D Sun

microsystems

JavaSoft
JNDI: Javdl Naming and Directory Interface

The Java Naming and Directory application programming interface (JNDI API).

Please send comments to jndi@java.sun.com.

JNDI is being packaged as a Java 1.1-compatible Standard Extension. The JNDI

rl;’:r%kea'lsge packages have been renamed to use the “javax” prefix, following the convention
for Java Standard Extensions.
Java Naming and Directory 1.1Betal

December 2, 1997

Java Naming and Directory Interface

Copyright © 1997 by Sun Microsystems Inc.
901 San Antonio Road, Palo Alto, CA 94303.
All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of Sun Micro-
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.,
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

JavaSoft ii 12/2/97

Java Naming and Directory Interface

Contents
1 INtrodUCHioN 1
2 Goalsand Design PrinCiples 2
3 Fundamentals. e 3
3.1 Naming — The Foundation 3
3.2 Directory ODJects 4
3.3 URLsand Composite Names, 6
4 OQverview of the Architecture. e e 7
5 Overviewofthe Interface i e e 8
5.1 The Naming Interface 4avax.naming 8
5.1.1 Contexts and NamesS e 8
5.1.2 BiNAINGS. . . oot 10
5.1.3 REf@reNCES . . .o e 10
5.2 The Directory Interface 4avax.naming.directory ... 11
5.2.1 Directory Objects and Attributes. 11
5.2.2 Directory Objects as NamingContexts.c ... 13
B.2.3 Searches. 13
D24 SChema. . .. e e e 14
5.3 Context Environment 16
5.4 Referrals e 17
B SCENANOS . . . ittt 19
6.1 User authentication i 19
6.2 Electronic Mail e 19
6.3 Databases e 20
6.4 BrowWSINgG 20
6.5 Network Printing e 21
6.5.1 Browsing and searching forprinters 22
7 Security Considerations 23
7.1 INDI ClasSeS ...ttt e e 23
7.2 Security Model 23
7.3 ACCESS TO SEBIVEIS . .o ittt e e e e e e e e e 24
7.4 Sharing ContextHandles i 24
7.5 Context Environment 24
7.6 Class Loadingt 24
7.7 Serializable Objects 25
7.8 Responsibilities of Service Providers 25
8 Design ChoiCES i e 27
Appendix A: JNDI Context Environment i 31
Appendix B: Examples for LDAP Programmersuuiiiiunnnnn.. 35

JavaSoft iii 12/2/97

Java Naming and Directory Interface

Appendix C: Legend for Class Diagram 55
Appendix D: INDI Change History e e 57

JavaSoft iv 12/2/97

Java Naming and Directory Interface Introduction

1

JavaSoft

Introduction

Directory services play a vital role in Intranets and Internets by providing access to a variety
of information about users, machines, networks, services, and applications. By its very nature,
a directory service incorporates a naming facility for providing human understandable
namespaces that characterize the arrangement and identification of the various entities.

The computing environment of an enterprise typically consists of several naming facilities of-
ten representing different parts o€@mpositenamespace. For example, the Internet Domain
Name System (DNS) may be used as the top-level naming facility for different organizations
within an enterprise. The organizations themselves may use a directory service such as LDAP
or NDS or NIS. From a user’s perspective, there is one namespace consisting of composite
names. URLs are examples of composite nhames because they span namespaces of multiple
naming facilities. Applications which use directory services must support this user perspective.

Many Java application developers can benefit from a directory service API that is not only in-
dependent of the particular directory or naming service implementation, but also enables seam-
less access to directory objects through multiple naming facilities. In fact, any application can
attach its own objects to the namespace. Such a facility enables any Java application to discover
and retrieve Java objects of any type.

End users can benefit from logical namespaces that allow easier discovery and identification
of the objects in the network.

Directory service developers can benefit from a service-provider capability that enables them
to incorporate their respective implementations without requiring changes to the client.

JNDI is an API specified in Jav¥ that provides directory and naming functionality to appli-
cations written in Java. It is defined to be independent of any specific directory service imple-
mentation. Thus, a variety of directories can be accessed in a common way.

Here are two examples to briefly illustrate some of the more commonly used featid&d of

An application that wants to access a printer needs the corresponding printer object. This is
simply done as follows:

prt = (Printer) building7.lookup(“puffin”);
prt.print(document);

JNDI does all the work of locating the information needed to construct the printer object.

An application that wants to find a person’s phone numbers, which are stored in the organiza-
tion’s directory, can simply do:

String[] attrs = {*"workPhone”, “cellPhone”, “faxNumber}
bobsPhones = directory.getAttributes(“cn=Bob, o=Widget, c=US", attrs);

If there may be several Bobs in the Widget organization, the application can search the organi-
zation’s directory to find the right Bob as follows:

bob = directory.search(“o=Widget, c=US", “cn=Bob”, searchctls);

This document describes the architecture and interfacHsoif.

1 12/2/97

Java Naming and Directory Interface Goals and Design Principles

2

Goals and Design Principles

We followed several principles and maxims in designing the API.

2.1 Keep it Consistent and Intuitive

Wherever possible, we have used existing components from the rest of the Java system.

Adhering to this principle not only makes JNDI consistent with existing core Java classes but
also reduces needless proliferation of classes.

The object-oriented nature of Java allows for an intuitive and simple API design, in which the
directory service functionality is expressed as a natural extension to the more fundamental
naming service functionality.

2.2 Pay for What you Use

The APl is structured in a tiered manner so that the application programmer interested in a cer-
tain directory service capability need not necessarily know about a more advanced capability.
We have strived to keep the lower tiers simple and also make them represent the common case
capability, relegating the more complex ones to the upper tiers.

2.3 JNDI must be implementable over common Directory and Naming service
interface and protocols

This goal is important for two reasons. First, it enables Java applications to take advantage of
information in a variety of existing naming and directory services — existing ones such as
DNS, NDS, NIS (YP), and X.500, and emerging ones such as LDAP servers. Second, it helps
prevent the appearance of any implementation specific artifacts in the API.

Providing a unified interface to multiple naming and directory services does not imply that ac-
cess of unique features of a particular service is precluded. The unified APl which is designed
to cover the common case is still beneficial to applications that have explicit knowledge of the
underlying naming or directory service. Such applications still benefit from sharing the com-
mon portions that use the API. This is analogous to applications sharing commonly used class-
es and yet adding needed specificity via subclassing.

2.4 Enable Directory services to be seamlessly plugged in behind JNDI

JavaSoft

This is important not only because of the diversity of directory service and naming services in
the installed base that need to be supported, but also because new Java application and servic
programmers can export their own namespaces and directory objects in a uniform way.

We also wanted to make a variety of implementation choices possible without having the ap-
plication pay for this freedom. For example, a “thin-client” may be better served by a proxy-
style protocol in which the access to specific naming and directory services is relegated to a
server. Whereas, a performance sensitive, resource rich client, may choose to use an implemen-
tation which directly allows it to access the various servers. However, the application should
be insulated from these implementation choices. It should be possible to defer such choices
even until run-time.

2 12/2/97

Java Naming and Directory Interface Fundamentals

3

Fundamentals

A directory service provides access to diverse kinds of information about users and resources
in a network environment. It usesxaming systerfor purpose of identifying and organizing
directory objectdo represent this information. A directory object provides an association be-
tweenattributesandvalues Thus, a directory service enables information to be organized in a
hierarchical manner to provide a mapping between human understandable names and directory
objects.

3.1 Naming — The Foundation

JavaSoft

A fundamental facility in any computing system is the naming service — the means by which
names are associated with objects, and by which objects are found given their names. In tradi-
tional systems, the naming service is seldom a separate service. It is usually integrated with an-
other service, such as a file system, directory service, database, desktop, mail system,
spreadsheet, or calendar. For example, a file system includes a naming service for files and di-
rectories; a spreadsheet has a haming service for cells and macros.

The computing environment of an enterprise typically consists of several naming services.
There are naming services that provide contexts for naming common entities in an enterprise
such as organizations, physical sites, human users and computers. Naming services are also in-
corporated in applications offering services such as file service, mail service, printer service,
and so on. From a user’s perspective, there exist several natural and logical relationships be-
tween these naming services. For example, it is natural to think of naming a variety of services
such as files, mail, appointment calendar, and so on, in the context of a user. It is also natural
to think of a user in the context of a department, within a division of an enterprise. Meaningful
names can be composed using useful arrangements of naming services reflecting these rela-
tionships.

Every nameis generated by a set of syntactic rules calle@raing conventianAn atomic
nameis an indivisible component of a name, as defined by the naming convention.

A compound nameepresents a sequence of zero or more atomic names composed according
to the naming convention.

For example, in UNIX pathnames, atomic names are ordered from left to right, and are delim-
ited by slash (‘') characters. The UNIX pathnamelocal/bin is a compound name rep-
resenting the sequence of atomic namssjocal, and bin . In names from the Internet
Domain Name System (DNS), atomic names are ordered from right to left, and are delimited
by dot (*.) characters. Thus, the DNS nasales.Wiz.COM is a compound name representing

the sequence of atomic namesM, Wiz, sales

The association of an atomic name with an object is chifeting

A contextis an object whose state is a set of bindings with distinct atomic names. Every context
has an associated naming convention. A context provides a lookup (resolution) operation that
returns the object, and may provide operations such as for binding names, unbinding names,
listing bound names. An atomic name in one context object can be bound to another context
object of the same type, called subcontext giving rise to compound names.

3 12/2/97

Java Naming and Directory Interface Fundamentals

Resolution of compound names proceeds by looking up each successive atomic component in
each successive context. The reader will find a familiar modgix file naming, where di-
rectories serve as contexts, and pathnames may be compound names.

A naming systerns a connected set of contexts of the same type (having the same naming con-
vention) and providing the same set of operations with identical semantics.

A namespaces the set of all names in a naming system.

A composite namis a name that spans multiple naming systems. It consists of an ordered list
of zero or more components. Each component is a name from the namespace of a single naming
system.

For example, the namerassic.eng:/export/home/jdoe/.signature is a composite
name representation made up of a host naric.eng from a host namespace, and the
file name/export/home/jdoe/.signature from auNIX file namespace. Another example is
the InterneURL http://www.moon.org/public/index.html, which is a composite name
representation made up of the schemeatd from the ‘URL scheme-id” namespace,
www.moon.org Which is thedDNS name of the machine on which the web server is running, and
public/index.html which is a file name from a file namespace.

Every name is interpreted relative to some context, and every naming operation is performed
on a context object. A client can obtainiaiial contextobject that provides a starting point
for resolution of names.

3.2 Directory Objects

JavaSoft

The primary function of a naming system is to map names to objects. The objects can be of any
type. Adirectoryis a particular type of object that is used to represent the variety of information

in a computing environment. A directory object can have associated waithbttes An at-

tribute has an identifier and a set of values.

A directory object provides operations for creating attributes, adding, removing, and modifying
attributes associated with the directory object. If we make a directory object also be a naming
context, we can represent trees of directory information where the interior nodes not only be-
have like naming contexts but also contain attributes.

Figure 1 is an example used for illustrating several things.

4 12/2/97

Java Naming and Directory Interface Fundamentals

Figure 1: Example of a Composite Namespace

NDS

File System

“User” objects ‘

Printer

File

JavaSoft 5 12/2/97

Java Naming and Directory Interface Fundamentals

* ‘There can be multiple naming systems that can be represented by a composite
namespace. In this case, DNS is the used as the global naming system; one division uses
NDS, while a second division uses LDAP.

» Each namespace has interior nodes that represent naming contexts, which may be
directory objects as well. Leaf nodes can be objects of any type.

» ThelnitialContextis configured to have bindings to useful starting contexts in different
naming and directory systems.

» Applications just see a composite namespace. They can access any type of object bound
in any naming system in this arrangement.

» Services can incorporate their own namespaces which appear as first-class citizens in
JNDI.

 Arbitrary directory services can be added and accessed without requiring client
applications to be changed.

3.3 URLs and Composite Names

Universal Resource Locators (URLs) are composite names. Clients of JNDI can use URLSs to
refer to arbitrary types of objects. For example, a client cannfisgnfs.sun.com/ex-
port/jndi/src/README " to refer to a file object that is being accessed using the Network File
System (NFS) protocol. Similarly, a Java client can perform directory operations on a directory
object in an LDAP server using the URLddp://ldap.widget.com/cn=Jonathan,

ou=marketing "

JavaSoft 6 12/2/97

Java Naming and Directory Interface

4

Overview of the Architecture

Overview of the Architecture

The IJNDI architecture consists of the JNDI APl and the JNDI SPI. The JNDI API allows Java
applications to access a variety of naming and directory services. The JNDI SPI is designed to
be used by arbitrary service providers including directory service providers. This enables a va-
riety of directory and naming services to be plugged in transparently to the Java client (which
uses only the JNDI API). Figure 2 shows the JNDI architecture and includes a few service pro-

viders of directory and naming contexts as examples.

Figure 2: INDI Architecture

JavaSoft

Java Application

JNDI Implementation Manager

JNDI-
INDI-RMI| | cosNamin LDAP [} NDS

7 12/2/97

Java Naming and Directory Interface Overview of the Interface

5

Overview of the Interface

The JNDI API is contained in two packag@sax.naming for the naming operations, and
javax.naming.directory for directory operations. The JNDI service provider interface is
contained in the packageax.naming.spi (see theINDI SPI document for details).

The following sections provide an overview of the JNDI API. For more details on the API, see
the correspondingavadoc.

5.1 The Naming Interface —javax.naming

5.1.1

‘ java.lang.Object J
[Conposicetiane o e ame)
| CompoundName |
[Iniciatcontext | o (Contart)
| aneCrasspair 7
]—{ Binding | .n:::i?f-‘(java.'lang.c'loneab'le)
[Refadar O T Gavario Seriatizable)
— | — |
[Reference 7 (NamingEnumeration)
]—{ LinkRef | ((Referenceable)

(exception classes are not shown)

Contexts and Names

Context is the core interface that specifies a naming context. It defines basic operations such
as adding a name-to-object binding, looking up the object bound to a specified name, listing
the bindings, removing a name-to-object binding, creating and destroying subcontexts of the
same typeetc.

1. See Appendix C for legend of class diagram.

JavaSoft

8 12/2/97

Java Naming and Directory Interface Overview of the Interface

public interface Context {
public Object lookup(Name name) throws NamingException;
public void bind(Name name, Object obj) throws NamingException;
public void rebind(Name name, Object obj) throws NamingException;
public void unbind(Name name) throws NamingException;
public void rename(Name old, Name new) throws NamingException;
public NamingEnumeration listBindings() throws NamingException;

public Context createSubcontext(Name name) throws NamingException;
public void destroySubcontext(Name name) throws NamingException;

Every naming method ioontext takes a name as an argument. The operation defined by the
method is performed on tleantext object that is obtained by implicitly resolving the name.

If the name is empty (*”) the operation is performed directly on the context itself. The name of
an object can be a composite name reflecting the arrangement of the namespaces used to refe
to the object. Of course, the client is not exposed to any naming service implementation. In fact,
a new type of naming service can be introduced without requiring the application to be modi-
fied or even disrupted if it is running.

In INDI, every name is relative to a context. There is no notion of “absolute names.” An appli-
cation can bootstrap by obtaining its first context of cl@issiContext

public class InitialContext implements Context {
public InitialContext()...;

}

The initial context contains a variety of bindings that hook up the client to useful and shared
contexts from one or more naming systems, such as the namespace of URLSs or the root of DNS.

The Nameinterface represents a generic name — an ordered sequence of components. Each
Context method that takesNameargument has a counterpart that takes the namstagya

instead. The versions usimgme are useful for applications that need to manipulate names:
composing them, comparing components, and so on. The versionsuistng are likely to

be more useful for simple applications, such as those that simply read in a name and look up
the corresponding object.

The CompositeName class represents a sequence of names (atomic or compound) from multi-
ple namespaces. TRameparameter supplied to a method of tleetext class will typically
be a composite name.

The CompoundNameclass represents hierarchical names from a single namespace. A context’s
name parser can be used to manipulate compound names in the syntax associated with that par
ticular context:

JavaSoft 9 12/2/97

Java Naming and Directory Interface Overview of the Interface

5.1.2

5.1.3

JavaSoft

public interface Context {

public NameParser getNameParser(Name name) throws NamingException;

}

A namespace browser is an example of the kind of application that may need to manipulate
names syntactically at this level. Most other applications will work with strings or composite
names.

Bindings

Context.lookup() is the most commonly used operation. The context implementation can re-
turn an object of whatever class is required by the Java client. For example, a client might use
the name of a printer to look up the corresponéiinger object, and then print to it directly:

Printer printer = (Printer) ctx.lookup(“treekiller”);

printer.print(report);
Context.listBindings() returns an enumeration of name-to-object bindings, each binding
represented by an object of cl&ading . A binding is a tuple containing the name of the
bound object, the name of the object’s class, and the object itself.

The Context.list() method is similar tostBindings() , except that it returns an enumer-
ation of NameClassPair Objects. EaciNameClassPair contains an object's name and the
name of the object’'s class. Thg) method is useful for applications such as browsers that
wish to discover information about the objects bound within a context, but don’t need all of the
actual objects. AlthougistBindings() provides all of the same information, it is poten-
tially a much more expensive operation.

public class NameClassPair {
public String getName() ...;
public String getClassName() ...;

}

public class Binding extends NameClassPair {
public Object getObject() ...;

References

DifferentContext implementations are able to bind different kinds of objects natively. A par-
ticularly useful object that should be supported by any general-purpose context implementation
is theReference class. References represent other Java objects, and are used to give JNDI cli-
ents the illusion that objects of arbitrary classes are able to be bound in naming or directory
services — such as X.500 — that do not have native Java support.

10 12/2/97

Java Naming and Directory Interface Overview of the Interface

When the result of an operation suchcastext.lookup() or Binding.getObject() is a
Reference object, INDI attempts to convert the reference into the object that it represents be-
fore returning it to the client. A particularly significant instance of this occurs when a reference
representing @ontext of one naming system is bound to a name in a different naming system.
This is how multiple independent naming systems are joined together into the JNDI composite
namespace. Details of how this mechanism operates are providedNIh8PI document.

Objects that are able to be represented by a reference should implerReietkaceable

interface. Its single method getReference() =~ — returns the object’s reference. When such

an object is bound to a name in any context, the context implementation may store the reference
in the underlying system if the object itself cannot be stored natively.

Each reference may contain the name of the class of the object that it represents, and may also
contain the location (typically a URL) where the class file for that object can be found. In ad-
dition, a reference contains a sequence of objects ofra&ssir . EachRefAddr in turn con-

tains a “type” string and some addressing data, generally a string or a byte array.

A specialization oReference called aLinkRef is used to add “symbolic” links into the
JNDI namespace. It contains the name of a JNDI object. By default, these links are followed
whenever JNDI names are resolved.

| 5.2 The Directory Interface —javax.naming.directory1

5.2.1

‘ java.lang.Object J

—{ Attribute | e :;:::_’_’::“__.'.'j_'_'_'.':.‘-‘--~'-<java.1ang.c‘loneab'le >

4{ Attributes |

—{ ModificationItem | e

—{ SearchControls | . ':‘.:‘::::Z*E»Cjava.'io.Seri alizable >
—{ javax.naming.InitialContext J 'Cjavax.naming.Context >
InitialDirContext | ~~~~~ RREEER e (D'i rContext >

—{ javax.naming.NameClassPair J

javax.naming.Binding J

SearchResult |

(exception classes are not shown)

Directory Objects and Attributes

The DirContext interface enables the directory capability by defining methods for examining
and updating attributes associated with a directory object. Each directory object contains a set

1. See Appendix C for legend of class diagram.

JavaSoft

11 12/2/97

Java Naming and Directory Interface Overview of the Interface

of zero or more objects of classribute . Each attribute is denoted by a string identifier and
can have zero or more values of any type.

public interface DirContext extends Context {
public Attributes getAttributes(Name name)
throws NamingException;

public Attributes getAttributes(Name name,
String[] attrlds)
throws NamingException;

public void modifyAttributes(Name name,
int modOp,
Attributes attrs)
throws NamingException;

public void modifyAttributes(Name name,
Modificationltem[] mods)
throws NamingException;

}

public class Attribute ... {

public String getID();

public Object get() throws NamingException;

public NamingEnumerationEnumeration getAll()
throws NamingException;

}
The getAttributes() operations on a directory return some or all of its attributes. Attributes
are modified using two forms efodifyAttributes() . Both forms make use a “modification

operation”, one of:

ADD_ATTRIBUTE
REPLACE_ATTRIBUTE
REMOVE_ATTRIBUTE

TheADD_ATTRIBUTEOperation adds values to an attribute if that attribute already exists, while
the REPLACE_ATTRIBUTEDperation discards any pre-existing values. The first forrmadi-
fyAttributes() performs the specified operation on each element of a set of attributes. The
second form of takes an array of objects of classficationitem

public class Modificationltem {
public Modificationltem(int modOp, Attribute attr) ...;

}
Each operation is performed on its corresponding attribute in the order specified. When possi-
ble, a context implementation should perform each calbtifyAttributes() as an atomic
operation.

JavaSoft 12 12/2/97

Java Naming and Directory Interface Overview of the Interface

5.2.2 Directory Objects as Naming Contexts

ThebDirContext interface also behaves as a naming context by extendigriteat inter-
face. This means that any directory object can also provide a naming context. In addition to a
directory object keeping a variety of information about a person, for example, it is also a natural
naming context for resources associated with that person: a person’s printers, file system, cal-
endaretc.An application that is performing directory operations canniggDirContext
instead of javax.naming.InitialContext to create its initial context:

public class InitialDirContext

extends InitialContext implements DirContext {
public InitialDirContext() ...;

}
Hybrid operations perform certain naming and directory operations in a single atomic opera-
tion:

public interface DirContext extends Context {

public void bind(Name name, Object obj, Attributes attrs)
throws NamingException;

}

Other hybrid operations that are providedrabéd() andcreateSubcontext() that accept

an additionahttributes ~ argument

5.2.3 Searches

TheDirContext interface supports content-based searching of directories. In the simplest and
most common form of usage, the application specifies a set of attributes — possibly with spe-
cific values — to match. It then invokes timarContext.search() method on the directory
object, which returns the matching directory objects along with the requested attributes.

public interface DirContext extends Context {
public NamingEnumeration search(Name name,

Attributes matchingAttributes)
throws NamingException;

public NamingEnumeration search(Name name,
Attributes matchingAttributes,
String[] attributesToReturn)
throws NamingException;

}

The results of the search are returned sn@ngEnumeration containing an enumeration of
objects of clasSsearchResult

JavaSoft 13 12/2/97

Java Naming and Directory Interface Overview of the Interface

5.24

JavaSoft

public class SearchResult extends Binding {

public Attributes getAttributes() ...;
}

In the more sophisticated case, it is possible to specify a search filter and to provide controlling
information such as the scope of the search and the maximum size of the results. The search
filter specifies a syntax that follows Internet RFC 1960 for LDAP. 3dwchControls ar-

gument specify such things as the scope of the search: this can include a single directory object,
all of its children, or all of its descendants in the directory hierarchy.

public interface DirContext extends Context {

public NamingEnumeration search(Name name,
String filter,
SearchControls ctls)
throws NamingException;

public NamingEnumeration search(Name name,
String filter,
Object(] filterArgs,
SearchControls ctls)
throws NamingException;

}
schema

A schema describes the rules that define the structure of a namespace and the attributes storec
within it. The granularity in the use of the schema can range from a single schema that is asso-
ciated with the entire namespace, to a per-attribute, fine-grained schema description.

Because schemas can be expressed as an information tree, it is natural to use for this purpose
the naming and directory interfaces already defined in JNDI. This is powerful because the sche-
ma part of a namespace is accessible to applications in a uniform way. A browser, for example,
can access information in the schema tree just as though it were accessing any other directory
objects.

Applications can retrieve the schema associated with a directory object when the underlying
context implementation provides the appropriate support.

DirContext.getSchemay) is used to retrieve the root of the schema tree associated with a di-
rectory object. The root has children such as “ClassDefinition”, “AttributeDefinition”, “Syn-
taxDefinition”, and “MatchingRules”, each denoting the kind of definition being described.
The schema root and its descendents are objects of Oiypentext . The DirCon-
text.getSchemaClassDefinition() method returns a node under “ClassDefinition” that
contains information about a particular directory object.

14 12/2/97

Java Naming and Directory Interface Overview of the Interface

public interface DirContext extends Context {

public DirContext getSchema(Name name)
throws NamingException;

public DirContext getSchemacClassDefinition(Name name)
throws NamingException;

In addition, the schema associated with any attribute can be accessed usiktg the
tribute.getAttributeDefinition() andgetAttribute SyntaxDefinition() methods.

public class Attribute ... {

public DirContext getAttributeDefinition() throws NamingException;
public DirContext getAttributeSyntaxDefinition()
throws NamingException;

Figure 3 is an example showing the different associations for accessing schema information.

JavaSoft 15 12/2/97

Java Naming and Directory Interface Overview of the Interface

Figure 3: Example mapping Directory to Schema

Directory Tree

\ etSchema
Schema Tree g 0

ClassDefinition SyntaxDefinition \

AttributeDefinition \

getAttributeDefinition()

getAttributeSyntaxDefinition()

|
l ‘ DirContext
I
|

A Atttribute
getSchemaClassDefinition()

5.3 Context Environment

JNDI applications need a way to communicate various preferences and information that define
the environment in which naming and directory services are accessed. For example, an appli-
cation that wants to specify the level of security for accessing a directory service can do so by
setting thgava.naming.security.* environment properties.

As another example, when directory and naming services are distributed, the source of infor-
mation is in more than one place — replicas, master, cagtoe8n application may need to
access information from the authoritative source. It can do so by usijpagatheming.au-

thoritative environment property.

Environment properties are defined in relatively generic terms. For example, an application can
state a preference for the strength of authentication by setting the environment gaoperty
va.naming.security.authentication to none, simple , or strong . Individual directory

JavaSoft 16 12/2/97

Java Naming and Directory Interface Overview of the Interface

service providers implement the mapping of the environment properties appropriate to their
service.

A context’s environment is represented amshtable or any of its subclasses (eRgoper-

ties 1). It is typically specified using an argument to HigalContext andinitialDir-

Context constructors. They are inherited from the parent context as context methods proceed
from one context to the next. For example, the following code creates an environment consist-
ing of two security-related properties and creates an initial context using that environment.

Hashtable env = new Hashtable(5, 0.75);
env.put(“java.naming.security.principal”, “jsmith”);
env.put(“java.naming.security.credentials”, “XXxxxxx");
Context ctx = new InitialContext(env);

You can also do the same thing usingperties

Properties env = new Properties();
env.put(“java.naming.security.principal”, “jsmith”);
env.put(“java.naming.security.credentials”, “Xxxxxxx");
Context ctx = new InitialContext(env);

There are three environment-related methods icthext interface.

Object addToEnvironment(String propName, Object propValue)
throws NamingException;

Object removeFromEnvironment(String propName)
throws NamingException;

Hashtable getEnvironment() throws NamingException;

The first two methods update the environment of this context by adding or deleting individual
entries. The last method returns the context’'s environment.

Appendix A specifies a preliminary list of environment properties.
See Section 7.5 for security-related considerations when using environment properties.

5.4 Referrals

Some directory services support the notioreéérralsfor redirecting a client’s request to an-
other server. If thva.naming.referral environment property is set twffow ", the ser-

vice provider implementation will automatically attempt to follow each referral that it
encounters. It the value igfiore ”, referrals are ignored. If the value i&row ”, the option

of whether or not to follow a referral—and thereby complete the context operation—is left up
to the application through the use akéerral exception.

The abstract clag®ferralException is used to represent a referral:

1. Note that if you usBroperties , only the top-level properties are consulted—its defaults are not consulted—
becauseiashtable.get() is used when retrieving entries from the environmentjsveeutil.Proper-
ties for details.

JavaSoft 17 12/2/97

Java Naming and Directory Interface Overview of the Interface

JavaSoft

public abstract class ReferralException extends NamingException {
public abstract Context getReferralContext()
throws NamingException;

public abstract Object getReferrallnfo();
public abstract boolean skipReferral();

}
When a referral is encountered and the client has requested that referrals not be ignored or au-
tomatically followed, a&eferralException is thrown. ThejetReferralinfo() method pro-

vides information—in a format appropriate to the service provider—about where the referral
leads. The application is not required to examine this information; however, it might choose
to present it to a human user to help him determine whether to follow the referral or not.
skipReferral() allows the application to discard a referral and continue to the next referral

(if any).

To continue the operation, the application re-invokes the method on the referral context using
the same arguments it supplied to the original method. The following code sample shows how
ReferralException may be used:

while (true) {
try {
bindings = ctx.listBindings(name);
while (bindings.hasMore()) {
b = (Binding)bindings.next();

}

break;
} catch (ReferralException e) {

ctx = e.getReferralContext();
}

18 12/2/97

Java Naming and Directory Interface Scenarios

6

Scenarios
This section outlines a few application scenarios to help illustrate the capabilities enabled by

JNDI.

* The examples below are not meant to be prescriptive. There are often several ways to solve
a problem, and JNDI is designed with flexibility in mind.

6.1 User authentication

In secure systems, a user must authenticate himself to the computer, network, or service that
he wishes to access. For example, logging into Unix requires the user to supply a password.
Similarly, use of SSL requires that the user supply his X.509 certificate. Such authentication
information can be stored as attributes associated with each user in the directory. The system
performing the authentication would look up the attribute (for example, “password”) of the
user and verify the authenticity using the information supplied by the user.

DirContext ctx = new InitialDirContext();
Attribute attr = ctx.getAttributes(userName).get(“password”);
String password = (String)attr.get();

6.2 Electronic Mall

JavaSoft

A useful feature of an electronic mail system is a directory service that provides a mapping be-
tween users and email addresses. This allows mail users to search for the email address of a
particular user. This is analogous to searching for an individual's telephone number in the
phone book in order to dial his phone number. For example, when | want to send mail to John
Smith in my department, | search for “John Smith” in the directory using a “search” widget in
the mail application. The widget returns to me five entries of John Smith, from which | select
the one that is in a building on my site and use the email address attribute associated with that
entry.

NamingEnumeration matches =
deptCtx.search(“user”, new Attributes(“name”, “John Smith"));
/I use matches to construct a selectable list for end-user
while (matches.hasMore()) {
SearchResult item = (SearchResult) matches.next();
Attributes info = item.getAttributes();
[* display attributes */

The directory could also be used by users to set up personalized address books. For example,
once | have located John Smith’s email address, | may not want to search the directory again
each time | send him mail. Instead, | can create a personal subtree in the directory in which |
maintain entries that | frequently use, possibly by creating links to the existing entries.

19 12/2/97

Java Naming and Directory Interface Scenarios

6.3 Databases

Database applications can use the directory to locate database servers. For example, a financia
application needs to get the stock quotes from a stock quote server using JDBC. This applica-
tion can enable the user to select the stock quote server based on specification of some at-
tributes (such as coverage of which markets and frequency of quote updates). The application
searches the directory for quote servers that meet these attributes, and then retrieves the “loca-
tion” attribute (a JDBC URL) of the selected quote server and connects to it.

NamingEnumeration matches =
ctx.search(“service/stockQuotes”,
“(&(market=NASDAQ)(updateFregency<=300))",
searchctls);
while (matches.hasMore()) {
SearchResult item = (SearchResult)matches.next();
Attribute location = item.getAttributes().get(“location”);

6.4 Browsing

JavaSoft

When using almost any kind of interactive application that asks a user to input names, the us-
er's job is made easier if a namespace browser is available to him. The browser can either be
built into the application and tailored to suit that application in particular, or it can be more gen-
eral-purpose such as a typical web browser.

A very simple example of a INDI browser allows a user to “walk” through a namespace, view-
ing the atomic names at each step along the way. The browser prints a “*” to highlight the name
of eachcContext , thus telling the user where he can go next.

20 12/2/97

Java Naming and Directory Interface Scenarios

/[Start at the top -- the initial context.
Context ctx = new InitialContext();
while (ctx = null) { // display one level
NamingEnumeration items = ctx.list();
while (items.hasMoreElements()) {
NameClassPair item = (NameClassPair)items.next();
if (isContext(item.getClassName())) {
System.out.print(“*”);
}
else {
System.out.print(* “);
}

System.out.printin(* “ + item.getName());
}
/I Take the next step down into the namespace.
String target = input.readLine();
try {

ctx = (Context)ctx.lookup(target);
} catch (NamingException e) {

} catch (ClassCastException e) {
/I not a context; cannot traverse

6.5 Network Printing

JavaSoft

An important function of a printing service is to provide a means for its human users to easily

discover and select printers in the network. An application that needs to print, or the machine
on which it runs, should not have to be configured each time a new printer is added to the net-
work. The scope of network access to printers may range from a workgroup to global. The

printing service can use the directory to provide this capability.

Assume that printers are represented byrzer interface. One of the methods in it could be
print() which, when given amputStream , will read data fromnputStream and print it
on the printer represented by this instancBraiter

interface Printer {
void print(InputStream data) throws PrinterException;

}

A user selects a printer using a logical printer name, either explicitly or through default settings.
For example, the user may have specified a default printer to use for all his applications, which
is overridden only when he explicitly specifies another printer to use. The application that is
accepting the print request takes the printer name and looks it up in the directory service. The
application expects to receive as the result an object that implementisithe interface.

21 12/2/97

Java Naming and Directory Interface Scenarios

void myAppPrint(String printerName, String fileName)
throws IOException {

try {
DirContext ctx = new InitialDirContext();
Printer prt = (Printer) ctx.lookup(printerName);
prt.print(new FilelnputStream(fileName));
} catch (NamingException e){
System.err.printin(*Could not locate printer: * + e);
} catch (ClassCastException e) {
System.err.printin(printerName + “does not name a printer”);

}
}

6.5.1 Browsing and searching for printers

Selecting a printer by explicitly giving its name is but one way of identifying a printer. The user
can also use the directory to see the different printers available (browsing), or to search for
printers with particular attributes. For example the user can ask the directory to list all the print-
ers on the second floor of building 5 in the Mountain View campus, or search for all color laser
printers with 600dpi resolution. From the application’s perspective, jusikag() returned
aPrinter object, the list and search operations also provide the same capability of returning
Printer Objects that the application could use to submit print requests.

JavaSoft 22 12/2/97

Java Naming and Directory Interface Security Considerations

v

Security Considerations

There are two main settings in which JNDI is used: in Java applications and in Java applets.

In the case of Java applications, the code is trusted and the application can access service pro-
viders from the local classpath. Furthermore, there is no restriction if the service providers ac-
cess local files, or make network connections to naming or directory servers anywhere on the
network.

In the case of Java applets, there can be trusted applets and untrusted applets. Within an applet
there can be portions that are trusted and portions that are not trustetharimg Context
HandlesandContext Environmergections below are especially applicable to applets contain-

ing both trusted and untrusted code.

An applet’s access to service providers, especially service providers that require the use of re-
stricted resources (like the file system or network connections) may be severely limited.

7.1 JNDI Classes

The classes in thavax.naming , javax.naming.directory andjavax.naming.spi pack-
ages contain no native methods. They do not require any special installation in order to run in-
side an applet or an application.

JNDI uses several system properties (see Appendix A). This allows applets and applications to
be configured easily without much programming. However, an applet may have restricted ac-
cess to some or all system properties as a result of the security manager installed on the plat-
form on which the applet is running. Consequently, JNDI also allows these same properties to
be specified as environment properties of a context.

In JIDK1.2, the JNDI classes will only useyin privileged /end privileged sections when
accessing the system properties listed irPitsggram ConfiguratiorandAccess Configuration
sections in Appendix A.

7.2 Security Model

JavaSoft

JNDI does not define a security model or a common security interface for accessing naming
and directory servers. Security-related operations, such as those required for authentication or
access control to the directory service, are dealt with by individual service providers. JNDI pro-
vides the means by which an application or applet can pass such security-related information
to service providers in order to establish a connection with the service, but does not itself take
part in such security-related activities.

JNDI also provides the means by which security-related problems can be indicated to the client
in the form of security-related exceptions.

JNDI service providers are controlled by the security manager in place when they try to gain
access to protected resources such as the file system or network. Some service providers may
control directory access by making use of the new JDK1.2 security architecture (for example,
allowing access to special ports for administration-related applets).

23 12/2/97

Java Naming and Directory Interface Security Considerations

7.3 Access To Servers

Naming and directory services typically have their own security system in place to protect in-
formation stored therein. For example, one directory might require that its users first “login” to
the directory before reading or updating information in the directory. Some services might al-
low anonymous access to part of its namespace/directory.

Once a user has logged to a service, it is imperative for security reasons not to share that priv-
ilege with untrusted code.

7.4 Sharing Context Handles

In the following discussion, we refer taantext handl@as a reference toGntext instance.
This is analogous to how a reference tReader /Writer /InputStream /OutputStream in-
stance is often referred to afila handle

A context handle should be treated like any other protected resource. If a piece of trusted code
obtains a context handle (possibly by authenticating its access with the directory server), it
should protect the use of that context against unauthorized or untrusted code. This is analogous
to how application and/or applet code should protect file handles. For example, if a piece of
trusted code opens a file for writing (and it was granted such privilege because of its trusted
nature), it should be careful about passing that file handle to any other pieces of code, trusted
or otherwise.

Similarly, giving access of a context handle to untrusted code may lead to its misuse in access-
ing or updating information in the directory, or accessing security-sensitive environment prop-
erties associated with the context.

7.5 Context Environment

JNDI allows the application/applet to pass preferences and information to a context in the form
of an environment. The application/applet can also get the current environment from a context.
See Section 5.3 and Appendix A for more information on a context’s environment.

The nature of the information contained in a context’s environment might be sensitive and need
protection from untrusted access. Specifically, the environment progevii@aming.se-

curity.principal and java.naming.security.credentials contain information that

should not be given out to untrusted code. Service providers might take precaution to protect
against accessing these properties ReEsponsibilities of Service Providdrslow). Client ap-
plications and applets should take care not to pass context handles with such sensitive environ-
ment properties to untrusted code.

7.6 Class Loading

JavaSoft

JNDI allows the class files of object factories to be loaded dynamically. The current implemen-
tation uses the RMI class loader. The classes can only be loaded if there is a security manager
installed, and if that security manager permits the class to be loaded. When such classes are
loaded, they run in the security context dictated by the security manager.

24 12/2/97

Java Naming and Directory Interface Security Considerations

7.7 Serializable Objects

Several of the JNDI classes are serializable. This allows the objects to be accessed in the form
of a byte stream, possibly outside of the environment in which they were created. See the doc-
ument at the following URL regarding security issues related to serialized objects.

http://java.sun.com/products/jdk/1.1/docs/guide/serialization/spec/security.doc.html

7.8 Responsibilities of Service Providers

7.8.1

7.8.2

7.8.3

JavaSoft

Context Environment

When a context handle is created (either by getting the initial context or by looking it up or by
creating it from the directory), some environment properties may be specified for it. Sometimes
security-related properties are required for the creation of the context handle (such as user in-
formation that “logs” the user in with the directory). The service provider should take care to
protect this security-sensitive information from untrusted code.

The service provider needs to protect the context’s environment from being tampered or oth-
erwise modified by untrusted code. The service provider needs to protect the security-sensitive
environment properties from being read by untrusted code. It might do this by disallowing any
thread whose execution context and/or trust level is different than that originally held by the
thread that created the context handle to use the context handle. Or it might disallow certain
operations (such as accessing security-sensitive environment properties). Or it might simply
not return security-sensitive environment properties, or only return them to trusted code.

Network Security

Untrusted code (such as those found in untrusted applets) have limited access to the network.
Untrusted applets, for example, can only create a network connection to the host from which
they were downloaded. With finer-grain security models, it will be possible for the service pro-
vider itself be trusted code, and hence be allowed to connect to hosts not allowed for untrusted
applets. In such a scenario, the service provider should be careful not to compromise the secu-
rity intended by the security manager. If the service provider is sure that access by an untrusted
applet to the directory will cause no security problems, then it may proceed to offer such a ser-
vice to untrusted code. For example, allowing untrusted code to access a directory “anony-
mously” would post no security problems because the directory already allows any anonymous
client (Java or otherwise) to access the same data.

Most naming and directory services are accessed over the network. Although the data request-
ed is protected by the server’s authentication and access control mechanisms, some protocols
do not protect (encrypt) the data being sent as replies. Again, this is not a problem particular to
a client using JNDI but a problem for any client accessing the directory. The service provider
should document the security implications associated with using the associated directory over
a network.

Accessing Local Files

Similar to network access, untrusted code has limited access to the local file system. If the ser-
vice provider has special privileges for accessing local files, it should do so with utmost pre-
caution so as not to compromise the security policies intended by the runtime/platform.

25 12/2/97

Java Naming and Directory Interface

7.8.4

JavaSoft

Security Considerations

Privileged Code, Native Methods

A service provider that is written completely in Java with no privileged sections is controlled
by the same security policies afforded other Java code. All protected resources that it attempts
to access go through the same security manager and access controller.

If a service provider contains privileged code sections, or if it contains native methods, then it

needs to be especially careful to preserve the security policies intended by the runtime/plat-
form.

26 12/2/97

Java Naming and Directory Interface Design Choices

8

Design Choices

8.1 Separation of Interfaces into Context and DirContext

There are two core interfaces in JNDéntext , andDirContext , with DirContext — extending

the base naming operationsdsntext with directory service operations. They have been sep-
arated into separate interfaces both for modularity and also in keeping with the “pay for what
you use” goal of JNDI.

Naming is a basic component found in many computing services such as file systems, spread-
sheets, calendar services, and directory services. By having @hase interface for the
naming operations, we enable its use by all these other services, not just for directory services.

DirContext ~extendsContext to provide basic directory service operations, which include ma-
nipulation of attributes associated with named objects, attribute-based searches, and schema-
related operations of those attributes and named objects.

8.2 Separation of JNDI into Different Functional Packages

JNDI is separated into two client packagegag.naming , javax.naming.directory) and

a service provider packaggvax.naming.spi). The idea is that each package contains the
interfaces and classes required for a particular category of applications, again in keeping with
the “pay for what you use” goal. For example, an application that just wants to perform name-
lookups only needs to use tlaeax.naming package. An application that wants to examine/
modify attributes associated with an object usegatha@.naming andjavax.naming.di-

rectory packages. There is a step-by-step progression of what classes and interfaces each cat-
egory of application writer needs to learn and use.

8.3 Separation of Client APIs and Service Provider Interfaces

JNDI separates interfaces and classes that a client application needs to use from those that are
only of interest to service providers into different packages. For example, a client would use
interfaces and classes frgamax.naming , while a service provider that is hooking up a nam-

ing service would use bofiivax.naming andjavax.naming.spi . The package delineation
minimizes confusion for the application developer and makes clear which packages he needs
to examine when writing his program.

8.4 Multiple methods for listing Context

JavaSoft

There are two common types of applications that list contexts: browser-style applications, and
applications that need to perform operations on the objects in a context en-masse. Browser-
style applications typically want to display the names of the contents of a context. In addition
to the names, many browsers often require type information of the objects bound to the names,
so that it can display appropriate pictorial representations of the objects. The browser is usually
interactive. Once a user has used a browser to display the contents of a context, he would then
select one or a few of the entries displayed and request more information on it.

27 12/2/97

Java Naming and Directory Interface Design Choices

Some applications need to perform operations on objects within a context en-masse. For exam-
ple, a backup program might want to perform “file stats” operations on all the objects in a file
directory. A printer administration program might want to restart all the printers in a building.
To perform such operations, these programs need to obtain all the objects bound in a context.

With these two common styles of usage in mind,dbext interface has two types of list
methodslist) andiistBindings() . list() returns a list of name/class-name pairs while
listBindings() returns a list of name/class-name/object tuplies) is designed for
browser-style applications that want mostly just the names and types of objects bound in a con-
text. listBindings() is for applications that want to potentially get all the objects in the con-
text, as well as its name and typ@Bindings() returns an enumeration Bihding . Both
thelistBindings() operation itself and invocation of methods ingheling class (e.gge-

tObject()) could be implemented lazily or eagerly. Usiis@indings() simply indicates

the potential that the caller might be wanting all or many of the objects in the context so that
implementations that are able can optimize for it. Ussny indicates that the caller is un-
likely to want all, if any, objects in the context so implementations can optimize for that if pos-
sible.

An alternative is to have a single list operation and have the lazy or eager behavior as part of
the implementation ddinding . The advantage of this is that there is a single list operation to
learn. The disadvantage is that the caller has no way of indicating which piece of information
he wants back from list, and subsequently, implementations cannot optimize for the eventual
behavior of the program.

8.5 Support for Federation

Federation is a first-class concept in JNDI. In the client interfaces, it is supported by of the use
of theNameinterface for specifying names that can span one or more namespaces. The caller
of the methods in the client interface need not know anything else regarding federation. Reso-
lution of names across multiple systems is handled by the SPI and does not involve any inter-
vention on the part of the caller.

Although federation is a first-class concept, that does not mean that all callers and service pro-
viders must make use of it. If an application or service does not want to take advantage of fed-
eration, there is no requirement thaime always span multiple namespacksme can just

name objects within a single namespace, and the SPI can handle name resolution within a sin-
gle namespace as well (as a degenerate case of multiple namespace support).

8.6 DirContext versus DirObject

JavaSoft

Instead of havin@irContext ~ extendContext , an alternative would be to not extetwhtext

at all but to have a separate interface catiedbject that encapsulates all the directory-re-
lated methods. In that case, an object can implementdoatéxt andDirObject if it sup-

ports both the naming and directory operations; another object might implement just
DirObject

The problem with eliminatin@irContext is thatDirContext contains some hybrid opera-
tions that involve both naming and directorigiad() , createSubcontext() methods that
accept attributes as arguments). To keep these operatidhaveDirObject at the same time

28 12/2/97

Java Naming and Directory Interface Design Choices

would produce the need for a third interface (perhaps dailleohtext) to contain just these
hybrids.

Furthermore, havingirContext instead obDirObject IS somewhat more convenient in that

you can perform some operations in one step instead of two. For exzraphext.getAt-

tributes() could be used to get the attributes associated with a named object, whereas with
DirObject , you would need first to resolve to the objemintext.lookup()) and then use
DirObject.getAttributes() to get the attributes from it.

8.7 Support for Schemas

TheDirContext interface contains support for schemas. For example, fmroatext ob-

ject you can obtain its schema object, which points to the directory space where the schema for
this particulapirContext instance is defined. FronD&Context ~ object, you can also obtain

its schema class definition (i.e. information about what type of object this represents in the di-
rectory). There is further support for schemas imthidute class, which contains methods

for obtaining an attribute’s syntax information (i.e. what is the type of the attribute’s value) and
the attribute’s definition (e.qg. is it multivalue, syntax, constraints on its syntax). There is no
requirement that any of this schema information be dynamically accessible (i.e. points to live
directory spaces). Support for such schema information could be generated statically by the
service provider. For example, a particular directory service might only support string attribute
values, so it can hard-wire the syntax of the attributes that it returns. Another directory might
support only static schemas (where information in the schema are not modifiable). Yet another
directory might support fully dynamic schemas. The interfaces and clagiesimext are

flexible enough that these different levels of support for schemas can be accommodated.

8.8 Overloaded Methods in Context and DirContext

JavaSoft

For each method in theontext andDirContext interfaces that acceptsName argument,
there is a corresponding overloaded form that acceptsng argument for specifying a
name.

The motivation for having thstring -based methods is that there are many applications that
simply accepts a string name from the end-user and perform context methods on the object
named by that string name. For those applications, it is useful to have the context methods ac-
cepts a string for the name directly, instead of requiring the applications to first construct a
Nameobject using the string name.

The motivation for having theamebased methods is that there are also many applications that
manipulate names and do not want to worry about syntactic details of the names’ string forms
when composing and modifying names. These applications deal with the parsed form of names
and hence would prefer to deal withme objects rather than string names. For these applica-
tions, we provide theamebased methods in the context interfaces. Not providing these meth-
ods would probably cause proliferationNaime like interfaces/classes to support manipulation

of names in their structural form in applications developed on top of JNDI.

29 12/2/97

Java Naming and Directory Interface Design Choices

8.9 Reference and Referenceable

There are different ways in which applications and services can use the directory to locate ob-
jects. JNDI is general enough that it accommodates several different models. For some appli-
cations, the object bound in the directory is the object itself. An application may build up a
dynamic directory while the application is active, and delete the directory when the application
exits. Another application might store URLSs as attributes for locating objects in its namespace.
Other systems might bind some reference information in the directory, which can subsequently
be used to locate or access the actual object. This last case is quite common, especially for mak-
ing Java applications take advantage of services in the installed base. The reference in the di-
rectory acts as a “pointer” to the real object.

JNDI defines &eference class to provide a uniform way of representing reference informa-
tion. A Reference contains information on how to access an object. It consists of a list of ad-
dresses and class information about the object to which this reference refers. When binding a
name to an object that is to be represented in the directory as a reference, the desired effect is
that the object’s reference be extracted and bound. To allow for this behavior, the object’s class
must implement theeferenceable interface, which contains the methgeReference()

There is some similarity between the interfagatlizable andReferenceable and a nat-

ural question is “why not just userializable instead?” The answer is that a serialized ob-

ject is really a frozen version of the object, whereas the reference contains just the information
needed to construct it. The serialized version may have a lot more state which may not be ap-
propriate for storage in the directory.

8.10 Automatically Turning References into Objects

For an object that is bound aRederence in the directory, JINDI SPI framework automatically
creates and instantiates the object identified by the reference. In this way, the program can sim-
ply narrow the result déokup() to the expected class, instead of calling a separate operation
to transform the result adokup() into an object of the expected class.

For example, if you are looking up a printer object, a successful lookup would return to you a
printer object that you can directly use.

Printer prt = (Printer) ctx.lookup(somePrinterName);
prt.print(someFileName);

JNDI does this automatically, instead of requiring an explicit conversion step, because this is
expected to be the common usage pattern. By havingethence class, and a common
mechanism for convertingreference into the object identified by theeference , JNDI en-
courages different applications and system providers to utilize this mechanism, rather than in-
venting separate mechanisms on their own.

JavaSoft 30 12/2/97

Java Naming and Directory Interface

Appendix A: JNDI Context Environment

JavaSoft 31 12/2/97

Java Naming and Directory Interface

Table 1: JNDI Environment Properties

Program Configuration

java.naming.factory.initial

Class name of initial context factory to use.
When unspecified, determined by the
java.naming.factory.initial
SeelnitialContext

system property.

java.naming.factory.object

Colon-separated list of class names of object factory classes t
When unspecified, determined by the
java.naming.factory.object system property.
SeeNamingManager.getObjectinstance()

D use.

java.naming.factory.url.pkgs

Colon-separated list of package prefixes to use when loading
URL context factories.

When unspecified, determined by the
java.naming.factory.url.pkgs
SeeNamingManager.getURLContext()

system property.

in

Access Configuration

java.naming.provider.url

Specifies configuration information for provider to use.

When unspecified, determined by the
java.naming.provider.url system property.

When unspecified as system property or in environment, dete
mined by provider using its own configuration or discovery prg
cols.

to-

java.naming.dns.url

Specifies the DNS host and domain names to use for the JND
URL context.

When unspecified, determined by the

java.naming.dns.url system property.

Service-Related

java.naming.authoritative

Specifies the authoritativeness of the service requested. If “tjue”,

specifies most authoritative source is to be used (e.g. bypass
caches, or bypass replicas in some systems). Otherwise, sou
need not be (but can be) authoritative.

When unspecified, defaults to false.

any
ce

java.naming.batchsize

Specifies the preferred batch size to use when returning data
the service’s protocol. This is a hint to the provider to return th

results of operations in batches of the specified size, so that the
provider can optimize its performance and usage of resources.

When unspecified, determined by provider.

via
e

java.naming.referral

Specifies that referrals encountered by the service provider ar
be followed automatically. If “follow”, follow referrals automati-
cally. If “ignore”, ignore referrals encountered. If “throw”, throw
ReferralException when a referral is encountered.
When unspecified, determined by provider.

e to

Security

java.naming.security.protocol

Security protocol to use for service.

When unspecified, determined by provider.

JavaSoft

32 12/2/97

Java Naming and Directory Interface

Table 1: JNDI Environment Properties

java.naming.security.authentication

Takes valuesone, simple , strong
When unspecified, determined by provider.

java.naming.security.principal

Identity of principal (e.g. user) for the authentication scheme.
When unspecified, defaults to the identity (specific to the auth
cation scheme selected) of user running the application.

enti-

java.naming.security.credentials

Principal’s credentials for the authentication scheme.

When unspecified, obtained by the provider on behalf of the uger,

using the security infrastructure available to the provider.

Examples of different types of credentials are passwords, keys, and
certificates. The particular type of credentials is determined by the

authentication scheme chosen.

Internationalization

java.naming.language

Specifies a colon-separated list of preferred language to use With

this service (e.g. €n-US”, “fr 7, “fr-CH ", “ja-JP-kanji .
Languages are specified using tags defined in RFC 1766.

When unspecified, the language preference — if any — is deter-

mined by the provider.

JavaSoft

33 12/2/97

Java Naming and Directory Interface

JavaSoft 34 12/2/97

Java Naming and Directory Interface

Appendix B: Examples for LDAP Programmers

JavaSoft 35 12/2/97

Java Naming and Directory Interface

This appendix contains sample JNDI programs intended to help a developer familiar with the
LDAP C API. Starting with sample programs from the Netscape Directory SDK for accessing
and updating the directory using the LDAP C API, we show the equivalent way of doing the
same thing for Java applications using JNDI.

JavaSoft 36 12/2/97

Java Naming and Directory Interface

B.1 Search the Directory

B.1.1

JavaSoft

Search Using LDAP C API

/*

* Copyright (c) 1996. Netscape Communications Corporation. All
* rights reserved.

*

* Search the directory for all people whose surname (last name) is
*“Jensen”. Since the “sn” attribute is a caseignorestring (cis), case
* is not significant when searching.

*

*

#include “examples.h”

int

main(int argc, char **argv)

{

LDAP *Id;
LDAPMessage *result, *e;
BerElement *ber;

char *a, *dn;
char **vals;
int i;

/* get a handle to an LDAP connection */
if ((Id =Idap_init(MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");
return(1);
}
[* authenticate to the directory as nobody */
if (Idap_simple_bind_s(Id, NULL, NULL) !'= LDAP_SUCCESS) {
Idap_perror(Id, “Idap_simple_bind_s");
return(1);
}
[* search for all entries with surname of Jensen */
if (Idap_search_s(Id, MY_SEARCHBASE, LDAP_SCOPE_SUBTREE,
MY_FILTER, NULL, 0, &result) = LDAP_SUCCESS) {
Idap_perror(Id, “Idap_search_s");
return(1);
}
/* for each entry print out name + all attrs and values */
for (e = Idap_first_entry(Id, result); e '= NULL;
e =Idap_next_entry(Id, e)){
if ((dn =Idap_get_dn(lId, e)) '=NULL) {
printf(“dn: %s\n”, dn);
Idap_memfree(dn);
}
for (a = Idap_first_attribute(Id, e, &ber);
a !'= NULL; a = Idap_next_attribute(Id, e, ber)) {
if ((vals = Idap_get_values(Id, e, a)) '= NULL) {
for (i =0; vals[i] '= NULL; i++) {
printf(“%s: %s\n”, a, vals][i]);

Idap_value_free(vals);

}

Idap_memfree(a);

37

12/2/97

Java Naming and Directory Interface

B.1.2

JavaSoft

if (ber = NULL) {
ber_free(ber, 0);
}
printf(“\n");
}
Idap_msgfree(result);
Idap_unbind(Id);
return(0);

Search Using JNDI

/*
* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Search the directory for all people whose surname (last name) is
*“Jensen”. Since the “sn” attribute is a caseignorestring (cis), case
* is not significant when searching.

*

* [equivalent to search.c in Netscape’s SDK.]
*

*/

import java.util.Properties;
import java.util. Enumeration;

import javax.naming.*;
import javax.naming.directory.*;

class Search {
public static void main(String[] args) {

Properties env = new Properties();

/*

* Specify the initial context implementation to use.

* This could also be set by using the -D option to the java program.

* For example,

* This could also be set by using the -D option to the java program.

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

Compare

*/

env.put(“java.naming.factory.initial”, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(“java.naming.provider.url”, Env.MY_SERVICE);

try {
[* get a handle to an Initial DSContext */

DirContext ctx = new InitialDirContext(env);

[* specify search constraints to search subtree */
SearchControls constraints = new SearchControls();
constraints.setSearchScope(SearchControls. SUBTREE_SCOPE);

[* search for all entries with surname of Jensen */
NamingEnumeration results
= ctx.search(Env.MY_SEARCHBASE, Env.MY_FILTER, constraints);

38

12/2/97

Java Naming and Directory Interface

/* for each entry print out name + all attrs and values */
while (results != null && results.hasMore()) {
SearchResult si = (SearchResult)results.next();

[* print its name */
System.out.printin(“name: “ + si.getName());

Attributes attrs = si.getAttributes();
if (attrs == null) {
System.out.printin(“No attributes”);
}else {
[* print each attribute */
for (NamingEnumeration ae = attrs.getAll();
ae.hasMoreElements();) {
Attribute attr = (Attribute)ae.next();
String attrld = attr.getID();

[* print each value */
for (Enumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin(attrid + “: “ + vals.nextElement()))
}
}

System.out.printin();

} catch (NamingException e) {
System.err.printin(“Search example failed”);
e.printStackTrace();

}

B.2 Read An Entry

B.2.1 Read Using LDAP C-API

/*

* Copyright (c) 1996. Netscape Communications Corporation. All

* rights reserved.

*

* Search the directory for the specific entry

* “cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
* Retrieve all attributes from the entry.

*

*/

#include “examples.h”

int
main(int argc, char **argv)
{

LDAP *|d;

LDAPMessage *result, *e;
BerElement *ber;
char *a, *dn;

JavaSoft 39 12/2/97

Java Naming and Directory Interface

char **vals;
int i;

/* get a handle to an LDAP connection */
if ((Id = Idap_init(MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");
return(1);
}
/* authenticate to the directory as nobody */
if (Idap_simple_bind_s(Id, NULL, NULL) != LDAP_SUCCESS) {
Idap_perror(Id, “Idap_simple_bind_s");
return(1);
}
[* search for Babs’ entry */
if (Idap_search_s(Id, ENTRYDN, LDAP_SCOPE_SUBTREE,
“(objectclass=*)", NULL, 0, &result) '= LDAP_SUCCESS) {
Idap_perror(Id, “ldap_search_s");
return(1);
}
[* for each entry print out name + all attrs and values */
for (e = Idap_first_entry(Id, result); e '= NULL,;
e = Idap_next_entry(Id, e)){
if ((dn =Idap_get_dn(Id, e)) !=NULL) {
printf(“dn: %s\n”, dn);
Idap_memfree(dn);
}
for (a = Idap_first_attribute(Id, e, &ber);
a !'= NULL; a = Idap_next_attribute(Id, e, ber)) {
if ((vals = Idap_get_values(Id, e, a)) '= NULL) {
for (i =0; vals[i] I= NULL; i++) {
printf(“%s: %s\n”, a, valsl[i]);
}
Idap_value_free(vals);
}
ldap_memfree(a);
}
if (ber = NULL) {
ber_free(ber, 0);
}
printf(“\n”);
}
Idap_msgfree(result);
Idap_unbind(Id);
return(0);

B.2.2 Read Using JNDI

/*
* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Search the directory for the specific entry

* “cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
* Retrieve all attributes from the entry.

*

* [Equivalent to rdentry.c in Netscape SDK]

*/

JavaSoft 40 12/2/97

Java Naming and Directory Interface

import java.util.Hashtable;

import javax.naming.*;
import javax.naming.directory.*;

class Rdentry {
public static void main(String[] args) {

Hashtable env = new Hashtable(5, 0.75f);
/*
* Specify the initial context implementation to use.

* This could also be set by using the -D option to the java program.

* For example,

* This could also be set by using the -D option to the java program.
java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

*

Compare
*/
env.put(“‘java.naming.factory.initial”, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(“java.naming.provider.url”, Env.MY_SERVICE);

try {
/* get a handle to an Initial DSContext */
DirContext ctx = new InitialDirContext(env);

[* Read Babs' entry */
Attributes attrs = ctx.getAttributes(Env.ENTRYDN);

if (attrs == null) {
System.out.printin(Env.ENTRYDN + “has no attributes”);
}else {
/* print each attribute */
for (NamingEnumeration ae = attrs.getAll();
ae.hasMoreElements();) {
Attribute attr = (Attribute)ae.next();
String attrld = attr.getID();

[* print each value */

for (NamingEnumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin(attrid + “: “ + vals.nextElement()))

}
}

} catch (NamingException €) {
System.err.printin(*Rdentry example failed”);
e.printStackTrace();

}

}
}

B.3 Get Attributes
B.3.1 Get Attributes Using LDAP C API

JavaSoft 41

12/2/97

Java Naming and Directory Interface

JavaSoft

/*

* Copyright (c) 1996. Netscape Communications Corporation. All
* rights reserved.

*

* Retrieve several attributes of a particular entry.

*

#include “examples.h”

int

main(int argc, char **argv)

{

LDAP *Id;
LDAPMessage *result, *e;
char **vals, *attrs[5];
int i;

/* get a handle to an LDAP connection */
if ((Id = Idap_init{t MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");

return(1);
}
attrs[0] = “cn”; [* Get canonical name(s) (full name) */
attrs[1] = “sn”; /* Get surname(s) (last name) */
attrs[2 | = “mail”; /* Get email address(es) */

attrs[3] = “telephonenumber”; /* Get telephone number(s) */
attrs[4] = NULL;

if (ldap_search_s(Id, ENTRYDN, LDAP_SCOPE_BASE,
“(objectclass=*)", attrs, 0, &result) '= LDAP_SUCCESS) {
Idap_perror(Id, “ldap_search_s");
return(1);

}

[* print it out */
if ((e = Idap_first_entry(Id, result)) '= NULL) {
if ((vals = Idap_get_values(Id, e, “cn”)) I= NULL) {
printf(“Full name:\n”);
for (i =0; vals[i] = NULL; i++) {
printf(“\t%s\n”, vals[i]);
}

Idap_value_free(vals);

if ((vals = Idap_get_values(Id, e, “sn”)) I= NULL) {
printf(“Last name (surname):\n”);
for (i =0; vals[i] = NULL; i++) {
printf(“\t%s\n”, valsJi]);
}

Idap_value_free(vals);

if ((vals = Idap_get_values(Id, e, “mail”)) = NULL) {
printf(“Email address:\n");
for (i =0; vals[i] '= NULL; i++) {
printf(“\t%s\n”, valsi]);
}

Idap_value_free(vals);

42

12/2/97

Java Naming and Directory Interface

B.3.2

JavaSoft

if ((vals = Idap_get_values(Id, e, “telephonenumber”)) != NULL) {
printf(“Telephone number:\n”);
for (i =0; vals[i] '= NULL; i++) {
printf(“\t%s\n”, valsJi]);

Idap_value_free(vals);

}
}

Idap_msgfree(result);
Idap_unbind(Id);
return(0);

Get Attributes Using JNDI

/*
* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Retrieve several attributes of a particular entry.
*

* [equivalent to getattrs.c in Netscape SDK]

*/

import java.util. Hashtable;
import java.util. Enumeration;

import javax.naming.*;
import javax.naming.directory.*;

class Getattrs {
public static void main(String[] args) {

Hashtable env = new Hashtable(5, 0.75f);

/*

* Specify the initial context implementation to use.

* For example,

* This could also be set by using the -D option to the java program.

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

Compare

*/

env.put(“java.naming.factory.initial”, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(“‘java.naming.provider.url”, Env.MY_SERVICE);

try {
[* get a handle to an Initial DSContext */

DirContext ctx = new InitialDirContext(env);

String[] attrs = new String[4];

attrs[0] = “cn”; [* Get canonical name(s) (full name) */
attrs[1] = “sn”; [* Get surname(s) (last name) */
attrs[2] = “mail”; /* Get email address(es) */

attrs[3] = “telephonenumber”; /* Get telephone number(s) */

Attributes result = ctx.getAttributes(Env.ENTRYDN, attrs);

43

12/2/97

Java Naming and Directory Interface

if (result == null) {
System.out.printin(Env.ENTRYDN + “has none of the specified at-
tributes”);
}else {
[* print it out */
Attribute attr = result.get(“cn”);
if (attr = null) {
System.out.printin(“Full name:”);
for (NamingEnumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin(“\t” + vals.nextElement()))

}

attr = result.get(“sn”);
if (attr = null) {
System.out.printin(“Last nhame (surname):”);
for (NamingEnumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin(“\t” + vals.nextElement()))

}

attr = result.get(“mail”);
if (attr = null) {
System.out.printin(“Email address:”);
for (NamingEnumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin(“\t” + vals.nextElement()))

}

attr = result.get(“telephonenumber”);
if (attr = null) {
System.out.printin(“Telephone number:”);
for (NamingEnumeration vals = attr.getAll();
vals.hasMoreElements();
System.out.printin(“\t” + vals.nextElement()))

}
}

} catch (NamingException e) {
System.err.printin(*Rdentry example failed”);
e.printStackTrace();

}

}
}

B.4 Compare An Attribute

B.4.1 Compare Using LDAP C API

/*
* Copyright (c) 1996. Netscape Communications Corporation. All
* rights reserved.

*

* Use Idap_compare() to compare values agains values contained in entry

JavaSoft 44 12/2/97

Java Naming and Directory Interface

JavaSoft

* “cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".

* We test to see if (1) the value “person” is one of the values in the
* objectclass attribute (it is), and if (2) the value “xyzzy” is in the
* objectlass attribute (it isn't, or at least, it shouldn’t be).

*

*/
#include “examples.h”

int
main(int main, char **argv)
{

LDAP *d;

int rc;

/* get a handle to an LDAP connection */

if ((Id =Idap_init{ MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");
return(1);

}

[* authenticate to the directory as nobody */

if (I[dap_simple_bind_s(Id, NULL, NULL) != LDAP_SUCCESS)) {
Idap_perror(Id, “Idap_simple_bind_s");
return(1);

}

/* compare the value “person” against the objectclass attribute */
rc = ldap_compare_s(Id, ENTRYDN, “objectclass”, “person”);
switch (rc) {
case LDAP_COMPARE_TRUE:
printf(“The value \"person\” is contained in the objectclass “
“attribute.\n");
break;
case LDAP_COMPARE_FALSE:
printf(“The value \"person\” is not contained in the objectclass “
“attribute.\n");
break;
default:
Idap_perror(Id, “Ildap_compare_s");

}

/* compare the value “xyzzy” against the objectclass attribute */
rc = ldap_compare_s(Id, ENTRYDN, “objectclass”, “xyzzy");
switch (rc) {
case LDAP_COMPARE_TRUE:
printf(“The value \"xyzzy\" is contained in the objectclass “
“attribute.\n");
break;
case LDAP_COMPARE_FALSE:
printf(“The value \"xyzzy\” is not contained in the objectclass “
“attribute.\n");
break;
default:
Idap_perror(Id, “ldap_compare_s");

}

Idap_unbind(Id);
return(0);

45

12/2/97

Java Naming and Directory Interface

B.4.2 Compare Using JNDI

/*
* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Use search() to compare values against values contained in entry

* “cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
* We test to see if (1) the value “person” is one of the values in the

* objectclass attribute (it is), and if (2) the value “xyzzy” is in the

* objectlass attribute (it isn't, or at least, it shouldn’t be).

*

* [equivalent to compare.c in Netscape SDK]
*

*
import java.util. Hashtable;

import javax.naming.*;
import javax.naming.directory.*;

class Compare {
public static void main(String[] args) {

Hashtable env = new Hashtable(5, 0.75f);

/*

* Specify the initial context implementation to use.

* This could also be set by using the -D option to the java program.

* For example,

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

Compare

*/

env.put(“java.naming.factory.initial”, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(“java.naming.provider.url”, Env.MY_SERVICE);

/* get a handle to an Initial DSContext */
DirContext ctx = new InitialDirContext(env);

SearchControls constraints = new SearchControls();

constraints.setSearchScope(SearchControls.OBJECT_SCOPE);

constraints.setReturningAttributes(new String[0]); // do not return any
attrs

try {
NamingEnumeration results =

ctx.search(Env.ENTRYDN, “objectclass=person”, constraints);

if (results !'= null && results.hasMoreElements()) {
System.out.printin(
“The value \"person\” is contained in the objectclass attribute.”);
}else {

System.out.printin(
“The value \"person\” is not contained in the objectclass attribute.”

JavaSoft 46 12/2/97

Java Naming and Directory Interface

} catch (NamingException e) {
System.err.printin(*Comparison of value person failed”);

}

try {
NamingEnumeration results =

ctx.search(Env.ENTRYDN, “objectclass=xyzzy”, constraints);

if (results !'= null && results.hasMoreElements()) {
System.out.printin(
“The value \"xyzzy\” is contained in the objectclass attribute.”);
}else {
System.out.printin(
“The value \"xyzzy\” is not contained in the objectclass attribute.”

}

} catch (NamingException e) {
System.err.printin(*Comparison of value xyzzy failed”);
}
}
}

B.5 Modify Attributes

B.5.1 Modify Attributes Using LDAP C API

/*

* Copyright (c) 1996. Netscape Communications Corporation. All

* rights reserved.

*

* Modify an entry:

* - replace any existing values in the “mail” attribute with “babs@ace.com”
* - add a new value to the “description” attribute

*/

#include “examples.h”

int
main(int argc, char **argv)
{

LDAP *|d;

LDAPMod modo;
LDAPMod mod1;
LDAPMod *mods[3];
char *valsO[2];
char *valsl[2];
time_t now;

char buf[128];

/* get a handle to an LDAP connection */
if ((Id =Idap_init(MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");
return(1);
}
[* authenticate */
if (Idap_simple_bind_s(Id, ENTRYDN, ENTRYPW) != LDAP_SUCCESS) {

JavaSoft 47 12/2/97

Java Naming and Directory Interface

B.5.2

JavaSoft

Idap_perror(Id, “Idap_simple_bind_s");
return(1);
}
/* construct the list of modifications to make */
mod0.mod_op = LDAP_MOD_REPLACE;
mod0.mod_type = “mail”;
vals0[0] = “babs@ace.com”;
valsO[1] = NULL;
mod0.mod_values = vals0;

modl.mod_op = LDAP_MOD_ADD;
modl.mod_type = “description”;
time(&now);
sprintf(buf, “This entry was modified with the modattrs program on %s”,
ctime(&now));
/* Get rid of \n which ctime put on the end of the time string */
if (buf[strlen(buf)-1]=="n") {
buf[strlen(buf) - 1]="0";

}

vals1[0] = buf;

vals1[1]= NULL;
modl.mod_values = valsl;

mods[0] = &mod0;
mods[1] = &mod1,;
mods[2] = NULL;

/* make the change */
if (Idap_modify_s(Id, ENTRYDN, mods)
1= LDAP_SUCCESS)) {

Idap_perror(Id, “ldap_modify_s");
return(1);

}

Idap_unbind(Id);

printf(“modification was successful\n”);

return(0);

Modify Attributes Using JNDI

/*

*
*

*

* - replace any existing values in the “mail” attribute with “babs@ace.com”

*
*

*

*

Copyright (c) 1997. Sun Microsystems. All rights reserved.
Modify an entry:
- add a new value to the “description” attribute

[equivalent to modattrs.c in Netscape SDK]

import java.util.Hashtable;
import java.util.Date;

import javax.naming.*;
import javax.naming.directory.*;

class Modattrs {

48

12/2/97

Java Naming and Directory Interface

public static void main(String[] args) {

Hashtable env = new Hashtable();

/*

* Specify the initial context implementation to use.

* This could also be set by using the -D option to the java program.

* For example,

* This could also be set by using the -D option to the java program.

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

Compare

*/

env.put(“‘java.naming.factory.initial”, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(“‘java.naming.provider.url”, Env.MY_SERVICE);

[* specify authentication information */
env.put(“java.naming.security.principal”, Env.MGR_DN);
env.put(“java.naming.security.credentials”, Env.MGR_PW);

try {
[* get a handle to an Initial DSContext */
DirContext ctx = new InitialDirContext(env);

/* construct the list of modifications to make */
Modificationltem[] mods = new Modificationltem[3];

Attribute modO = new Attribute(“mail”, “babs@eng”);
/I Update mail attribute
mods[0] = new Maodificationltem(DirContext. REPLACE_ATTRIBUTE, mod0);

/I Add another value to description attribute
Attribute mod1 =
new Attribute(“description”,
“This entry was modified with the Modattrs program on “ +
(new Date()).toString());
mods[1] = new Madificationltem(DirContext. ADD_ATTRIBUTE, mod1);

[* Delete the description attribute altogether */
/*

Attribute mod1 = new Attribute(“description”);

mods[2] = new Maodificationltem(DSContext.DELETE_ATTRIBUTE, mod1);
*/

/* make the change */
ctx.modifyAttributes(Env.ENTRYDN, mods);
System.out.printin(“modification was successful”);

} catch (NamingException €) {
System.err.printin(“modification failed” + e);
}
}
}

B.6 Rename An Entry

JavaSoft 49

12/2/97

Java Naming and Directory Interface

B.6.1

JavaSoft

Rename Using LDAP C API

/*
* Copyright (c) 1996. Netscape Communications Corporation. All

* rights reserved.
*

* Modify the RDN (relative distinguished name) of an entry. In this

* example, we change the dn “cn=Jacques Smith, o=Ace Industry, c=US"

* to “cn=Jacques M Smith, o=Ace Industry, c=US".

*

* Since it is an error to either (1) attempt to modrdn an entry which

* does not exist, or (2) modrdn an entry where the destination name
* already exists, we take some steps, for this example, to make sure
*we'll succeed. We (1) add “cn=Jacques Smith” (if the entry exists,

* we just ignore the error, and (2) delete “cn=Jacques M Smith” (if the
* entry doesn’t exist, we ignore the error).

*

* We pass 0 for the “deleteoldrdn” argument to Idap_modrdn2_s(). This
* means that after we change the RDN, the server will put the value

* “Jacques Smith” into the cn attribute of the new entry, in addition to
* “Jacques M Smith”.

*/

#include “examples.h”
#define NMODS 4
unsigned long global_counter = 0;

static void free_mods(LDAPMod **mods);

int
main(int argc, char **argv)
{
LDAP *|d;
char *dn, *ndn, *nrdn;
int i;
int rc;
LDAPMod **mods;

[* Values we’ll use in creating the entry */

char *objectclass_values[] = { “top”, “person”, “organizationalPerson”,
“inetOrgPerson”, NULL };

char *cn_values[] = { “Jacques Smith”, NULL };

char *sn_values[] = { “Smith”, NULL };

char *givenname_values[] = { “Jacques”, NULL };

[* Specify the DN we're adding */

dn = “cn=Jacques Smith, o=Ace Industry, c=US";

[* the destination DN */

ndn = “cn=Jacques M Smith, o=Ace Industry, c=US";
/* the new RDN */

nrdn = “cn=Jacques M Smith”;

/* get a handle to an LDAP connection */

if ((Id = Idap_init(MY_HOST, MY_PORT)) == NULL) {
perror(“ldap_init");
return(1);

}

50

12/2/97

Java Naming and Directory Interface

JavaSoft

[* authenticate to the directory as the Directory Manager */

if (Idap_simple_bind_s(Id, MGR_DN, MGR_PW) I= LDAP_SUCCESS) {

Idap_perror(Id, “Idap_simple_bind_s");
return(1);

}

if ((mods = (LDAPMod **) malloc((NMODS + 1) * sizeof(LDAPMod *)))

== NULL) {

fprintf(stderr, “Cannot allocate memory for mods array\n”);

return(1);
}
[* Construct the array of values to add */
for (i =0;i <NMODS; i++) {

if ((mods[i] = (LDAPMod *) malloc(sizeof(LDAPMod))) == NULL) {
fprintf(stderr, “Cannot allocate memory for mods element\n”);

return(1);

}
}
mods[0]->mod_op = 0;
mods][0]->mod_type = “objectclass”;
mods[0]->mod_values = objectclass_values;
mods[1]->mod_op = 0;
mods|[1]->mod_type = “cn”;
mods[1]->mod_values = cn_values;
mods[2]->mod_op = 0;
mods[2]->mod_type = “sn”;
mods[2]->mod_values = sn_values;
mods[3]->mod_op = 0;
mods[3]->mod_type = “givenname”;
mods[3]->mod_values = givenname_values;
mods[4] = NULL;

/* Add the entry */
if ((rc = Idap_add_s(Id, dn, mods)) != LDAP_SUCCESS) {
[* If entry exists already, fine. Ignore this error. */
if (rc == LDAP_ALREADY_EXISTS) {
printf(“Entry \"%s is already in the directory.\n”, dn);
}else {
Idap_perror(Id, “Idap_add_s");
free_mods(mods);
return(1);
}
}else {
printf(“Added entry \"%s\".\n", dn);
}

free_mods(mods);

/* Delete the destination entry, for this example */
if ((rc = |dap_delete_s(Id, ndn)) != LDAP_SUCCESS) {
I* If entry does not exist, fine. Ignore this error. */
if (rc == LDAP_NO_SUCH_OBJECT) {
printf(“Entry \"%s\" is not in the directory. “
“No need to delete.\n”, ndn);
}else {
Idap_perror(Id, “ldap_delete_s");
return(1);

}

}else {

51

12/2/97

Java Naming and Directory Interface

printf(“Deleted entry \"%s\".\n", ndn);
}

/* Do the modrdn operation */

if (Idap_modrdn2_s(Id, dn, nrdn, 0) != LDAP_SUCCESS) {
Idap_perror(Id, “Ildap_modrdn2_s");
return(1);

}

printf(“The modrdn operation was successful. Entry\n”
“\"%s\" has been changed to\n”
“V"%s\".\n”, dn, ndn);

Idap_unbind(Id);
return O;

/*

* Free a mods array.

*/

static void

free_mods(LDAPMod **mods)
{

inti;

for (i=0;i<NMODS; i++) {
free(mods[i]);
}

free(mods);

}

B.6.2 Rename Using JNDI

/*
* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

* Modify the RDN (relative distinguished name) of an entry. In this

* example, we change the dn “cn=Jacques Smith, o=Ace Industry, c=US"
* to “cn=Jacques M Smith, o=Ace Industry, c=US".

*

* Since it is an error to either (1) attempt to modrdn an entry which

* does not exist, or (2) modrdn an entry where the destination name

* already exists, we take some steps, for this example, to make sure

* we'll succeed. We (1) add “cn=Jacques Smith” (if the entry exists,

* we just ignore the error, and (2) delete “cn=Jacques M Smith” (if the
* entry doesn't exist, we ignore the error).

*

* After renaming, we add back the attribute “Jacques Smith” into the cn
* attribute.

*

* [based on modrdn.c of Netscape SDK]

*/

import java.util.Hashtable;
import java.util.Date;

JavaSoft 52 12/2/97

Java Naming and Directory Interface

import javax.naming.*;
import javax.naming.directory.*;

class Modrdn {
public static void main(String[] args) {

[* Values we’ll use in creating the entry */

Attribute objClasses = new Attribute(“objectclass”);
objClasses.add(“top”);

objClasses.add(“person”);
objClasses.add(“organizationalPerson”);
objClasses.add(“inetOrgPerson”);

Attribute cn = new Attribute(“cn”, “Jacques Smith”);
Attribute sn = new Attribute(“sn”, “Smith”);
Attribute givenNames = new Attribute(“givenname”, “Jacques”);

[* Specify the DN we’re adding */

String dn = “cn=Jacques Smith, “ + Env.MY_MODBASE;

* the destination DN */

String ndn = “cn=Jacques M Smith, “ + Env.MY_MODBASE;
[* the new RDN */

String nrdn = “cn=Jacques M Smith”;

Hashtable env = new Hashtable();

/*

* Specify the initial context implementation to use.

* This could also be set by using the -D option to the java program.

* For example,

* This could also be set by using the -D option to the java program.

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

Compare

*

env.put(“‘java.naming.factory.initial”, Env.INITCTX);

[* Specify host and port to use for directory service */
env.put(“‘java.naming.provider.url”, Env.MY_SERVICE);

[* specify authentication information */
env.put(“java.naming.security.principal”, Env.MGR_DN);
env.put(“java.naming.security.credentials”, Env.MGR_PW);

[* obtain context handle */
DirContext ctx = new InitialDirContext(env);

try {
Attributes orig = new Attributes();

orig.put(objClasses);
orig.put(cn);
orig.put(sn);
orig.put(givenNames);

/* Add the entry */
ctx.createSubcontext(dn, orig);
System.out.printin(“Added entry “ + dn + “.");

} catch (NameAlreadyBoundException e) {
[* If entry exists already, fine. Ignore this error. */

JavaSoft 53

12/2/97

Java Naming and Directory Interface

System.out.printin(“Entry “ + dn + “ already exists, no need to add”);
} catch (NamingException e) {
System.err.printin(“Modrdn: problem adding entry” + e);
System.exit(1);
}

try {
/* Delete the destination entry, for this example */

ctx.destroySubcontext(ndn);
System.out.printin(“Deleted entry “ + ndn + “.");

} catch (NameNotFoundException e) {
[* If entry does not exist, fine. Ignore this error. */
System.out.printin(“Entry “ + ndn + “ is not in the directory. “ +

“No need to delete.”);

} catch (NamingException €) {
System.err.printin(“Modrdn: problem deleting entry” + e);
System.exit(1);

}

/* Do the modrdn operation */
try {
ctx.rename(dn, ndn);
System.out.printin(“The modrdn operation was successful. Entry “ +
dn + “ has been changed to “ + ndn + “.");
} catch (NamingException e) {
System.err.printin(“Modify operation failed” + e);
}
}
}

JavaSoft 54 12/2/97

Java Naming and Directory Interface

Appendix C: Legend for Class Diagram

In a class diagram, we visually distinguish the different kinds of Java entities, as follows:

1. The interface: A rounded rectangle

2. The class: A rectangle

3. The abstract class: A rectangle with an empty dot

4. The final class: A rectangle with a black dot

5. Classes with subclasses: A rectangle with a small black triangle on the lower right corner

Most of these elements are shown below. The class or interface being described in the current chapter is shaded grey (this is
not applicable for package class diagrams). A solid line represeeatsls while a dotted line representsplements

Class from Abstract class i
another package Class with subclasses

‘ j ava. | ang. Obj ect J

MenuConponent OJ

]—{ Menul tem J

CheckboxMenul t em / | ~~~~~~ <I tenBel ectabl e
/
/ Menu / J

extends Interface
The current class

\)

implements

JavaSoft 55 12/2/97

Java Naming and Directory Interface

JavaSoft 56 12/2/97

Java Naming and Directory Interface

Appendix D: JNDI Change History

1.1Betal: JNDI Changes Since 1.0Licensee Release

Package Name Change

JNDI is being packaged as a Java 1.1-compatible Standard Extension. The JNDI packages have been renamed to use the
“javax” prefix, following the convention for Java Standard Extensions. The new package najesamaming
javax.naming.directory , andjavax.naming.spi

General Changes

« Property names have been renamed following the convention used by the JDK. They have a “java.naming” prefix. See
Appendix A ofJINDI API document for details on the new names.

e Makejava.naming.provider.url a system property in addition to being available as an environment property.

» Replaced use #roperties with Hashtable (Properties ' superclass) for the environment properties/settings so
that service providers and applications can completely enumerate its cdtepésties can still be passed as argu-
ments and returned as values whiashtable is called for. But declaring the methods to Hsshtable makes clear
the fact that nestelfroperties are not examined for the operation at hand.

APIl-related Changes

As most of these changes are renames, the 1.1Betal release of the code includes a Java Cléwagmmnmat assists
you with the renames. See the instructions for the release for details.

» AddedContext.close() to allow applications to release resources immediately.

* AddedInterruptedNamingException to indicate a naming operation has been interrupted.

* Class rename®SContext ->DirContext , InitialDSContext ->|nitialDirContext ,
AttributeSet ->Attributes , InvalidAttributeSetException ->InvalidAttributesException ,
SearchConstraints ->SearchControls, InvalidSearchConstraintsException->Invalid-

SearchControlsException.
* MakeAttributes ' methods Iooklikd\/laﬁsz, Attribute ’s methods look lik&et s, andName CompoundName
CompositeName , andReference ’'s methods look likd.ist 's.

* Added protectedttribute.Attribute() constructor so that subclasses can avoid allocsteatpr .

» Added constructors tattributes that accept an attribute.

* Addedthrows NamingException clause toAttribute ’s schema methods.

* RenamedirContext. DELETE_ATTRIBUTE ->DirContext REMOVE_ATTRIBUTE

* ReplacedModificationEnumeration with Modificationltem[]

* ReplacedRefAddrEnumeration andStringEnumeration with Enumeration

* ReplacedAttributeEnumeration , NameClassEnumeration , BindingEnumeration , aandSearchEnu-
meration with NamingEnumeration to allow generic means of doing JNDI enumerations.

« Attribute.getAll() returnsNamingEnumeration instead oEnumeration

« Link.getLinkName() returnsString instead oName

e BinaryRefAddr.buf andStringRefAddr.contents made private. DeletdBinary.getAddressBy-
tes() , StringRefAddr.getAddressString() , BinaryRefAddr.size()

* RenamedrefAddr.getAddressContents() ->getContent()

* RemovedSException , re-parented exceptions to be subcladsarhingException

* Removed most constructors froamingException and its subclasses. Each has two constructors: one that accepts an
explanation and a public constructor that takes no parameters.

* RemovedName.toString() ,equals() ,hashCode() as these are already defineddlyject .

» Constructors for abstract class&sfAddr andReferralException are now protected.

1. Thanks to the Swing team for use and distribution of this program.
2. See http://java.sun.com/products/jdk/preview/docs/guide/collections/ for informatMamet andList

JavaSoft 57 12/2/97

Java Naming and Directory Interface

SPI-related Changes

» NamingManager.getObjectinstance() andObjectFactory.getObjectinstance() allow the caller
to supply two optional parameters: a name and a context. The nhame is the name of the object resolved relative to the con-
text supplied. An object factory can make use of this information to gather further information about the object to create.
See the corresponding javadoc for these methods for details. Corresponding fields and accessor methods were added to
CannotProceedException so that this information, if supplied, can be propagated.

» Constants used NamingManager for property names remove@bjectFactoryProperty, InitialCon-

textFactoryProperty , PkgPathProperty . These were used for internal development. Programs should use the
appropriate strings instead.

» NamingManager.getObjectinstance() returns original input if it cannot create a factory using the reference of
the object (it used to retumull).

* InitialContext constructor that takes no parameters dddimingManager.getinitialContext() with a

null environment instead of empty environment.

1.0Licensee Release: JNDI Changes Since 1.0Betal

Package Name Change

To allow this release to work in all Java 1.1 systems, the JNDI classes have been temporarily renamegaviaomarie
ing hierarchy tocom.sun.java.naming

API-related Changes

» SearchConstraints now implementgava.io.Serializable

» AddedReferralException.skipReferrals() to allow application to skip individual referrals.

* Added constructor tdlolnitialContextException that accepts an explanation string.

* AddedSchemaViolationException for reporting schema-related problems.

* Renamedava.naming.directory.SearchTimeLimitExceededException tojava.naming.Time-
LimitExceededException so that it can be used by tlawa.naming package. Addefiva.naming.Limi-
tExceededException , which is the super class dimeLimitExceededException and
SizeLimitExceededException (new as well).

» To assist in debugging and displaying classes, adtteduteSet.toString() , Binding.toString() ,
SearchResult.toString()

» Clarified semantics of the overloaded fornseérch() that accepts a matching attribute gdtributeSet). If the
matching attribute set iull or empty, return all the objects in the target context.
« AttributeSet now implement€loneable , and has alone() method.

SPI-related Changes

* Added “set” methods thlameClassPair , Binding , andSearchResult classes and made the protected fields pri-
vate. This enables service providers to update the fields in these classes without subclassing.

» Added a constructor tdameClassPair , Binding , andSearchResult that accepts a “relative” parameter, and
isRelative() andsetRelative() methods. This allows service providers to return names that are not relative to
the target context of the search. Non-relative names are named using URL strings.

» Contract betweeNamingManager.getObjectinstance() andObjectFactory s clarified. An object factory
returnsnull if it cannot create the object; it only throws an exception (which is passed up to the ddderiogMan-
ager.getObjectinstance()) if no other object factories should be tried.

* ReplacedResolver.resolvePenultimate() with Resolver.resolveToClass() . This allows more effi-
cient implementation of service providers by allowing the resolution to stop at the first context that exports a target class,
rather than requiring resolution to proceed to the penultimate context. The final service provider in a chain of federated
naming systems no longer needs to implerRasolver ; only the intermediate providers.must do so.

* Removed\otDSContextException . Service providers should usetContextException with the target class
name in the explanation to indicate that a particular subcla@sraéxt is required but not found.

» The default package prefix for loading URL context factories has changed from “sun.jndi.url” to “com.sun.jndi.url”
because of package renaming.

JavaSoft 58 12/2/97

Java Naming and Directory Interface

Document Version Numbers Reset

The earlier versions of the INDI documents were labeled as versions 1.0, 1.1. and 1.2. They should have been “Early Access”,
“Betal” and so on, to match the code releases.

1.0Betal: JNDI Changes Since 1.0Early Access

API-related Changes

Addedjava.naming.ReferralException to support client-side referrals. This abstract class is used to represent
a referral exception, such as that available in LDAP v3. A service provider defines a suliR&fssrafException
to handle its own style of referrals.

AddedcompareTo() toName(and related class€ompositeName , CompoundNamsg.

public int compareTo(Object obj);

This method compares tHi&amewith the specifie®bject for order. It returns a negative integer, zero, or a positive
integer as thidlameis less than, equal to, or greater than the gieject . This method is useful for sorting a list of
names.

Added throws NamingException ' to Referenceable.getReference() so that the implementor of
getReference() can throw an exception if it encounters one.

public Reference getReference() throws NamingException;

AttributeSet was originally case-sensitive. That is, the case of an attribute identifier was considered when retrieving
or adding an attribute to the set. To better support service providers that support case-insensitive attribute identifiers, an
AttributeSet may now be made case-insensitive. This change involved adding a new constiitttdyute-

Set and a new method for interrogating an attribute set about its handling of case.

public AttributeSet(boolean caselgnore);
public boolean isCaselgnored();

Context.setEnvironment() was insufficient to allow both addition and removal of environment properties. The
change is to replacgetEnvironment() with addToEnvironment() andremoveFromEnvironment()

public Properties addToEnvironment(Properties additions) throws NamingException;

public Properties removeFromEnvironment(Properties deletions) throws
NamingException;

AddedhasMore() toBindingEnumeration , NameClassEnumeration = andSearchEnumeration so that a

service provider can throw an exception when this query fails for some unexpectedEeasoeration.has-

MoreElements() cannot throw exceptions. The workaround isHfasMoreElements() to returntrue and save

the exception until the program catlext() . hasMore() allows a provider to indicate to the caller that it has encoun-
tered an exception while determining whether there are more elements. The caller that wants to be notified of exceptions
can usénasMore() instead ohasMoreElements()

public boolean hasMore() throws NamingException;

Added a new constructor @perationNotSupportedException that accepts an explanation message as argu-
ment. This avoids the provider having to use the two steps of creating an@pepationNotSupportedExcep-
tion and then setting the explanation.

AddedcomposeName() methods tcContext class. These may be used to keep track of the full name of an object as
name resolution proceeds from context to context.

JavaSoft 59 12/2/97

Java Naming and Directory Interface

* Removed extraneous parameteNemingException.getRootCause()

SPI-related Changes

» Clarified how URL context factories and contexts are located and created. Eliminafttitigaur| "argument from
NamingManager.getURLContext() and clarified its semantics.
getURLContext(String scheme, Properties env) now returns a context for resolving URLs with scheme

id scheme. It is not tied to any specific URLS, only the scheme id.JB#& SPI document anéllamingMan-
ager.getURLContext() for details.

» Clarified howNamingManager.getObjectinstance() treats URLs. Formerly, it only treat&ferences and
Referenceables specially. It now treats URLSs specially as well. You can nowgeaDbjectinstance() with a
URL string or an array of URL strings and get back an object identified by the URINS&&SPI document and
NamingManager.getObjectinstance() for details.

» Placed additional requirements on URL context factories on how to treat its arguments so that all URL context factories
behave consistently. S8bIDI SPI document an@®bjectFactory.getObjectinstance() for details.

* NamingManager.getContinuationContext() andDirectoryManager.getContinuationDSCon-
text() accept as an argumedannotProceedException instead of a resolved object. This allows information
required to create a continuation context to be passed using one argument and accommodates a common programming
scenario of service providers usi@gnnotProceedException to indicate the state of the operation.

* Added a ‘remaining newname’ part@nnotProceedException so that information required to continue a
rename() can be represented, and an environment part for storing and retrieving the environment to use when resolution
continues..

System Properties
* Two new system properties are introduced.

* jndi.urlfactory.pkgs : Specifies package prefixes to use when loading URL context
factories. Se@lamingManager.getURLContext()

* jndi.dns.url . Specifies DNS service location when using DNS names in “jndi”
URLSs (e.g fndi://dnsname/... ").

These can also be passed as environment propertiesihitifi€ontext constructor.

Environment Properties

e jndi.service.host andjndi.service.port have been replaced by the more gerjatilservice.url
jndi.service.url specifies the location information for configuring a context.
Context service provider are encouraged to use this new environment property. They are still free to use additional envi-
ronment properties as needed for their provider.

e Addedjndi.service.followReferrals : Specifies that referrals encountered by the service provider are to be
followed automatically.

1.0Early Access: JNDI Changes Since Initial Documentation Release

General Changes

* Renamed packages
jndi.ns -> java.naming

jndi.ds -> java.naming.directory

jndi.spi -> java.naming.spi

JavaSoft 60 12/2/97

Java Naming and Directory Interface

* Added implementgava.io.Serializable to the following classes and interfaces:
Name
NameClassPair
RefAddr
Reference
Attribute
AttributeSet
Modificationltem
ModificationEnumeration
SearchConstraints
* Renamed the “count” methods to be more descriptive.
Reference.count() -> Reference.getAddressCount()
Name.count() -> Name.getComponentCount()
[same for CompoundName and CompositeName]
Attribute.count() -> Attribute.getValueCount()
AttributeSet.count() -> AttributeSet.getAttributeCount()
ModificationEnumeration.count() ->
ModificationEnumeration.getModificationltemCount()
* Renamed methods witsubContext ’to ‘Subcontext ’. The new method names are n@ontext.createSub-
context() , Context.destroySubcontext() , andDSContext.createSubcontext()

Name-related Changes

» NameParser is now an interface instead of abstract class. None of its methods contain any implementation so it is more
flexible for it to be an interface. Removed geNamingConvention() method fromNameParser .
* Added class hierarchy tdamingException for security-related exceptions.
NamingException

NamingSecurityException
NoPermissionException
AuthenticationException
AuthenticationNotSupportedException

» Addedthrows lllegalNameException to name-manipulation methods so that they have a way of indicating
error. This applies to thdameinterface, th&€ompositeName andCompoundNameclasses.
prependName()
appendName()
insertName()
prependComponent()
appendComponent()
insertComponent()
deleteComponent()

» The following constructors throlegalNameException instead oNamingException
CompositeName()
CompoundName()

DSContext-related Changes:

» Dropped WithAttributes " suffix from bindWithAttributes(), rebindWithAttributes(), and
createSubContextWithAttributes() . They are now simplipSContext.bind(), DSCon-
text.rebind(), andDSContext.createSubcontext(), respectively.

* RemovedSContext.SearchFilter class and replaced two existiD§Context.Search() methods:

public SearchEnumeration search(String name, String filterExpr,

Object(] filterArgs, SearchConstraints constraints);

JavaSoft 61 12/2/97

Java Naming and Directory Interface

public SearchEnumeration search(Name name, String filterExpr,

Object(] filterArgs, SearchConstraints constraints);

wherefilterExpr contains{n} ’, nis an integer and denotes the n’th elemefitémrgs

to substitute in the expression. The reason for this change iSethétFilter had limited
capabilities and a full class for it was not justified. These changes make the syntax for substi-
tution of variables within an expression consistent with the formatting methjagls. iext

* RenamedittributeSet.modify() to AttributeSet.replace() for consistent usage of ‘replace’ with
Attribute.replaceValue() andDSContext. REPLACE_ATTRIBUTE .
» Changes t@ttribute class:
» Added Attribute.contains() for testing whether an attribute contains a specified
value.
* Attribute.add() throws AttributelInUseException instead of the more general

NamingException

» Schema methods returnill by default. Removed protected variabtgstax and
attr_defn

» AddedInvalidAttributeSetException to deal with the case of incorrectly or insufficiently specified attribute
sets.

SPI-related Changes

* Renamed some class and interface namgs&naming.spi for consistency
InitialContextlmpl -> InitialContextFactory

InitialContextimplFactory -> InitialContextFactoryBuilder

setlnitialContextimplFactory() -> setlnitialContextFactoryBuilder()

haslnitialContextimplFactory() -> haslInitialContextFactoryBuilder()

InitialContextimplFactory.createlnitialContextimpl() ->
InitialContextFactoryBuilder.createlnitial ContextFactory()

JNDIManager -> NamingManager

JNDIDSManager -> DirectoryManager

* RenamedreateObject() to getObjectinstance() so that it is consistent with similar usage in other Java
packages.
JNDIManager.createObject() -> NamingManager.getObjectinstance()

ObjectFactory.createObject() -> ObjectFactory.getObjectinstance().

* Renamed propertydi.initialContext to jndi.initialContextFactory for consistency with method
names.
* Thejndi.initialContextFactory property now contains a single class name instead of a colon-separated list

because it does not make sense to have more than one class.

» To provide more flexibility and to avolBecurityManager -related problems in some configurations, the system prop-
ertiesjndi.initialContextFactory andjndi.objectFactories can be passed as part of the environment
properties passed to the constructordrdialContext andlInitialDSContext , andObjectFac-
tory.getObjectinstance() .

» Some protected methodsNtamingManager andDirectoryManager are now private. This provides more flexibil-
ity in subsequent changes to these classes without exposing details of the implementation

JavaSoft 62 12/2/97

Java Naming and Directory Interface

JavaSoft 63 12/2/97

