
Sun Microsystems, Inc.

d

d

a
r

-

t
s,
The JavaTM Naming and Directory
InterfaceTM technology (JNDI) provides
a unified interface to multiple naming
and directory services. As part of the
Java enterprise API set,JNDI enables
seamless connectivity to heterogeneous
enterprise naming and directory
services. Developers can now build
powerful and portable directory-
enabled Java applications using this
industry-standard interface.

TheJNDI specification was developed
by Sun Microsystems with a number of
leading industry partners, including
Novell, Netscape, SCO, and BEA.

The 1.2 version of
the specification and
reference
implementation are
now available for
download at the
Java Software Web
site.

Technical Overview

Directory services play a vital role in
Intranets and Internets by providing
access to a variety of information about
users, machines, networks, services, and
applications. By its very nature, a direc-
tory service incorporates a naming facil-
ity for providing human understandable
namespaces that characterize the

arrangement and identification of the
various entities.

The computing environment of an enter-
prise typically consists of several naming
facilities often representing different
parts of a compositenamespace. For
example, the Internet Domain Name
System (DNS) may be used as the top-
level naming facility for different organi-
zations within an enterprise. The organi-
zations themselves may use a directory
service such as LDAP or NDS or NIS.
From a user’s perspective, there is one
namespace consisting of composite
names. URLs are examples of composite
names because they span namespaces of
multiple naming facilities. Applications
which use directory services must sup-
port this user perspective.

Many Java application developers can
benefit from a directory service API that
is not only independent of the particular
directory or naming service implementa-
tion, but also enables seamless access to
directory objects through multiple nam-
ing facilities. In fact, an application can
attach its own objects to the namespace.
Such a facility enables any Java applica-
tion to discover and retrieve objects of
any type.

JNDI provides directory and naming
functionality to Java applications. It is
defined to be independent of any specific
directory service implementation. Thus,
a variety of directories, new and existing
ones in the installed base, can be
accessed in a common way.

JNDI also defines a service provider’s
interface which allows various directory
and naming service drivers to be plugge
in.

Examples

Here are two examples to briefly illus-
trate some of the more commonly use
features ofJNDI .

An application that wants to access
printer needs the corresponding printe
object. This is simply done as follows:

prt = (Printer)
building7.lookup(“puffin”);

prt.print(document);

wherebuilding7 is the naming context
representing a physical building that pro
vides a convenient context for referring
to the printers.

JNDI does all the work of locating the
information needed to construct the
printer object.

As another example, an application tha
wants to find a person’s phone number
which are stored in the organization’s
directory, can simply do:

String[] attrs = {“workPhone”,
 “cellPhone”, “faxNumber”};
bobsPhones =

directory.getAttributes(
“cn=Bob,o=Widget,c=US”,
attrs);
1

n

s

ic

ir
-
-

t
e
-

t

t

If there may be several Bobs in the Wid-
get organization, the application can
search the organization’s directory to
find the right Bob as follows:

bob = directory.search(
“o=Widget,c=US”,“(cn=Bob)”,
controls);

Other application examples include
access to security credentials stored in an
enterprise-wide directory service, access
to electronic mail addresses, and access
to addresses of a variety of existing ser-
vices such as databases, network file sys-
tems, etc.

Overview of Interfaces

The Naming Interface —
javax.naming

Context is the core interface that speci-
fies a naming context. It defines basic
operations such as adding a name-to-
object binding, looking up the object
bound to a specified name, listing the
bindings, removing a name-to-object
binding, creating and destroying subcon-
texts of the same type,etc.

Context.lookup() is the most com-
monly used operation. The context
implementation can return an object of
whatever class is required by the Java
application. For example, an application
might use the name of a printer to look
up the correspondingPrinter object,
and then print to it directly:

Printer printer = (Printer)
 ctx.lookup(“treekiller”);
printer.print(report);

The application is not exposed to any
naming service implementation. In fact,
a new type of naming service can be
introduced without requiring the applica-
tion to be modified or even disrupted if it
is running.

The Directory Interface —
javax.naming.directory

Directory Objects and Attributes.The
DirContext interface enables the direc-

tory capability by defining methods for
examining and updating attributes asso-
ciated with a directory object. Each
directory object contains a set of zero or
more objects of classAttribute . Each
attribute is denoted by a string identifier
and can have zero or more values of any
type.

Directory Objects as Naming Context.
TheDirContext interface also behaves
as a naming context by extending the
Context interface. This means that any
directory object can also provide a nam-
ing context. In addition to a directory
object keeping a variety of information
about a person, for example, it is also a
natural naming context for resources
associated with that person: a person’s
printers, file system, calendar,etc.

Searches.The DirContext interface
supports content-based searching of
directories. In the simplest and most
common form of usage, the application
specifies a set of attributes — possibly
with specific values — to match. It then
invokes the DirContext.search()

method on the directory object, which
returns the matching directory objects
along with the requested attributes.

The Event Interface —
javax.naming.event

Naming Events. The NamingEvent

class represents an event generated by a
naming or directory service. Examples
of a NamingEvent are a change to a
directory entry’s attribute or a rename of
a directory entry.

Naming Listeners. A NamingListener

is an object that registers interests i
NamingEvent s. Listeners register with
a context to receive notification of
changes in the context, its children, or it
subtree.

The LDAP Interface —
javax.naming.ldap

The LdapContext interface allows an
application to use LDAP v3-specific fea-
tures, includingextensionsandcontrols,
not already covered by the more gener
DirContext interface.

The Service Provider Interface —
javax.naming.spi

The JNDI SPI provides the means by
which different naming/directory service
providers can develop and hook up the
implementations so that the correspond
ing services are accessible from applica
tions that useJNDI . In addition, because
JNDI allows specification of names tha
span multiple namespaces, if one servic
provider implementation needs to inter
act with another in order to complete an
operation, the SPI provides methods tha
allow different provider implementa-
tions to cooperate to complete clien
JNDI operations.

http://java.sun.com/jndi

Java Application

JNDI Naming Manager

JNDI API

JNDI SPI

LDAP NDSRMI CORBA
Sun Microsystems, Inc. 2 JNDI

	Technical Overview
	Examples
	Overview of Interfaces
	The Naming Interface — javax.naming
	The Directory Interface — javax.naming.directory
	The Event Interface — javax.naming.event
	The LDAP Interface — javax.naming.ldap
	The Service Provider Interface — javax.naming.spi
	http://java.sun.com/jndi

