JNDI

m Sun Microsystems, Incm

Java" Naming
& Directory Interface”

The Java¥ Naming and Directory
Interfacé™ technology JNDI) provides
a unified interface to multiple naming
and directory services. As part of the
Java enterprise API seINDI enables
seamless connectivity to heterogeneoy
enterprise naming and directory
services. Developers can now build
powerful and portable directory-
enabled Java applications using this
industry-standard interface.

TheJNDI specification was developed
by Sun Microsystems with a number of
leading industry partners, including
Novell, Netscape, SCO, and BEA.

The 1.2 version of
the specification and
reference
implementation are
now available for
download at the
Java Software Web
site.

|
Technical Overview

Directory services play a vital role in
Intranets and Internets by providin

users, machines, networks, services, a
applications. By its very nature, a direg
tory service incorporates a naming faci
ity for providing human understandabl
namespaces that characterize t

arrangement and identification of the JNDI also defines a service provider’
various entities. interface which allows various directory

and naming service drivers to be plugge
- in.

The computing environment of an ente
prise typically consists of several namin
facilities often representing differen
parts of acompositenamespace. For IE———
example, the Internet Domain Namg Examples
s System (DNS) may be used as the top-
level naming facility for different organi-| Here are two examples to briefly illust
zations within an enterprise. The organij- trate some of the more commonly use
zations themselves may use a directoryfeatures ofINDI.
service such as LDAP or NDS or NIS.
From a user’s perspective, there is oneAn application that wants to access
namespace consisting of composite printer needs the corresponding printer
names. URLs are examples of compositeobject. This is simply done as follows:
names because they span namespaces of)
multiple naming facilities. Applications prt = (F.)”mer) N
. . . building7.lookup(“puffin”);

which use directory services must sup- . .

. . prt.print(document);
port this user perspective.

Many Java application developers can wherebuilding7 is the naming context
benefit from a directory service APl that representing a physical building that pra
is not only independent of the particular vides a convenient context for referrin
directory or naming service implementa- to the printers.

tion, but also enables seamless access to

directory objects through multiple nam- JNDI does all the work of locating the
ing facilities. In fact, an application can information needed to construct th
attach its own objects to the namespage.printer object.

Such a facility enables any Java applica-

tion to discover and retrieve objects qf As another example, an application th

J
access to a variety of information about functionality to Java applications. It i

nddefined to be independent of any specific

al

heaccessed in a common way.

any type.

JNDI provides directory and namin

- directory service implementation. Thu
- avariety of directories, new and existin
ones in the installed base, can

wants to find a person’s phone number
which are stored in the organization’
directory, can simply do:

String[] attrs = {*"workPhone”,
“cellPhone”, “faxNumber”};

' bobsPhones =
directory.getAttributes(
“cn=Bob,0=Widget,c=US",
attrs);

e

If there may be several Bobs in the Wid-
get organization, the application can

search the organization's directory
find the right Bob as follows:

bob = directory.search(
“o=Widget,c=US",“(cn=Bob)”,
controls);

Other application examples
access to security credentials stored in

tems, etc.
|
Overview of Interfaces

The Naming Interface —
javax.naming

Context

inclugle
| e INDI SPI
enterprise-wide directory service, access
to electronic mail addresses, and acges
to addresses of a variety of existing ser-
vices such as databases, network file sy§

D

Java Application

——————————————————————————)N D| AP

I JNDI Naming Manager I

S

RMI CORBA e © o |LDAP NDS

is the core interface that speci- type.
fies a naming context. It defines basic

operations such as adding a namerto-Directory Objects as Naming Context.
object binding, looking up the object TheDirContext

tory capability by defining methods fof Naming ListenersA NamingListener
examining and updating attributes asso-is an object that registers interests in
ciated with a directory object. Each NamingEvent s. Listeners register with
directory object contains a set of zero or a context to receive notification of
more objects of clasattribute . Each | changes in the context, its children, or its
attribute is denoted by a string identifier subtree.

and can have zero or more values of any

The LDAP Interface —
javax.naming.ldap

interface also behaves The LdapContext interface allows an

bound to a specified name, listing the as a naming context by extending the application to use LDAP v3-specific fea-

bindings, removing a name-to-objgect Context
binding, creating and destroying subcon- directory object can also provide a na

texts of the same typetc.

Context.lookup() is the most comt

interface. This means that an

tures, includingextensiongndcontrols

- not already covered by the more generic
ing context. In addition to a directory DirContext interface.
object keeping a variety of informatio

about a person, for example, it is also|a The Service Provider Interface —

monly used operation. The context natural naming context for resources javax.naming.spi

implementation can return an object

up the correspondin@rinter
and then print to it directly:

object,

Printer printer = (Printer)
ctx.lookup(“treekiller”);
printer.print(report);

The application is not exposed to any
naming service implementation. In fact,
be

a new type of naming service can
introduced without requiring the applica

tion to be modified or even disrupted iflit javax.naming.event

iS running.

The Directory Interface —
javax.naming.directory

Directory Objects and AttributesThe
DirContext

interface enables the direc-

of associated with that person: a persom’s
whatever class is required by the Javaprinters, file system, calendatc.
application. For example, an applicatipn

might use the name of a printer to lopk Searches.The DirContext

The JNDI SPI provides the means by
which different naming/directory service
interface | providers can develop and hook up their
supports content-based searching |ofimplementations so that the correspond-
directories. In the simplest and most ing services are accessible from applica-
common form of usage, the application tions that usdNDI. In addition, because
specifies a set of attributes — possibly JNDI allows specification of names that
with specific values — to match. It then span multiple namespaces, if one service
invokes the DirContext.search() provider implementation needs to inter-
method on the directory object, which act with another in order to complete an
returns the matching directory objects operation, the SPI provides methods that
along with the requested attributes. allow different provider implementa-
tions to cooperate to complete client
JNDI operations.

The Event Interface —

Naming Events The NamingEvent
class represents an event generated by &ttp://java.sun.com/jndi
naming or directory service. Examples

of a NamingEvent are a change to

directory entry’s attribute or a rename of * ng f }?
a directory entry. nsysber

Sun Microsystems, Inc.

2 JNDI

	Technical Overview
	Examples
	Overview of Interfaces
	The Naming Interface — javax.naming
	The Directory Interface — javax.naming.directory
	The Event Interface — javax.naming.event
	The LDAP Interface — javax.naming.ldap
	The Service Provider Interface — javax.naming.spi
	http://java.sun.com/jndi

