Extensible Runtime Containment and Server

1.0
2.0
3.0
4.0
5.0
6.0

Protocol for JavaBeans Version 1.0

Laurence Cable

oo 11 o3 1o o 1A 1
APL SPECITICALION ...uuuiiiiie e e e e e e e e e e e aeaaraa—— 2
Overloading java.beans.instantiate() static methodcccccoeiiiiiiiiiiiiccenn, 19
Providing better support for Beans that are also Appletsccceeeeiiiiiiieeeeeneenn, 20
Standard/Suggested Conventions for BeanContext ServiCes........cccceeevveeeeeeeeeeenn.. 21
SUPPOIT ClASSESot e e e e e e e e e e e e et e e eaeeaes 23

Extensible Runtime Containment and Server Protocol for JavaBeans Version 1.0December 3, 1998 1

Extensible Runtime Containment and
Services Riytocol for AvaBeans &tsion 1.0

Laurence Cable.

Send comments to java-beans@java.sun.com.

1.0 Introduction.

Currently the JavaBeans specification (Version 1.0) contains neither conventions describ-
ing a hierarchy or logical structure of JavaBeans, nor conventions for those JavaBeans to
rendezvous with, or obtain arbitrary services or facilities from, the execution environment
within which the JavaBean was instantiated.

It is desirable to both provide a logical, traversable, hierarchy of JavaBeans, and further to
provide a general mechanism whereby an object instantiating an arbitrary JavaBean can
offer that JavaBean a variety of services, or interpose itself between the underlying system
service and the JavaBean, in a conventional fashion.

In other component models there exists the concept of a relationship between a Compo-
nent and its environment, or Container, wherein a newly instantiated Component is pro-
vided with a reference to its Container or Embedding Context.

The Container, or Embedding Context not only establishes the hierarchy or logical struc-
ture, but its also acts as a service provider that Components may interrogate in order to
determine, and subsequently employ, the services provided by their Context.

This proposal defines such a protocol that supports extensible mechanisms that:

» Introduce an abstraction for the environment, or context, in which a JavaBean logically
functions during its lifecycle, that is a hierarchy or structure of JavaBeans.

» Enable the dynamic addition of arbitrary services to a JavaBean’s environment.

* Provide a single service discovery mechanism through which JavaBeans may interro-
gate their environment in order both to ascertain the availability of particular services
and to subsequently employ those services.

» Provide a simple mechanism to propagate an Environment to a JavaBean.

» Provide better support for JavaBeans that are also Applets.

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 1

SerVICe ll“||lllll.llllllll|.
service)

* *
-
L4 L4 .

o 1, .
., fgpgn?t .

T, TNBeanContext ..

JVM

2.0 API Specification

2.1 interface java.beans.beancontext.BeanContext

The hierarchal structure and general facilities BeEanContexare provided for as fol-
lows:
public interfacejava.beans.beancontext.BeanContext
extends java.beans.beancontext.BeanContextChild,
java.util.Collection,
java.beans.DesignMode,
java.beans.Visibility {

Object instantiateChild(String beanName)
throws I0Exception, ClassNotFoundException;

public InputStream
getResourceAsStream(String name,
BeanContextChild requestor

);

public java.net.URL
getResource(String name,
BeanContextChild requestor

);

void addBeanContextMembershipListener(
BeanContextMembershipListener bcml

);

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998

void removeBeanContextMembershipListener{
BeanContextMembershipListener bcml

);

public static final Object globalHierarchyLock;
}

Notifications of changes in the membership 8e@nContexare modeled as follows:

public interface BeanContextMembershipListener
extends java.util.Listener {
void childrenAdded(BeanContextMembershipEvent bcme);
void childrenRemoved(BeanContextMembershipEvent bcme);

The base class of &leanContextelated Events is defined by:

public abstract class BeanContextEvent
extends java.util.EventObject {
public BeanContext getBeanContext();

public synchronized void
setPropagatedFrom(BeanContext bc);

public synchronized BeanContext getPropagatedFrom();

public synchronized boolean isPropagated()

TheBeanContextMembershipEvestdefined as:

public class BeanContextMembershipEvent
extends BeanContextEvent {

public BeanContextMembershipEvent(BeanContext bc,
Object[]] deltas);

public BeanContextMembershipEvent(BeanContext bc,
Collection deltas);

public int size();

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998

public boolean contains(Object child);
public Object[] toArray();

public Iterator iterator();

2.1.1 The BeanContext as a participant in nested structure

One of the roles of thBeanContexis to introduce the notion of a hierarchical nesting or
structure oBeanContexand JavaBean instances. In order to model this structure the
BeanContexmust expose API that defines the relationships in the structure or hierarchy.

TheBeanContexéxposes its superstructure through implementation of the
java.beans.beancontext.BeanContextCimtdrface (as described later). This interface
allows the discovery and manipulation dd@anContexs nestingBeanContextand thus
introduces a facility to create a hierarchyBalanContexts

TheBeanContexéxposes its substructure through a number of interface methods modeled
by thejava.util.Collectioninterface semantics

BeanContextare required to implement all the mandatGotlectionAPI’s, with the fol-
lowing particular semantics fadd) andremove):.

Theadd() method may be invoked in order to nest a @dect BeanContextChildor
BeanContextvithin the targeBeanContextA conformantadd() implementation is
required to adhere to the following semantics:

» Synchronize on thBeanContext.globalHierarchyLock.

» Each child object shall appear only once in the set of children for a ddemmContext
If the instance is already a member of BeanContexthen the method shall return
False .

» Each valid child shall be added to the set of children of a given sBaeeContext,
and thus shall appear in the set of children, obtained through eithieAtinay(), or
iterator() methods, until such time as that child is deleted from the neBw@anContext
via an invocation ofemove() removeAll() retainAll(), or clean)

» Asthe child is added to the set of nested children, and where that child implements the
java.beans.beancontext.BeanContextCimtdrface (oiBeanContextProxygee later
for detailg, theBeanContexshall invoke thesetBeanContetmethod upon that child,
with a reference to itself. Upon invocation, a child may, if it is for some reason unable
or unprepared to function in thBeanContexthrow aPropertyVetoExceptioto notify
the nestindBeanContextlf the child throws such an exception BeanContexshall

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 4

revoke the addition of the child (and any other partial changes made to the state of the
BeanContext as a side effect of this addition operation) to the set of nested children and
throw anlllegalStateException

JavaBeans that implement flaga.beans.Visibilitynterface shall be notified via the
appropriate method, eithdontUseGui(Jor okToUseGui()pf their current ability to
render GUI as defined the policy of tBeanContext

If the newly added child implemenBeanContextChildtheBeanContexshall register
itself with the child on both it¥etoableChangeListenandPropertyChangeListener
interfaces to monitor, at least, tiBganContextChild “beanContext” property.

By doing so thd8eanContextan monitor its child and can detect when such children
are removed by a 3rd party (usually anotBeanContejtinvoking setBeanConteft

A BeanContexinay veto such a change by a 3rd party if it determines that the child is
not in a state to depart membership at that time.

If the JavaBean(s) added implemérgtenerinterfaces that thBeanContexs a source
for, then theBeanContextay register the newly added objects via the appropriste
tenerregistration methods as a permissible side effect of nesting.

If the JavaBean(s) added are Event Sources for Event that a parBaaaContexihas
interest in thdBeanContexinay, as a side effect of adding the child, regisigteners
on that child. TheBeanContexshould avoid usingerializable Listenerthus avoiding
accidental serialization of unwanted structure when a child serializes itself.

Once thetargetChildhas been successfully processed BbanContexshall fire a
java.beans.beancontext.BeanContextMembershipEv@miaining a reference to the
newly addedargetChild to thechildrenAdde@) method of all th&eanContextMeme-
brshipListenersurrently registered.

The method shall retutnue if successful.

Theremove()method may be invoked in order to remove an existing child JavaBean or
BeanContextrom within the targeBeanContextA conformantemove(implementation
is required to adhere to the following semantics:

Synchronize with th8eanContext.globalHierarchyLock.

If a particular child is not present in the set of children for the soBeanContexthe
method shall returialse .

Remove the validargetChildfrom the set of children for the sour8=anContextalso
removing that child from any otherstenerinterfaces that it was implicitly registered
on, for thatBeanContexas a side-effect of nesting.

Subsequently, if theargetChildimplements th¢ava.beans.beancontext.BeanContext-
Child interface (oiBeanContextProxyee later for deatils), tHgeanContexshall

invoke thesetBeanConteftwith anull 1 BeanContextalue, in order to notify that
child that it is no longer nested within tBeanContext

If a particularBeanContextChilds in a state where it is not able to be un-nested from
its nestingBeanContexit may throw aPropertyVetoExceptigrupon receipt of this the
BeanContexshall revoke the remove operation for this instance and thitegalState-

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 5

Exception To avoid infinite recursion, children are not permitted to repeatedly veto
subsequent remove notifications. In practice, a child should attempt to resolve the con-
dition (if temporary) that precludes it's removal from it's current nefiegnContext.

If the targetChildimplementgava.beans.beancontext.BeanContextCthikh the
BeanContexshall de-register itself from that childRropertyChangeListenemdVeto-
ableChangelListenesources.

If the BeanContexhad previously registered the object(s) removedsienerson
events sources implemented by BeanContexas a side effect of nesting those
objects, then thBeanContexshall de-register the newly removed object from the
applicable source(s) via the appropriaistenerde-registration method(s)

If the BeanContexhad previously registerddstener(s)on the object(s) removed then
the BeanContexshall remove those Listener(s) from those object(s).

Once theargetChildhas been removed from the set of children,BeanContexshall
fire ajava.beans.beancontext.BeanContextMembershipEsamtgining a reference to
thetargetChildjust removed, to thehildrenRemoveggl method of all th&eanContext-
MembershipListenersurrently registered.

Finally the method shall return the valnee if successful.

Note that the lifetime of any child of a nestiBganContextis at least for the duration of
that child’s containment within a givéeanContextFor simple JavaBeans that are not
aware of their containment withinBeanContextthis usually implies that the JavaBean
shall exist for at least the lifetime of the nestBepnContext

BeanContext are not required to implement eitratdAll(), removeAl(), retainAll() or
clear() optional methods defined fgva.util.Collection AP)however if they do they must
implement the semantics defined, per object, for adtf) andremove€) above. In the
failure cases these methods shall revoke any partially applied changes to reBaarthe
Contextto the state it was in prior to the failing composite operation being invoked, no
BeanContextEventhall be fired in the failure case as is consistent with the definition of
add() andremove()above.

BeanContextMembershipListenenay be added and removed via invocations of
addBeanContextMembershipListef)eandremoveBeanContextMembershipListé€her

ThetoArray(), method shall return a copy of the current set of JavaBeBaanContext
instances nested within the targetanContextand thaterator() method shall supply a
java.util.Iteratorobject over the same set of children.

Thecontains()method shall returtrue if the object specified is currently a child of the
BeanContext

. Note, if theremové) was invoked as a result of tBeanContexteceiving an unexpectdtopertyChan-

geEvennotification as a result of a 3rd party invokisgtBeanConte@tthen the remove implementation
shall not invokesetBeanConteftull) on that child as part of themové) semantics, since to do so
would overwrite the value previously set by the 3rd party.

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 6

Thesize()method returns the current number of children nested.
TheisEmpty) method returns true iff thBeanContexhas no children.

Notethatall the Collectionmethodsall requirepropersynchronizatioetweereachother
by a givenimplementationn orderto functioncorrectlyin a multi-threadedenvironment,
thatis, to ensurehatary changeso themembershipf the setof JavaBeansestedwithin
a gvenBeanContet are applied atomicalhAll implementations are required to synchro-
nizedtheirimplementation®f thesemethodswith the BeanContgt.globalHielarchyl ok.

In some situationsadd()andremove()or a variant thereof) operations may occur nested,
that is multiple occurrences may appear on the stack of the cdlhirgadsimultaneously

e.g: wherBeanContextChild4, is added (or removed), it'setBeanContext(hethod also
adds (or removes) anothigeanContextChildB. A particularBeanConteximplementa-

tion may choose to fire either tiBeanContextMembershipListenastifications, one for
eachadd()Yremove()operation of B then A (in this order since B is successfully added
before A), or coalesce these into a single notification containing both A, and B. Note that
should A be unable to be added or removed for any reason it shall not perform, or undo,
any add or remove operations upon B as a side-effect, prior to throwdngpeertyVetoEx-
ceptionto indicate this condition, that is, it must avoid or undo any side-effect member-
ship changes prior to rejecting any changes to its own membership status.

TheinstantiateChild()method is a convenience method that may be invoked to instantiate
a new JavaBean instance as a child of the t&gabContextThe implementation of the
JavaBean is derived from the value of leanNamectual parameter, and is defined by
thejava.beans.Beans.instantiatðod.

Typically, this shall be implemented by calling the appropj&ta.beans.Beans.instanti-
ate()method, using th€lassLoadeof the targeBeanContextHowever a particular
BeanConteximplementation may interpose side-effects on the instantiate operation in
their implementation of this method.

TheBeanContextEvens the abstract rodventObjectlass for alEventspertaining to
changes in state ofBeanContexs defined semantics. This abstract root class defines the
BeanContexthat is the source of the notification, and also introduces a mechanism to
allow the propagation @deanContextEversubclasses through a hierarchyBefinCon-

texts ThesetPropagatedFrof) andgetPropagatedFroif) methods allows 8eanContext

to identify itself as the source of a propagated Event t@@nContexto which it subse-
guently propagates thieventto. This is a general propagation mechanism and should be
used with care as it has significant performance implications when propagated through
large hierarchies.

TheBeanContextMembershipEvatdscribes changes that occur in the membership of a
particularBeanContexinstance. This event encapsulates the list of children either added
to, or removed from, the membership of a particlBaanContexinstance, i.e the delta in

the membership set.

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 7

whenever a successfadid), remové), addAlk), retainAll(), removeAl), or clean) is
invoked upon a particul@eanContexinstance, 8eanContextMembershipEvesfired
describing the children effected by the operation.

2.1.2 Resources.

TheBeanContextlefines two methodgetResourceAsStrefhandgetResourd@ which

are analogous to those methods founghga.lang.ClassLoader. BeanContextChild
instances nested withinlBeanContexshall invoke the methods on their nestidganCon-
textin preference for those @lassLoaderto allow aBeanContextimplementation to
augment the semantics by interposing behavior between the child and the underlying
ClassLoadesemantics.

2.1.3 The BeanContext as a Service Provider

The service facilities of BeanContexare provided as follows:

public interface BeanContextServices
extends BeanContext,BeanContextServicesListener {

boolean addService(Class serviceClass,
BeanContextServiceProvider service);

boolean revokeService(Class serviceClass,
BeanContextServiceProvider bcsp,
boolean revokeNow

);

boolean hasService(Class serviceClass);

Object getService(BeanContextChild bcc,

Object requestor.
Class serviceClass,
Object serviceSelector,

BeanContextServicesRevokedListener sl
) throws TooManyListenersException;

void releaseService(BeanContextChild bcc,
Object requestor,

Object service);

Iterator getCurrentServiceClasses();

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998

public Iterator getCurrentServiceSelectors(Class sc);

addBeanContextServicesListener(
BeanContextServicesListener bcsl

);

removeBeanContextServicesListener(
BeanContextServicesListener bcsl
);
}

The BeanContextServiceProvidaterface is defined as follows:

public interface BeanContextServiceProvider {
Object getService(BeanContext bc,
Object requestor,
Class serviceCls,
Object serviceSelector);

void releaseService(BeanContext bc,
Object requestor,
Object service);

Iterator getCurrentServiceSelectors(BeanContext bc,
Class serviceCls);

TheBeanContextServiceRevokedListeisatefined as follows:

public interface BeanContextServiceRevokedListener
extends java.util.EventListener {
void serviceRevoked(
BeanContextServiceRevokedEvent bcsre
);
}

TheBeanContextServicesListerierdefined as follows:

public interface BeanContextServicesListener
extends BeanContextServiceRevokedListener {
void serviceAvailable(
BeanContextServiceAvailableEvent bcsae

);

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998

}

The BeanContextServiceAvailableEvéentefined as follows:

public class BeanContextServiceAvailableEvent
extends BeanContextEvent {

public BeanContextServiceAvailableEvent(
BeanContextServices bcs,
Class sc

BeanContextServices getSourceAsBeanContextServices();
public Class getServiceClass();
public boolean isServiceClass(Class serviceClass);

public Iterator getCurrentServiceSelectors();

}

TheBeanContextServiceRevokedEvsrdefined as follows:

public class BeanContextServiceRevokedEvent
extends BeanContextEvent {
public BeanContextServiceRevokedEvent(

BeanContextServices bcs,
Class SC,
boolean invalidNow

);

public BeanContextServices
getSourceAsBeanContextServices();

public Class getServiceClass();
public boolean isServiceClass(Class service);

public boolean isCurrentServicelnvalidNow();

The BeanContextServiceProviderBeanligadefined as follows:

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998

10

public interface BeanContextServicesProviderBeaninfo
extends java.beans.Beaninfo {
java.beans.BeanlInfo[] getServicesBeanInfo();

}

Apart from providing a structured hierarchy, the other major roleBe#faamContexis to
provide a standard mechanism for a JavaBean component to obtain context-specific facili-
ties or services from its environment.

A service, represented byChassobject, is typically a reference to either an interface, or

to an implementation that is not publicly instantiable. Tassdefines an interface pro-
tocol or contract betweenBeanContextServiceProvidéne factory of the service, and an
arbitrary object associated wittBe@anContextChildhat is currently nested within the
BeanContexthe service is registered with. Typically such protocols encapsulate some
context specific or sensitive behavior that isolatBe@anContextChild implementation

from such dependencies thus resulting in simpler implementations, greater interoperability
and portability.

A BeanContextServiceProvides a “factory” for one or more services. It registers itself
with a particulaBeanContextServicesa it's adServic€) method, if the service is not
already registered with tHigeanContextServicetheBeanContextServicessociates the
service specified with thBeanContextServiceProvidand fires d88eanContextServiceAv-
ailableEventvia theserviceAvailabl§ method to thosBeanContextServicesListeners
currently registered, then returimge , otherwisefalse indicating that the service is
already registered for thBeanContextServices

Once registered, and until revoked, the service is available vi2edmeContextServices
getServic method.

ThehasServic method may be used to test the presence of a particular service, and the
getCurrentServicgs method returns an iterator over the currently available services for
thatBeanContextServices

A BeanContextChiladr any arbitrary object associated witB@anContextChildmay

obtain a reference to a currently registered service from its n&sargContextServices

via an invocation of thgetServic§ method. ThegetServic method specifies; thBean-
ContextChild the associatei@questoy theClassof the service requested, a service
dependent parameter (known as a Service Selector), Bea«ContextServicesRe-
vokedListeneused to subsequently notify the requestor that the service class has been
revoked by thdeanContextServiceProviddiheListeneris registered automatically with

a unicast event sourper requestor and service class and is automatically unregistered
when a requestor relinquishes all references of a given service class, or as a side effect of
the service being “forcibly revoked” by the providiBganContextServiceProvider

TheBeanContextServicgmsses thigetServic@ invocation onto the associatBeéan-
ContextServiceProviddif any) to be satisfied via an invocation ofgetServic@

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 11

method. TheBeanContextServiceProvidisrpassed thBeanContextthe Classof the ser-
vice provided, the service dependent service parameter (the Service Selector) and a refer-
ence to the object requesting the service.

The reference to thBeanContexis intended to enable tHgeanContextServiceProvider
distinguish service requests from multiple sourceBeanContextServiceProvidisronly
permitted to retain a weak reference to BeanContexso obtained.

The Service Selector parameter is a service dependent value used by a service requestor
for a particular service in order to parameterize the service to be provided to it by the
BeanContextServiceProvid&ome examples of its usage are; a parameter to a construc-
tor for the service implementation class; a value for a particular service’s property, or as a
key into a map of existing implementations.

The reference to the requestor is intended to permielaaContextServiceProvidey
interrogate the state of the requestor in order to perform any customization or parameter-
ization of the service, therefore this reference shall be treated as immutabldegpithe
ContextServicesProvideAdditionally theBeanContextServiceProvider permitted to

retain only weak and immutable reference to bothrégriestorand theBeanContextChild

after returning from thgetServicé invocation.

TheBeanContextServiceProvideray satisfy the request, returning a reference to an
instance of the&Classof the requested service (such that the reference returned shall result
in the expressiorgserviceRefenceinstanceof <serviceClass>beingtrue), return

null , or throw an unchecked exception.

In the case when a nestBdanContextServices requested for a particular service that it
has nadBeanContextServiceProvidéar, then theBeanContextServicesay delegate the
service requested to its own nestBganContextServicas order to be satisfied. Thus
delegation requests can propagate from theBeahContextServicds the rooBean-
ContextServices.

A BeanContextChildnay query a particuldeanContextServicdar a list of currently
available Service Classes (via tetCurrentServiceClassgsnethod)and any associated
Service Selectors, if a particular serviciassimplements a finite list of apriori values for
a Service Class, via its nestiBganContextServices.getCurrentServiceSelggtors
method, which in turn obtains the currently available Service Selectors (if any) via the
BeanContextServiceProvider.getCurrentServiceSeldgtosthod.

If the service in question does not implement a finite set of apriori values for the set of
valid Service Selectors it shall returall

A reference obtained byBeanContextChildia getServicg is valid until the reference is
released by thBeanContextChildia an invocation of its nestirB@eanContextServices
releaseServid¢ method, except in the case whereBleanContextServicéses aBean-
ContextServiceRevokedEvantd that Event'ssCurrentServicelnvalidNo@y method
returnstrue , in this case thBeanContextServicesd/or theBeanContextServicePro-

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 12

vider that provided the service has determined that current service references are immedi-
ately invalidated, or “forcibly revoked” (this typically occurs in the following situation).

WhenBeanContextChilaghstances are removed from a particldaanContextServices
instance, they shall discard all references to any services they obtained fr8maihmat
ContextServiceBy appropriate invocations afleaseServidg. If the un-nestindgean-
ContextChildis also é@BeanContextServicasstance, and if any of these service

references have been exposed to the un-neBagContextServiceown members as a
result of a delegategktServic request as defined above, BeanContextServiechall

fire aBeanContextServiceRevokedEwentotify its nested children that the service(s) are
“forcibly revoked”. This immediate invalidation of current references to delegated ser-
vices at un-nesting is to ensure that services that are dependent upon the structure of the
hierarchy are not used by requestors after their location in the structure has changed.

BeanContextChilthstances receiving a “forcable revocation” of a Service Class shall not
invokereleaseServidg for any references it may hold of that type, since in this case, the
BeanContextServiceProvider theBeanContextServicesat provided the service refer-
ence to thaBeanContextChildthas already invalidated all references to that service on
their behalf.

A BeanContextServiceProvidaray revoke a Service Class at any time after it has regis-
tered it with aBBeanContextServicdyy invoking itsrevokeServigg method. Once the
BeanContextServicéss fired @8eanContextServiceRevokedEvaritfying the currently
registeredBeanContextServiceRevokedListersrd theBeanContextServicesListeners

that the service is now unavailable it shall no longer satisfy any new service requests for
the revoked service until (if at all) that Service Class is re-registered. References obtained
by BeanContextChildequestors to a service prior to its being revoked remain valid, and
therefore the service shall remain valid to satisfy those extant references, until all refer-
ences to that service are released, unless in exceptional circumstariBesn@entext-
ServiceProvidemr BeanContextServicewhen revoking the service, wants to

immediately terminate service to all the current references. This immediate revocation is
achieved by invoking thBeanContextServiceevokeServidg method with an actual
parameter value oevokeNows=true . Subsequent to immediate invalidation of current
service references the service implementation may throw a service specific unchecked
exception in response to any attempts to continue to use the revoked service by service
requestors that have erroneously retained references to the service, ignoring the earlier
immediate revocation notification.

Note that in order to function correctly (when dgliéng service requests) in a multi-
threaded erironment, implementations @eanContrtServicesare required to synchro-
nize their implementations ciddService(), hasService(etGurrentServiceClasses(),
getCurrentServiceSelectsf), getService()releaseService@ndrevokeService()with the
BeanContgt.globalHiearhylL ok.

A BeanContextServicesProvideray expose thBeanlnfofor the Service Classes it pro-
vides implementations for by providingdganinfoclass that implemenBeanContext-
ServicesProviderBeanInf@hus exposing an array Beanlinfcs, one for each Service

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 13

Class supported. Builder tools can, for example, use this infomation to provide application
developers with a palette of Servlice Classes for inclusion in an application.

2.1.4 The role of a BeanContext in Persistence

Since one of the primary roles oBaanContexis to represent a logical nested structure

of JavaBean component aBdanContexinstance hierarchies, it is natural to expect that

in many scenarios that hierarchy should be persistent, i.e th8eeContexshould par-
ticipate in persistence mechanisms, in particular, ejiverio.Serializabler
java.io.Externalizablelf the latter theBeanContexis responsible for acting as the persis-
tence container for the sub-graph of children, encoding and decoding the class informa-
tion, and maintaining sub-graph equivalence after deserialization, basically the function(s)
provide for serialization b@bjectOutputStrearandObjectinputStreai

In particularBeanContex shall persist and restore their current children that implement
the appropriate persistence interfaces when they themselves are made persistent or subse-
guently restored.

As a result of the above requirement, persidaanContextChd implementations are
required tanot persist any references to either their nedBiegnContextor to any Dele-
gates obtained via its nestiBganContextServices

BeanContextshall, when restoring an instanceBefanContextChildrom its persistence
state, be required to perform the equivalent of invokithd() on the newly instantiated
BeanContextChildjn order to notify the newly restored instance of its ne®eanCon-
text, thus allowing thaBeanContextChildo fully reestablish its dependencies on its envi-
ronment.

Also note that sincBeanContextmplementgava.beans.beancontext.BeanContextChild
it shall obey the persistence requirements defined below for implementors of that inter-
face.

2.1.5 BeanContext with associated presentation hierarchies

Although not required, margeanContex may be associated within a presentation hier-
archy ofjava.awt.Containes andiava.awt.Componeat A Containercannot implement

BeanContextlirectly' but may be associated with one by implementindBesenContext-
Proxyinterface described herein.

public interface BeanContextProxy {
BeanContext getBeanContext();

1. Unfortunately because of method name collisions bet@eemponenandCollectiona Componentan-
not implemenBeanContexor Collectiondirectly and must model the capability with a “HasA” rather
than an “IsA” relationship.

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 14

For instances of classes that do not (or cannot in the c&mmgionentr subclasses

thereof) directly implement thBeanContexinterface, but are associated with an instance

of such an implementation, (via delegation) such instances may expose this association by
implementing théBeanContextProxinterface. By doing so, this enables arbitrary 3rd par-
ties, such as builder tools, to interrogate and discoveB&naContexassociated with

such objects for the purposes of either nesting objects within that assd8ede@ontext
observing changes in the membership, or obtaining services thereof.

This also permits multiple distinct objects (e@pntainerd to share a singlBeanContext
[Note though that in this case a shai&ehnContexshall not implemenBeanContextCon-
tainerProxysince that is a peer-to-peer relationship between a sBegeContexand the
Containerimplementing that interface]

The value returned frometBeanContext{$ constant for the lifetime of the implementing
instance, that is the relationship betwedeanContextProxgnd it's associateBean-
Contextis static and thus may not change for the lifetime of either participant.

No class may implement both tBeanContexfor BeanContextChildand theBeanCon-
textProxyinterfaces, they are mutually exclusive.

SomeBeanContextProxynplementors may also implemeat/a.util.Collection or some
other collection-like API (e.gava.awt.Containéy, in addition to, and possibly distinct
from, maintaining @8eanContexbasedCollection

In such cases it is possible to add, or remove, elements from eitlBrah€ontextyia

it's CollectionAPI’s, or theBeanContextProxynplementor using it's own collection-like
API’s (e.g:public boolean java.awt.Container.add(Compongrt)is implementation
dependent whether or not objects added or removed from eithBetlreContexs Collec-
tion, or theBeanContextProximplementor’s collection are also added or removed from
the corresponding object’s collection (i.e: shouldamtainer.addy also infer 8BeanCon-
text.add()and vica-versa?). In such situations both participants (the implemereant
ContextProxyand theBeanContexitself) are required to; 1) implement the same add/
remove semantics as the other (i.ec.éfdd(o)has a side effect afgetBeanCon-
text().add(o)xhenx.getBeanContext().add(sehould also a have side effectxaddd(o),

and 2) before adding/removing an object to/from the other participants collection, it
should test (synchronized) if that object is/is not a member of the other participants collec-
tion before proceeding with the operation in question (this is to avoid infinite recursion
between collection operations on both participants)Xiagld(o)should not invoke.get-
BeanContext().add(a) x.getBeanContext().contains(g)true and vica-versa).

It is important to note that if an object that implemédganContextProxis added to , or
removed from, 8eanContextthat in addition to the operation performed on that object,
the same operation should be performed oB#@nContexteturned fromBeanContext-
Proxy.getBeanContext(Jhat is an implementor &eanContextProxghall be treated as
though it directly implementeBeanContexby any nestindeanContext(and vica-versa

if the operation is applied to tHeeanContexits shall also be applied to the corresponding
BeanContextProxy

The following interface is defined to allonBa@anContexto expose a reference to an
associatedontainerto enable itBeanContextChildnembers to add, or remove, their

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 15

associated€Componenbbjects to/from thaContaineror to inspect some state on tGen-
tainer.

public interface BeanContextContainerProxy {
Container getContainer()

}

When aBeanContextChilavith an associate@omponents added to 8eanContexivith
an associate@ontainerthere are three models of interaction that can occur in relation to
the nesting of th€omponenin theContaineras a result:

1. If the associate@omponentvas added to the associatédntainervia aContainer
API, then the nesting of tHéeanContextChilih theBeanContexis a side effect of
that and no further action is required.

2. If theComponenandContainerare not nested then the nestBganConteximay as a
side effect cause t@omponenassociated with thBeanContextChildo be added to
it's associatedContainer

OR

3. IftheComponenandContainerare not nested then tiBe2anContextChiltheing nested
may as a side effect may cause@@mponento be associated with tii@ontainer
associated with the nestiBganContext

Thus, for greatest interoperabilityBganContextChilghall always check if it€om-
poents parent is thd8eanContexContainer, and if it is not, then it may add itself if appro-
priate. Thus 8eanContextChildnay function correctly under all scenarios.

TheBeanContextChilds responsible for initially causing itself to eligible to be displayed
via an invocation oshow() [note that thdBeanContextChilanay also subsequently
repeatedhhide() andshow()itself].

The nestingdeanContextor its associate@ontainer may subsequentlyidg() or show()
theBeanContextChild Componenarbitrarily, but it is strongly recommended that it treat
thatComponenas immutable in all other respects with the exception of registeistgn-
ersto obtain event notifications, or where ot@mponeriContainerspecific protocols
permit or require th€ontainerto alter the state of itSomponentontainees. An example
of such a permitted interaction would be where a property suséicagroundor fore-
groundcolor were propagated fro@ontainerto Component

Once aBeanContextChildhas been un-nested from iBganContextit's associate@om-
ponent(if any) shall be removed from th&eanContexs Containeras a side effect of the
removal operation, this is the responsibility of BeanContexftypically if theBeanCon-
textChildhas been moved to anotlBanContextvith an associate@ontainervia an
invocation of it'ssetBeanContextfhethod, theComponenwill already have been re-
parented as a side effect of that operation by the time the ofggaalContexis notified
of the change via BropertyChangeEveritom the child, however the check should be
made and th€omponentemoved if it has not already occurred).

To avoid infinite recursion, bothBeanContexand aBeanContextChilthat also are asso-
ciated with aContainerandComponenhesting relationship should avoid undoing any
changes applied to tli@mponenby the other party in the relationship. In general the

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998

16

BeanContexis responsible for the appearance, visibility and relative layout &eha-
ContextChilds Componentand theBeanContextChilds responsible for th€omponeris
state and content pertaining to the application functionality it is implementing.

The value returned from tlgetContainer(method is constant for the lifetime of the
implementingBeanContexthat is the relationship betweemaanContexand aCon-
tainer is static for the lifetime of both participants.

In addition the following interface is also defined:

public interface BeanContextChildComponentProxy {
Component getComponent();

}

A BeanContexbr aBeanContextChilanay implement this interface to expose the GUI
Componenthat it is associated with to it's nestiBganContextA BeanContexinay use
this method to establish the relationship between references to instaGoespinent
andBeanContextChildhat are known to it, whereBeanContextChildndComponent
are not implemented by the same object instance (that BetmeContextChildielegates
its Componentmplementation to a distinct object rather than inheriting f@wmpo-
nen{. A BeanConteximay interrogate th€Eomponenteference it obtains from a nested
BeanContextChilth order to determine its state, and it may also regisigenersfor par-
ticular events, however it is strongly recommended thaB#&anContextreat the refer-
ence as generally immutable to avoid changingbi@ponenstate.

The value returned from tlgetComponent(nethod is a constant for the lifetime of that
BeanContextChild

In the situation where BeanContexhas an associat&bntainer,but does not wish to
expose thaContainerby implementing th8eanContextContainerProxgterface, but
wishes to handle the nesting of an arbiteanContextChild associateomponent
(exposed by thBeanContextChileither implementing thBeanContextChildCompo-
nentProxyinterface or as direct subclassGdmponerjtthe BeanContexis permitted to
add/remove thaComponento/from its associate@ontainerin such cases tHg&eanCon-
textChildand it's associateGomponentmplementation shall not interfere with this
action.

If a class implements boBeanContextChildComponentProagdBeanContextContain-
erProxythen the object returned by bajetComponent@ndgetContainer(shall be the
same object.

2.2 interface java.beans.beancontext.BeanContextChild

Simple JavaBeans that do not require any support or knowledge of their environment shall
continue to function as they do today. However both JavaBeans that wish to utilize their
containingBeanContextandBeanContex that may be nested, require to implement a

1. 1 don't like this name much but | am struggling for a better alternative! (we are stuck with it)

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 17

mechanism that enables the propagation of the reference to the enBlesiri¢ontext
through to cognizant JavaBeans and neBeahContex, the interface proposed is:

public interface java.beans.beancontext.BeanContextChild {
void setBeanContext(BeanContext bc)
throws PropertyVetoException;

BeanContext getBeanContext();

void addPropertyChangeListener
(String name, PropertyChangeListener pcl);

void removePropertyChangeListener
(String name, PropertyChangeListener pcl);

void addVetoableChangeListener
(String name, VetoableChangeListener pcl);

void removeVetoableChangeListener
(String name, VetoableChangelListener pcl);

}

The expected usage is that some 3rd party shall invoke one of the appropriate methods
defined orBeanContex(by virtue of its inheritance fror@ollection) in order to add a
BeanContextChildo the membership of the targg&tanContextAs a consequence the
BeanContexshall attempt to set tHgeanContextChild “beanContext” property by

invoking its setter methodetBeanContet Only aBeanContextay call aBeanContex-
tChild’s setBeanConteftmethod, since this is the mechanism th&8eanContextises to
notify a child that it is now has a ndeanContexvalue. Since this property is not

directly settable or customizable by a user in the context of an application construction
tool theBeanInfofor aBeanContextChilghould set the hidden state for this property in
order for builder tools to avoid presenting the property to the user for customization.

A BeanContextChildbject may throw &ropertyVetoExceptigrio notify the nesting
BeanContexthat it is unable to function/be nested within that partidB&anContext
Such a veto shall be interpreted bBeanContexas an indication that tigeanContext-
Child has determined that it is unable to function in that parti@éanContexand is
final.

During the un-nesting of BeanContextChildrom itsBeanContextit is possible for the
child, or a 3rd party listening to the child’s “beanContext” propertyfopertyVetoEv-

ents to throw aPropertyVetoExceptioto notify the caller that it is not in a state to be un-
nested. In order to bound this interactiodBeanContextChildor 3rd party, may veto the
initial un-nesting notification, but may not veto any subsequent notifications, and must,

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 18

upon receipt of such notifications, amend its state accordingly to prepare itself to be subse-
guently un-nested.

Note that classes that implement this interface, also act as an Event Source for (sub)inter-
face(s) ofjlava.beans.PropertyChangeListenand are required to update their state
accordingly and subsequently fire the appropjata.beans.PropertyChangeEvevith
propertyName= “beanContext’pldValue= the reference to the previous nestd@an-

Context andnewValue= the reference to the new nestBganContextio notify any Lis-
teners that its nestigeanContexhas changed value.

BeanContextChildhstances, or nest®kanContex in the process of terminating them-
selves, shall invoke tlremove()method on their nestingeanContexin order to with-
draw themselves from the hierarchy prior to termination.

2.2.1 Important Persistence considerations

Instances oBeanContextChilehested within aBeanContexiwill typically define fields
or instance variables that will contain references to their néBeagContexinstance,
and possibly services obtained from tBatanContextServicasstance via itgetService()
method.

In order to ensure that the act of making such an instance persistent does not erroneously
persist objects from the instances nesting environment, such instances shall be required to
define such fields, or instance variables as eithasient, or to implement custom
persistence methods that avoid persisting such state.

This requirement is crucial since operations such as cutting and pasting object instances
through a clipboard via object serialization will not function correctly if the act of serializ-
ing the target object also serializes much of the entire source environment it is nested
within.

3.0 Overloading java.beans.instantiate() static method

Sincejava.beans.instantiate{$ the current mechanism for (re)instantiating JavaBeans we
need to extend or overload the syntax and semantics of this method in order to accommo-
date the introduction of tH@eanContexabstraction. The extension proposed is:

public static Object instantiate(ClassLoader cl,

String beanName,
BeanContext beanContext);

This method behaves has it is currently defined in the JavaBeans specification, but in addi-
tion to these existing semantics, when a nati- BeanContexis specified then the

method invokes thadd() method on th&eanContexactual parameter with the value of
thetargetChildactual parameter = a reference to the newly instantiated JavaBean compo-

nentt

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 19

4.0 Providing better support for Beans that are also Applets

The current implementation g#va.beans.instantiate@ontains minimal support for
instantiating JavaBeans that are also Applets. In particular, this method will currently con-
struct anAppletContexandAppletStuldor the newly instantiated JavaBean, set the stub

on the newly instantiatefipplet,andinit() the Appletif it has not already been invoked.

Unfortunately this does not provide sufficient support in order to allow most Applets to be
fully functional, since théppletContexandAppletStulrreated byava.beans.instanti-

ate() are no-ops. This is a direct consequence of the lack of sufficient specification of how
to construcAppletContexandAppletStubmplementations in the existirppletAPI’s.
Furthermore, even if such specifications existed we would require an API that propagated
a number oAppletattributes such as itSodebase Parameterd\ppletContextandDocu-
mentbaseinto java.beans.instantiate(i order for it to subsequently instantiate the
appropriately initialized objects.

Since key to supporting fully functional Applets is to provide them with fully functional
AppletContexandAppletStubnstances, the design goal is to provide a mechanism to pro-
vide this state tinstantiate()so that it may carry out the appropriate initialization and

binding!, therefore the proposed interface is:
public static Object

instantiate(ClassLoader cl,
String beanName,
BeanContext bCitxt,

Appletinitializer ai

);

public interface Appletinitializer {
void initialize(Applet newApplet, BeanContext bCtxt);
void activate(Applet newApplet);

}

If the newly instantiated JavaBean component is an instaneeafapplet.Applethen the
new constructedpplet (Bean) will be passed to tiAgpletinitializervia a call tanitial-
ize().

Compliant implementations @ppletinitializer.initialize()shall:

1. Associate the newly instantiatagpletwith the appropriat&ppletContext

1. Note: Since simple JavaBeans have no knowledge of a BeanContext, it is not advisable to introduce such
instances into the hierarchy since there is no mechanism for these simple JavaBeans to remove them-
selves from the hierarchy and thus subsequently be garbage collected.

1. AppletContexbbjects expose a list éppletobjects they “contain”, unfortunately the currégipletor
AppletStubAPI’s as defined, provide no mechanism for fgpletContexto discover itsAppletsfrom its
AppletStubsor for anAppletStulto inform itsAppletContexbf its Applet.Therefore we will have to
assume that this binding/discovery can occur in order for this mechanism to be worthwhile in
java.beans.instantiate()

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 20

2. Instantiate ar\ppletStul) and associate thappletStubwith the Appletvia
an invocation oketStul).

3. If BeanContexparameter igull , then it shall associate tgpletwith its appropri-
ateContainerby adding thafppletto its Containervia an invocation o&dd). If the
BeanContexparameter is nomull , then it is the responsibility of thBeanContexto
associate théppletwith its Containerduring the subsequent invocation of @#ddChil-
dren() method.

Compliant implementations @ppletinitializer.activate(shall mark theAppletas active,
and may optionally also invoke tigplets start() method.

Note that if the newly instantiated JavaBean is not an instangepbdt then theApple-
tinitializer interface is ignored.

5.0 Standard/Suggested Conventions for BeanContext Services

5.0.1 BeanContexts that support InfoBus.

The InfoBus technology is a standard extension package that is intended to facilitate the
rendezvous and exchange of dynamic self describing data, based upon a publish and sub-
scribe abstraction, between JavaBean Components within a single Java Virtual Machine.

A BeanContexthat exposes amfoBusto its nestedBeanContextChilghall do so by
exposing a service via thiasServic§ andgetServic§ methods of typgavax.info-
bus.InfoBus.

ThusBeanContextChildmplementations may locate a comminofoBusimplementation
for their currenBeanContexby using this mechanism to rendezvous with thitBus
instance.

The Infobus 1.2 specification shall define a convenience mechanism providedridg-the
Busclass to simplify the discovery mechanismBaanContextChildhstances nested
within a particular instance &eanContextServices

5.0.2 BeanContexts that support printing

A BeanContexthat wishes to expose printing facilities to its descendants may delegate a
reference of (sub)typgava.awt.PrintJob

As the Java Network Printing Interface evolves additional specifications will be provided
to expose it’s facilities via the services mechanism.

5.0.3 BeanContext Design/Runtime mode support.

JavaBeans support the concepts of “design”-mode, when JavaBeans are being manipu-
lated and composed by a developer in an Application Builder or IDE, and “Run”-mode,
when the resulting JavaBeans are instantiated at runtime as paAmblah Application

or some other executable abstraction.

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 21

In the first version of the specification, the “mode” or state, that is “design”-time or “run”-
time was a JVM global attribute. This is insufficient since, for example, in an Application
Builder environment, there may be JavaBeans that function, in “run”-mode, as part of the
Application Builder environment itself, as well as the JavaBeans that function, in
“design”-mode, under construction by the developer using the Application Builder to
compose an application.

Therefore we require the ability to scope this “mode” at a granularity below that of JVM
global.

TheBeanContexabstraction, as a “Container” or “Context” for one or more JavaBeans
provides appropriate mechanism to better scope this “mode”.

ThusBeanContexs that wish to expose and propagate this “mode” to its descendants may
delegate a reference of tyjgera.beans.DesignMode

public interface java.beans.DesignMode {
void setDesignTime(boolean isDesignTime);
boolean isDesignTime();

}

Additionally, BeanContext delegating such a reference shall be required to fire the appro-
priatejava.beans.propertyChangeEvewith propertyName = “designTime”, with the
appropriate values faldValueandnewValuewhen the “mode” changes value.

Note that it is illegal for instances BeanContextChildo callsetDesignTime(@n
instances oBeanContexthat they are nested within.

5.0.4 BeanContext Visibility support.

JavaBeans with associated presentation, or GUI, may be instantiated in environments
where the ability to present that GUI is either not physically possible (when the hardware
IS not present), or is not appropriate under the current conditions (running in a server con-
text instead of a client).

The first version of the JavaBeans Specification introducgdvhdoeans.Visibilitynter-
face in order to provide a mechanism for JavaBeans to have their “visible” state, or ability
to render a GUI, controlled from their environment.

BeanContexthat wish to enforce a particular policy regarding the ability of their children
to present GUI, shall use tfeva.beans.Visibilitynterface to control their children.

5.0.5 Determining Locale from a BeanContext

BeanContext may have a locale associated with them, in order to associate and propagate
this important attribute across the JavaBeans nested therein.

Therefore BeanContex, shall be required to fire the appropriatea.beans.Property-
ChangeEventwith propertyName = “locale’yldValue= the reference to the previous

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 22

value of thelLocaledelegate, andewValue= the reference to the new value of thecale
delegate, in order to notify its Listeners of any chandeutale

Setting and getting the value of thecaleon theBeanContexis implementation depen-
dent.

6.0 Support classes

In order to ease the implementation of this relatively complex protocol a “helper” classes
are providedjava.beans.beancontext.BeanContextChildSupport, java.beans.beancon-
text.BeanContextSuppgendjava.beans.beancontext.BeanContextServicesSupport
These classes are designed to either be subclassed, or delegated implicitly by another
object, and provides fully compliant (extensible) implementations of the protocols embod-
ied herein.

Extensible Runtime Containment and Services Protocol for JavaBeans Version 1.0December 2, 1998 23

	1.0 Introduction.
	2.0 API Specification
	2.1 interface java.beans.beancontext.BeanContext
	2.2 interface java.beans.beancontext.BeanContextChild

	3.0 Overloading java.beans.instantiate() static method
	4.0 Providing better support for Beans that are also Applets
	5.0 Standard/Suggested Conventions for BeanContext Services
	6.0 Support classes

