
Extensible Runtime Containment and Server Protocol for JavaBeans Version 1.0December 3, 1998 1

Extensible Runtime Containment and Server
Protocol for JavaBeans Version 1.0

Laurence Cable

1.0 Introduction..1

2.0 API Specification ...2

3.0 Overloading java.beans.instantiate() static method ...19

4.0 Providing better support for Beans that are also Applets20

5.0 Standard/Suggested Conventions for BeanContext Services.................................21

6.0 Support classes...23

scrib-
ns to
ent

er to
 can
stem

po-
ro-

truc-
r to

ally

rro-
ces
 Extensible Runtime Containment and
Services Protocol for JavaBeans Version 1.0

Laurence Cable.

Send comments to java-beans@java.sun.com.

1.0 Introduction.

Currently the JavaBeans specification (Version 1.0) contains neither conventions de
ing a hierarchy or logical structure of JavaBeans, nor conventions for those JavaBea
rendezvous with, or obtain arbitrary services or facilities from, the execution environm
within which the JavaBean was instantiated.

It is desirable to both provide a logical, traversable, hierarchy of JavaBeans, and furth
provide a general mechanism whereby an object instantiating an arbitrary JavaBean
offer that JavaBean a variety of services, or interpose itself between the underlying sy
service and the JavaBean, in a conventional fashion.

In other component models there exists the concept of a relationship between a Com
nent and its environment, or Container, wherein a newly instantiated Component is p
vided with a reference to its Container or Embedding Context.

The Container, or Embedding Context not only establishes the hierarchy or logical s
ture, but its also acts as a service provider that Components may interrogate in orde
determine, and subsequently employ, the services provided by their Context.

This proposal defines such a protocol that supports extensible mechanisms that:

• Introduce an abstraction for the environment, or context, in which a JavaBean logic
functions during its lifecycle, that is a hierarchy or structure of JavaBeans.

• Enable the dynamic addition of arbitrary services to a JavaBean’s environment.

• Provide a single service discovery mechanism through which JavaBeans may inte
gate their environment in order both to ascertain the availability of particular servi
and to subsequently employ those services.

• Provide a simple mechanism to propagate an Environment to a JavaBean.

• Provide better support for JavaBeans that are also Applets.
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 1

BeanContext

JavaBean
JavaBean

JavaBean

serviceservice
service

JVM

BeanContext
2.0 API Specification

2.1 interface java.beans.beancontext.BeanContext

The hierarchal structure and general facilities of aBeanContext are provided for as fol-
lows:

public interfacejava.beans.beancontext.BeanContext

 extends java.beans.beancontext.BeanContextChild,

 java.util.Collection,

 java.beans.DesignMode,

 java.beans.Visibility {

Object instantiateChild(String beanName)

 throws IOException, ClassNotFoundException;

public InputStream

getResourceAsStream(String name,

 BeanContextChild requestor

);

public java.net.URL

getResource(String name,

 BeanContextChild requestor

);

void addBeanContextMembershipListener(

 BeanContextMembershipListener bcml

);
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 2

void removeBeanContextMembershipListener{

 BeanContextMembershipListener bcml

);

public static final Object globalHierarchyLock;

}

Notifications of changes in the membership of aBeanContext are modeled as follows:

public interface BeanContextMembershipListener

 extends java.util.Listener {

void childrenAdded(BeanContextMembershipEvent bcme);

void childrenRemoved(BeanContextMembershipEvent bcme);

}

The base class of allBeanContext related Events is defined by:

public abstract class BeanContextEvent

 extends java.util.EventObject {

public BeanContext getBeanContext();

public synchronized void

setPropagatedFrom(BeanContext bc);

public synchronized BeanContext getPropagatedFrom();

public synchronized boolean isPropagated()

}

TheBeanContextMembershipEvent is defined as:

public class BeanContextMembershipEvent

 extends BeanContextEvent {

public BeanContextMembershipEvent(BeanContext bc,

 Object[] deltas);

public BeanContextMembershipEvent(BeanContext bc,

 Collection deltas);

public int size();
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 3

r

chy.

eled

s the

ble
public boolean contains(Object child);

public Object[] toArray();

public Iterator iterator();

}

2.1.1 The BeanContext as a participant in nested structure

One of the roles of theBeanContext is to introduce the notion of a hierarchical nesting o
structure ofBeanContext and JavaBean instances. In order to model this structure the
BeanContext must expose API that defines the relationships in the structure or hierar

TheBeanContext exposes its superstructure through implementation of the
java.beans.beancontext.BeanContextChild interface (as described later). This interface
allows the discovery and manipulation of aBeanContext’s nestingBeanContext, and thus
introduces a facility to create a hierarchy ofBeanContexts.

TheBeanContextexposes its substructure through a number of interface methods mod
by thejava.util.Collection interface semantics

BeanContexts are required to implement all the mandatoryCollection API’s, with the fol-
lowing particular semantics foradd() andremove():.

Theadd() method may be invoked in order to nest a newObject, BeanContextChild, or
BeanContext within the targetBeanContext. A conformantadd() implementation is
required to adhere to the following semantics:

• Synchronize on theBeanContext.globalHierarchyLock.

• Each child object shall appear only once in the set of children for a givenBeanContext.
If the instance is already a member of theBeanContext then the method shall return
False .

• Each valid child shall be added to the set of children of a given sourceBeanContext,
and thus shall appear in the set of children, obtained through either the toArray(),or
iterator() methods, until such time as that child is deleted from the nestingBeanContext
via an invocation ofremove(), removeAll(), retainAll(), orclear()

• As the child is added to the set of nested children, and where that child implement
java.beans.beancontext.BeanContextChild interface (orBeanContextProxy,see later
for details), theBeanContextshall invoke thesetBeanContext() method upon that child,
with a reference to itself. Upon invocation, a child may, if it is for some reason una
or unprepared to function in thatBeanContext, throw aPropertyVetoExceptionto notify
the nestingBeanContext. If the child throws such an exception theBeanContext shall
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 4

f the
and

n

d is

or

t-

m

revoke the addition of the child (and any other partial changes made to the state o
BeanContext as a side effect of this addition operation) to the set of nested children
throw anIllegalStateException.

• JavaBeans that implement thejava.beans.Visibility interface shall be notified via the
appropriate method, eitherdontUseGui() or okToUseGui(), of their current ability to
render GUI as defined the policy of theBeanContext.

• If the newly added child implementsBeanContextChild, theBeanContextshall register
itself with the child on both itsVetoableChangeListener andPropertyChangeListener
interfaces to monitor, at least, thatBeanContextChild’s “beanContext” property.

By doing so theBeanContext can monitor its child and can detect when such childre
are removed by a 3rd party (usually anotherBeanContext) invokingsetBeanContext().
A BeanContext may veto such a change by a 3rd party if it determines that the chil
not in a state to depart membership at that time.

• If the JavaBean(s) added implementListenerinterfaces that theBeanContextis a source
for, then theBeanContext may register the newly added objects via the appropriateLis-
tener registration methods as a permissible side effect of nesting.

• If the JavaBean(s) added are Event Sources for Event that a particularBeanContexthas
interest in theBeanContext may, as a side effect of adding the child, registerListeners
on that child. TheBeanContextshould avoid usingSerializable Listenersthus avoiding
accidental serialization of unwanted structure when a child serializes itself.

• Once thetargetChild has been successfully processed, theBeanContext shall fire a
java.beans.beancontext.BeanContextMembershipEvent, containing a reference to the
newly addedtargetChild, to thechildrenAdded() method of all theBeanContextMeme-
brshipListeners currently registered.

• The method shall returntrue if successful.

Theremove() method may be invoked in order to remove an existing child JavaBean
BeanContextfrom within the targetBeanContext. A conformantremove()implementation
is required to adhere to the following semantics:

• Synchronize with the BeanContext.globalHierarchyLock.

• If a particular child is not present in the set of children for the sourceBeanContext,the
method shall returnFalse .

• Remove the validtargetChildfrom the set of children for the sourceBeanContext,also
removing that child from any otherListener interfaces that it was implicitly registered
on, for thatBeanContextas a side-effect of nesting.

Subsequently, if thetargetChild implements the java.beans.beancontext.BeanContex
Child interface (orBeanContextProxy,see later for deatils), theBeanContextshall

invoke thesetBeanContext() with anull 1 BeanContext value, in order to notify that
child that it is no longer nested within theBeanContext.

If a particularBeanContextChild is in a state where it is not able to be un-nested fro
its nestingBeanContextit may throw aPropertyVetoException, upon receipt of this the
BeanContextshall revoke the remove operation for this instance and throwIllegalState-
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 5

 con-

o
 of
Exception. To avoid infinite recursion, children are not permitted to repeatedly veto
subsequent remove notifications. In practice, a child should attempt to resolve the
dition (if temporary) that precludes it’s removal from it’s current nestingBeanContext.

• If the targetChildimplements java.beans.beancontext.BeanContextChild then the
BeanContextshall de-register itself from that child’sPropertyChangeListenerandVeto-
ableChangeListener sources.

• If the BeanContext had previously registered the object(s) removed asListeners on
events sources implemented by theBeanContext as a side effect of nesting those
objects, then theBeanContext shall de-register the newly removed object from the
applicable source(s) via the appropriateListener de-registration method(s)

• If the BeanContext had previously registeredListener(s) on the object(s) removed then
theBeanContext shall remove those Listener(s) from those object(s).

• Once thetargetChildhas been removed from the set of children, theBeanContextshall
fire ajava.beans.beancontext.BeanContextMembershipEvent,containing a reference to
thetargetChildjust removed, to thechildrenRemoved() method of all theBeanContext-
MembershipListeners currently registered.

• Finally the method shall return the valuetrue if successful.

Note that the lifetime of any child of a nestingBeanContext, is at least for the duration of
that child’s containment within a givenBeanContext. For simple JavaBeans that are not
aware of their containment within aBeanContext, this usually implies that the JavaBean
shall exist for at least the lifetime of the nestingBeanContext.

BeanContext’s are not required to implement eitheraddAll(), removeAll(), retainAll() or
clear()optional methods defined byjava.util.Collection API, however if they do they must
implement the semantics defined, per object, for bothadd() andremove() above. In the
failure cases these methods shall revoke any partially applied changes to return theBean-
Context to the state it was in prior to the failing composite operation being invoked, n
BeanContextEvents shall be fired in the failure case as is consistent with the definition
add() andremove() above.

BeanContextMembershipListeners may be added and removed via invocations of
addBeanContextMembershipListener() andremoveBeanContextMembershipListener().

ThetoArray(),method shall return a copy of the current set of JavaBean orBeanContext
instances nested within the targetBeanContext, and theiterator() method shall supply a
java.util.Iteratorobject over the same set of children.

Thecontains() method shall returntrue if the object specified is currently a child of the
BeanContext.

1. Note, if theremove() was invoked as a result of theBeanContext receiving an unexpectedPropertyChan-
geEventnotification as a result of a 3rd party invokingsetBeanContext() then the remove implementation
shall not invokesetBeanContext(null) on that child as part of theremove() semantics, since to do so
would overwrite the value previously set by the 3rd party.
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 6

-

d,

 that
ndo,

r-

iate

n

the
o

be
gh

f a
ded
Thesize() method returns the current number of children nested.

The isEmpty() method returns true iff theBeanContext has no children.

Notethatall theCollectionmethodsall requirepropersynchronizationbetweeneachother
by agivenimplementationin orderto functioncorrectlyin amulti-threadedenvironment,
thatis, to ensurethatany changesto themembershipof thesetof JavaBeansnestedwithin
a givenBeanContext are applied atomically. All implementations are required to synchro
nizedtheir implementationsof thesemethodswith theBeanContext.globalHierarchyLock.

In some situations,add()andremove()(or a variant thereof) operations may occur neste
that is multiple occurrences may appear on the stack of the callingThreadsimultaneously,
e.g: whenBeanContextChild,A, is added (or removed), it’ssetBeanContext()method also
adds (or removes) anotherBeanContextChild, B. A particularBeanContext implementa-
tion may choose to fire either twoBeanContextMembershipListener notifications, one for
eachadd()/remove() operation of B then A (in this order since B is successfully added
before A), or coalesce these into a single notification containing both A, and B. Note
should A be unable to be added or removed for any reason it shall not perform, or u
any add or remove operations upon B as a side-effect, prior to throwing aPropertyVetoEx-
ception to indicate this condition, that is, it must avoid or undo any side-effect membe
ship changes prior to rejecting any changes to its own membership status.

The instantiateChild()method is a convenience method that may be invoked to instant
a new JavaBean instance as a child of the targetBeanContext. The implementation of the
JavaBean is derived from the value of thebeanNameactual parameter, and is defined by
the java.beans.Beans.instantiate() method.

Typically, this shall be implemented by calling the appropriatejava.beans.Beans.instanti-
ate()method, using theClassLoader of the targetBeanContext. However a particular
BeanContext implementation may interpose side-effects on the instantiate operation i
their implementation of this method.

TheBeanContextEvent is the abstract rootEventObject class for allEvents pertaining to
changes in state of aBeanContext’s defined semantics. This abstract root class defines
BeanContext that is the source of the notification, and also introduces a mechanism t
allow the propagation ofBeanContextEvent subclasses through a hierarchy ofBeanCon-
texts. ThesetPropagatedFrom() andgetPropagatedFrom() methods allows aBeanContext
to identify itself as the source of a propagated Event to theBeanContextto which it subse-
quently propagates theEvent to. This is a general propagation mechanism and should
used with care as it has significant performance implications when propagated throu
large hierarchies.

TheBeanContextMembershipEvent describes changes that occur in the membership o
particularBeanContext instance. This event encapsulates the list of children either ad
to, or removed from, the membership of a particularBeanContextinstance, i.e the delta in
the membership set.
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 7

g

whenever a successfuladd(), remove(), addAll(), retainAll(), removeAll(), orclear() is
invoked upon a particularBeanContext instance, aBeanContextMembershipEventis fired
describing the children effected by the operation.

2.1.2 Resources.

TheBeanContext defines two methods;getResourceAsStream() andgetResource() which
are analogous to those methods found onjava.lang.ClassLoader. BeanContextChild
instances nested within aBeanContextshall invoke the methods on their nestingBeanCon-
text in preference for those onClassLoader, to allow aBeanContext implementation to
augment the semantics by interposing behavior between the child and the underlyin
ClassLoader semantics.

2.1.3 The BeanContext as a Service Provider

The service facilities of aBeanContext are provided as follows:

public interface BeanContextServices

 extends BeanContext,BeanContextServicesListener {

boolean addService(Class serviceClass,

 BeanContextServiceProvider service);

boolean revokeService(Class serviceClass,

 BeanContextServiceProvider bcsp,

 boolean revokeNow

);

boolean hasService(Class serviceClass);

Object getService(BeanContextChild bcc,

 Object requestor.

 Class serviceClass,

Object serviceSelector,

 BeanContextServicesRevokedListener sl

) throws TooManyListenersException;

void releaseService(BeanContextChild bcc,

 Object requestor,

 Object service);

Iterator getCurrentServiceClasses();
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 8

public Iterator getCurrentServiceSelectors(Class sc);

addBeanContextServicesListener(

BeanContextServicesListener bcsl

);

removeBeanContextServicesListener(

BeanContextServicesListener bcsl

);

}

TheBeanContextServiceProvider interface is defined as follows:

public interface BeanContextServiceProvider {

Object getService(BeanContext bc,

 Object requestor,

 Class serviceCls,

 Object serviceSelector);

void releaseService(BeanContext bc,

 Object requestor,

 Object service);

Iterator getCurrentServiceSelectors(BeanContext bc,

 Class serviceCls);

}

TheBeanContextServiceRevokedListener is defined as follows:

public interface BeanContextServiceRevokedListener

 extends java.util.EventListener {

void serviceRevoked(

BeanContextServiceRevokedEvent bcsre

);

}

TheBeanContextServicesListener is defined as follows:

public interface BeanContextServicesListener

 extends BeanContextServiceRevokedListener {

void serviceAvailable(

BeanContextServiceAvailableEvent bcsae

);
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 9

}

TheBeanContextServiceAvailableEvent is defined as follows:

public class BeanContextServiceAvailableEvent

 extends BeanContextEvent {

public BeanContextServiceAvailableEvent(

BeanContextServices bcs,

Class sc

);

BeanContextServices getSourceAsBeanContextServices();

public Class getServiceClass();

public boolean isServiceClass(Class serviceClass);

public Iterator getCurrentServiceSelectors();

}

TheBeanContextServiceRevokedEvent is defined as follows:

public class BeanContextServiceRevokedEvent

 extends BeanContextEvent {

public BeanContextServiceRevokedEvent(

BeanContextServices bcs,

Class sc,

 boolean invalidNow

);

public BeanContextServices

getSourceAsBeanContextServices();

public Class getServiceClass();

public boolean isServiceClass(Class service);

public boolean isCurrentServiceInvalidNow();

}

The BeanContextServiceProviderBeanInfo is defined as follows:
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 10

 facili-

r

e

bility

f

-

d the
or

en

d
ffect of
public interface BeanContextServicesProviderBeanInfo

 extends java.beans.BeanInfo {

 java.beans.BeanInfo[] getServicesBeanInfo();

}

Apart from providing a structured hierarchy, the other major role of aBeanContext is to
provide a standard mechanism for a JavaBean component to obtain context-specific
ties or services from its environment.

A service, represented by aClass object, is typically a reference to either an interface, o
to an implementation that is not publicly instantiable. ThisClass defines an interface pro-
tocol or contract between aBeanContextServiceProvider, the factory of the service, and an
arbitrary object associated with aBeanContextChildthat is currently nested within the
BeanContext the service is registered with. Typically such protocols encapsulate som
context specific or sensitive behavior that isolates aBeanContextChild’s implementation
from such dependencies thus resulting in simpler implementations, greater interopera
and portability.

A BeanContextServiceProvider, is a “factory” for one or more services. It registers itsel
with a particularBeanContextServices via it’s adService() method, if the service is not
already registered with theBeanContextServices, theBeanContextServices associates the
service specified with theBeanContextServiceProvider,and fires aBeanContextServiceAv
ailableEvent via theserviceAvailable() method to thoseBeanContextServicesListeners
currently registered, then returnstrue , otherwisefalse indicating that the service is
already registered for thatBeanContextServices.

Once registered, and until revoked, the service is available via theBeanContextServices
getService() method.

ThehasService() method may be used to test the presence of a particular service, an
getCurrentServices() method returns an iterator over the currently available services f
thatBeanContextServices.

A BeanContextChild or any arbitrary object associated with aBeanContextChild, may
obtain a reference to a currently registered service from its nestingBeanContextServices
via an invocation of thegetService() method. ThegetService() method specifies; theBean-
ContextChild, the associatedrequestor, theClass of the service requested, a service
dependent parameter (known as a Service Selector), and aBeanContextServicesRe-
vokedListener used to subsequently notify the requestor that the service class has be
revoked by theBeanContextServiceProvider. TheListeneris registered automatically with
a unicast event sourceper requestor and service class and is automatically unregistere
when a requestor relinquishes all references of a given service class, or as a side e
the service being “forcibly revoked” by the providingBeanContextServiceProvider.

TheBeanContextServices passes thisgetService() invocation onto the associatedBean-
ContextServiceProvider (if any) to be satisfied via an invocation of itsgetService()
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 11

 refer-

uestor
e
ruc-
as a

eter-

sult

it

e

of
method. TheBeanContextServiceProvideris passed theBeanContext, theClassof the ser-
vice provided, the service dependent service parameter (the Service Selector) and a
ence to the object requesting the service.

The reference to theBeanContextis intended to enable theBeanContextServiceProviderto
distinguish service requests from multiple sources. ABeanContextServiceProvideris only
permitted to retain a weak reference to anyBeanContext so obtained.

The Service Selector parameter is a service dependent value used by a service req
for a particular service in order to parameterize the service to be provided to it by th
BeanContextServiceProvider. Some examples of its usage are; a parameter to a const
tor for the service implementation class; a value for a particular service’s property, or
key into a map of existing implementations.

The reference to the requestor is intended to permit theBeanContextServiceProvider to
interrogate the state of the requestor in order to perform any customization or param
ization of the service, therefore this reference shall be treated as immutable by theBean-
ContextServicesProvider. Additionally theBeanContextServiceProvider is permitted to
retain only weak and immutable reference to both therequestorand theBeanContextChild
after returning from thegetService() invocation.

TheBeanContextServiceProvider may satisfy the request, returning a reference to an
instance of theClassof the requested service (such that the reference returned shall re
in the expression:<serviceRefence>instanceof <serviceClass>beingtrue), return
null , or throw an unchecked exception.

In the case when a nestedBeanContextServices is requested for a particular service that
has noBeanContextServiceProvider for, then theBeanContextServices may delegate the
service requested to its own nestingBeanContextServices in order to be satisfied. Thus
delegation requests can propagate from the leafBeanContextServices to the rootBean-
ContextServices.

A BeanContextChild may query a particularBeanContextServices for a list of currently
available Service Classes (via thegetCurrentServiceClasses() method)and any associated
Service Selectors, if a particular serviceClassimplements a finite list of apriori values for
a Service Class, via its nestingBeanContextServices.getCurrentServiceSelectors()
method, which in turn obtains the currently available Service Selectors (if any) via th
BeanContextServiceProvider.getCurrentServiceSelectors() method.

If the service in question does not implement a finite set of apriori values for the set
valid Service Selectors it shall returnnull .

A reference obtained by aBeanContextChildvia getService() is valid until the reference is
released by theBeanContextChild via an invocation of its nestingBeanContextServices
releaseService() method, except in the case where theBeanContextServices fires aBean-
ContextServiceRevokedEvent and that Event’sisCurrentServiceInvalidNow() method
returnstrue , in this case theBeanContextServices and/or theBeanContextServicePro-
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 12

medi-
.

e
r-
of the
d.

not
he

is-

s for
ined

nd
fer-

n is

t
ed
vice
rlier
vider that provided the service has determined that current service references are im
ately invalidated, or “forcibly revoked” (this typically occurs in the following situation)

WhenBeanContextChild instances are removed from a particularBeanContextServices
instance, they shall discard all references to any services they obtained from thatBean-
ContextServicesby appropriate invocations ofreleaseService(). If the un-nestingBean-
ContextChild is also aBeanContextServices instance, and if any of these service
references have been exposed to the un-nestingBeanContextServices’s own members as a
result of a delegatedgetService() request as defined above, theBeanContextServiecs shall
fire aBeanContextServiceRevokedEventto notify its nested children that the service(s) ar
“forcibly revoked”. This immediate invalidation of current references to delegated se
vices at un-nesting is to ensure that services that are dependent upon the structure
hierarchy are not used by requestors after their location in the structure has change

BeanContextChildinstances receiving a “forcable revocation” of a Service Class shall
invokereleaseService() for any references it may hold of that type, since in this case, t
BeanContextServiceProvider or theBeanContextServices that provided the service refer-
ence to thatBeanContextChild has already invalidated all references to that service on
their behalf.

A BeanContextServiceProvider may revoke a Service Class at any time after it has reg
tered it with aBeanContextServices by invoking itsrevokeService() method. Once the
BeanContextServiceshas fired aBeanContextServiceRevokedEventnotifying the currently
registeredBeanContextServiceRevokedListeners and theBeanContextServicesListeners
that the service is now unavailable it shall no longer satisfy any new service request
the revoked service until (if at all) that Service Class is re-registered. References obta
by BeanContextChild requestors to a service prior to its being revoked remain valid, a
therefore the service shall remain valid to satisfy those extant references, until all re
ences to that service are released, unless in exceptional circumstances theBeanContext-
ServiceProvider, or BeanContextServices, when revoking the service, wants to
immediately terminate service to all the current references. This immediate revocatio
achieved by invoking theBeanContextServices.revokeService() method with an actual
parameter value ofrevokeNow== true . Subsequent to immediate invalidation of curren
service references the service implementation may throw a service specific uncheck
exception in response to any attempts to continue to use the revoked service by ser
requestors that have erroneously retained references to the service, ignoring the ea
immediate revocation notification.

Note that in order to function correctly (when delegating service requests) in a multi-
threaded environment, implementations ofBeanContextServices are required to synchro-
nize their implementations of;addService(), hasService(), getCurrentServiceClasses(),
getCurrentServiceSelectors(),getService(),releaseService()andrevokeService()with the
BeanContext.globalHierarhyLock.

A BeanContextServicesProvider may expose theBeanInfo for the Service Classes it pro-
vides implementations for by providing aBeanInfo class that implementsBeanContext-
ServicesProviderBeanInfo.Thus exposing an array ofBeanInfo’s, one for each Service
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 13

tion

t

-
ma-
n(s)

nt
r subse-

vi-

d
er-

r-
Class supported. Builder tools can, for example, use this infomation to provide applica
developers with a palette of Servlice Classes for inclusion in an application.

2.1.4 The role of a BeanContext in Persistence

Since one of the primary roles of aBeanContext is to represent a logical nested structure
of JavaBean component andBeanContextinstance hierarchies, it is natural to expect tha
in many scenarios that hierarchy should be persistent, i.e that theBeanContextshould par-
ticipate in persistence mechanisms, in particular, eitherjava.io.Serializableor
java.io.Externalizable (If the latter theBeanContextis responsible for acting as the persis
tence container for the sub-graph of children, encoding and decoding the class infor
tion, and maintaining sub-graph equivalence after deserialization, basically the functio
provide for serialization byObjectOutputStream andObjectInputStream).

In particularBeanContexts shall persist and restore their current children that impleme
the appropriate persistence interfaces when they themselves are made persistent o
quently restored.

As a result of the above requirement, persistentBeanContextChild implementations are
required tonot persist any references to either their nestingBeanContext, or to any Dele-
gates obtained via its nestingBeanContextServices.

BeanContexts shall, when restoring an instance ofBeanContextChild from its persistence
state, be required to perform the equivalent of invokingadd() on the newly instantiated
BeanContextChild,, in order to notify the newly restored instance of its nestingBeanCon-
text, thus allowing thatBeanContextChild to fully reestablish its dependencies on its en
ronment.

Also note that sinceBeanContext implementsjava.beans.beancontext.BeanContextChil
it shall obey the persistence requirements defined below for implementors of that int
face.

2.1.5 BeanContext with associated presentation hierarchies

Although not required, manyBeanContexts may be associated within a presentation hie
archy ofjava.awt.Containers andjava.awt.Components. AContainer cannot implement

BeanContextdirectly1 but may be associated with one by implementing theBeanContext-
Proxy interface described herein.

public interface BeanContextProxy {

 BeanContext getBeanContext();

}

1. Unfortunately because of method name collisions betweenComponent andCollection aComponent can-
not implementBeanContext or Collection directly and must model the capability with a “HasA” rather
than an “IsA” relationship.
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 14

e
ion by
r-

llec-
n

t,

g

For instances of classes that do not (or cannot in the case ofComponentor subclasses
thereof) directly implement theBeanContextinterface, but are associated with an instanc
of such an implementation, (via delegation) such instances may expose this associat
implementing theBeanContextProxyinterface. By doing so, this enables arbitrary 3rd pa
ties, such as builder tools, to interrogate and discover TheBeanContext associated with
such objects for the purposes of either nesting objects within that associatedBeanContext,
observing changes in the membership, or obtaining services thereof.

This also permits multiple distinct objects (e.g:Containers) to share a singleBeanContext.
[Note though that in this case a sharedBeanContextshall not implementBeanContextCon-
tainerProxysince that is a peer-to-peer relationship between a singleBeanContextand the
Container implementing that interface]

The value returned fromgetBeanContext()is constant for the lifetime of the implementing
instance, that is the relationship between aBeanContextProxy and it’s associatedBean-
Context is static and thus may not change for the lifetime of either participant.

No class may implement both theBeanContext(or BeanContextChild) and theBeanCon-
textProxy interfaces, they are mutually exclusive.

SomeBeanContextProxyimplementors may also implementjava.util.Collection, or some
other collection-like API (e.gjava.awt.Container), in addition to, and possibly distinct
from, maintaining aBeanContext basedCollection.

In such cases it is possible to add, or remove, elements from either theBeanContext, via
it’s CollectionAPI’s, or theBeanContextProxyimplementor using it’s own collection-like
API’s (e.g:public boolean java.awt.Container.add(Component)). It is implementation
dependent whether or not objects added or removed from either theBeanContext’s Collec-
tion, or theBeanContextProxy implementor’s collection are also added or removed from
the corresponding object’s collection (i.e: should aContainer.add() also infer aBeanCon-
text.add() and vica-versa?). In such situations both participants (the implementor ofBean-
ContextProxy and theBeanContext itself) are required to; 1) implement the same add/
remove semantics as the other (i.e: ifx.add(o) has a side effect ofx.getBeanCon-
text().add(o) thenx.getBeanContext().add(o) should also a have side effect ofx.add(o)),
and 2) before adding/removing an object to/from the other participants collection, it
should test (synchronized) if that object is/is not a member of the other participants co
tion before proceeding with the operation in question (this is to avoid infinite recursio
between collection operations on both participants) (i.e:x.add(o) should not invokex.get-
BeanContext().add(o) if x.getBeanContext().contains(o) is true and vica-versa).

It is important to note that if an object that implementsBeanContextProxy is added to , or
removed from, aBeanContext, that in addition to the operation performed on that objec
the same operation should be performed on theBeanContextreturned fromBeanContext-
Proxy.getBeanContext(). That is an implementor ofBeanContextProxy shall be treated as
though it directly implementedBeanContextby any nestingBeanContext. (and vica-versa
if the operation is applied to theBeanContextits shall also be applied to the correspondin
BeanContextProxy)

 The following interface is defined to allow aBeanContext to expose a reference to an
associatedContainer to enable it’sBeanContextChild members to add, or remove, their
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 15

 to

-

d

t

associatedComponent objects to/from thatContaineror to inspect some state on the Con-
tainer.

public interface BeanContextContainerProxy {

Container getContainer()

}

When aBeanContextChildwith an associatedComponentis added to aBeanContextwith
an associatedContainer there are three models of interaction that can occur in relation
the nesting of theComponent in theContainer as a result:

1. If the associatedComponent was added to the associatedContainer via aContainer
API, then the nesting of theBeanContextChild in theBeanContext is a side effect of
that and no further action is required.

2. If theComponent andContainer are not nested then the nestingBeanContext may as a
side effect cause theComponent associated with theBeanContextChild to be added to
it’s associatedContainer.

OR

3. If theComponentandContainerare not nested then theBeanContextChildbeing nested
may as a side effect may cause it’sComponent to be associated with theContainer
associated with the nestingBeanContext.

Thus, for greatest interoperability aBeanContextChild shall always check if itsCom-
poent’s parent is theBeanContextContainer, and if it is not, then it may add itself if appro
priate. Thus aBeanContextChild may function correctly under all scenarios.

TheBeanContextChildis responsible for initially causing itself to eligible to be displaye
via an invocation ofshow() [note that theBeanContextChild may also subsequently
repeatedlyhide()and show()itself].

The nestingBeanContext, or its associatedContainer, may subsequentlyhide() or show()
theBeanContextChild’s Componentarbitrarily, but it is strongly recommended that it trea
thatComponentas immutable in all other respects with the exception of registeringListen-
ers to obtain event notifications, or where otherComponent/Container specific protocols
permit or require theContainerto alter the state of itsComponentcontainees. An example
of such a permitted interaction would be where a property such asbackground or fore-
ground color were propagated fromContainer to Component.

Once aBeanContextChild has been un-nested from it’sBeanContext, it’s associatedCom-
ponent(if any) shall be removed from thatBeanContext’s Containeras a side effect of the
removal operation, this is the responsibility of theBeanContext (typically if theBeanCon-
textChild has been moved to anotherBeanContext with an associatedContainer via an
invocation of it’ssetBeanContext() method, theComponent will already have been re-
parented as a side effect of that operation by the time the originalBeanContext is notified
of the change via aPropertyChangeEvent from the child, however the check should be
made and theComponent removed if it has not already occurred).

To avoid infinite recursion, both aBeanContextand aBeanContextChildthat also are asso-
ciated with aContainer andComponent nesting relationship should avoid undoing any
changes applied to theComponent by the other party in the relationship. In general the
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 16

t

shall
heir
BeanContext is responsible for the appearance, visibility and relative layout of theBean-
ContextChild’s Component,and theBeanContextChildis responsible for theComponent’s
state and content pertaining to the application functionality it is implementing.

The value returned from thegetContainer()method is constant for the lifetime of the
implementingBeanContext,that is the relationship between aBeanContext and aCon-
tainer is static for the lifetime of both participants.

In addition the following interface is also defined:

public interface BeanContextChildComponentProxy {

 Component getComponent();

}

A BeanContext or aBeanContextChild may implement this interface to expose the GUI
Component that it is associated with to it’s nestingBeanContext. A BeanContext may use
this method to establish the relationship between references to instances ofComponent
andBeanContextChild that are known to it, where aBeanContextChild andComponent
are not implemented by the same object instance (that is theBeanContextChild delegates
its Component implementation to a distinct object rather than inheriting fromCompo-
nent]. A BeanContext may interrogate theComponent reference it obtains from a nested
BeanContextChildin order to determine its state, and it may also registerListenersfor par-
ticular events, however it is strongly recommended that theBeanContext treat the refer-
ence as generally immutable to avoid changing theComponent state.

The value returned from thegetComponent() method is a constant for the lifetime of tha
BeanContextChild.

In the situation where aBeanContext has an associatedContainer, but does not wish to
expose thatContainer by implementing theBeanContextContainerProxy interface, but
wishes to handle the nesting of an arbitraryBeanContextChild’s associatedComponent
(exposed by theBeanContextChild either implementing theBeanContextChildCompo-
nentProxy interface or as direct subclass ofComponent) theBeanContext is permitted to
add/remove thatComponent to/from its associatedContainer.In such cases theBeanCon-
textChild and it’s associatedComponent implementation shall not interfere with this
action.

If a class implements bothBeanContextChildComponentProxy andBeanContextContain-
erProxy then the object returned by bothgetComponent() andgetContainer()shall be the
same object.

2.2 interface java.beans.beancontext.BeanContextChild1

Simple JavaBeans that do not require any support or knowledge of their environment
continue to function as they do today. However both JavaBeans that wish to utilize t
containingBeanContext, andBeanContexts that may be nested, require to implement a

1. I don’t like this name much but I am struggling for a better alternative! (we are stuck with it)
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 17

ods

on

n-

st,
mechanism that enables the propagation of the reference to the enclosingBeanContext
through to cognizant JavaBeans and nestedBeanContexts, the interface proposed is:

public interface java.beans.beancontext.BeanContextChild {

void setBeanContext(BeanContext bc)

throws PropertyVetoException;

BeanContext getBeanContext();

void addPropertyChangeListener

(String name, PropertyChangeListener pcl);

 void removePropertyChangeListener

(String name, PropertyChangeListener pcl);

void addVetoableChangeListener

(String name, VetoableChangeListener pcl);

 void removeVetoableChangeListener

(String name, VetoableChangeListener pcl);

}

The expected usage is that some 3rd party shall invoke one of the appropriate meth
defined onBeanContext (by virtue of its inheritance fromCollection) in order to add a
BeanContextChild to the membership of the targetBeanContext. As a consequence the
BeanContext shall attempt to set theBeanContextChild’s “beanContext” property by
invoking its setter method,setBeanContext(). Only aBeanContextmay call aBeanContex-
tChild’s setBeanContext() method, since this is the mechanism that aBeanContextuses to
notify a child that it is now has a newBeanContext value. Since this property is not
directly settable or customizable by a user in the context of an application constructi
tool theBeanInfo for aBeanContextChild should set the hidden state for this property in
order for builder tools to avoid presenting the property to the user for customization.

A BeanContextChild object may throw aPropertyVetoException, to notify the nesting
BeanContext that it is unable to function/be nested within that particularBeanContext.
Such a veto shall be interpreted by aBeanContext as an indication that theBeanContext-
Child has determined that it is unable to function in that particularBeanContext and is
final.

During the un-nesting of aBeanContextChild from itsBeanContext, it is possible for the
child, or a 3rd party listening to the child’s “beanContext” property forPropertyVetoEv-
ents, to throw aPropertyVetoException to notify the caller that it is not in a state to be u
nested. In order to bound this interaction aBeanContextChild, or 3rd party, may veto the
initial un-nesting notification, but may not veto any subsequent notifications, and mu
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 18

ubse-

b)inter-

eously
ired to

nces
liz-
d

we
mmo-

addi-

mpo-
upon receipt of such notifications, amend its state accordingly to prepare itself to be s
quently un-nested.

 Note that classes that implement this interface, also act as an Event Source for (su
face(s) ofjava.beans.PropertyChangeListener, and are required to update their state
accordingly and subsequently fire the appropriatejava.beans.PropertyChangeEvent with
propertyName = “beanContext”,oldValue = the reference to the previous nestingBean-
Context, andnewValue = the reference to the new nestingBeanContext, to notify any Lis-
teners that its nestingBeanContext has changed value.

BeanContextChild instances, or nestedBeanContexts in the process of terminating them-
selves, shall invoke theremove()method on their nestingBeanContext in order to with-
draw themselves from the hierarchy prior to termination.

2.2.1 Important Persistence considerations

Instances ofBeanContextChild nested within anBeanContext, will typically define fields
or instance variables that will contain references to their nestingBeanContext instance,
and possibly services obtained from thatBeanContextServicesinstance via itsgetService()
method.

In order to ensure that the act of making such an instance persistent does not erron
persist objects from the instances nesting environment, such instances shall be requ
define such fields, or instance variables as eithertransient, or to implement custom
persistence methods that avoid persisting such state.

This requirement is crucial since operations such as cutting and pasting object insta
through a clipboard via object serialization will not function correctly if the act of seria
ing the target object also serializes much of the entire source environment it is neste
within.

3.0 Overloading java.beans.instantiate() static method

Sincejava.beans.instantiate()is the current mechanism for (re)instantiating JavaBeans
need to extend or overload the syntax and semantics of this method in order to acco
date the introduction of theBeanContext abstraction. The extension proposed is:

public static Object instantiate(ClassLoader cl,

String beanName,

BeanContext beanContext);

This method behaves has it is currently defined in the JavaBeans specification, but in
tion to these existing semantics, when a non-null BeanContext is specified then the
method invokes theadd()method on thebeanContext actual parameter with the value of
thetargetChild actual parameter = a reference to the newly instantiated JavaBean co

nent.1
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 19

con-
b

be

how

ated

l
ro-

e such
em-
4.0 Providing better support for Beans that are also Applets

The current implementation ofjava.beans.instantiate() contains minimal support for
instantiating JavaBeans that are also Applets. In particular, this method will currently
struct anAppletContext andAppletStub for the newly instantiated JavaBean, set the stu
on the newly instantiatedApplet, andinit() theApplet if it has not already been invoked.

Unfortunately this does not provide sufficient support in order to allow most Applets to
fully functional, since theAppletContext andAppletStub created byjava.beans.instanti-
ate(), are no-ops. This is a direct consequence of the lack of sufficient specification of
to constructAppletContext andAppletStubimplementations in the existingApplet API’s.
Furthermore, even if such specifications existed we would require an API that propag
a number ofAppletattributes such as itsCodebase, Parameters,AppletContext, andDocu-
mentbase into java.beans.instantiate() in order for it to subsequently instantiate the
appropriately initialized objects.

Since key to supporting fully functional Applets is to provide them with fully functiona
AppletContextandAppletStubinstances, the design goal is to provide a mechanism to p
vide this state toinstantiate() so that it may carry out the appropriate initialization and

binding1, therefore the proposed interface is:

public static Object

instantiate(ClassLoader cl,

 String beanName,

 BeanContext bCtxt,

 AppletInitializer ai

);

public interface AppletInitializer {

void initialize(Applet newApplet, BeanContext bCtxt);

void activate(Applet newApplet);

}

If the newly instantiated JavaBean component is an instance ofjava.applet.Applet then the
new constructedApplet, (Bean) will be passed to theAppletInitializer via a call toinitial-
ize().

Compliant implementations ofAppletInitializer.initialize() shall:

1. Associate the newly instantiatedApplet with the appropriateAppletContext.

1. Note: Since simple JavaBeans have no knowledge of a BeanContext, it is not advisable to introduc
instances into the hierarchy since there is no mechanism for these simple JavaBeans to remove th
selves from the hierarchy and thus subsequently be garbage collected.

1. AppletContext objects expose a list ofApplet objects they “contain”, unfortunately the currentApplet or
AppletStubAPI’s as defined, provide no mechanism for theAppletContextto discover itsAppletsfrom its
AppletStubs,or for anAppletStub to inform itsAppletContext of itsApplet.Therefore we will have to
assume that this binding/discovery can occur in order for this mechanism to be worthwhile in
java.beans.instantiate().
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 20

s

 the
d sub-
hine.

te a

ded

ipu-
e,
2. Instantiate anAppletStub() and associate thatAppletStub with theApplet via

an invocation ofsetStub().

3. If BeanContext parameter isnull , then it shall associate theApplet with its appropri-
ateContainer by adding thatApplet to itsContainer via an invocation ofadd(). If the
BeanContextparameter is non-null , then it is the responsibility of theBeanContextto
associate theAppletwith its Containerduring the subsequent invocation of itsaddChil-
dren() method.

Compliant implementations ofAppletInitializer.activate() shall mark theApplet as active,
and may optionally also invoke theApplet’s start() method.

Note that if the newly instantiated JavaBean is not an instance ofApplet, then theApple-
tInitializer interface is ignored.

5.0 Standard/Suggested Conventions for BeanContext Service

5.0.1 BeanContexts that support InfoBus.

The InfoBus technology is a standard extension package that is intended to facilitate
rendezvous and exchange of dynamic self describing data, based upon a publish an
scribe abstraction, between JavaBean Components within a single Java Virtual Mac

A BeanContext that exposes anInfoBus to its nestedBeanContextChild shall do so by
exposing a service via thehasService() andgetService() methods of typejavax.info-
bus.InfoBus.

ThusBeanContextChild implementations may locate a commonInfoBus implementation
for their currentBeanContext by using this mechanism to rendezvous with thatInfoBus
instance.

The Infobus 1.2 specification shall define a convenience mechanism provided by theInfo-
Bus class to simplify the discovery mechanism forBeanContextChild instances nested
within a particular instance ofBeanContextServices.

5.0.2 BeanContexts that support printing

A BeanContext that wishes to expose printing facilities to its descendants may delega
reference of (sub)typejava.awt.PrintJob.

As the Java Network Printing Interface evolves additional specifications will be provi
to expose it’s facilities via the services mechanism.

5.0.3 BeanContext Design/Runtime mode support.

JavaBeans support the concepts of “design”-mode, when JavaBeans are being man
lated and composed by a developer in an Application Builder or IDE, and “Run”-mod
when the resulting JavaBeans are instantiated at runtime as part of anApplet, Application
or some other executable abstraction.
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 21

n”-
ion
f the

M

s

may

pro-

ts
ware
r con-

ility

en

agate
In the first version of the specification, the “mode” or state, that is “design”-time or “ru
time was a JVM global attribute. This is insufficient since, for example, in an Applicat
Builder environment, there may be JavaBeans that function, in “run”-mode, as part o
Application Builder environment itself, as well as the JavaBeans that function, in
“design”-mode, under construction by the developer using the Application Builder to
compose an application.

Therefore we require the ability to scope this “mode” at a granularity below that of JV
global.

TheBeanContextabstraction, as a “Container” or “Context” for one or more JavaBean
provides appropriate mechanism to better scope this “mode”.

ThusBeanContext’s that wish to expose and propagate this “mode” to its descendants
delegate a reference of typejava.beans.DesignMode:

public interface java.beans.DesignMode {

void setDesignTime(boolean isDesignTime);

boolean isDesignTime();

}

Additionally, BeanContexts delegating such a reference shall be required to fire the ap
priatejava.beans.propertyChangeEvent, with propertyName = “designTime”, with the
appropriate values foroldValue andnewValue, when the “mode” changes value.

Note that it is illegal for instances ofBeanContextChild to callsetDesignTime() on
instances ofBeanContextthat they are nested within.

5.0.4 BeanContext Visibility support.

JavaBeans with associated presentation, or GUI, may be instantiated in environmen
where the ability to present that GUI is either not physically possible (when the hard
is not present), or is not appropriate under the current conditions (running in a serve
text instead of a client).

The first version of the JavaBeans Specification introduced thejava.beans.Visibility inter-
face in order to provide a mechanism for JavaBeans to have their “visible” state, or ab
to render a GUI, controlled from their environment.

BeanContexts that wish to enforce a particular policy regarding the ability of their childr
to present GUI, shall use thejava.beans.Visibility interface to control their children.

5.0.5 Determining Locale from a BeanContext

BeanContexts may have a locale associated with them, in order to associate and prop
this important attribute across the JavaBeans nested therein.

Therefore,BeanContexts, shall be required to fire the appropriate java.beans.Property-
ChangeEvent, with propertyName = “locale”,oldValue = the reference to the previous
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 22

sses
n-

er
bod-
value of theLocaledelegate, andnewValue= the reference to the new value of theLocale
delegate, in order to notify its Listeners of any change inLocale.

Setting and getting the value of theLocale on theBeanContext is implementation depen-
dent.

6.0 Support classes

In order to ease the implementation of this relatively complex protocol a “helper” cla
are provided;java.beans.beancontext.BeanContextChildSupport, java.beans.beanco
text.BeanContextSupport, andjava.beans.beancontext.BeanContextServicesSupport.
These classes are designed to either be subclassed, or delegated implicitly by anoth
object, and provides fully compliant (extensible) implementations of the protocols em
ied herein.
Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 23

	1.0 Introduction.
	2.0 API Specification
	2.1 interface java.beans.beancontext.BeanContext
	2.2 interface java.beans.beancontext.BeanContextChild

	3.0 Overloading java.beans.instantiate() static method
	4.0 Providing better support for Beans that are also Applets
	5.0 Standard/Suggested Conventions for BeanContext Services
	6.0 Support classes

