sssssssss

Sun Microsystems, Inc.

Javal Naming and Directory Interfacé
Application Programming Interface
(JNDI API)

Please send technical comments to jndi@java.sun.com.

Please send product and business questions to jndi-business@java.sun.com.

JNDI 1.2
July 14, 1999

Java Naming and Directory Interface

Copyright © 1999 by Sun Microsystems Inc.
901 San Antonio Road, Palo Alto, CA 94303.
All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of Sun Micro-
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.,
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Sun Microsystems, Inc. ii 7/14/99

Java Naming and Directory Interface

Contents
1 INtrodUCHioN e 1..
2 Goalsand Design PrinCiples 2
3 Overview of the Architecture. e e 4
4 Fundamentals. e 5.....
4.1 Naming— The Foundation 5
4.2 Directory ODJECES 6
4.3 URLs and Composite Names i 8
4.4 EVENIS . . . e 8
5 Overviewofthe Interface e 9
5.1 The Naming Package favax.naming c...ou.. 9
5.1 L CONM XIS . ottt 9
5.1.2 The lnitial Context. e e 10
5.1.3 NaAMES . oo e 10
5.1.4 BindiNgs. . ..o o e e 11
5.1.5 Referenceso 11
5.1.6 Referrals.o 12
5.2 The Directory Package javax.naming.directory 13
5.2.1 Directory ObJecCtS. 13
5.2.2 Attributes 14
5.2.3 Directory Objects as Naming Contexts. i .. 14
5.2.4 The lnitial Context. e 15
5.25 Searches. e 15
5.2.6 SCREMA. . . .\ttt ettt e e 16
5.3 The Event Package favax.naming.event 18
5.3.1 Naming EVENtS. 18
5.3.2 Naming LiSteners.o 18
5.3.3 Event Registration and Deregistration. 19
5.3.4 ExceptionHandling. 20
5.4 The LDAP Package 4avax.naming.ldap 20
5.4.1 Extended Operationsttt e 21
B5.4.2 CONtrOIS . . .ot 21
5.4.3 The Initial Context. 22
5.4.4 Unsolicited Notifications. i 23
6 Configuration. 24 ...
6.1 Environment Propertiesc. i 24
6.2 Context Environment e 25
6.3 Resource Files e 25
6.4 Application/Applet-scope Standard JNDI Properties 26
6.5 How the Environment Propertiesare Set 26
6.6 Modifications to the Environment 27
7 SCENANOS . . .ttt 29. ..
7.1 Userauthentication it 29

Sun Microsystems, Inc. iii

7/14/99

Java Naming and Directory Interface

7.2 Electronic Malil 29
7.3 Databases 29
T4 BrOWSING ..ottt ettt e e 30
7.5 Network Printingt e 31
8 Security ConsSiderationst 33
8.1 INDI ClasSeS . .. ci ittt 33
8.2 Security Model 33
8.3 ACCESS TO SeIVEIS 34
8.4 Sharing ContextHandles 34
8.5 Context Environment 34
8.6 ClassLoading i e e 34
8.7 Serializable Objects 35
8.8 Responsibilities of Service Providers 35
9 Design ChoiCeSt 7..... 3
9.1 Separation of Interfaces into Context and DirContext 37
9.2 Separation of JNDI into Different Functional Packages 37
9.3 Separation of Client APIs and Service Provider Interfaces 37
9.4 Multiple methods for listing Context 37
9.5 Supportfor Federation 38
9.6 DirContext versus DirObject 38
9.7 Supportfor SChemas 39
9.8 Overloaded Methods in Context and DirContext 39
9.9 Reference and Referenceable 40
9.10 Automatically Turning References into Objects 40
Appendix A: JNDI Standard Environment Properties 41
Appendix B: Examples for LDAP Programmers, 45
Appendix C: Legend for Class Diagram i 65
Appendix D: JNDI Change History e e 67

Sun Microsystems, Inc. iv

7/14/99

Java Naming and Directory Interface Introduction

1

Introduction

Directory services play a vital role in Intranets and Internets by providing access to a variety
of information about users, machines, networks, services, and applications. By its very nature,
a directory service incorporates a naming facility for providing human understandable name-
spaces that characterize the arrangement and identification of the various entities.

The computing environment of an enterprise typically consists of several naming facilities of-
ten representing different parts otampositenamespace. For example, the Internet Domain
Name System (DNS) might be used as the top-level naming facility for different organizations
within an enterprise. The organizations themselves might use a directory service such as LDAP
or NDS or NIS. From a user’s perspective, there is one namespace consisting of composite
names. URLs are examples of composite names because they span namespaces of multiple
naming facilities. Applications which use directory services must support this user perspective.

Many JavaM application developers can benefit from a directory service API that is not only
independent of the particular directory or naming service implementation, but also enables
seamless access to directory objects through multiple naming facilities. In fact, any application
can attach its own objects to the namespace. Such a facility enables any Java application to dis-
cover and retrieve objects of any type.

End users can benefit from logical namespaces that allow easier discovery and identification
of the objects in the network.

Directory service developers can benefit from a service-provider capability that enables them
to incorporate their respective implementations without requiring changes to the client.

Java Naming and Directory Interfaldé (JNDI) is an API that provides directory and naming
functionality to Java applications. It is defined to be independent of any specific directory ser-
vice implementation. Thus, a variety of directories can be accessed in a common way.

Here are two examples to briefly illustrate some of the more commonly used features of JNDI.

An application that wants to access a printer needs the corresponding printer object. This is
simply done as follows:

prt = (Printer) building7.lookup("puffin”);
prt.print(document);

JNDI does all the work of locating the information needed to construct the printer object.

An application that wants to find a person’s phone numbers, which are stored in the organiza-
tion’s directory, can simply do:

String[] attrs = {"workPhone", "cellPhone", "faxNumber"};
bobsPhones = directory.getAttributes("cn=Bob, o=Widget, c=US", attrs);

If there may be several Bobs in the Widget organization, the application can search the organi-
zation’s directory to find the right Bob as follows:

bob = directory.search("o=Widget, c=US", "(cn=Bob)", searchctls);
This document describes the architecture and interfaces of JNDI.

Sun Microsystems, Inc. 1 7/14/99

Java Naming and Directory Interface Goals and Design Principles

2 Goals and Design Principles
We followed several principles and maxims in designing the API.

2.1 Keep it consistent and intuitive

Wherever possible, we have used existing components from the rest of the Java development
environment. Adhering to this principle not only makes JNDI consistent with existing core
classes in the Java platform but also reduces needless proliferation of classes.

The object-oriented nature of the Java programming language allows for an intuitive and sim-
ple API design, in which the directory service functionality is expressed as a natural extension
to the more fundamental naming service functionality.

2.2 Pay for what you use

The APl is structured in a tiered manner so that the application programmer interested in a cer-
tain directory service capability need not necessarily know about a more advanced capability.
We have strived to keep the lower tiers simple and also make them represent the common case
capability, relegating the more complex ones to the upper tiers.

2.3 Implementable over common directory and naming services and protocols

This goal is important for two reasons. First, it enables Java applications to take advantage of
information in a variety of existing nhaming and directory services such as DNS, NDS, NIS
(YP), X.500, and LDAP. Second, it helps limit the appearance of any implementation specific
artifacts in the API.

Providing a unified interface to multiple naming and directory services does not imply that ac-
cess of unique features of a particular service is precluded. The unified APl which is designed
to cover the common case is still beneficial to applications that have explicit knowledge of the
underlying naming or directory service. Such applications still benefit from sharing the com-
mon portions that use the API. This is analogous to applications sharing commonly used class-
es and yet adding needed specificity via subclassing.

2.4 Seamless integration

This is important not only because of the diversity of directory service and naming services in
the installed base that need to be supported, but also because new Java application and service
programmers can export their own namespaces and directory objects in a uniform way.

We also wanted to make a variety of implementation choices possible without having the ap-
plication pay for this freedom. For example, a “thin-client” might be better served by a proxy-
style protocol in which the access to specific naming and directory services is relegated to a
server. Whereas, a performance sensitive, resource rich client, might choose to use an imple-
mentation which directly allows it to access the various servers. However, the application
should be insulated from these implementation choices. It should be possible to defer such
choices even until runtime.

Sun Microsystems, Inc. 2 7/14/99

Java Naming and Directory Interface Goals and Design Principles

2.5 Support for leading industry standards

The Lightweight Directory Access Protocol (Internet RFC 2251) has emerged as the standard
for directory access at the protocol level. All major directory vendors have products that sup-
port this protocol. An application that uses JNDI should be able to access all of the features
offered by this standard. Where possible, JNDI should support conventions (such as those for
specifying search queries/filters) already defined by the standard.

Sun Microsystems, Inc. 3 7/14/99

Java Naming and Directory Interface Overview of the Architecture

3 Overview of the Architecture

The JNDI architecture consists of the JNDI APl and the JNDI SPI. The JNDI API allows Java
applications to access a variety of naming and directory services. The JNDI SPI is designed to
be used by arbitrary service providers including directory service providers. This enables a va-
riety of directory and naming services to be plugged in transparently to the Java application
(which uses only the JINDI API). Figure 1 shows the JNDI architecture and includes a few ser-
vice providers of directory and naming contexts as examples.

Figure 1: JNDI Architecture

Java Application

JNDI Naming Manager

m CORBA LDAP NDS

Sun Microsystems, Inc. 4 7/14/99

Java Naming and Directory Interface Fundamentals

4

4.1

Fundamentals

A directory service provides access to diverse kinds of information about users and resources
in a network environment. It usesnaming systerfor the purpose of identifying and organiz-

ing directory objectdo represent this information. A directory object provides an association
betweerattributesandvalues Thus, a directory service enables information to be organized in

a hierarchical manner to provide a mapping between human understandable names and direc-
tory objects.

Naming — The Foundation

A fundamental facility in any computing system is the naming service — the means by which
names are associated with objects, and by which objects are found given their names. In tradi-
tional systems, the naming service is seldom a separate service. It is usually integrated with an-
other service, such as a file system, directory service, database, desktop, mail system,
spreadsheet, or calendar. For example, a file system includes a naming service for files and di-
rectories; a spreadsheet has a naming service for cells and macros.

The computing environment of an enterprise typically consists of several naming services.
There are naming services that provide contexts for naming common entities in an enterprise
such as organizations, physical sites, human users and computers. Naming services are also in-
corporated in applications offering services such as file service, mail service, printer service,
and so on. From a user’s perspective, there exist several natural and logical relationships be-
tween these naming services. For example, it is natural to think of naming a variety of services
such as files, mail, appointment calendar, and so on, in the context of a user. It is also natural
to think of a user in the context of a department, within a division of an enterprise. Meaningful
names can be composed using useful arrangements of naming services reflecting these rela-
tionships.

Every nameis generated by a set of syntactic rules callesaaning conventionAn atomic
nameis an indivisible component of a name, as defined by the naming convention.

A compound nameepresents a sequence of zero or more atomic names composed according
to the naming convention.

For example, in UNIX pathnames, atomic nhames are ordered from left to right, and are delim-
ited by slash (/') characters. The UNIX pathnam#/local/bin is a compound name rep-
resenting the sequence of atomic nanues, local, and bin . In names from the Internet
Domain Name System (DNS), atomic names are ordered from right to left, and are delimited
by dot (*.") characters. Thus, the DNS nar#es.Wiz.COM is a compound name representing
the sequence of atomic namesM, Wiz, sales

The association of an atomic name with an object is calaadang

A contexiis an object whose state is a set of bindings with distinct atomic names. Every context
has an associated naming convention. A context provides a lookup (resolution) operation that
returns an object, and may provide operations such as for binding names, unbinding names,
listing bound names. An atomic name in one context object can be bound to another context
object of the same type, called aubcontext giving rise to compound names.

Sun Microsystems, Inc. 5 7/14/99

Java Naming and Directory Interface Fundamentals

4.2

Resolution of compound names proceeds by looking up each successive atomic component in
each successive context. The reader will find a familiar modehix file naming, where di-
rectories serve as contexts, and pathnames may be compound names.

A naming systens a connected set of contexts of the same type (having the same naming con-
vention) and providing the same set of operations with identical semantics.

A namespaces the set of all names in a naming system.

A composite namis a name that spans multiple naming systems. It consists of an ordered list
of zero or more components. Each component is a hame from the namespace of a single naming
system.

For example, the namgrassic.eng:/export/home/jdoe/.signature is a composite
name representation made up of a host nammesic.eng from a host namespace, and the
file name/export/home/jdoe/.signature from auNix file namespace. Another example is
the InternetURL http://www.moon.org/public/index.html, which is a composite name
representation made up of the schemerigh from the ‘URL scheme-id” namespace,
www.moon.org Which is theDNS name of the machine on which the web server is running, and
public/index.html which is a file name from a file namespace.

Every name is interpreted relative to some context, and every naming operation is performed
on a context object. A client can obtain guitial contextobject that provides a starting point
for resolution of names.

Directory Objects

The primary function of a naming system is to map names to objects. The objects can be of any
type. Adirectory objectis a particular type of object that is used to represent the variety of in-
formation in a computing environment. A directory object can have associated vath it
tributes An attribute has an identifier and a set of values.

A directory object provides operations for creating attributes, adding, removing, and modifying
attributes associated with the directory object. If we make a directory object also be a naming
context, we can represent trees of directory information where the interior nodes not only be-
have like naming contexts but also contain attributes.

Figure 2 is an example used for illustrating several things.

Sun Microsystems, Inc. 6 7/14/99

Java Naming and Directory Interface Fundamentals

Figure 2: Example of a Composite Namespace

N
InitialContext \ “

LDAP

AII"'II. A
“User” objects &

Printer

File

Sun Microsystems, Inc. 7 7/14/99

Java Naming and Directory Interface Fundamentals

4.3

4.4

* ‘There can be multiple naming systems that can be represented by a composite
namespace. In this case, DNS is used as the global naming system; one division uses
NDS, while a second division uses LDAP.

» Each namespace has interior nodes that represent naming contexts, which may be
directory objects as well. Leaf nodes can be objects of any type.

» ThelnitialContextis configured to have bindings to useful starting contexts in different
naming and directory systems.

» Applications just see a composite namespace. They can access any type of object bound
in any naming system in this arrangement.

» Services can incorporate their own namespaces which appear as first-class citizens in
JNDI.

» Arbitrary directory services can be added and accessed without requiring client
applications to be changed.

URLs and Composite Names

Universal Resource Locators (URLS) are special composite names whose syntax are deter-
mined by the URL’s definition. Clients of JNDI can use URLSs to refer to arbitrary types of ob-
jects. For example, a client can uge//nfs.sun.com/export/jndi/src/README to refer

to a file object that is being accessed using the Network File System (NFS) protocol. Similarly,

a client can perform directory operations on a directory object in an LDAP server using the
URL Idap://Idap.widget.com/cn=Jonathan,ou=marketing

To support composite names in general, JNDI defines a composite name syntax and utilities
for processing composite names. This allows clients of JNDI to refer to objects using names
that span multiple namespaces.

Events

As the naming/directory service plays an increasingly important role in the computing environ-
ment, the need to provide administration and monitoring tools to help manage changes in the
service also increases. For such tools and other applications, the traditional request/response
style of interaction needs to be augmented with an asynchronous notification model that allows
applications to register interest in changes in the service.

Sun Microsystems, Inc. 8 7/14/99

Java Naming and Directory Interface Overview of the Interface

5 Overview of the Interface

The JNDI APl is contained in four packages:
* javax.naming contains classes and interfaces for accessing naming services

* javax.naming.directory extends the coravax.naming package to provide access
to directories

* javax.naming.event contains classes and interfaces for supporting event notification
in naming and directory services

* javax.naming.ldap contains classes and interfaces for supporting LDAP v3
extensions and controls

The JNDI service provider interface is contained one package:

e javax.naming.spi contains classes and interfaces that allow various naming and
directory service providers to be dynamically plugged in beneath the INDI API (see the
JNDI SPI document for details)

The following sections provide an overview of the JNDI API. For more details on the API, see
the correspondingavadoc.

5.1 The Naming Package —javax.naming

‘ java.lang.Object |

[Conpos teNane [e Name)
% CompoundName | .
- T ciatContext [(‘context)
| NameClasspair J
]—{ Binding |
[Tetadar O :ﬁiﬁ'.1:::_-‘_A_._.:(java,1-0,5m-ah-zab1e)
E BinaryRefAddr ! ("NamingEnuneration)
StringRefAddr | (‘Nameparser)
W J o (Gava.Tang Cloneabe)
]—{ LinkRef | ((Referenceable)

(exception classes are not shown)

5.1.1 Contexts

Context is the core interface that specifies a naming context. It defines basic operations such
as adding a name-to-object binding, looking up the object bound to a specified name, listing

1. See Appendix C for legend of class diagram.

Sun Microsystems, Inc. 9 7/14/99

Java Naming and Directory Interface Overview of the Interface

the bindings, removing a name-to-object binding, creating and destroying subcontexts of the
same typeetc.

public interface Context {
public Object lookup(Name name) throws NamingException;
public void bind(Name name, Object obj) throws NamingException;
public void rebind(Name name, Object obj) throws NamingException;
public void unbind(Name name) throws NamingException;
public void rename(Name old, Name new) throws NamingException;
public NamingEnumeration listBindings(Name name)

throws NamingException;

public Context createSubcontext(Name name) throws NamingException;
public void destroySubcontext(Name name) throws NamingException;

%
Every naming method igontext takes a name as an argument. The operation defined by the
method is performed on th@ontext object that is obtained by implicitly resolving the name.
If the name is empty (*”) the operation is performed directly on the context itself. The name of
an object can be a composite name reflecting the arrangement of the namespaces used to refer
to the object. Of course, the client is not exposed to any naming service implementation. In fact,
a new type of naming service can be introduced without requiring the application to be modi-
fied or even disrupted if it is running.

5.1.2 The Initial Context

In INDI, every name is relative to a context. There is no notion of “absolute names.” An appli-
cation can bootstrap by obtaining its first context of cl@ssiContext

public class InitialContext implements Context {
public InitialContext()...;

}

The initial context contains a variety of bindings that hook up the client to useful and shared
contexts from one or more naming systems, such as the namespace of URLSs or the root of DNS.

5.1.3 Names

TheNameinterface represents a generic name—an ordered sequence of componentsnEach

text method that takesameargument has a counterpart that takes the namesgis@ in-

stead. The versions usingame are useful for applications that need to manipulate names:
composing them, comparing components, and so on. The versionsaugigg are likely to

be more useful for simple applications, such as those that simply read in a name and look up
the corresponding object. Tlsging name parameter represents a composite nameNdrhe
parameter can represent@nposite namer acompound name

The CompositeName class represents a sequence of names (atomic or compound) from multi-
ple namespaces. If theameparameter supplied to a method of thentext class is an in-
stance ofCompositeName , the name represents a composite name.

If the Nameparameter supplied to a method of thantext class isnotan instance o€ompos-
iteName , the name represents a compound name, which can be representedyijibend-

Sun Microsystems, Inc. 10 7/14/99

Java Naming and Directory Interface Overview of the Interface

5.1.4

5.1.5

Name class or some other implementation class. Ttw@mpoundName class represents
hierarchical names from a single namespace. A context’s name parser can be used to manipu-
late compound names in the syntax associated with that particular context:

public interface Context {

public NameParser getNameParser(Name name) throws NamingException;

}

A namespace browser is an example of the kind of application that might need to manipulate
names syntactically at this level. Most other applications will work with strings or composite
names.

Bindings

Context.lookup() Is the most commonly used operation. The context implementation can re-
turn an object of whatever class is required by the Java application. For example, a client might
use the name of a printer to look up the corresponéiitger object, and then print to it di-
rectly:

Printer printer = (Printer) ctx.lookup(“treekiller”);

printer.print(report);
Context.listBindings() returns an enumeration of name-to-object bindings, each binding
represented by an object of clagsding . A binding is a tuple containing the name of the
bound object, the name of the object’s class, and the object itself.

The Context.list() method is similar tdistBindings() , except that it returns an enumer-
ation of NameClassPair 0Objects. EaciNameClassPair contains an object’'s name and the
name of the object’'s class. Th&() method is useful for applications such as browsers that
wish to discover information about the objects bound within a context, but don’t need all of the
actual objects. AlthoughstBindings() provides all of the same information, it is poten-
tially a much more expensive operation.

public class NameClassPair ... {
public String getName() ...;
public String getClassName() ...;

}

public class Binding extends NameClassPair {
public Object getObject() ...;

}
References

DifferentContext implementations are able to bind different kinds of objects natively. A par-
ticularly useful object that should be supported by any general-purpose context implementation
is theReference class. A reference represents an object that exists outside of the directory.
References are used to give JNDI clients the illusion that objects of arbitrary classes are able
to be bound in naming or directory services—such as X.500—that do not have native support
for objects in the Java programming language.

Sun Microsystems, Inc. 11 7/14/99

Java Naming and Directory Interface Overview of the Interface

5.1.6

When the result of an operation suchG@mitext.lookup() or Binding.getObiject() is a
Reference object, JNDI attempts to convert the reference into the object that it represents be-
fore returning it to the client. A particularly significant instance of this occurs when a reference
representing @ontext of one naming system is bound to a name in a different naming system.
This is how multiple independent naming systems are joined together into the JNDI composite
namespace. Details of how this mechanism operates are providedNh8PI document.

Objects that are able to be represented by a reference should implemeantetheceable

interface. Its single method -getReference() = — returns the object’s reference. When such

an object is bound to a name in any context, the context implementation might store the refer-
ence in the underlying system if the object itself cannot be stored natively.

Each reference may contain the name of the class of the object that it represents, and may also
contain the location (typically a URL) where the class file for that object can be found. In ad-
dition, a reference contains a sequence of objects of Rkfssdr . EachRefAddr in turn con-

tains a “type” string and some addressing data, generally a string or a byte array.

A specialization oReference called aLinkRef is used to add “symbolic” links into the JNDI
namespace. It contains the name of a JNDI object. By default, these links are followed when-
ever JNDI names are resolved.

Referrals

Some naming/directory services support the notionedérrals for redirecting a client’s re-
guest to another server. The JNDI client can request that referrals be automatically followed,
be ignored, or be processed manually.

The abstract clageferralException is used to represent a referral:

public abstract class ReferralException extends NamingException {
public abstract Context getReferralContext()
throws NamingException;

public abstract Object getReferrallnfo();
public abstract void retryReferral();
public abstract boolean skipReferral();

}

When a referral is encountered and the client has requested that referrals not be ignored or au-
tomatically followed, &referralException is thrown. ThegetReferrallnfo() method pro-

vides information—in a format appropriate to the service provider—about where the referral
leads. The application is not required to examine this information; however, it might choose to
present it to a human user to help him determine whether to follow the referral gkipat-

ferral() allows the application to discard a referral and continue to the next referral (if any).

To continue the operation, the application re-invokes the method on the referral context using
the same arguments it supplied to the original method.

Sun Microsystems, Inc. 12 7/14/99

Java Naming and Directory Interface Overview of the Interface

5.2 The Directory Package — javax.naming.directory

‘ java.lang.Object |

—{ BasicAttribute | """""""""""""""""" »(Attr'ibute >

—{ BasicAttributes | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ »(Attr'ibutes >

—{ ModificationItem | ..

—{ SearchControls |

—{ javax.naming.InitialContext J .“”.“”...::::iiifffft-<java.'io.5er1'a11'zab'|e >
InitialDirContext | . . (Di rContext >
—{ javax.naming.NameClassPair J .w.V"""-(javax.naming.Context >
javax.naming.Binding J
SearchResult |

(exception classes are not shown)

5.2.1 Directory Objects

The DirContext interface enables the directory capability by defining methods for examining
and updating attributes associated with a directory object.

public interface DirContext extends Context {
public Attributes getAttributes(Name name)
throws NamingException;
public Attributes getAttributes(Name name, String[] attrlds)
throws NamingException;

public void modifyAttributes(Name name,
int modOp,
Attributes attrs)
throws NamingException;
public void modifyAttributes(Name name,
Modificationltem[] mods)
throws NamingException;

}
ThegetAttributes() operations on a directory return some or all of its attributes. Attributes
are modified using two forms ehodifyAttributes() . Both forms make use of a “modifica-

tion operation,” one of:

ADD_ATTRIBUTE
REPLACE_ATTRIBUTE
REMOVE_ATTRIBUTE

TheADD_ATTRIBUTEOperation adds values to an attribute if that attribute already exists, while
theREPLACE_ATTRIBUTBperation discards any pre-existing values. The first formaalify-

1. See Appendix C for legend of class diagram.

Sun Microsystems, Inc. 13 7/14/99

Java Naming and Directory Interface Overview of the Interface

Attributes() performs the specified operation on each element of a set of attributes. The sec-
ond form takes an array of objects of clsssificationltem

public class Modificationltem {
public Modificationltem(int modOp, Attribute attr) ...;

}
Each operation is performed on its corresponding attribute in the order specified. When possi-
ble, a context implementation should perform each callddifyAttributes() as an atomic
operation.

5.2.2 Attributes

A directory object contains a set of zero or mareibute objects. Each attribute is denoted
by a string identifier and can have zero or more values of any type.

public interface Attribute ... {

public String getlD();
public Object get(int n) throws NamingException;
public boolean isOrdered();
public NamingEnumeration getAll()
throws NamingException;

}

An attribute’s values can be ordered or unordered. If the values are unordered, no duplicates
are allowed. If the values are ordered, duplicates are allowed.

Attributes are grouped into a collection by usingAhebutes interface.

public interface Attributes ... {

public Attribute get(String attrID);
public NamingEnumeration getlDs();
public NamingEnumeration getAll();
public Attribute put(Attribute attr);
public Attribute remove(String attriD);

}

JNDI provides implementations for these two interfacBssicAttribute and Basic-
Attributes , for convenience. Service providers and applications are free to use their own im-
plementations.

Note that updates tattributes ~ andAttribute , such as adding or removing an attribute or
its value, do not affect the corresponding representation in the directory. Updates to the direc-
tory can only be effected by usipgContext.modifyAttributes()

5.2.3 Directory Objects as Naming Contexts

TheDirContext interface also behaves as a naming context by extendingothext inter-
face. This means that any directory object can also provide a naming context. In addition to a
directory object keeping a variety of information about a person, for example, itis also a natural

Sun Microsystems, Inc. 14 7/14/99

Java Naming and Directory Interface Overview of the Interface

naming context for resources associated with that person: a person’s printers, file system, cal-
endar etc.

Hybrid operations perform certain naming and directory operations in a single atomic opera-
tion:

public interface DirContext extends Context {

public void bind(Name name, Object obj, Attributes attrs)
throws NamingException;

}

Other hybrid operations that are provided @tgnd() andcreateSubcontext() that accept
an additionalttributes argument.

5.2.4 The Initial Context
An application that is performing directory operations caninigelDirContext instead of
javax.naming.InitialContext to create its initial context:

public class InitialDirContext
extends InitialContext implements DirContext {
public InitialDirContext() ...;

}
It can then invoke any method in thentext or DirContext interface on the initial context.

5.2.5 Searches

TheDirContext interface supports content-based searching of directories. In the simplest and
most common form of usage, the application specifies a set of attributes — possibly with spe-
cific values — to match. It then invokes tim&Context.search() method on the directory
object, which returns the matching directory objects along with the requested attributes.

public interface DirContext extends Context {
public NamingEnumeration search(Name name,

Attributes matchingAttributes)
throws NamingException;

public NamingEnumeration search(Name name,
Attributes matchingAttributes,
String[] attributesToReturn)
throws NamingException;

}

The results of the search are returned &araingEnumeration ~ containing an enumeration of
objects of clasSearchResult

Sun Microsystems, Inc. 15 7/14/99

Java Naming and Directory Interface Overview of the Interface

5.2.6

public class SearchResult extends Binding {

public Attributes getAttributes() ...;
}

In the more sophisticated case, it is possible to specify a search filter and to provide controlling
information such as the scope of the search and the maximum size of the results. The search
filter specifies a syntax that follows Internet RFC 2254 for LDAP. $herchControls argu-

ment specifies such things as the scope of the search: this can include a single directory object,
all of its children, or all of its descendants in the directory hierarchy.

public interface DirContext extends Context {

public NamingEnumeration search(Name name,
String filter,
SearchControls ctls)
throws NamingException;

public NamingEnumeration search(Name name,
String filter,
Object(] filterArgs,
SearchControls ctls)
throws NamingException;

}

schema

A schema describes the rules that define the structure of a namespace and the attributes stored
within it. The granularity of the schema can range from a single schema that is associated with
the entire namespace, to a per-attribute, fine-grained schema description.

Because schemas can be expressed as an information tree, it is natural to use for this purpose
the naming and directory interfaces already defined in INDI. This is powerful because the sche-
ma part of a namespace is accessible to applications in a uniform way. A browser, for example,
can access information in the schema tree just as though it were accessing any other directory
objects.

Applications can retrieve the schema associated with a directory object when the underlying
context implementation provides the appropriate support.

DirContext.getSchemay) is used to retrieve the root of the schema tree associated with a di-
rectory object. The root has children such as “ClassDefinition”, “AttributeDefinition”, and
“SyntaxDefinition”, each denoting the kind of definition being described. The schema root and
its descendents are objects of typecontext . The DirContext.getSchemaClassDefini-

tion() method returns airContext that contains class descriptions about a particular direc-
tory object.

Sun Microsystems, Inc. 16 7/14/99

Java Naming and Directory Interface Overview of the Interface

public interface DirContext extends Context {

public DirContext getSchema(Name name)
throws NamingException;

public DirContext getSchemacClassDefinition(Name name)
throws NamingException;

}
In addition, the schema associated with any attribute can be accessed using the
tribute.getAttributeDefinition() andgetAttributeSyntaxDefinition() methods.

public interface Attribute ... {

public DirContext getAttributeDefinition() throws NamingException;
public DirContext getAttributeSyntaxDefinition()
throws NamingException;

}
Figure 3 is an example showing the different associations for accessing schema information.

Figure 3: Example mapping Directory to Schema

Directory Tree

etSchema
Schema Tree b g 0

ClassDefinition

AttributeDefinition

N\

X

AL

getAttributeDefinition()

‘ DirContext

A Attribute

getAttributeSyntaxDefinition()

getSchemaClassDefinition()

Sun Microsystems, Inc. 17 7/14/99

Java Naming and Directory Interface Overview of the Interface

5.3

53.1

5.3.2

The Event Package — javax.naming.eveht

‘ java.lang.Object | (EventContext >
]—{ java.util.EventObject J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 'Cjava.'io.Ser'ia'I'izab'le >
NamingEvent | (Nam'ingL‘i stener >
NamingExceptionEvent | (NamespaceChangeL'i Stener >
(ObjectChangeL'istener' >

(EventDi rContext >

Thejavax.naming.event package contains classes and interfaces for supporting event noti-
fication in naming and directory services.

Naming Events

A NamingEvent represents an event that is generated by a naming/directory service.

public class NamingEvent extends java.util. EventObject {

public int getType();
public Binding getOldBinding();
public Binding getNewBinding();

}

The event's type identifies the type of event. ThningEvent class defines four types of
events:

OBJECT_ADDED

OBJECT_REMOVED
OBJECT_RENAMED
OBJECT_CHANGED

These types can be placed into two categories:
» Those that affect the namespace (add/remove/rename an object)
» Those that affect an object’s contents

In addition to the event’s type, amingEvent contains other information about the change,
such as information about the object before and after the change.

Naming Listeners

A naming listeners an object that registers faamingEvent s. Itis represented by the interface
NamingListener . Each category ofamingEvent is handled by a corresponding subtype of
NamingListener . TheNamespaceChangeListener interface represents a listener interested in
namespace changes, while tbejectChangelListener represents a listener interested in
changes to an object’s contents. A listener implementation might implement one or both of
these interfaces, depending on the types of events it is interested in.

1. See Appendix C for legend of class diagram.

Sun Microsystems, Inc. 18 7/14/99

Java Naming and Directory Interface Overview of the Interface

5.3.3 Event Registration and Deregistration

TheEventContext andEventDirContext interfaces extend theontext andDirContext in-
terfaces, respectively, to support event registration and deregistration.

public interface EventContext extends Context {

public void addNamingListener(Name target,
int scope,
NamingListener I)
throws NamingException;
public void removeNamingListener(NamingListener I)
throws NamingException;
public boolean targetMustExist()
throws NamingException;

}

Like methods in the correspondigntext interface addNamingListener() has an overload

that accepts atring name argument. The name parameter is referred to aariet The

scope parameter specifies whether the registration is for the object named by the target, the im-
mediate children of the context named by the target, or the entire subtree rooted at the object
named by the target.

It is possible to register interest in a target that does not exist, but there might be limitations in
the extent to which this can be supported by the service provider and underlying protocol/ser-
vice. An application can use the methadjetMustExist() to check whether aBventCon-

text Supports registration of nonexistent targets.

public interface EventDirContext extends EventContext, DirContext {
public void addNamingListener(Name target,
String filter,
SearchControls ctls,
NamingListener I)
throws NamingException;
public void addNamingListener(Name target,
String filter,
Object(] filterArgs,
SearchControls ctls,
NamingListener I)
throws NamingException;

}

TheEventDirContext interface extends theventContext andDirContext interfaces to al-
low a listener to register interest in objects identified using search filters (Internet RFC 2254).

Like methods in the correspondimrContext interface,addNamingListener() methods
have overloads that accepsteing name argument.

TheEventContext/EventDirContext instance on which theddNamingListener() method

is invoked is theevent sourcef the events that are (potentially) generated. When the registered
listener invokesyetSource() Or getEventContext() on aNamingEvent , the result will be

this EventContext /EventDirContext instance.

For example, suppose a listener makes the following registration:

Sun Microsystems, Inc. 19 7/14/99

Java Naming and Directory Interface Overview of the Interface

534

5.4

NamespaceChangeListener listener = ...;
src.addNamingListener("x", SUBTREE_SCOPE, listener);

When an object named “x/y” is subsequently deleted, the correspondimiggEvent (evt)
delivered tdistener ~ must contairsrc as its event source. The following will both be true:

evt.getEventContext() == src
evt.getOldBinding().getName().equals("x/y")

Exception Handling

When a listener registers for events with a context, the context might need to do some internal
processing in order to collect information required to generate the events. The context, for ex-
ample, might need to make a request to the server to register interest in changes on the server
that will eventually be translated into events. If an error occurs that prevents information about
the events from being collected, the listener will never be notified of the events. When such an
error occurs, alamingExceptionEvent is fired to notify the listener, and the listener is auto-
matically deregistered.

The baseNamingListener interface defines aamingExceptionThrown() method so that a
listener can be notified of such an error.

public interface NamingListener extends java.util.EventListener {
public void namingExceptionThrown(NamingExceptionEvent evt);
}

The LDAP Package —javax.naming.ldab

‘ java.lang.Object | (ExtendedResponse >
ControlFactory O | (ExtendedRequest >
java.util.EventObject J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ »(java.io.SeriaHzaMe >
]—{ UnsolicitedNotificationEvent | (Contro] >
javax.naming.InitialContext J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ »(javax.naming.Context >

javax.naming.directory.InitialDi rContextJ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (javax.nam'i ng.directory.Di rContext>
]—{ InitiallLdapContext | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ (LdapContext >
(HasContro] s >
(Unso]icitedNotif'icat'ion >

(Unso]'ici tedNotificationLi stener>

(exception classes are not shown)

Thejavax.naming.ldap package contains classes and interfaces for using LDAP v3-specific
features that are not already covered by the more gejaedicnaming.directory package.

In fact, the majority of INDI applications that use LDAP will find tfagax.naming.direc-

tory package sufficient, and will not need to use this package at all. This package is primarily

1. See Appendix C for legend of class diagram.

Sun Microsystems, Inc. 20 7/14/99

Java Naming and Directory Interface Overview of the Interface

for those applications that need to use extended operations, controls, or unsolicited notifica-
tions.

5.4.1 Extended Operations

In addition to specifying well-defined operations such as search and modify, the LDAP v3 pro-
tocol (Internet RFC 2251) specifies a way of transmitting yet-to-be defined operations between
the LDAP client and server. These operations are referred éxtasded operationg\n ex-

tended operation may be defined by a standards organization such as the IETF or by a vendor.

TheLdapContext interface defines a method for executing an extended operation:

public interface LdapContext extends DirContext {
public ExtendedResponse extendedOperation(ExtendedRequest request)
throws NamingException;

}

The ExtendedRequest interface represents the argument to an extended operation, while the
ExtendedResponse interface represents the result of the extended operatiorEx&nded-

Request Or ExtendedResponse consists of an identifier that identifies the extended operation
and a byte array containing the ASN.1 BER encoded contents of the request/response.

An application typically does not deal directly with tBeendedRequest /ExtendedResponse

interfaces. Instead, it deals with classes that implement these interfaces. The application gets
these classes either as part of a repertoire of extended operations standardized through the
IETF, or from directory vendors for vendor-specific extended operations. The request classes
should have constructors that accept arguments in a type-safe and user-friendly manner, while
the response classes should have access methods for getting the data of the response in a type-
safe and user-friendly manner. Internally, the request/response classes deal with encoding and
decoding BER values.

For example, suppose an LDAP server supports a “get time” extended operation. It would sup-
ply classes such a&tTimeRequest andGetTimeResponse , SO that applications can use this
feature. An application would use these classes as follows:

GetTimeResponse resp =
(GetTimeResponse)lctx.extendedOperation(new GetTimeRequest());
long time = resp.getTime();

5.4.2 Controls

The LDAP v3 protocol (Internet RFC 2251) allows any request or response to be augmented
by yet-to-be defined modifiers. These modifiers are referred twasrols Controls that are

sent with requests are calleelquest controlsind those that are sent with responses are called
response controlsA control may be defined by a standards organization such as the IETF or
by a vendor. There is not necessarily a pairing between request controls and response controls.

JNDI classifies request controls into two categories:
» connectiorrequest controls: those that affect how a connection is created
» contextrequest controls: those that affect context methods

Sun Microsystems, Inc. 21 7/14/99

Java Naming and Directory Interface Overview of the Interface

5.4.3

Connection request controls are used whenever a connection needs to be established or re-es-
tablished with an LDAP server. Context request controls are used when all other LDAP oper-
ations are sent to the LDAP server. The reason for this distinction is because JNDI is a high-
level API that does not deal directly with connections. It is the job of service providers to do
any necessary connection management. Hence, a single connection might be shared by multi-
ple context instances, and a service provider is free to use its own algorithms to conserve con-
nection and network usage. Thus, when a method is invoked on the context instance, the
service provider might need to do some connection management in addition to performing the
corresponding LDAP operations. For connection management, it uses the connection request
controls, while for the normal LDAP operations, it uses the context request controls.

TheLdapContext interface defines methods for dealing with controls:

public interface LdapContext extends DirContext {
public void reconnect(Control[] connCtls) throws NamingException;
public Control[] getConnectControls() throws NamingException;

public LdapContext newlnstance(Control[] reqCtls)
throws NamingException;
public void setRequestControls(Control[] reqCtls)
throws NamingException;
public Control[] getRequestControls() throws NamingException;

public Control[] getResponseControls() throws NamingException;

}

Thecontrol interface represents a control. It consists of an identifier that identifies the control
and a byte array containing the ASN.1 BER encoded contents of the control.

Connection request controls are initialized using the initial context constructor and are inherit-
ed by contexts that are derived from a contesdonnect() is used to change the connection
request controls of a context. A context’'s connection request controls are retrieveddtsing
ConnectControls()

Context request controls are initialized usirrgrinstance() and changed usingtRequest-

Controls() . newlnstance() IS aconvenience method for creating a new instance of a context
for the purposes of multithreaded access. For example, if multiple threads want to use different
context request controls, each thread may use this method to get its own copy of this context
and set/get context request controls without having to synchronize with other threads.

Unlike connection request controls, context request controla@raherited by context in-
stances that are derived from a context. Derived context instances are initialized with no con-
text request controls. You must set the request controls of a derived context instance explicitly
usingsetRequestControls() . A context’s context request controls are retrieved uging
RequestControls()

The Initial Context

An application that is performing LDAP extended operations or controls camitse
LdapContext instead gfvax.naming.InitialContext or javax.naming.directo-
ry.InitialDirContext to create its initial context:

Sun Microsystems, Inc. 22 7/14/99

Java Naming and Directory Interface Overview of the Interface

public class InitialLdapContext
extends InitialDirContext implements LdapContext {
public InitialDirContext() ...;
public InitialDirContext(Hashtable env, Control[] connCitls) ...;

}

It can then invoke any method in tioentext , DirContext , OrLdapContext interfaces on the
initial context. By using the constructor that acceptsrmCtls argument, the application can
specify controls to be used when establishing a connection with the LDAP server.

5.4.4 Unsolicited Notifications

In addition to the normal request/response style of interaction between the client and server,
the LDAP v3 protocol also specifiemsolicited notifications-messages that are sent from the
server to the client asynchronously, not in response to any client request.

JNDI supports unsolicited notifications using the event model embodied ijavidaenam-
ing.event package. It defines ansolicitedNotificationEvent class and a correspond-
ing UnsolicitedNotificationListener interface. An application registers to receive
UnsolicitedNotificationEvent s by supplying atnsolicitedNotificationListener to
EventContext.addNamingListener()

Sun Microsystems, Inc. 23 7/14/99

Java Naming and Directory Interface Configuration

6
6.1

Configuration

Environment Properties

Some JNDI applications need a way to communicate various preferences and information that
define the environment in which naming and directory services are accessed. For example, an
application might need to specify the level of security for accessing a directory service. Or,
when directory and naming services are distributed, the source of information is in more than
one place—replicas, master, cachats,An application might want to access information from

the authoritative source and needs to indicate this information to the JNDI system.

To address these requirements, JNDI defines a number of properties that developers and users
can use to provide configuration information to the JNDI system. These are eall@dnment
properties

There are different types of environment properties:

» Standard JNDI environment properties. These properties are defined by JNDI and are
common across all service providers. They are defined in relatively generic terms. For
example, the property “java.naming.security.principal” is used to specify the security
principal for authentication to the naming service. Individual service providers map
these environment properties to an interpretation appropriate for their service. These
properties have the prefix “java.naming.”. Appendix A contains a list of standard JNDI
environment properties. Theontext interface defines constants for most of these
environment property names.

» Service-specific environment properties. These properties are common across all
service providers that implement a particular service or protocol. They have the prefix
“java.namingservice’, where serviceis the name of the service. For example, the
prefix “java.naming.ldap.” is used for LDAP-specific environment properties.

» Feature-specific environment properties. These properties are common across all
service providers that support a particular feature. They have the prefix
“java.namingfeature”, where featureis the name of the feature. For example, the
prefix “java.naming.security.sasl.” is used for SASL-specific environment properties.

» Provider-specific environment properties. These properties only apply to a particular
service provider. They should have a prefix that reflects this uniqueness. A common
practice is to use the package name of the service provider as the prefix. For example,
since Sun’'s LDAP provider is primarily contained in the package
com.sun.jndi.ldap , properties specific to Sun’s LDAP provider have the prefix
“com.sun.jndi.ldap.”.

See Section 8.5 for security-related considerations when using environment properties.

Although the support for environment properties is rather extensive, it is important to note that
an application typically does need to deal with them, or only needs to set one or two properties.
Most properties have reasonable defaults and only need to be adjusted when the application has
special requirements.

Sun Microsystems, Inc. 24 7/14/99

Java Naming and Directory Interface Configuration

6.2

6.3

6.3.1

Context Environment

A context’s environment is represented aava.util.Hashtable or any of its subclasses
(e.g.,java.util.Properties 1. It is typically specified using an argument to tingial-
Context , InitialDirContext , Or InitialLdapContext constructors, and augmented with

data from other sources (as discussed in the rest of this section). They are inherited from the
parent context as context methods proceed from one context to the next. For example, the fol-
lowing code creates an environment consisting of two security-related properties and creates
an initial context using that environment.

Hashtable env = new Hashtable();

env.put(Context. SECURITY_PRINCIPAL, "jsmith");
env.put(Context. SECURITY_CREDENTIALS, "XxxXxxX");
Context ctx = new InitialContext(env);

Contexts that are looked up or otherwise derived from this initial context will have these two
properties in their environment.

A context’s environment can be examined usingtext.getEnvironment()

Not all environment properties are meaningful to all contexts. Those that are not meaningful
are ignored by the context but inherited by derived contexts (because they might be meaning-
ful, for instance, to federated contexts).

Resource Files

A INDI resource file is a file in the properties file format (3&e.util.Properties). The
file contains a list of key/value pairs. The key is the name of the property (e.g., “java.nam-
ing.factory.object”) and the value is a string in the format defined for that property. Here is an
example of a JNDI resource file:

java.naming.factory.object=com.wiz.jndi.AttrsToCorba:com.wiz.jndi.ToPerson

java.naming.factory.state=com.wiz.jndi.CorbaToAttrs:com.wiz.jndi.FromPerson
java.naming.factory.control=com.wiz.jndi.MyResponseControlFactory

There are two kinds of JNDI resource files: application and provider.

Application Resource Files

When an application is deployed, it will generally have several codebase directories and JARs
in its classpath. Similarly, when an applet is deployed, it will have a codebase and archives
specifying where to find the applet’s classes. JNDI locates all application resource files named
jndi.properties in the classpath. In addition, if the filRIAVA_HOME/lib/jndi.proper-

ties exists and is readable, JNDI treats it as an additional application resource file.
($JAVA_HOMEHS the directory named by thava.home system property.) All of the properties
contained in these files are placed into the environment of the initial context. This environment
is then inherited by other contexts.

1. Note that if you usBroperties , only the top-level properties are consulted—its defaults are not consulted—
becauseiashtable.get() is used when retrieving entries from the environmentjsveeutil.Proper-

ties

for details.

Sun Microsystems, Inc. 25 7/14/99

Java Naming and Directory Interface Configuration

6.3.2

6.4

6.5

For each property found in more than one application resource file, JNDI uses the first value
found or, in a few cases where it makes sense to do so, it concatenates all of the values. For
example, if thgava.naming.factory.object property is found in thregdi.properties

resource files, the list of object factories is a concatenation of the property values from all three
files. Using this scheme, each deployable component is responsible for listing the factories that
it exports. INDI automatically collects and uses all of these export lists when searching for fac-
tory classes.

Application resource files are available beginning with the Java 2 Platform, except that the file
in $JAVA_HOME/lib can be used on all Java platforms.

Provider Resource Files

Each service provider has an optional resource file that contains properties specific to that pro-
vider. The name of this resource is:

[prefix/ lindiprovider.properties

whereprefixis the package name of the provider’s context implementation(s), with each period
(“.”) converted to a slash (/).

The JNDI library will consult the provider resource file when determining the values of certain
properties. Properties other than these can be set in the provider resource file at the discretion
of the service provider. The service provider's documentation should clearly state which prop-
erties are allowed.

Application/Applet-scope Standard JNDI Properties

Certain standard JNDI properties can alternately be set in the Java runtime’s system properties,
or in an applet’s parameter list. These properties are:

java.naming.factory.initial
java.naming.factory.object
java.naming.factory.state
java.naming.factory.control
java.naming.factory.url.pkgs
java.naming.provider.url
java.naming.dns.url

For JNDI to access an applet’'s parameters, the applet code must jae ifeening.applet
environment property to an instance of the apjded.applet.Applet).

When these properties are set as system properties or applet parameters, they affect all of the
application’s/applet’'s contexts.

How the Environment Properties are Set

When JNDI constructs an initial context, the context’s environment is initialized with proper-
ties defined in the environment parameter passed to the constructor and all application resource
files. For the application/applet-scope properties, their values from the system properties and
the applet parameters are also used.

JNDI passes the resulting environment to the initial context implementation. The environment
is then inherited by contexts that are derived from the initial context. Since JNDI performs any

Sun Microsystems, Inc. 26 7/14/99

Java Naming and Directory Interface Configuration

6.6

6.6.1

6.6.2

6.6.3

6.6.4

necessary merging of the properties and their values, there is no need for the application or con-
text implementation to directly consult the system properties or applet parameters.

Modifications to the Environment

A context’s environment can be changed usingatfiToEnvironment() andremoveFromEn-
vironment() ~ methods:

public interface Context {
public Object addToEnvironment(String propName, Object val)
throws NamingException;
public Object removeFromEnvironment(String propName)
throws NamingException;

}

Not all environment properties are meaningful to all contexts. Changes to those that are not
meaningful are still recorded and passed onto derived contexts.

Scope

Changing a property using tlédToEnvironment() ~ Or removeFromEnvironment() methods

affects the context instance on which the method is invoked. For example, if you specify new
credentials for a context to use, subsequent methods invoked on that context that require com-
munication with the server will use those new credentials (perhaps internally by first creating

a new connection to the server). These updated environment properties are inherited by context
instances that are subsequently derived from the affected context instance, but do not otherwise
affect other context instances that were in existence prior to the update.

Timeliness

When a change is made to the environment properties, there is no requirement that the change
be verified and acted upon at the tim@® ToEnvironment() Or removeFromEnvironment()

is invoked. The only requirement is that the change (or changes) be effective the next time an
operation that uses that property is invoked.

Defaults

For some environment properties, JNDI defines defaults (see Appendix A). For others, the de-
fault might be determined by the service provider or a group of service providers. If a context’s
environment does not have a particular property, the context behaves as if its environment has
that property with its default value.

When a property is removed from a context’s environment, the context assumes the default be-
havior specified for that property. This does not necessarily mean that the default value must

be recorded as the property’s value. The removal may also be indicated by the absence of the
property from the context’s environment.

Acceptable Values

Some environment properties have a fixed set of acceptable values while others have values
that must follow a particular syntax. If an unacceptable value is presented, a property-specific
exception will be thrown (for examplepnfigurationException , lllegalArgumentExcep-

Sun Microsystems, Inc. 27 7/14/99

Java Naming and Directory Interface Configuration

tion , Or AuthenticationNotSupportedException). In some cases, it might be reasonable
for the service provider to accept additional values than those specified, in which case, those
values should be documented.

Sun Microsystems, Inc. 28 7/14/99

Java Naming and Directory Interface Scenarios

v

7.1

7.2

7.3

Scenarios

This section outlines a few application scenarios to help illustrate the capabilities enabled by
JNDI.

* The examples below are not meant to be prescriptive. There are often several ways to solve
a problem, and JNDI is designed with flexibility in mind.

User authentication

In secure systems, a user must authenticate himself to the computer, network, or service that
he wishes to access. For example, logging into Unix requires the user to supply a password.
Similarly, use of SSL requires that the user supply his X.509 certificate. Such authentication
information can be stored as attributes associated with each user in the directory. The system
performing the authentication would look up the attribute (for example, “password”) of the
user and verify the authenticity using the information supplied by the user.

DirContext ctx = new InitialDirContext();
Attribute attr = ctx.getAttributes(userName).get("password");
String password = (String)attr.get();

Electronic Mall

A useful feature of an electronic mail system is a directory service that provides a mapping be-
tween users and email addresses. This allows mail users to search for the email address of a
particular user. This is analogous to searching for an individual’s telephone number in the
phone book in order to dial his phone number. For example, when | want to send mail to John
Smith in my department, | search for “John Smith” in the directory using a “search” widget in
the mail application. The widget returns to me five entries of John Smith, from which | select
the one that is in a building on my site and use the email address attribute associated with that
entry.

NamingEnumeration matches =

deptCtx.search("user", new BasicAttributes("name"”, "John Smith"));
/I use matches to construct a selectable list for end-user
while (matches.hasMore()) {

SearchResult item = (SearchResult) matches.next();

Attributes info = item.getAttributes();

[* display attributes */

}

The directory could also be used by users to set up personalized address books. For example,
once | have located John Smith’s email address, | might not want to search the directory again
each time | send him mail. Instead, | can create a personal subtree in the directory in which |
maintain entries that | frequently use, possibly by creating links to the existing entries.

Databases

Database applications can use the directory to locate database servers. For example, a financial
application needs to get the stock quotes from a stock quote server using JDBC. This applica-

Sun Microsystems, Inc. 29 7/14/99

Java Naming and Directory Interface Scenarios

tion can enable the user to select the stock quote server based on specification of some at-
tributes (such as coverage of which markets and frequency of quote updates). The application

searches the directory for quote servers that meet these attributes, and then retrieves the “loca-
tion” attribute (a JDBC URL) of the selected quote server and connects to it.

NamingEnumeration matches =
ctx.search("service/stockQuotes",
"(&(market=NASDAQ)(updateFregency<=300))",
searchctls);
while (matches.hasMore()) {
SearchResult item = (SearchResult)matches.next();
Attribute location = item.getAttributes().get("location”);

}
7.4 Browsing

When using almost any kind of interactive application that asks a user to input names, the us-
er's job is made easier if a namespace browser is available to him. The browser can either be
built into the application and tailored to suit that application in particular, or it can be more gen-
eral-purpose such as a typical web browser.

A very simple example of a JNDI browser allows a user to “walk” through a namespace, view-
ing the atomic names at each step along the way. The browser prints a “*” to highlight the name

of eachcontext , thus telling the user where he can go Hext.

1. TheisContext() method used in the example is not part of INDI. It is a method that must be provided by the
application.

Sun Microsystems, Inc. 30 7/14/99

Java Naming and Directory Interface Scenarios

/[Start at the top -- the initial context.
Context ctx = new InitialContext();
while (ctx = null) { // display one level
NamingEnumeration items = ctx.list();
while (items.hasMoreElements()) {
NameClassPair item = (NameClassPair)items.next();
if (isContext(item.getClassName())) {
System.out.print("*");
}else {
System.out.print(" ");

}

System.out.printin(" " + item.getName());

}

/I Take the next step down into the namespace.
String target = input.readLine();

try {
ctx = (Context)ctx.lookup(target);

} catch (NamingException e) {
/I handle error
} catch (ClassCastException e) {
/[not a context; cannot traverse

}
}

7.5 Network Printing

An important function of a printing service is to provide a means for its human users to easily

discover and select printers in the network. An application that needs to print, or the machine
on which it runs, should not have to be configured each time a new printer is added to the net-
work. The scope of network access to printers may range from a workgroup to global. The
printing service can use the directory to provide this capability.

Assume that printers are represented byi@er interface. One of the methods in it could be
print() which, when given amputStream , will read data fromnputStream and print it
on the printer represented by this instancBraiter

interface Printer {
void print(InputStream data) throws PrinterException;

}

A user selects a printer using a logical printer name, either explicitly or through default settings.
For example, the user might have specified a default printer to use for all his applications,
which is overridden only when he explicitly specifies another printer to use. The application
that is accepting the print request takes the printer name and looks it up in the directory service.
The application expects to receive as the result an object that implememsntae inter-

face.

Sun Microsystems, Inc. 31 7/14/99

Java Naming and Directory Interface Scenarios

void myAppPrint(String printerName, String fileName)
throws IOException {

try {
DirContext ctx = new InitialDirContext();
Printer prt = (Printer) ctx.lookup(printerName);
prt.print(new FilelnputStream(fileName));
} catch (NamingException e){
System.err.printin("Could not locate printer: " + e);
} catch (ClassCastException e) {
System.err.printin(printerName + "does not name a printer");

}
}

7.5.1 Browsing and searching for printers

Selecting a printer by explicitly giving its name is but one way of identifying a printer. The user
can also use the directory to see the different printers available (browsing), or to search for
printers with particular attributes. For example the user can ask the directory to list all the print-
ers on the second floor of building 5 in the Mountain View campus, or search for all color laser
printers with 600dpi resolution. From the application’s perspective, jusblag() returned
aPrinter object, the list and search operations also provide the same capability of returning
Printer Objects that the application could use to submit print requests.

Sun Microsystems, Inc. 32 7/14/99

Java Naming and Directory Interface Security Considerations

8 Security Considerations

There are two main settings in which JNDI is used: with and without a security manager in-
stalled.

In the case of Java applications running with no security manager installed, the code is trusted
and the application can access service providers from the local classpath. Furthermore, there is
no restriction if the service providers access local files, or make network connections to naming
or directory servers anywhere on the network.

In the case of an applet or application running with a security manager installed, there can be
trusted code and untrusted code within the same applet or applicatiorShemang Context
HandlesandContext Environmergections below are especially applicable in such a scenario.
The ability of an applet or an application running with a security manager installed to access
service providers, especially service providers that require the use of restricted resources (like
the file system or network connections) may be severely limited.

8.1 JNDI Classes

The classes in the JNDI packages contain no native methods. They do not require any special
installation in order to run inside an applet or an application.

JNDI uses several system properties (see Section 6.4). This allows applets and applications to
be configured easily without much programming. However, an applet or application might
have restricted access to some or all system properties as a result of the security manager in-
stalled on the platform on which it is running. Consequently, JNDI also allows these same
properties to be specified as applet parameters, in resource files, or as environment properties
passed to a context.

In the Java 2 Platform, the JNDI classes ds®rivileged blocks when accessing the system
properties listed in Section 6.4.

8.2 Security Model

JNDI does not define a security model or a common security interface for accessing naming
and directory servers. Security-related operations, such as those required for authentication or
access control to the directory service, are dealt with by individual service providers. JNDI pro-
vides the means by which an application or applet can pass such security-related information
to service providers in order to establish a connection with the service, but does not itself take
part in such security-related activities.

JNDI also provides the means by which security-related problems can be indicated to the client
in the form of security-related exceptions.

JNDI service providers are controlled by the security manager in place when they try to gain
access to protected resources such as the file system or network. Some service providers may
control directory access by making use of the Java 2 Platform security architecture (for exam-
ple, allowing access to special ports for administration-related applets).

Sun Microsystems, Inc. 33 7/14/99

Java Naming and Directory Interface Security Considerations

8.3

8.4

8.5

8.6

Access To Servers

Naming and directory services typically have their own security system in place to protect in-
formation stored therein. For example, one directory might require that its users first “login” to
the directory before reading or updating information in the directory. Some services might al-
low anonymous access to part of its namespace/directory.

Once a user has logged into a service, it is imperative for security reasons not to share that priv-
ilege with untrusted code.

Sharing Context Handles

In the following discussion, we refer tocmntext handlas a reference to@ontext instance.
This is analogous to how a reference t®eader /Writer /InputStream /OutputStream in-
stance is often referred to afila handle

A context handle should be treated like any other protected resource. If a piece of trusted code
obtains a context handle (possibly by authenticating its access with the directory server), it
should protect the use of that context against unauthorized or untrusted code. This is analogous
to how application and/or applet code should protect file handles. For example, if a piece of
trusted code opens a file for writing (and it was granted such privilege because of its trusted
nature), it should be careful about passing that file handle to any other pieces of code, trusted
or otherwise.

Similarly, giving access of a context handle to untrusted code may lead to its misuse in access-
ing or updating information in the directory, or accessing security-sensitive environment prop-
erties associated with the context.

Context Environment

JNDI allows the application/applet to pass preferences and information to a context in the form
of an environment. The application/applet can also get the current environment from a context.
See Chapter 6 and Appendix A for more information on a context’s environment.

The nature of the information contained in a context’s environment might be sensitive and need
protection from untrusted access. Specifically, the environment propgkiaasming.se-
curity.principal and java.naming.security.credentials contain information that
should not be given out to untrusted code. Service providers might take precaution to protect
against accessing these properties Besponsibilities of Service Providdyslow). Client ap-
plications and applets should take care not to pass context handles with such sensitive environ-
ment properties to untrusted code.

Class Loading

JNDI allows the class files to be loaded dynamically.

When JNDI is run on the JDK 1.1.x platform, it uses the RMI class loader. The classes can only
be loaded if there is a security manager installed, and if that security manager permits the class
to be loaded. When such classes are loaded, they run in the security context dictated by the se-
curity manager.

Sun Microsystems, Inc. 34 7/14/99

Java Naming and Directory Interface Security Considerations

When JNDI is run on the Java 2 platform, it will attempt to load such classes from the locations
specified in the codebase using tha.net. URLClassLoader . In order for the class loading

to succeed, you must grant the application and the JNDI and service provider classes the per-
missions appropriate for the URLs named in the codebase. For example, if the URL scheme is
“http” or “ftp”, you must grant the application the approprigtea.net.SocketPermission ;

if the URL scheme is “file”, you must grant the application the appropiiteio.File-

Permission

8.7 Serializable Objects

Several of the INDI classes are serializable. This allows the objects to be accessed in the form
of a byte stream, possibly outside of the environment in which they were created. See the doc-
ument at the following URL regarding security issues related to serialized objects.

http://java.sun.com/products/jdk/1.2/docs/guide/serialization/spec/security.doc.html

8.8 Responsibilities of Service Providers

8.8.1 Context Environment

When a context handle is created (either by getting the initial context or by looking it up or by
creating it from the directory), some environment properties may be specified for it. Sometimes
security-related properties are required for the creation of the context handle (such as user in-
formation that “logs” the user in with the directory). The service provider should take care to
protect this security-sensitive information from untrusted code.

The service provider needs to protect the context’s environment from being tampered or oth-
erwise modified by untrusted code. The service provider needs to protect the security-sensitive
environment properties from being read by untrusted code. It might do this by disallowing any
thread whose execution context and/or trust level is different than that originally held by the
thread that created the context handle to use the context handle. Or it might disallow certain
operations (such as accessing security-sensitive environment properties). Or it might simply
not return security-sensitive environment properties, or only return them to trusted code.

8.8.2 Network Security

Untrusted code (such as those found in untrusted applets) have limited access to the network.
Untrusted applets, for example, can only create a network connection to the host from which
they were downloaded. With finer-grain security models, it will be possible for the service pro-
vider itself to be trusted code, and hence be allowed to connect to hosts not allowed for untrust-
ed applets. In such a scenario, the service provider should be careful not to compromise the
security intended by the security manager. If the service provider is sure that access by an un-
trusted applet to the directory will cause no security problems, then it may proceed to offer such

a service to untrusted code. For example, allowing untrusted code to access a directory “anon-
ymously” would post no security problems because the directory already allows any anony-
mous client (written in the Java programming language or otherwise) to access the same data.

Most naming and directory services are accessed over the network. Although the data request-
ed is protected by the server’s authentication and access control mechanisms, some protocols
do not protect (encrypt) the data being sent as replies. Again, this is not a problem patrticular to

Sun Microsystems, Inc. 35 7/14/99

Java Naming and Directory Interface Security Considerations

a client using JNDI but a problem for any client accessing the directory. The service provider
should document the security implications associated with using the associated directory over
a network.

8.8.3 Accessing Local Files

Similar to network access, untrusted code has limited access to the local file system. If the ser-
vice provider has special privileges for accessing local files, it should do so with utmost pre-
caution so as not to compromise the security policies intended by the runtime/platform.

8.8.4 Privileged Code, Native Methods

A service provider that is written completely in the Java programming language with no priv-
ileged sections is controlled by the same security policies afforded other code written in the
Java programming language. All protected resources that it attempts to access go through the
same security manager and access controller.

If a service provider contains privileged code sections, or if it contains native methods, then it
needs to be especially careful to preserve the security policies intended by the runtime/plat-
form.

Sun Microsystems, Inc. 36 7/14/99

Java Naming and Directory Interface Design Choices

9 Design Choices

9.1 Separation of Interfaces into Context and DirContext

There are two core interfaces in JNBbntext , andDirContext , with DirContext ~ extending

the base naming operationsdnntext with directory service operations. They have been sep-
arated into separate interfaces both for modularity and also in keeping with the “pay for what
you use” goal of INDI.

Naming is a basic component found in many computing services such as file systems, spread-
sheets, calendar services, and directory services. By having &basa interface for the
naming operations, we enable its use by all these other services, not just for directory services.

DirContext —extendsContext to provide basic directory service operations, which include ma-
nipulation of attributes associated with named objects, attribute-based searches, and schema-
related operations of those attributes and named objects.

9.2 Separation of JNDI into Different Functional Packages

JNDI is separated into four client packagpgsdx.naming , javax.naming.directory , jav-
ax.naming.event , javax.naming.ldap) and a service provider packag@véx.nam-

ing.spi). The idea is that each package contains the interfaces and classes required for a par-
ticular category of applications, again in keeping with the “pay for what you use” goal. For
example, an application that just wants to perform name-lookups only needs to yse the
ax.naming package. An application that wants to examine/modify attributes associated with

an object uses thpvax.naming and javax.naming.directory packages. An application

that needs to use LDAP-specific controls or extended operations ugegiyeming.ldap

package. There is a step-by-step progression of what classes and interfaces each category of
application writer needs to learn and use.

9.3 Separation of Client APIs and Service Provider Interfaces

JNDI separates interfaces and classes that a client application needs to use from those that are
only of interest to service providers into different packages. For example, a client would use
interfaces and classes frgavax.naming , while a service provider that is hooking up a ham-

ing service would use bogavax.naming andjavax.naming.spi . The package delineation
minimizes confusion for the application developer and makes clear which packages he needs
to examine when writing his program.

9.4 Multiple methods for listing Context

There are two common types of applications that list contexts: browser-style applications, and
applications that need to perform operations on the objects in a context en-masse. Browser-
style applications typically want to display the names of the contents of a context. In addition
to the names, many browsers often require type information of the objects bound to the names,
so that it can display appropriate pictorial representations of the objects. The browser is usually
interactive. Once a user has used a browser to display the contents of a context, he would then
select one or a few of the entries displayed and request more information on it.

Sun Microsystems, Inc. 37 7/14/99

Java Naming and Directory Interface Design Choices

9.5

9.6

Some applications need to perform operations on objects within a context en-masse. For exam-
ple, a backup program might want to perform “file stats” operations on all the objects in a file
directory. A printer administration program might want to restart all the printers in a building.
To perform such operations, these programs need to obtain all the objects bound in a context.

With these two common styles of usage in mind, thvatext interface has two types of list
methodslist) andilistBindings() . list) returns alist of name/class-name pairs while
listBindings() returns a list of name/class-name/object tupleg) is designed for
browser-style applications that want mostly just the names and types of objects bound in a con-
text. listBindings() is for applications that want to potentially get all the objects in the con-
text, as well as their names and typisBindings() returns an enumeration 8fnding

Both thelistBindings() operation itself and invocation of methods in #eding class (e.g.
getObject()) could be implemented lazily or eagerly. UsilggBindings() simply indi-

cates the potential that the caller might want all or many of the objects in the context so that
implementations that are able can optimize for it. Usistg indicates that the caller is un-
likely to want all, if any, objects in the context so implementations can optimize for that if pos-
sible.

An alternative is to have a single list operation and have the lazy or eager behavior as part of
the implementation oBinding . The advantage of this is that there is a single list operation to
learn. The disadvantage is that the caller has no way of indicating which piece of information
he wants back from list, and subsequently, implementations cannot optimize for the eventual
behavior of the program.

Support for Federation

Federation is a first-class concept in JNDI. In the client interfaces, it is supported by the use of
the Nameinterface for specifying names that can span one or more namespaces. The caller of
the methods in the client interface need not know anything else regarding federation. Resolu-
tion of names across multiple systems is handled by the SPI and does not involve any interven-
tion on the part of the caller.

Although federation is a first-class concept, that does not mean that all callers and service pro-
viders must make use of it. If an application or service does not want to take advantage of fed-

eration, there is no requirement thaime always span multiple namespacaame can just

name objects within a single namespace, and the SPI can handle name resolution within a sin-
gle namespace as well (as a degenerate case of multiple namespace support).

DirContext versus DirObject

Instead of havin@irContext ~extendContext , an alternative would be to not exteaantext

at all but to have a separate interface cald&dbject that encapsulates all the directory-re-
lated methods. In that case, an object can implement battext andDirObject if it sup-

ports both the naming and directory operations; another object might implement just
DirObject

The problem with eliminatin@irContext is thatDirContext contains some hybrid opera-
tions that involve both naming and directori@§() , createSubcontext() methods that
accept attributes as arguments). To keep these operatidingiveDirObject — at the same time

Sun Microsystems, Inc. 38 7/14/99

Java Naming and Directory Interface Design Choices

9.7

9.8

would produce the need for a third interface (perhaps cali@dntext) to contain just these
hybrids.

Furthermore, havin@irContext instead oDirObject is somewhat more convenient in that
you can perform some operations in one step instead of two. For exairgastext.getAt-

tributes() could be used to get the attributes associated with a named object, whereas with
DirObject , you would need first to resolve to the objecbftext.lookup()) and then use
DirObject.getAttributes() to get the attributes from it.

Support for Schemas

TheDirContext interface contains support for schemas. For example, fromCantext ob-

ject you can obtain its schema object, which points to the directory space where the schema for
this particulamirContext instance is defined. FromarContext ~ object, you can also obtain

its schema class definition (i.e. information about what type of object this represents in the di-
rectory). There is further support for schemas inghégbute class, which contains methods

for obtaining an attribute’s syntax information (i.e. what is the type of the attribute’s value) and
the attribute’s definition (e.qg. is it multivalued, syntax, constraints on its syntax). There is no
requirement that any of this schema information be dynamically accessible (i.e. points to live
directory spaces). Support for such schema information could be generated statically by the
service provider. For example, a particular directory service might only support string attribute
values, so it can hard-wire the syntax of the attributes that it returns. Another directory might
support only static schemas (where information in the schema are not modifiable). Yet another
directory might support fully dynamic schemas. The interfaces and clasbeSdntext are
flexible enough that these different levels of support for schemas can be accommodated.

Overloaded Methods in Context and DirContext

For each method in theontext andDirContext interfaces that acceptshmme argument,
there is a corresponding overloaded form that acce@sirgy argument for specifying a
name.

The motivation for having thetring -based methods is that there are many applications that
simply accept a string name from the end-user and perform context methods on the object
named by that string name. For those applications, it is useful to have the context methods ac-
cept a string for the name directly, instead of requiring the applications to first constvaieka
object using the string name.

The motivation for having theame-based methods is that there are also many applications that
manipulate names and do not want to worry about syntactic details of the names’ string forms
when composing and modifying names. These applications deal with the parsed form of names
and hence would prefer to deal withmeobjects rather than string names. For these applica-
tions, we provide thelamebased methods in the context interfaces. Not providing these meth-
ods would probably cause proliferationndmelike interfaces/classes to support manipulation

of names in their structural form in applications developed on top of JNDI.

Sun Microsystems, Inc. 39 7/14/99

Java Naming and Directory Interface Design Choices

9.9 Reference and Referenceable

There are different ways in which applications and services can use the directory to locate ob-
jects. JNDI is general enough that it accommodates several different models. For some appli-
cations, the object bound in the directory is the object itself. An application may build up a
dynamic directory while the application is active, and delete the directory when the application
exits. Another application might store URLS as attributes for locating objects in its namespace.
Other systems might bind some reference information in the directory, which can subsequently
be used to locate or access the actual object. This last case is quite common, especially for mak-
ing Java applications take advantage of services in the installed base. The reference in the di-
rectory acts as a “pointer” to the real object.

JNDI defines &reference class to provide a uniform way of representing reference informa-
tion. A Reference contains information on how to access an object. It consists of a list of ad-
dresses and class information about the object to which this reference refers. When binding a
name to an object that is to be represented in the directory as a reference, the desired effect is
that the object’s reference be extracted and bound. To allow for this behavior, the object’s class
must implement theeferenceable interface, which contains the methgeReference()

There is some similarity between the interfagesalizable andReferenceable and a nat-

ural question is “why not just us&erializable instead?” The answer is that a serialized ob-
ject is really a frozen version of the object, whereas the reference contains just the information
needed to construct it. The serialized version may have a lot more state which may not be ap-
propriate for storage in the directory.

9.10 Automatically Turning References into Objects

For an object that is bound afaference in the directory, JINDI SPI framework automatically
creates and instantiates the object identified by the reference. In this way, the program can sim-
ply narrow the result obokup() to the expected class, instead of calling a separate operation
to transform the result adokup() into an object of the expected class.

For example, if you are looking up a printer object, a successful lookup would return to you a
printer object that you can directly use.

Printer prt = (Printer) ctx.lookup(somePrinterName);
prt.print(someFileName);

JNDI does this automatically, instead of requiring an explicit conversion step, because this is
expected to be the common usage pattern. By havingréheence class, and a common
mechanism for convertingrReference into the object identified by threference , JINDI en-
courages different applications and system providers to utilize this mechanism, rather than in-
venting separate mechanisms on their own.

Sun Microsystems, Inc. 40 7/14/99

Java Naming and Directory Interface JNDI Standard Environment Properties

Appendix A: JNDI Standard Environment Properties

Sun Microsystems, Inc. 41 7/14/99

Java Naming and Directory Interface

JNDI Standard Environment Properties

Table 1: JNDI Environment Properties?

Program Configurationb

java.naming.factory.initial

(Context.INITIAL_CONTEXT_FACTORY)

Class name of initial context factory to use.
SeelnitialContext
No default.

java.naming.factory.object

(Context. OBJECT_FACTORIES)

Colon-separated list of class names of object factory classes tq
SeeNamingManager.getObjectinstance() and
DirectoryManager.getObjectinstance()

Defaults to empty list.

use.

java.naming.factory.state

(Context.STATE_FACTORIES)

Colon-separated list of class names of state factory classes tq
SeeNamingManager.getStateToBind() andDirect-
oryManager.getStateToBind()

Defaults to empty list.

use.

java.naming.factory.control

(LdapContext. CONTROL_FACTORIES)

Colon-separated list of class names of response control facto
classes to use.

SeeControlFactory.getControlinstance()

Defaults to empty list.

Yy

java.naming.factory.url.pkgs
(Context.URL_PKG_PREFIXES)

Colon-separated list of package prefixes to use when loading
URL context factoriescom.sun.jndi.url is always added to
end of list.

SeeNamingManager.getURLContext()

Defaults to empty list.

in

Access Configuratiory

java.naming.provider.url
(Context.PROVIDER_URL)

Specifies configuration information for provider to use.
Defaults to provider default, using provider’s own configuration
discovery protocols.

java.naming.dns.url
(Context.DNS_URL)

Specifies the DNS host and domain names.
No default.

Service-Related

java.naming.authoritative
(Context. AUTHORITATIVE)

Specifies the authoritativeness of the service requested. If “try
specifies most authoritative source is to be used (e.g., bypass
caches, or bypass replicas in some systems). Otherwise, sou
need not be (but can be) authoritative.

Defaults to “false”.

”

any
ce

java.naming.batchsize
(Context.BATCHSIZE)

Specifies the preferred batch size to use when returning data
the service’s protocol. This is a hint to the provider to return th

results of operations in batches of the specified size, so that the

provider can optimize its performance and usage of resources
does not affect the total number or size of the data returned.

via
e

Lt

Defaults to provider default.

Sun Microsystems, Inc.

42 7/14/99

Java Naming and Directory Interface

JNDI Standard Environment Properties

Table 1: JNDI Environment Properties?

java.naming.referral
(Context. REFERRAL)

Specifies that referrals encountered by the service provider an
be followed automatically. If “follow”, follow referrals automati-
cally. If “ignore”, ignore referrals encountered. If “throw”, throw
ReferralException when a referral is encountered.
Defaults to provider default.

e to

Security

java.naming.security.protocol
(Context.SECURITY_PROTOCOL)

Security protocol to use for service.
Defaults to provider default.

java.naming.security.authentication
(Context.SECURITY_AUTHENTICATION)

Takes values “none”, “simple”, “strong”, or a provider-specific
string (e.g., “CRAM-MD5 DIGEST-MD5 EXTERNAL").
Defaults to provider default.

java.naming.security.principal
(Context.SECURITY_PRINCIPAL)

Identity of principal (e.g., user) for the authentication scheme.
Defaults to provider default.

java.naming.security.credentials
(Context.SECURITY_CREDENTIALS)

Principal’s credentials for the authentication scheme.

The particular type of credentials is determined by the authen
tion scheme chosen. Examples of different types of credentials
passwords, keys, and certificates.

Defaults to provider default.

ica-
are

Internationalization

java.naming.language
(Context.LANGUAGE)

Specifies a colon-separated list of preferred language to use
this service (e.g., “en-US”, “fr”, “fr-CH", “ja-JP-kanji").
Languages are specified using tags defined in RFC 1766.
Defaults to provider default.

vith

a. TheContext andLdapContext

are shown in parentheses below the property’s string names.
b. These properties may be set in the Java runtime’s system properties or in an applet’s parameter list.
c. These properties may be set in the Java runtime’s system properties or in an applet’s parameter list.

Sun Microsystems, Inc.

interfaces define constants for these property names. The names of the constants

43 7/14/99

Java Naming and Directory Interface JNDI Standard Environment Properties

Sun Microsystems, Inc. 44 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

Appendix B: Examples for LDAP Programmers

Sun Microsystems, Inc. 45 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

This appendix contains sample JNDI programs intended to help a developer familiar with the
LDAP C API. Starting with sample programs from the Netscape Directory SDK for accessing
and updating the directory using the LDAP C API, we show the equivalent way of doing the
same thing for Java applications using JNDI.

Sun Microsystems, Inc. 46 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

B.1 Search the Directory

B.1.1 Search Using LDAP C API

/*

* Copyright (c) 1996. Netscape Communications Corporation. All
* rights reserved.

*

* Search the directory for all people whose surname (last name) is
*“Jensen”. Since the “sn” attribute is a caseignorestring (cis), case
* is not significant when searching.

*

*/
#include “examples.h”

int

main(int argc, char **argv)

{
LDAP *Id;
LDAPMessage *result, *e;
BerElement *ber;

char *a, *dn;
char **vals;
int i;

/* get a handle to an LDAP connection */
if ((Id =Idap_init(MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");
return(1);
}
[* authenticate to the directory as nobody */
if (1dap_simple_bind_s(Id, NULL, NULL) != LDAP_SUCCESS)) {
Idap_perror(Id, “Idap_simple_bind_s");
return(1);
}
[* search for all entries with surname of Jensen */
if (Idap_search_s(Id, MY_SEARCHBASE, LDAP_SCOPE_SUBTREE,
MY_FILTER, NULL, 0, &result) = LDAP_SUCCESS) {
Idap_perror(Id, “ldap_search_s");
return(1);
}
[* for each entry print out name + all attrs and values */
for (e = Idap_first_entry(Id, result); e '= NULL;
e = ldap_next_entry(Ild, e)){
if ((dn =Idap_get_dn(lId, e)) '= NULL) {
printf(“dn: %s\n”, dn);
Idap_memfree(dn);
}
for (a = Idap_first_attribute(Id, e, &ber);
a != NULL; a = Idap_next_attribute(Id, e, ber)) {
if ((vals = Idap_get_values(Id, e, a)) '= NULL) {
for (i =0; vals[i] I= NULL; i++) {
printf(“%s: %s\n”, a, vals][i]);
}

Idap_value_free(vals);

}

Idap_memfree(a);

Sun Microsystems, Inc. 47 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

if (ber = NULL) {
ber_free(ber, 0);
}
printf(“\n");
}
Idap_msgfree(result);
Idap_unbind(Id);
return(0);

B.1.2 Search Using JNDI

/*
* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Search the directory for all people whose surname (last name) is
*"Jensen”. Since the "sn" attribute is a caseignorestring (cis), case
* is not significant when searching.

*

* [equivalent to search.c in Netscape's SDK.]
*

*/

import java.util.Hashtable;
import java.util. Enumeration;

import javax.naming.*;
import javax.naming.directory.*;

class Search {
public static void main(String[] args) {

Hashtable env = new Hashtable(5, 0.75f);
/*

* Specify the initial context implementation to use.

* This could also be set by using the -D option to the java program.

* For example,

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \

* Search

*/

env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(Context. PROVIDER_URL, Env.MY_SERVICE);

try {
/* get a handle to an Initial DirContext */

DirContext ctx = new InitialDirContext(env);

[* specify search constraints to search subtree */
SearchControls constraints = new SearchControls();
constraints.setSearchScope(SearchControls. SUBTREE_SCOPE);

/* search for all entries with surname of Jensen */

NamingEnumeration results
= ctx.search(Env.MY_SEARCHBASE, Env.MY_FILTER, constraints);

Sun Microsystems, Inc. 48 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

[* for each entry print out name + all attrs and values */
while (results != null && results.hasMore()) {
SearchResult si = (SearchResult)results.next();

[* print its name */
System.out.printin("name: " + si.getName());

Attributes attrs = si.getAttributes();
if (attrs == null) {
System.out.printin("No attributes");
}else {
[* print each attribute */
for (NamingEnumeration ae = attrs.getAll();
ae.hasMoreElements();) {
Attribute attr = (Attribute)ae.next();
String attrld = attr.getID();

[* print each value */
for (Enumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin(attrid + " ;" + vals.nextElement()))

}

}
System.out.printin();

} catch (NamingException €) {
System.err.printin("Search example failed.");
e.printStackTrace();

}

}
}

B.2 Read An Entry

B.2.1 Read Using LDAP C-API

/*

* Copyright (c) 1996. Netscape Communications Corporation. All

* rights reserved.

*

* Search the directory for the specific entry

* “cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
* Retrieve all attributes from the entry.

*

*/

#include “examples.h”

int
main(int argc, char **argv)
{

LDAP *d,

LDAPMessage *result, *e;
BerElement *ber;

char *a, *dn;

char **vals;

Sun Microsystems, Inc. 49 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

int i;

/* get a handle to an LDAP connection */
if ((Id =Idap_init(MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");
return(1);
}
[* authenticate to the directory as nobody */
if (Idap_simple_bind_s(Id, NULL, NULL) !I= LDAP_SUCCESS) {
Idap_perror(Id, “ldap_simple_bind_s");
return(1);
}
[* search for Babs’ entry */
if (Idap_search_s(Id, ENTRYDN, LDAP_SCOPE_SUBTREE,
“(objectclass=*)", NULL, 0, &result) != LDAP_SUCCESS) {
Idap_perror(Id, “ldap_search_s");
return(1);
}
[* for each entry print out name + all attrs and values */
for (e = Idap_first_entry(Id, result); e != NULL;
e = Idap_next_entry(Ild, e)){
if ((dn =Idap_get_dn(lId, e)) '=NULL) {
printf(“dn: %s\n”, dn);
Idap_memfree(dn);
}
for (a = Idap_first_attribute(Id, e, &ber);
a != NULL; a = Idap_next_attribute(Id, e, ber)) {
if ((vals = Idap_get_values(Id, e, a)) = NULL) {
for (i =0; vals[i] '= NULL; i++) {
printf(“%s: %s\n”, a, vals][i]);
}
Idap_value_free(vals);
}
Idap_memfree(a);
}
if (ber = NULL) {
ber_free(ber, 0);

}

printf(“\n”);
}
Idap_msgfree(result);
Idap_unbind(Id);
return(0);

B.2.2 Read Using JNDI

/*
* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Search the directory for the specific entry
* "cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
* Retrieve all attributes from the entry.

*

* [Equivalent to rdentry.c in Netscape SDK]
*/

import java.util. Hashtable;

Sun Microsystems, Inc. 50 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

import javax.naming.*;
import javax.naming.directory.*;

class Rdentry {
public static void main(String[] args) {

Hashtable env = new Hashtable(5, 0.75f);
/*
* Specify the initial context implementation to use.
* This could also be set by using the -D option to the java program.
* For example,
* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
* Rdentry
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(Context. PROVIDER_URL, Env.MY_SERVICE);

try {
/* get a handle to an Initial DirContext */
DirContext ctx = new InitialDirContext(env);

/* Read Babs' entry */
Attributes attrs = ctx.getAttributes(Env.ENTRYDN);

if (attrs == null) {
System.out.printin(Env.ENTRYDN + "has no attributes");
}else {
/* print each attribute */
for (NamingEnumeration ae = attrs.getAll();
ae.hasMoreElements();) {
Attribute attr = (Attribute)ae.next();
String attrld = attr.getID();

[* print each value */

for (NamingEnumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin(attrid + ": " + vals.nextElement()))

}

} catch (NamingException €) {
System.err.printin("Rdentry example failed.");
e.printStackTrace();

}
}
}

B.3 Get Attributes

B.3.1 Get Attributes Using LDAP C API

/*
* Copyright (c) 1996. Netscape Communications Corporation. All

Sun Microsystems, Inc. 51 7/14/99

Java Naming and Directory Interface

* rights reserved.

*

* Retrieve several attributes of a particular entry.

*/

#include “examples.h”

int

main(int argc, char **argv)

{

LDAP *Id;
LDAPMessage *result, *e;
char **vals, *attrs[5];
int i;

/* get a handle to an LDAP connection */
if ((Id = Idap_init{ MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");

return(1);
}
attrs[0] = “cn”; [* Get canonical name(s) (full name) */
attrs[1] = “sn”; [* Get surname(s) (last name) */
attrs[2] = “mail”; /* Get email address(es) */
attrs[3] = “telephonenumber”; /* Get telephone number(s) */

attrs[4] = NULL;

if (Idap_search_s(Id, ENTRYDN, LDAP_SCOPE_BASE,
“(objectclass=*)", attrs, 0, &result) '= LDAP_SUCCESS) {
Idap_perror(Id, “ldap_search_s");
return(1);

}

[* print it out */
if (e = Idap_first_entry(Id, result)) != NULL) {
if ((vals = Idap_get_values(Id, e, “cn”)) I= NULL) {
printf(“Full name:\n”);
for (i =0; vals[i] '= NULL; i++) {
printf(“\t%s\n", valsJi]);

Idap_value_free(vals);
}
if ((vals = Idap_get_values(Id, e, “sn”)) I= NULL) {
printf(“Last name (surname):\n");
for (i =0; vals[i] '= NULL; i++) {
printf(“\t%s\n”, vals]i]);

ldap_value_free(vals);
}
if ((vals = Idap_get_values(Id, e, “mail”)) = NULL) {
printf(“Email address:\n");
for (i =0; vals[i] '= NULL; i++) {
printf(“\t%s\n”, valsi]);

ldap_value_free(vals);

}

if ((vals = Idap_get_values(Id, e, “telephonenumber”)) '= NULL) {

printf(“Telephone number:\n”);

Sun Microsystems, Inc. 52

Examples for LDAP Programmers

7/14/99

Java Naming and Directory Interface

for (i =0; vals[i] = NULL; i++) {
printf(“\t%s\n”, vals[i]);
}
Idap_value_free(vals);
}
}

Idap_msgfree(result);
Idap_unbind(Id);
return(0);

B.3.2 Get Attributes Using JNDI

/*
* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Retrieve several attributes of a particular entry.
*

* [equivalent to getattrs.c in Netscape SDK]

*/

import java.util. Hashtable;
import java.util. Enumeration;

import javax.naming.*;
import javax.naming.directory.*;

class Getattrs {
public static void main(String[] args) {

Hashtable env = new Hashtable(5, 0.75f);

/*

* Specify the initial context implementation to use.

* For example,

* This could also be set by using the -D option to the java program.

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \

* Getattrs

*/

env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(Context. PROVIDER_URL, Env.MY_SERVICE);

try {
/* get a handle to an Initial DirContext */

DirContext ctx = new InitialDirContext(env);

String[] attrs = new String[4];

attrs[0] = "cn"; /* Get canonical name(s) (full name) */
attrs[1] = "sn"; /* Get surname(s) (last name) */
attrs[2] = "mail"; /* Get email address(es) */

attrs[3] = "telephonenumber”; /* Get telephone number(s) */
Attributes result = ctx.getAttributes(Env.ENTRYDN, attrs);

if (result == null) {
System.out.printin(Env.ENTRYDN +

Sun Microsystems, Inc. 53

Examples for LDAP Programmers

7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

"has none of the specified attributes.");
}else {
[* print it out */
Attribute attr = result.get("cn");
if (attr = null) {
System.out.printin("Full name:");
for (NamingEnumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin("\t" + vals.nextElement()))

}

attr = result.get("sn");
if (attr = null) {
System.out.printin("Last name (surname):");
for (NamingEnumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin("\t" + vals.nextElement()))

}

attr = result.get("mail");
if (attr = null) {
System.out.printin("Email address:");
for (NamingEnumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin("\t" + vals.nextElement()))

}

attr = result.get("telephonenumber");
if (attr = null) {
System.out.printin(“Telephone number:");
for (NamingEnumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin("\t" + vals.nextElement()))

}

} catch (NamingException e) {
System.err.printin("Getattrs example failed.");
e.printStackTrace();

}

}
}

B.4 Compare An Attribute

B.4.1 Compare Using LDAP C API

/*

* Copyright (c) 1996. Netscape Communications Corporation. All

* rights reserved.

*

* Use Idap_compare() to compare values agains values contained in entry
* “cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
* We test to see if (1) the value “person” is one of the values in the

* objectclass attribute (it is), and if (2) the value “xyzzy” is in the

Sun Microsystems, Inc. 54 7/14/99

Java Naming and Directory Interface

* objectlass attribute (it isn't, or at least, it shouldn’t be).

*

*/

#include “examples.h”

int

main(int main, char **argv)

{

LDAP *|d;
int rc;

/* get a handle to an LDAP connection */

if ((Id = Idap_init{ MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");
return(1);

}

[* authenticate to the directory as nobody */

if (1dap_simple_bind_s(Id, NULL, NULL) != LDAP_SUCCESS)) {
Idap_perror(Id, “Idap_simple_bind_s");
return(1);

}

[* compare the value “person” against the objectclass attribute */
rc = ldap_compare_s(Id, ENTRYDN, “objectclass”, “person”);
switch (rc) {
case LDAP_COMPARE_TRUE:
printf(“The value \"person\” is contained in the objectclass “
“attribute.\n");
break;
case LDAP_COMPARE_FALSE:
printf(“The value \"person\” is not contained in the objectclass “
“attribute.\n");
break;
default:
Idap_perror(Id, “ldap_compare_s");

}

/* compare the value “xyzzy” against the objectclass attribute */
rc = ldap_compare_s(Id, ENTRYDN, “objectclass”, “xyzzy”);
switch (rc) {
case LDAP_COMPARE_TRUE:
printf(“The value \"xyzzy\" is contained in the objectclass “
“attribute.\n");
break;
case LDAP_COMPARE_FALSE:
printf(“The value \"xyzzy\” is not contained in the objectclass “
“attribute.\n");
break;
default:
Idap_perror(Id, “ldap_compare_s");

}

Idap_unbind(Id);
return(0);

Sun Microsystems, Inc. 55

Examples for LDAP Programmers

7/14/99

Java Naming and Directory Interface

B.4.2

Sun Microsystems, Inc. 56

Examples for LDAP Programmers

Compare Using JNDI

/*

* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Use search() to compare values against values contained in entry

* "cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
* We test to see if (1) the value "person" is one of the values in the

* objectclass attribute (it is), and if (2) the value "xyzzy" is in the

* objectlass attribute (it isn't, or at least, it shouldn't be).

*

* [equivalent to compare.c in Netscape SDK]

*

*/

import java.util. Hashtable;

import javax.naming.*;
import javax.naming.directory.*;

class Compare {

public static void main(String[] args) {

Hashtable env = new Hashtable(5, 0.75f);
/*
* Specify the initial context implementation to use.
* This could also be set by using the -D option to the java program.
* For example,
* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
* Compare
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(Context. PROVIDER_URL, Env.MY_SERVICE);

DirContext ctx = null;

SearchControls ctls = new SearchControls();
ctls.setSearchScope(SearchControls.OBJECT_SCOPE);
ctls.setReturningAttributes(new String[0]); // do not return any attrs

try {
/* get a handle to an Initial DirContext */

ctx = new InitialDirContext(env);

} catch (NamingException e) {
System.err.printin("Cannot get initial context.");
return;

}

try {
NamingEnumeration results =

ctx.search(Env.ENTRYDN, "objectclass=person", ctls);

if (results !'= null && results.hasMoreElements()) {

System.out.printin(
"The value \"person\" is contained in the objectclass attribute.");

}else {
System.out.printin(

7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

"The value \"person\" is not contained in the objectclass attribute.");

} catch (NamingException e) {
System.err.printin("Comparison of value person failed.");

}

try {
NamingEnumeration results =

ctx.search(Env.ENTRYDN, "objectclass=xyzzy", ctls);

if (results !'= null && results.hasMoreElements()) {
System.out.printin(
"The value \"xyzzy\" is contained in the objectclass attribute.");
}else {
System.out.printin(
"The value \"xyzzy\" is not contained in the objectclass attribute.");
}
} catch (NamingException €) {
System.err.printin("Comparison of value xyzzy failed.");

}

B.5 Modify Attributes

B.5.1 Modify Attributes Using LDAP C API

/*

* Copyright (c) 1996. Netscape Communications Corporation. All

* rights reserved.

*

* Modify an entry:

* - replace any existing values in the “mail” attribute with “babs@ace.com”
* - add a new value to the “description” attribute

*/

#include “examples.h”

int
main(int argc, char **argv)
{

LDAP *|d;

LDAPMod modo;
LDAPMod mod1;
LDAPMod *mods[3];
char *valsO[2];
char *vals1[2];
time_t now;

char buf[128];

/* get a handle to an LDAP connection */
if ((Id = Idap_init{t MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");
return(1);
}
[* authenticate */
if (Idap_simple_bind_s(Id, ENTRYDN, ENTRYPW) |= LDAP_SUCCESS) {

Sun Microsystems, Inc. 57 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

Idap_perror(Id, “Idap_simple_bind_s");
return(1);
}
/* construct the list of modifications to make */
mod0.mod_op = LDAP_MOD_REPLACE;
mod0.mod_type = “mail”;
vals0[0] = “babs@ace.com”;
valsO[1] = NULL;
mod0.mod_values = vals0;

modl.mod_op = LDAP_MOD_ADD;
mod1l.mod_type = “description”;
time(&now);
sprintf(buf, “This entry was modified with the modattrs program on %s”,
ctime(&now));
/* Get rid of \n which ctime put on the end of the time string */
if (buf] strlen(buf)-1]=="n") {
buf[strlen(buf) - 1]1="0";
}
vals1[0] = buf;
valsi[1] = NULL;
modl.mod_values = valsi;

mods[0] = &mod0;
mods[1] = &mod1,;
mods[2] = NULL;

/* make the change */
if (Idap_modify_s(Id, ENTRYDN, mods)
1= LDAP_SUCCESS) {

Idap_perror(Id, “ldap_modify_s");
return(1);

}

Idap_unbind(Id);

printf(“modification was successful\n”);

return(0);

B.5.2 Modify Attributes Using JNDI

/*
* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Modify an entry:
* - replace any existing values in the "mail" attribute with "babs@ace.com”
* - add a new value to the "description" attribute

*

* [equivalent to modattrs.c in Netscape SDK]
*/

import java.util.Hashtable;
import java.util.Date;

import javax.naming.*;
import javax.naming.directory.*;

class Modattrs {

Sun Microsystems, Inc. 58 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

public static void main(String[] args) {

Hashtable env = new Hashtable(5, 0.75f);
/*
* Specify the initial context implementation to use.
* This could also be set by using the -D option to the java program.
* For example,
* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
* Modattrs
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(Context. PROVIDER_URL, Env.MY_SERVICE);

[* specify authentication information */

env.put(Context. SECURITY_AUTHENTICATION, "simple");
env.put(Context. SECURITY_PRINCIPAL, Env.MGR_DN);
env.put(Context. SECURITY_CREDENTIALS, Env.MGR_PW);

try {
/* get a handle to an Initial DirContext */

DirContext ctx = new InitialDirContext(env);

[* construct the list of modifications to make */
Modificationltem[] mods = new Modificationltem[2];

Attribute modO = new BasicAttribute("mail”, "babs@eng");
// Update mail attribute
mods[0] = new Madificationltem(DirContext. REPLACE_ATTRIBUTE, mod0);

/I Add another value to description attribute
Attribute mod1 =
new BasicAttribute("description”,
"This entry was modified with the Modattrs program on " +
(new Date()).toString());
mods[1] = new Modificationltem(DirContext. ADD_ATTRIBUTE, mod1);

/* Delete the description attribute altogether */

/*

Attribute modl = new BasicAttribute("description");

mods[2] = new Madificationltem(DirContext. REMOVE_ATTRIBUTE, mod1);
*/

/* make the change */
ctx.modifyAttributes(Env.ENTRYDN, mods);
System.out.printin("modification was successful.");

} catch (NamingException €) {
System.err.printin("modification failed. " + e);

}
}
}

B.6 Rename An Entry

Sun Microsystems, Inc. 59 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

B.6.1 Rename Using LDAP C API

/*

* Copyright (c) 1996. Netscape Communications Corporation. All

* rights reserved.

*

* Modify the RDN (relative distinguished name) of an entry. In this

* example, we change the dn “cn=Jacques Smith, o=Ace Industry, c=US"
* to “cn=Jacques M Smith, o=Ace Industry, c=US".

*

* Since it is an error to either (1) attempt to modrdn an entry which

* does not exist, or (2) modrdn an entry where the destination name

* already exists, we take some steps, for this example, to make sure
*we'll succeed. We (1) add “cn=Jacques Smith” (if the entry exists,

* we just ignore the error, and (2) delete “cn=Jacques M Smith” (if the

* entry doesn’t exist, we ignore the error).

*

* We pass 0 for the “deleteoldrdn” argument to [dap_modrdn2_s(). This
* means that after we change the RDN, the server will put the value

* “Jacques Smith” into the cn attribute of the new entry, in addition to

* “Jacques M Smith”.

*/

#include “examples.h”
#define NMODS 4
unsigned long global_counter = 0;

static void free_mods(LDAPMod **mods);

int
main(int argc, char **argv)
{
LDAP *Id;
char *dn, *ndn, *nrdn;
int i;
int rc;
LDAPMod *mods;

[* Values we’ll use in creating the entry */

char *objectclass_values[] = { “top”, “person”, “
“inetOrgPerson”, NULL };

char *cn_values[] = { “Jacques Smith”, NULL };

char *sn_values[] = { “Smith”, NULL };

char *givenname_values[] = { “Jacques”, NULL };

organizationalPerson”,

[* Specify the DN we’re adding */

dn = “cn=Jacques Smith, o=Ace Industry, c=US";

[* the destination DN */

ndn = “cn=Jacques M Smith, o=Ace Industry, c=US";
/* the new RDN */

nrdn = “cn=Jacques M Smith”;

/* get a handle to an LDAP connection */

if ((Id =Idap_init(MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");
return(1);

}

Sun Microsystems, Inc. 60 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

[* authenticate to the directory as the Directory Manager */

if (I[dap_simple_bind_s(ld, MGR_DN, MGR_PW) I= LDAP_SUCCESS) {
Idap_perror(Id, “Idap_simple_bind_s");
return(1);

}

if ((mods = (LDAPMod **) malloc((NMODS + 1) * sizeof(LDAPMod *)))
== NULL) {
fprintf(stderr, “Cannot allocate memory for mods array\n”);
return(1);
}
[* Construct the array of values to add */
for (i =0;i <NMODS; i++) {
if ((mods [i] = (LDAPMd *) malloc(sizeof(LDAPMod))) == NULL) {
fprintf(stderr, “Cannot allocate memory for mods element\n”);
return(1);
}
}
mods[0]->mod_op = 0;
mods[0]->mod_type = “objectclass”;
mods[0]->mod_values = objectclass_values;
mods[1]->mod_op = 0;
mods[1]->mod_type = “cn”;
mods[1]->mod_values = cn_values;
mods[2]->mod_op = 0;
mods[2]->mod_type = “sn”;
mods[2]->mod_values = sn_values;
mods[3]->mod_op = 0;
mods[3]->mod_type = “givenname”;
mods[3]->mod_values = givenname_values;
mods[4] = NULL;

/* Add the entry */
if (rc = Idap_add_s(Id, dn, mods)) != LDAP_SUCCESS) {
I* If entry exists already, fine. Ignore this error. */
if (rc == LDAP_ALREADY_EXISTS) {
printf(“Entry \"%s is already in the directory.\n”, dn);
}else {
Idap_perror(Id, “Idap_add_s");
free_mods(mods);
return(1);
}
}else {
printf(“Added entry \"%s\".\n", dn);
}

free_mods(mods);

[* Delete the destination entry, for this example */
if ((rc = |dap_delete_s(Id, ndn)) != LDAP_SUCCESS) {
[* If entry does not exist, fine. Ignore this error. */
if (rc == LDAP_NO_SUCH_OBJECT) {
printf(“Entry \"%s\" is not in the directory. “
“No need to delete.\n”, ndn);
}else {
Idap_perror(Id, “ldap_delete_s");
return(1);

}

}else {

Sun Microsystems, Inc. 61 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

printf(“Deleted entry \"%s\".\n", ndn);
}

/* Do the modrdn operation */

if (Idap_modrdn2_s(Id, dn, nrdn, 0) != LDAP_SUCCESS) {
Idap_perror(Id, “ldap_modrdn2_s");
return(1);

}

printf(“The modrdn operation was successful. Entry\n”
“\"%s\" has been changed to\n”
“"%s\".\n", dn, ndn);

Idap_unbind(Id);
return O;

/*

* Free a mods array.

*/

static void

free_mods(LDAPMod **mods)
{

inti;

for (i=0;i<NMODS; i++) {
free(mods[i]);
}

free(mods);

}

B.6.2 Rename Using JNDI

/*
* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Modify the RDN (relative distinguished name) of an entry. In this

* example, we change the dn "cn=Jacques Smith, o=Ace Industry, c=US"
* to "cn=Jacques M Smith, o=Ace Industry, c=US".

*

* Since it is an error to either (1) attempt to modrdn an entry which

* does not exist, or (2) modrdn an entry where the destination name

* already exists, we take some steps, for this example, to make sure

* we'll succeed. We (1) add "cn=Jacques Smith" (if the entry exists,

* we just ignore the error, and (2) delete "cn=Jacques M Smith" (if the
* entry doesn't exist, we ignore the error).

*

* After renaming, we add back the attribute "Jacques Smith" into the cn
* attribute.

*

* [based on modrdn.c of Netscape SDK]

*/

import java.util.Hashtable;
import java.util.Date;

Sun Microsystems, Inc. 62 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

import javax.naming.*;
import javax.naming.directory.*;

class Modrdn {
public static void main(String[] args) {

[* Values we'll use in creating the entry */

Attribute objClasses = new BasicAttribute("objectclass");
objClasses.add("top");

objClasses.add("person");
objClasses.add("organizationalPerson");
objClasses.add("inetOrgPerson");

Attribute cn = new BasicAttribute("cn”, "Jacques Smith");
Attribute sn = new BasicAttribute("sn", "Smith");
Attribute givenNames = new BasicAttribute("givenname”, "Jacques");

[* Specify the DN we're adding */

String dn = "cn=Jacques Smith, " + Env.MY_MODBASE;

[* the destination DN */

String ndn = "cn=Jacques M Smith, " + Env.MY_MODBASE;
[* the new RDN */

String nrdn = "cn=Jacques M Smith";

Hashtable env = new Hashtable(5, 0.75f);
/*
* Specify the initial context implementation to use.
* This could also be set by using the -D option to the java program.
* For example,
* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
* Modrdn
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(Context. PROVIDER_URL, Env.MY_SERVICE);

[* specify authentication information */

env.put(Context. SECURITY_AUTHENTICATION, "simple");
env.put(Context. SECURITY_PRINCIPAL, Env.MGR_DN);
env.put(Context. SECURITY_CREDENTIALS, Env.MGR_PW);

DirContext ctx = null;

try {
[* get a handle to an Initial DirContext */

ctx = new InitialDirContext(env);
Attributes orig = new BasicAttributes();
orig.put(objClasses);

orig.put(cn);

orig.put(sn);

orig.put(givenNames);

/* Add the entry */
ctx.createSubcontext(dn, orig);
System.out.printin("Added entry " + dn + ".");

} catch (NameAlreadyBoundException e) {

Sun Microsystems, Inc. 63 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

* If entry exists already, fine. Ignore this error. */
System.out.printin("Entry " + d n + " already exists, no need to add");
} catch (NamingException e) {
System.err.printin("Modrdn: problem adding entry." + e);
System.exit(1);
}

try {
/* Delete the destination entry, for this example */

ctx.destroySubcontext(ndn);
System.out.printin("Deleted entry " + ndn +".");

} catch (NameNotFoundException e) {
/* If entry does not exist, fine. Ignore this error. */
System.out.printin("Entry " + ndn + " is not in the directory. " +

"No need to delete.");

} catch (NamingException e) {
System.err.printin("Modrdn: problem deleting entry." + e);
System.exit(1);

}

/* Do the modrdn operation */
try {
ctx.rename(dn, ndn);
System.out.printin("The modrdn operation was successful. Entry " +
dn + " has been changed to " + ndn + ".");
} catch (NamingException e) {
System.err.printin("Modify operation failed." + e);
}
}
}

Sun Microsystems, Inc. 64 7/14/99

Java Naming and Directory Interface Legend for Class Diagram

Appendix C: Legend for Class Diagram

In a class diagram, we visually distinguish the different kinds of Java entities, as follows:

1. The interface: A rounded rectangle

2. The class: A rectangle

3. The abstract class: A rectangle with an empty dot

4. The final class: A rectangle with a black dot

5. Classes with subclasses: A rectangle with a small black triangle on the lower right corner

Most of these elements are shown below. The class or interface being described in the current chapter is shaded grey (this is
not applicable for package class diagrams). A solid line represeeatsls while a dotted line representsplements

Class from Abstract class i
another package Class with subclasses

\

‘ java. | ang. Obj ect J
NenuGomponent o)
enen]
Emeckbowanultem ;Fox (1tenselectable |)
/ s >
extends Interface

The currentclass
implements

Sun Microsystems, Inc. 65 7/14/99

Java Naming and Directory Interface Legend for Class Diagram

Sun Microsystems, Inc. 66 7/14/99

Java Naming and Directory Interface JNDI Change History

Appendix D: JNDI Change History

1.2: INDI Changes Since 1.1

Addedjavax.naming.event package.
Addedjavax.naming.ldap package.
Added support for configuration using resource files. See Chapter 6JMEHeAPI document.

APIl-related Changes

AddedNamingEnumeration.close() for cancelling or terminating enumerations.
AddedReferralException.getReferralContext(Hashtable env) andReferralExcep-
tion.retryReferral() to allow creation and retry of referral context with different environment properties.
Clarified how context methods that accljpimeargument should deal withompositeName and nolComposite-
Namearguments. Specifically, instances@dmpositeName are treated as composite name, while all others are treated
as compound name.

AddedContext.getNamelnNamespace() for retrieving the full name of a context within its own namespace.
Clarified definition of the class factory location dRaference object. Specifically, the location is a codebase, which
consists of a list space-separated URLSs.

Added support for ordered multivalued attributegtiibute andBasicAttribute

AddedBasicAttributes.equals() andBasicAttributes.hashCode()

Redefined semantics BirContext.getSchemacClassDefinition() so that it returns a context that contains
theDirContext objects of class definitions, rather than returning one (arbitrary) class definition.

Added protectethitialContext /InitialDirContext constructors to allow lazy initialization. Useful for sub-
class implementations.

SPI-related Changes

AddedStateFactory /NamingManager.getStateToBind() , analogous t@bjectFactory /NamingMan-
ager.getObjectinstance() , for transforming an object’s state before the object is bound in the naming/directory
service.

Added interface®irObjectFactory andDirStateFactory to better support service providers that implement
theDirContext interface. Adde®irectoryManager.getObjectinstance() andDirectoryMan-
ager.getStateToStore() to use these interfaces.

Refined definition oNamingManager.getObjectinstance() to not treat URL strings specially. Instead, the

URL should be wrapped insideReference whoseRefAddr type is “URL".

MadeResolveResult implementSerializable

Defined a special form dkeference called a next naming system (nns) reference for supporting “dynamic federation”.
This reference hasRefAddr type of “nns” and a content consisting of the resolved object.

Added the string constaNlamingManager.CPE which names a property set BgmingManager.getContinu-

ationContext() /DirectoryManager.getContinuationContext() . The value of this property is an
instance ofcannotProceedException . This is useful to service providers that implement federation by chaining the
CPEs.

Defined a convention for service providers to use when naming environment properties. See Section 6.1.

Sun Microsystems, Inc. 67 7/14/99

Java Naming and Directory Interface JNDI Change History

Sun Microsystems, Inc. 68 7/14/99

	1 Introduction
	2 Goals and Design Principles
	2.1 Keep it consistent and intuitive
	2.2 Pay for what you use
	2.3 Implementable over common directory and naming services and protocols
	2.4 Seamless integration
	2.5 Support for leading industry standards

	3 Overview of the Architecture
	4 Fundamentals
	4.1 Naming — The Foundation
	4.2 Directory Objects
	4.3 URLs and Composite Names
	4.4 Events

	5 Overview of the Interface
	5.1 The Naming Package — javax.naming
	5.1.1 Contexts
	5.1.2 The Initial Context
	5.1.3 Names
	5.1.4 Bindings
	5.1.5 References
	5.1.6 Referrals

	5.2 The Directory Package — javax.naming.directory
	5.2.1 Directory Objects
	5.2.2 Attributes
	5.2.3 Directory Objects as Naming Contexts
	5.2.4 The Initial Context
	5.2.5 Searches
	5.2.6 Schema

	5.3 The Event Package — javax.naming.event
	5.3.1 Naming Events
	5.3.2 Naming Listeners
	5.3.3 Event Registration and Deregistration
	5.3.4 Exception Handling

	5.4 The LDAP Package — javax.naming.ldap
	5.4.1 Extended Operations
	5.4.2 Controls
	5.4.3 The Initial Context
	5.4.4 Unsolicited Notifications

	6 Configuration
	6.1 Environment Properties
	6.2 Context Environment
	6.3 Resource Files
	6.3.1 Application Resource Files
	6.3.2 Provider Resource Files

	6.4 Application/Applet-scope Standard JNDI Properties
	6.5 How the Environment Properties are Set
	6.6 Modifications to the Environment
	6.6.1 Scope
	6.6.2 Timeliness
	6.6.3 Defaults
	6.6.4 Acceptable Values

	7 Scenarios
	7.1 User authentication
	7.2 Electronic Mail
	7.3 Databases
	7.4 Browsing
	7.5 Network Printing
	7.5.1 Browsing and searching for printers

	8 Security Considerations
	8.1 JNDI Classes
	8.2 Security Model
	8.3 Access To Servers
	8.4 Sharing Context Handles
	8.5 Context Environment
	8.6 Class Loading
	8.7 Serializable Objects
	8.8 Responsibilities of Service Providers
	8.8.1 Context Environment
	8.8.2 Network Security
	8.8.3 Accessing Local Files
	8.8.4 Privileged Code, Native Methods

	9 Design Choices
	9.1 Separation of Interfaces into Context and DirContext
	9.2 Separation of JNDI into Different Functional Packages
	9.3 Separation of Client APIs and Service Provider Interfaces
	9.4 Multiple methods for listing Context
	9.5 Support for Federation
	9.6 DirContext versus DirObject
	9.7 Support for Schemas
	9.8 Overloaded Methods in Context and DirContext
	9.9 Reference and Referenceable
	9.10 Automatically Turning References into Objects

	Appendix A: JNDI Standard Environment Properties
	Appendix B: Examples for LDAP Programmers
	B.1 Search the Directory
	B.1.1 Search Using LDAP C API
	B.1.2 Search Using JNDI

	B.2 Read An Entry
	B.2.1 Read Using LDAP C-API
	B.2.2 Read Using JNDI

	B.3 Get Attributes
	B.3.1 Get Attributes Using LDAP C API
	B.3.2 Get Attributes Using JNDI

	B.4 Compare An Attribute
	B.4.1 Compare Using LDAP C API
	B.4.2 Compare Using JNDI

	B.5 Modify Attributes
	B.5.1 Modify Attributes Using LDAP C API
	B.5.2 Modify Attributes Using JNDI

	B.6 Rename An Entry
	B.6.1 Rename Using LDAP C API
	B.6.2 Rename Using JNDI

	Appendix C: Legend for Class Diagram
	Appendix D: JNDI Change History
	1.2: JNDI Changes Since 1.1
	API-related Changes
	SPI-related Changes

