements Routines

NativeType * Get<PrimitiveType>ArrayElements(JNIEnv *env,
ArrayType array, jboolean *isCopy);

A family of functions that returns the body of the primitive array. The result is
valid until the corresponding Release<PrimitiveType>ArrayElements() function is
called. Since the returned array may be a copy of the Java array, changes made to the
returned array will not necessarily be reflected in the original array until
Release<PrimitiveType>ArrayElements() is called.

If isCopy is not NULL, then *isCopy is set to JNI_TRUE if a copy is made; or
it is set to JNI_FALSE if no copy is made.

The following table describes the specific primitive array element accessors.
You should make the following substitutions:

Java Native Interface Specification—May 1997

4

® Replace Get<PrimitiveType>ArrayElements with one of the actual primitive
element accessor routine names from the table.

® Replace ArrayType with the corresponding array type.

® Replace NativeType with the corresponding native type for that routine.

Regardless of how boolean arrays are represented in the Java VM,
GetBooleanArrayElements() always returns a pointer to jbooleans , with
each byte denoting an element (the unpacked representation). All arrays of
other types are guaranteed to be contiguous in memory.

Table 4-9 Get<PrimitiveType>ArrayElements Family of Accessor Routines

Get<PrimitiveType>ArrayElements

Routines Array Type Native Type
GetBooleanArrayElements() jbooleanArray jboolean
GetByteArrayElements() jbyteArray jbyte
GetCharArrayElements() jcharArray jchar
GetShortArrayElements() jshortArray jshort
GetintArrayElements() jintArray jint
GetLongArrayElements() jlongArray jlong
GetFloatArrayElements() jfloatArray jfloat
GetDoubleArrayElements() jdoubleArray jdouble
PARAMETERS:

env: the JNI interface pointer.
array: aJava string object.

isCopy: a pointer to a boolean.

RETURNS:
Returns a pointer to the array elements, or NULL if the operation fails.

JNI Functions—May 1997 67

68

Release<PrimitiveType>ArrayElements Routines

void Release<PrimitiveType>ArrayElements(JNIEnv *env,
ArrayType array, NativeType *elems, jint mode);

A family of functions that informs the VM that the native code no longer needs
access to elems . The elems argument is a pointer derived from array using
the corresponding Get<PrimitiveType>ArrayElements() function. If necessary,
this function copies back all changes made to elems to the original array .

The mode argument provides information on how the array buffer should be
released. mode has no effect if elems is not a copy of the elements in array .
Otherwise, mode has the following impact, as shown in the following table:

Table 4-10 Primitive Array Release Modes

mode actions

0 copy back the content and free the elems buffer

JNI_COMMIT copy back the content but do not free the elems
buffer

JNI_ABORT free the buffer without copying back the possible
changes

In most cases, programmers pass “0” to the mode argument to ensure
consistent behavior for both pinned and copied arrays. The other options give
the programmer more control over memory management and should be used
with extreme care.

The next table describes the specific routines that comprise the family of
primitive array disposers. You should make the following substitutions:

® Replace Release<PrimitiveType>ArrayElements with one of the actual
primitive array disposer routine names from Table 4-11.

® Replace ArrayType with the corresponding array type.

® Replace NativeType with the corresponding native type for that routine.

Java Native Interface Specification—May 1997

DS
1]

Table 4-11 Release<PrimitiveType>ArrayElements Family of Array Routines

Release<PrimitiveType>ArrayElements

Routines Array Type Native Type
ReleaseBooleanArrayElements() jbooleanArray jboolean
ReleaseByteArrayElements() jbyteArray jbyte
ReleaseCharArrayElements() jcharArray jchar
ReleaseShortArrayElements() jshortArray jshort
ReleaselntArrayElements() jintArray jint
ReleaseLongArrayElements() jlongArray jlong
ReleaseFloatArrayElements() jfloatArray jfloat
ReleaseDoubleArrayElements() jdoubleArray jdouble
PARAMETERS:

env: the JNI interface pointer.
array: aJava array object.
elems: a pointer to array elements.

mode: the release mode.

Get<PrimitiveType>ArrayRegion Routines

void Get<PrimitiveType>ArrayRegion(JNIEnv *env, ArrayType array,
jsize start, jsize len, NativeType *buf);

A family of functions that copies a region of a primitive array into a buffer.

The following table describes the specific primitive array element accessors.

You should do the following substitutions:

® Replace Get<PrimitiveType>ArrayRegion with one of the actual primitive
element accessor routine names from Table 4-12.

® Replace ArrayType with the corresponding array type.

® Replace NativeType with the corresponding native type for that routine.

JNI Functions—May 1997

69

Table 4-12 Get<PrimitiveType>ArrayRegion Family of Array Accessor Routines

Get<PrimitiveType>ArrayRegion

Routine Array Type Native Type
GetBooleanArrayRegion() jbooleanArray jboolean
GetByteArrayRegion() jbyteArray jbyte
GetCharArrayRegion() jcharArray jchar
GetShortArrayRegion() jshortArray jhort
GetintArrayRegion() jintArray jint
GetLongArrayRegion() jlongArray jlong
GetFloatArrayRegion() jfloatArray jloat
GetDoubleArrayRegion() jdoubleArray jdouble
PARAMETERS:

env: the JNI interface pointer.

array: aJava array.

start: the starting index.

len: the number of elements to be copied.
buf: the destination buffer.

THROWS:

ArraylndexOutOfBoundsException: if one of the indexes in the region is
not valid.

Set<PrimitiveType>ArrayRegion Routines

void Set<PrimitiveType>ArrayRegion(JNIEnv *env, ArrayType array,
jsize start, jsize len, NativeType *buf);

A family of functions that copies back a region of a primitive array from a
buffer.

Java Native Interface Specification—May 1997

4

The following table describes the specific primitive array element accessors.

You should make the following replacements:

® Replace Set<PrimitiveType>ArrayRegion with one of the actual primitive

element accessor routine names from the table.

® Replace ArrayType with the corresponding array type.

® Replace NativeType with the corresponding native type for that routine.

Table 4-13 Set<PrimitiveType>ArrayRegion Family of Array Accessor Routines

Set<PrimitiveType>ArrayRegion

Routine Array Type Native Type
SetBooleanArrayRegion() jbooleanArray jboolean
SetByteArrayRegion() jbyteArray jbyte
SetCharArrayRegion() jcharArray jchar
SetShortArrayRegion() jshortArray jshort
SetintArrayRegion() jintArray jint
SetLongArrayRegion() jlongArray jlong
SetFloatArrayRegion() jfloatArray jfloat
SetDoubleArrayRegion() jdoubleArray jdouble
PARAMETERS:

env: the JNI interface pointer.

array: aJava array.

start: the starting index.

len: the number of elements to be copied.

buf: the destination buffer.

THROWS:

ArraylndexOutOfBoundsException: if one of the indexes in the region is
not valid.

JNI Functions—May 1997

71

A

Registering Native Methods

72

RegisterNatives

jint RegisterNatives(JNIEnv *env, jclass clazz,
const JNINativeMethod *methods, jint nMethods);

Registers native methods with the class specified by the clazz argument. The
methods parameter specifies an array of JNINativeMethod structures that
contain the names, signatures, and function pointers of the native methods.
The nMethods parameter specifies the number of native methods in the array.
The JNINativeMethod structure is defined as follows:

typedef struct {
char *name;
char *signature;
void *fnPtr;

} ININativeMethod;

The function pointers nominally must have the following signature;

ReturnType (*fnPtr)(INIEnv *env, jobject objectOrClass, ...);
PARAMETERS:

env: the JNI interface pointer.

clazz: aJava class object.

methods: the native methods in the class.

nMethods: the number of native methods in the class.

RETURNS:
Returns “0” on success; returns a negative value on failure.

THROWS:

NoSuchMethodError: if a specified method cannot be found or if the method
is not native.

UnregisterNatives

jint UnregisterNatives(JNIEnv *env, jclass clazz);

Java Native Interface Specification—May 1997

4

Monitor Operations

Unregisters native methods of a class. The class goes back to the state before it
was linked or registered with its native method functions.

This function should not be used in normal native code. Instead, it provides
special programs a way to reload and relink native libraries.

PARAMETERS:
env: the JNI interface pointer.
clazz: aJava class object.

RETURNS:
Returns “0” on success; returns a negative value on failure.

MonitorEnter

jint MonitorEnter(JNIEnv *env, jobject obj);
Enters the monitor associated with the underlying Java object referred to by
obj .

Each Java object has a monitor associated with it. If the current thread already
owns the monitor associated with obj , it increments a counter in the monitor
indicating the number of times this thread has entered the monitor. If the
monitor associated with obj is not owned by any thread, the current thread
becomes the owner of the monitor, setting the entry count of this monitor to 1.
If another thread already owns the monitor associated with obj , the current
thread waits until the monitor is released, then tries again to gain ownership.

PARAMETERS:
env: the JNI interface pointer.

obj: a normal Java object or class object.

RETURNS:
Returns “0” on success; returns a negative value on failure.

JNI Functions—May 1997 73

1]l
N

Java VM Interface

MonitorExit

jint MonitorExit(JNIEnv *env, jobject obj);

The current thread must be the owner of the monitor associated with the
underlying Java object referred to by obj . The thread decrements the counter
indicating the number of times it has entered this monitor. If the value of the
counter becomes zero, the current thread releases the monitor.

PARAMETERS:
env: the JNI interface pointer.
obj: a normal Java object or class object.

RETURNS:

Returns “0” on success; returns a negative value on failure.

GetlavaVM

74

jint GetJavaVM(JNIEnv *env, JavaVM **vm);

Returns the Java VM interface (used in the Invocation API) associated with the
current thread. The result is placed at the location pointed to by the second
argument, vm

PARAMETERS:
env: the JNI interface pointer.

vm: a pointer to where the result should be placed.

RETURNS:

Returns “0” on success; returns a negative value on failure.

Java Native Interface Specification—May 1997

Overview

The Invocation AP 5

The Invocation API allows software vendors to load the Java VM into an
arbitrary native application. Vendors can deliver Java-enabled applications
without having to link with the Java VM source code.

This chapter begins with an overview of the Invocation API. This is followed
by reference pages for all Invocation API functions.

To enhance the embeddability of the Java VM, the Invocation API is extended
in JDK 1.1.2 in a few minor ways.

The following code example illustrates how to use functions in the Invocation
API. In this example, the C++ code creates a Java VM and invokes a static
method, called Main.test . For clarity, we omit error checking.

#include <jni.h> /* where everything is defined */

JavaVM *jvm; /* denotes a Java VM */
JNIEnv *env; [* pointer to native method interface */

JDK1_1InitArgsvm_args; /* JDK 1.1 VM initialization arguments */

vm_args.version = 0x00010001; /* New in 1.1.2: VM version */
/* Get the default initialization arguments and set the class

* path */

JNI_GetDefaultJavaVMInitArgs(&vm_args);
vm_args.classpath = ...;

75

/* load and initialize a Java VM, return a JNI interface
* pointer in env */
JNI_CreateJavaVM(&jvm, &env, &vm_args);

/* invoke the Main.test method using the JNI */

jclass cls = env->FindClass("Main");

jmethodID mid = env->GetStaticMethodID(cls, "test", "(I)V");
env->CallStaticVoidMethod(cls, mid, 100);

/* We are done. */
jvm->DestroyJavaVM();

This example uses three functions in the API. The Invocation API allows a
native application to use the JNI interface pointer to access VM features. The
design is similar to Netscape’s JRI Embedding Interface.

Creating the VM

The JNI_CreateJavaVM() function loads and initializes a Java VM and
returns a pointer to the JNI interface pointer. The thread that called
JNI_CreateJavaVM() is considered to be the main thread.

Attaching to the VM

The JNI interface pointer (JNIEnv) is valid only in the current thread. Should
another thread need to access the Java VM, it must first call
AttachCurrentThread() to attach itself to the VM and obtain a JNI interface
pointer. Once attached to the VM, a native thread works just like an ordinary
Java thread running inside a native method. The native thread remains
attached to the VM until it calls DetachCurrentThread() to detach itself.

Unloading the VM

The main thread cannot detach itself from the VM. Instead, it must call
DestroyJavaVM() to unload the entire VM.

The VM waits until the main thread is the only user thread before it actually
unloads. User threads include both Java threads and attached native threads.
This restriction exists because a Java thread or attached native thread may be
holding system resources, such as locks, windows, and so on. The VMcannot
automatically free these resources. By restricting the main thread to be the only

Java Native Interface Specification—May 1997

5

running thread when the VM is unloaded, the burden of releasing system
resources held by arbitrary threads is on the programmer.

Initialization Structures

Different Java VM implementation will likely require different initialization
arguments. It is difficult to come up with a standard initialization structure
suitable for all present and future Java VMs. As a compromise, we reserve the
first field (version) to identify the content of the initialization structure.
Native applications embedding JDK 1.1.2 must set the version field to
0x00010001 . VM implementations are encouraged to use the same
initialization structure as JDK, although other implementations may choose to
ignore some of the initialization arguments supported by JDK.

Version numbers 0x80000000 to OxFFFFFFFF are reserved, and should not
be recognized by any VM implementation.

The following code shows the structure used to initialize the Java VM in JDK
1.1.2.

typedef struct JDK1_1InitArgs {
/* The first two fields were reserved in JDK 1.1, and
formally introduced in JDK 1.1.2. */
/* Java VM version */
jint version;

[* System properties. */
char **properties;

[* whether to check the Java source files are newer than
* compiled class files. */
jint checkSource;

/* maximum native stack size of Java-created threads. */
jint nativeStackSize;

/* maximum Java stack size. */
jint javaStackSize;

[* initial heap size. */
jint minHeapSize;

/* maximum heap size. */
jint maxHeapSize;

The Invocation AP1—May 1997 77

78

/* controls whether Java byte code should be verified:
* 0 -- none, 1 -- remotely loaded code, 2 -- all code. */
jint verifyMode;

/* the local directory path for class loading. */
const char *classpath;

/* a hook for a function that redirects all VM messages. */
jint (*vfprintf)(FILE *fp, const char *format,
va_list args);

/* a VM exit hook. */
void (*exit)(jint code);

/* a VM abort hook. */
void (*abort)();

/* whether to enable class GC. */
jint enableClassGC;

/* whether GC messages will appear. */
jint enableVerboseGC;

/* whether asynchronous GC is allowed. */
jint disableAsyncGC;

[* Three reserved fields. */
jint reservedO;
jint reservedl;
jint reserved?;
} JDK1_1InitArgs;

In JDK 1.1.2, the initialization structure provides hooks so that a native
application can redirect VM messages and obtain control when the VM
terminates.

The structure below is passed as an argument when a native thread attaches to
alJava VM in JDK 1.1.2. In actuality, no arguments are required for a native
thread to attach to the JDK 1.1.2. The JDK1_1AttachArgs structure consists
only of a padding slot for those C compilers that do not permit empty
structures.

typedef struct JDK1_1AttachArgs {
/*
* JDK 1.1 does not need any arguments to attach a

Java Native Interface Specification—May 1997

o1
1]

* native thread. The padding is here to satisfy the C
* compiler which does not permit empty structures.
*/
void *__padding;

} JDK1_1AttachArgs;

Invocation API Functions

The JavaVM type is a pointer to the Invocation API function table. The
following code example shows this function table.

typedef const struct JINIInvokelnterface *JavaVM;

const struct JNIlInvokelnterface ... ={
NULL,
NULL,
NULL,

DestroyJavaVM,
AttachCurrentThread,
DetachCurrentThread,

h

Note that three Invocation API functions,

JNI_GetDefaultJavaVMinitArgs() , JNI_GetCreatedJavaVMs() , and
JNI_CreateJavaVM() , are not part of the JavaVM function table. These
functions can be used without a preexisting JavaVM structure.

JNI_GetDefaultlavaVMiInitArgs

jint INI_GetDefaultJavaVMInitArgs(void *vm_args);

Returns a default configuration for the Java VM. Before calling this function,
native code must set the vm_args->version field to the JNI version it
expects the VM to support. In JDK 1.1.2, vm_args->version must be set to
0x00010001 . After this function returns, vm_args->version will be set to
the actual JNI version the VM supports.

* JDK 1.1 did not require the native code to set the version field. For backward compatibility, JDK 1.1.2 assumes
that the requested version is 0x00010001 if the version field is not set. Future versions of JDK will require the
version field to be set to an appropriate value.

The Invocation AP1—May 1997 79

80

PARAMETERS:

vm_args: a pointer to a VM-specific initialization structure in to which the
default arguments are filled.

RETURNS:

Returns “0” if the requested version is supported; returns a negative number if
the requested version is not supported.

JNI_GetCreatedJavaVMs

jint INI_GetCreatedJavaVMs(JavaVM *vmBuf, jsize bufLen,
jsize *nVMs);

Returns all Java VMs that have been created. Pointers to VMs are written in the
buffer vmBuf in the order they are created. At most bufLen number of entries
will be written. The total number of created VMs is returned in *nVMs.

JDK 1.1.2 does not support creating more than one VM in a single process.
PARAMETERS:

vmBuf: pointer to the buffer where the VM structures will be placed.
bufLen: the length of the buffer.

nVMs: a pointer to an integer.

RETURNS:
Returns “0” on success; returns a negative number on failure.

JNI_CreateJavaVM

jint INI_CreateJavaVM(JavaVM **p_vm, JNIEnv **p_env,
void *vm_args);

Loads and initializes a Java VM. The current thread becomes the main thread.
Sets the env argument to the JNI interface pointer of the main thread.

JDK 1.1 does not support creating more than one VM in a single process. The
version field in vm_args must” be set to 0x00010001 .

Java Native Interface Specification—May 1997

o1
1]

PARAMETERS:
p_vm: pointer to the location where the resulting VM structure will be placed.

p_env: pointer to the location where the JNI interface pointer for the main
thread will be placed.

vm_args: Java VM initialization arguments.

RETURNS:
Returns “0” on success; returns a negative number on failure.

DestroyJavaVM

jint DestroyJavaVM(JavaVM *vm);

Unloads a Java VM and reclaims its resources. Only the main thread can
unload the VM. The system waits until the main thread is only remaining user
thread before it destroys the VM.

PARAMETERS:
vm: the Java VM that will be destroyed.

RETURNS:
Returns “0” on success; returns a negative number on failure.

JDK 1.1.2 does not support unloading the VM.

AttachCurrentThread

jint AttachCurrentThread(JavaVM *vm, JNIEnv **p_env,
void *thr_args);

Attaches the current thread to a Java VM. Returns a JNI interface pointer in the
JNIEnv argument.

Trying to attach a thread that is already attached is a no-op.

A native thread cannot be attached simultaneously to two Java VMs.

* JDK 1.1 did not require the native code to set the version field. For backward compatibility, JDK 1.1.2 assumes
that the requested version is 0x00010001 if the version field is not set. Future versions of JDK will require the
version field to be set to an appropriate value.

The Invocation AP1—May 1997 81

82

PARAMETERS:
vm: the VM to which the current thread will be attached.

p_env: pointer to the location where the JNI interface pointer of the current
thread will be placed.

thr_args: VM-specific thread attachment arguments.

RETURNS:
Returns “0” on success; returns a negative number on failure.

DetachCurrentThread

jint DetachCurrentThread(JavaVM *vm);

Detaches the current thread from a Java VM. All Java monitors held by this
thread are released. All Java threads waiting for this thread to die are notified.

The main thread, which is the thread that created the Java VM, cannot be
detached from the VM. Instead, the main thread must call
JNI_DestroyJavaVM() to unload the entire VM.

PARAMETERS:
vm: the VM from which the current thread will be detached.

RETURNS:
Returns “0” on success; returns a negative number on failure.

Java Native Interface Specification—May 1997

% JAVASOFT

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
408-343-1400

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551

Japan: (03) 5717-5000

Korea: 822-563-8700

Latin America: 415 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388

Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

415 960-1300

Intercontinental Sales: 415 688-9000

	Contents
	1. Introduction 1
	2. Design Overview 9
	3. JNI Types and Data Structures 21
	4. JNI Functions 27
	5. The Invocation API 75

	Introduction
	Java Native Interface Overview
	Background
	JDK 1.0 Native Method Interface
	Java Runtime Interface
	Raw Native Interface and Java/COM Interface

	Objectives
	Java Native Interface Approach
	Programming to the JNI
	Changes in JDK 1.1.2

	Design Overview
	JNI Interface Functions and Pointers
	Loading and Linking Native Methods
	Resolving Native Method Names
	Native Method Arguments

	Referencing Java Objects
	Global and Local References
	Implementing Local References

	Accessing Java Objects
	Accessing Primitive Arrays
	Accessing Fields and Methods

	Reporting Programming Errors
	Java Exceptions
	Exceptions and Error Codes
	Asynchronous Exceptions
	Exception Handling

	JNI Types and Data Structures
	Primitive Types
	Reference Types
	Field and Method IDs
	The Value Type
	Type Signatures
	UTF-8 Strings

	JNI Functions
	Interface Function Table
	Version Information
	GetVersion

	Class Operations
	DefineClass
	FindClass
	GetSuperclass
	IsAssignableFrom

	Exceptions
	Throw
	ThrowNew
	ExceptionOccurred
	ExceptionDescribe
	ExceptionClear
	FatalError

	Global and Local References
	NewGlobalRef
	DeleteGlobalRef
	DeleteLocalRef

	Object Operations
	AllocObject
	NewObject NewObjectA NewObjectV
	GetObjectClass
	IsInstanceOf
	IsSameObject

	Accessing Fields of Objects
	GetFieldID
	Get<type>Field Routines
	Set<type>Field Routines

	Calling Instance Methods
	GetMethodID
	Call<type>Method Routines Call<type>MethodA Routin...
	CallNonvirtual<type>Method Routines CallNonvirtual...

	Accessing Static Fields
	GetStaticFieldID
	GetStatic<type>Field Routines
	SetStatic<type>Field Routines

	Calling Static Methods
	GetStaticMethodID
	CallStatic<type>Method Routines CallStatic<type>Me...

	String Operations
	NewString
	GetStringLength
	GetStringChars
	ReleaseStringChars
	NewStringUTF
	GetStringUTFLength
	GetStringUTFChars
	ReleaseStringUTFChars

	Array Operations
	GetArrayLength
	NewObjectArray
	GetObjectArrayElement
	SetObjectArrayElement
	New<PrimitiveType>Array Routines
	Get<PrimitiveType>ArrayElements Routines
	Release<PrimitiveType>ArrayElements Routines
	Get<PrimitiveType>ArrayRegion Routines
	Set<PrimitiveType>ArrayRegion Routines

	Registering Native Methods
	RegisterNatives
	UnregisterNatives

	Monitor Operations
	MonitorEnter
	MonitorExit

	Java VM Interface
	GetJavaVM

	The Invocation API
	Overview
	Creating the VM
	Attaching to the VM
	Unloading the VM

	Initialization Structures
	Invocation API Functions
	JNI_GetDefaultJavaVMInitArgs
	JNI_GetCreatedJavaVMs
	JNI_CreateJavaVM
	DestroyJavaVM
	AttachCurrentThread
	DetachCurrentThread

