D Sun

microsystems

JavaSoft

JNDI SPI: Javal Naming and Directory
Service Provider Interface

The Java Naming and Directory service provider interface (JNDI SPI).

Please send comments to jndi@java.sun.com

JNDI is being packaged as a Java 1.1-compatible Standard Extension. The JNDI
Package packages have been renamed to use the “javax” prefix, following the convention
names .

for Java Standard Extensions.

Java Naming and Directory SPI 1.1Betal
December 1, 1997

Java Naming and Directory SPI

Copyright © 1997 by Sun Microsystems Inc.
901 San Antonio Road, Palo Alto, CA 94303.
All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of Sun Micro-
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.,
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

JavaSoft ii 12/1/97

Java Naming and Directory SPI

Contents
1 JNDI Service Provider Interface (SPI) 1
2 Implementing the Context Interface i, 2
2.1 BasSiC SUPPOIt . .ottt e 2
2.2 Federation SUPPOIt oot e 2
2.2, NAMES ..t e e 2
2.2.2 Resolving ThroughaContext 2
2.2.3 Resolving Through to Subinterfaces of Context. 3
2.2.4 Continuing an Operationina Federation. 4
2.3 Referrals 5
2.4 Schema SUPPOItot 6
2.5 Java Object Support 7
2.6 Context Environment SUPPOrtt 8
2.6.1 Initializing a Context’'s Environment. 8
2.6.2 INhEMtANCE e 9
2.6.3 Updates to the Environment i 9
3 Thelnitial Context. 10
3.1 Implementing An Initial Context 10
3.2 Making An Initial Context Implementation Available to JNDI 11
3.2.1 The java.naming.factory.initial Property. 11
3.2.2 URL Context Implementations 11
3.2.3 Initial Context Factory Builder 12
3.3 Implementing a Subclass of InitialContext 12
3.3.1 Using the SPIto get the Initial Context. 13
4 Objects Bound inthe Namespace e 15
4.1 ObjeCt FaCtories 15
4.1.1 Context Factory e 16
4.1.2 URL Context FaCtory e 16
4.1.3 Making Object Factories Available to JNDI. 16
4.2 References and Referenceable 17
4.2.1 Storing Referencesinthe Namespace.............. ..oy 17
4.2.2 Classinformationin Reference 18
4.3 URLs as Reference Information 19
4.4 Storing Serializable Objects 19
4.5 The java.naming.factory.object Property 20
4.6 Object Factory Builder 21
5 Making Context Implementations Availableto JNDI 22
6 Overviewofthe Interface i e 23
6.1 NamingManager and DirectoryManager 23
6.2 Federation SUPPOrt oottt 23
6.3 Object Factories i 23
6.4 Initial CoNteXtS 23
Appendix A: Service Provider Example 25

JavaSoft iii 12/1/97

Java Naming and Directory SPI

Appendix B: Legend for Class Diagramttt 35
Appendix C: JNDI Change History e 37

JavaSoft iv 12/1/97

Java Naming and Directory SPI JNDI Service Provider Interface (SPI)

1

JavaSoft

JNDI Service Provider Interface (SPI)

The JNDI SPI provides the means by which different naming and directory service providers
can develop and hook up their implementations so that the corresponding services are accessi-
ble from applications that use JNDI. In addition, because JNDI allows the use of names that
span multiple namespaces, one service provider implementation may need to interact with an-
other in order to complete an operation. The SPI provides methods that allow different provider
implementations to cooperate to complete client JNDI operations.

This document describes the components of the SPI and explains how developers can build ser-
vice providers for JNDI. It is assumed that the reader is familiar with the contentsldiDhe
API document.

All service provider developers should read the “Security Considerations” sectiordbi?he
APl document. It contains important issues that all developers using JNDI, especially those
writing service providers, should consider.

1 12/1/97

Java Naming and Directory SPI Implementing the Context Interface

2 Implementing the Context Interface

One of the basic tasks in building a context implementation is to define a class that implements
theContext (orDirContext) interface. The following guidelines should be used for develop-
ing this class.

2.1 Basic Support
The provider defines implementations for each of the methods @otiext interface.
If a method is not supported, it should throperationNotSupportedException

For methods in theontext or DirContext interfaces that accept a name argument (either as
astring or aNamg, an empty name denotes the current context. For example, if an empty
name is supplied tookup() , that means to return the current context. If an empty name is
supplied taist() , that means to enumerate the names in the current context. If an empty name
is supplied t@etAttributes() , that means to retrieve the attributes associated with this con-
text.

Appendix A contains an example service provider that implements a flat, in-memory
namespace.

2.2 Federation Support

2.2.1 Names

A context in a federation will be given a composite name with each context operation. This
composite name may span multiple namespaces, or it may have only a single compound name
component (which in turn may be made up of one or several atomic names) that belongs to a
single namespace. The context implementation must determine which part of the name is to be
resolved/processed in its context and pass the rest onto the next context. This may be done by
syntactically examining the name, or dynamically by resolving the name.

2.2.2 Resolving Through a Context

A context participates in a federation by performing the resolution phase of all of the context
operations. Th@okup() method must always be supported. Support for other methods is op-
tional, but if the context is to participate in a federation, then the resolution implicit in all op-
erations must be supported.

JavaSoft 2 12/1/97

Java Naming and Directory SPI Implementing the Context Interface

Figure 1: Example of Resolving through Intermediate Contexts to Perform a bind().

ctxbind(cl/c2icsra’,) |

— -~

bind“c2/c3/a”,) [binda”,) [}
c3 i) a .

bind(“c3/a”,)

cl c2

Cctx

pind(“cl/c2/cara,) I

For example, suppose a context does not suppobtridie operation. When that context is
being used as an intermediate contextfad() , it must perform the resolution part of that
operation to enable the operation to continue to the next context. It should onlyogamaw
tionNotSupportedException if it is being asked to create a binding in its own context. Figure
1 shows an example of how thied() operation is passed through intermediate contexts to
be performed in the target context.

2.2.3 Resolving Through to Subinterfaces of Context

To invoke aDirContext ~method (such agetAttributes()), the application first obtains an
initial DirContext , and then perform the operation on the€ontext

DirContext ctx = new InitialDirContext();
Attributes attrs = ctx.getAttributes(someName);

From the provider’s perspective, in order to retrieve the attribggesiributes() might

need to traverse multiple naming systems. Some of these naming systems only support the
Context interface, not theirContext interface. These naming systems are being used as in-
termediaries for resolving towards the target context. The target context must suppiert the
Context interface. Figure 2 shows an example of this.

Figure 2: Example of Resolving Through Intermediate non-DirContexts

startingDirContext targetbirContext

O DirContext
Q Context

JavaSoft 3 12/1/97

Java Naming and Directory SPI Implementing the Context Interface

224

In order for intermediate naming systems to participate in the federation for extengions of

text , they must implement thresolver interface. TheResolver interface is used by the

JNDI framework to resolve through intermediate contexts that do not support a particular sub-
interface ofcontext . It consists of two overloaded forms of the methadiveToClass()

This method is used to partially resolve a name, stopping at the first context that is an instance
of the required subinterface. By providing support for this method and the resolution phase of
all methods in th€ontext interface, a provider can act as an intermediate context for exten-
sions (subinterfaces) abntext .

public interface Resolver {
public ResolveResult resolveToClass(Name name, Class contextType)
throws NamingException;
public ResolveResult resolveToClass(String name,
Class contextType)
throws NamingException;

}
Continuing an Operation in a Federation

In performing an operation on a name that spans multiple namespaces, a context that is acting
as an intermediate context in an intermediate naming system needs to pass the operation onto
the next naming system. The context does this by first constructiaghetProceedExcep-

tion containing information pinpointing how far it has proceeded. In so doing it sets the re-
solved object, resolved name, remaining name, and environment parts of the eXcgption.

the case of theontext.rename() method, it also sets the “resolved newname” part.)

It then obtains aontinuation contexirom JNDI by passing theannotProceedException to
static methodNamingManager .getContinuationContext()

public class NamingManager {
public static Context getContinuationContext(
CannotProceedException e) throws NamingException;

}
The information in the exception is useddeyContinuationContext() to create the contin-
uation context instance in which to continue the operation.

To obtain a continuation context for thmrContext operations, useDirectoryMan-
ager.getContinuationDirContext()

public class DirectoryManager {
public static getContinuationDirContext(
CannotProceedException e) throws NamingException;

}

Upon receiving the continuation context, the operation should be continued using the remain-
der of the name that has not been resolved.

1. TheCannotProceedException may well have been thrown by one of the context’s internal methods when it
discovered that the name being processed is beyond the scope of the context. The process by which the exception
is produced is dependent on the implementation of the context.

JavaSoft

4 12/1/97

Java Naming and Directory SPI Implementing the Context Interface

For example, when attempting to continugnd() operation, the code in the provider might
look as follows:

public void bind(Name name, Object obj) throws NamingException {

try {
internal_bind(name, obj);

} catch (CannotProceedException e) {
Context cctx = NamingManager.getContinuationContext(e);
cctx.bind(e.getRemainingName(), obj);

}

In this examplebind() depends on an internal methadernal_bind(), to carry out the
actual work of the bind and to throwCannotProceedException when it discovers that it is
going beyond this naming system. The exception is then pasgedbatinuationCon-

text() in order to continue the operation. If the operation cannot be continued, the continua-
tion context will throw theCannotProceedException to the caller of the originalind()
operation.

2.3 Referrals

LDAP-style directory services support the notiomaderrals for redirecting a client’s request

to another server. A referral differs from the federation continuation mechanism described
above in that a referral may be presented to the JNDI client, who then decides whether to follow
it, whereas &annotProceedException should be returned to the client only when no further
progress is possible. Another difference is that an individual service provider offers the capa-
bility of continuing the operation (and itself determines the mechanism for doing so). In a fed-
eration, the mechanism of continuation is beyond the scope of individual service providers:
individual providers benefit from the common federation mechanism provided by the JNDI
SPI.

A service provider that supports referrals defines a subclassenfalException and pro-
vides implementations for its two abstract methgekReferralContext() returns a context
at which to carry on the operation, ayetReferralinfo() returns information on where the
referral leads to, in a format appropriate to the service provider.

The environment properigva.naming.referral specifies how the service provider should
treat referrals. If the service provider is asked to throw an exception when a referral is encoun-
tered, or if the provider encounters problems following a referral, it thr&®wte@alExcep-

tion to the application. To continue the operation, the application re-invokes the method on
the referral context using the same arguments it supplied to the original method. The following
code sample shows haweferralException may be used by an applicatibn:

1. Note that this is code in tla@plication In “Continuing an Operation in a Federation”, the code sample presented
is code in theservice provider

JavaSoft 5 12/1/97

Java Naming and Directory SPI Implementing the Context Interface

while (true) {

try {
bindings = ctx.listBindings(name);
while (bindings.hasMore()) {
b = (Binding) bindings.next();

}

break;
} catch (ReferralException e) {
ctx = e.getReferralContext();

}
}

This convention of re-invoking the method using the original arguments is a simple one for ap-
plications to follow. This places the burden on the implementation ðealException

to supply enough information to the implementation of the referral context for the operation to

be continued. Note that this will likely render some of the arguments passed to the re-invoked
operation superfluous. The referral context implementation is free to ignore any redundant or
unneeded information.

It is possible for an operation to return results in addition to a referral. For example, when
searching a context, the server might return several results in addition to a few referrals as to
where to obtain further results. These results and referrals might be interleaved at the protocol
level. If referrals require user interaction (i.e. not followed automatically), the service provider
should return the results through the search enumeration first. When the results have been re-
turned, the referral exception can then be thrown. This allows a simple programming model to
be used when presenting the user with a clear relationship between a referral and its set of re-
sults.

2.4 Schema Support

JavaSoft

JNDI defines thattribute class for representing an attribute in a directory. An attribute con-
sists of an attribute identifier (a string) and a set of attribute values, which can be any Java ob-
jects. There are also methods defined in Ahdbute class for obtaining the attribute’s
definition and syntax definition from the directory’s schema.

public class Attribute {
public DirContext getAttributeDefinition() throws NamingException;
public DirContext getAttributeSyntaxDefinition()
throws NamingException;

}

The default implementation efitribute does not provide real implementations for these
methods. A directory provider that has support for such schema information should provide
subclasses dfttribute that implement these two methods based on its schema mechanisms.
The provider should then return instances of these subclasses when asked to return instances
of Attribute . The provider, when it receives an unextengteibute instance, should use
reasonable defaults to determine the attribute’s definition and syntax, using information such
as the attribute values’ class names or conventions used for the attribute identifier.

6 12/1/97

Java Naming and Directory SPI Implementing the Context Interface

ThebDirContext interface contains schema-related methods:

public class DirContext {

public DirContext getSchema(Name name) throws NamingException;
public DirContext getSchema(String name) throws NamingException;

public DirContext getSchemaClassDefinition(Name name)
throws NamingException;

public DirContext getSchemaClassDefinition(String name)
throws NamingException;

}

getSchema() returns the schema tree for the named object, whiehemaClassDefini-

tion() returns the schema class definition for the named object. Some systems have just one
global schema and, regardless of the value oidine argument, will return the same schema

tree. Others support finer grained schema definitions, and may return different schema trees de-
pending on which context is being examined.

2.5 Java Object Support

JavaSoft

JNDI encourages providers to supply implementations oféhext andDirContext inter-

faces that are natural and intuitive for the Java programmer. For example, when looking up a
printer name in the namespace, it is natural for the Java programmer to expect to get back a
printer object on which to operate.

Context ctx = new InitialContext();
Printer prt = (Printer)ctx.lookup(somePrinterName);
prt.print(someStreamOfData);

However, what is bound in the underlying directory or naming services typically are not Java
objects but merely reference information which can be used to locate or access the actual ob-
ject. This case is quite common, especially for Java applications accessing and sharing services
in an existing installed base. The reference in effect acts as a “pointer” to the real object. In the
printer example, what is actually bound might be information on how to access the printer (e.g.
its protocol type, its server address). To enable this easy-to-use model for the application de-
veloper, the provider must do the transformation of the data stored in the underlying service
into the appropriate Java objects.

There are different ways to achieve this goal. One provider might have access to all the imple-
mentation classes of objects that a directory can return; another provider might have a special
class loader for locating implementation classes for its objects. JNDI supports automatic gen-
eration of objects using information bound in the namespace via the us®eftthece class

(see “References and Referenceable” on page 17) and URLs (see “URL Context Factory” on
page 16). By providing threference class and a common mechanism for convertiref-a

erence into the object identified by theeference , JNDI encourages different applications

and system providers to utilize this mechanism, rather than invent separate mechanisms on
their own. However, this does not preclude providers from using their own mechanisms for
achieving the same goal.

7 12/1/97

Java Naming and Directory SPI Implementing the Context Interface

To enable this feature in their contexts, the service provider can wsedhiectinstance()
method fromNamingManager to convert information bound in the namespace into objects.

Object NamingManager.getObjectinstance(Object refinfo,
Name name,
Context nameCtx,
Hashtable env);

For example, suppose printers are represented in the namespadceetesénge S. To turn a
printerReference into a livePrinter object, the service provider would use gh@bject-

Instance() ~method. In this way, the underlying service need not know anything specific about
printers.

Object lookup(Name name) {

Reference ref = <some printer reference looked up from directory >;
return (NamingManager.getObjectinstance(ref, name, this, env));

}

When constructing objects to be returned for the following JNDI methods, the service provider
should callgetObjectinstance() , or its own mechanism for generating objects from the
bound information, if it wants this feature to be enabled in their contexts.
javax.naming.Context.lookup()
javax.naming.Context.lookupLink()

javax.naming.Binding.getObject()
javax.naming.directory.SearchResult.getObject()

ForBinding andsSearchResult , the provider should either pass an object that is the result of

calling getObjectinstance() or its equivalent to the constructor, or override the default im-
plementation oBinding andSearchResult SO that theigetObject() implementations call
getObjectinstance() or its equivalent before returning.

2.6 Context Environment Support

26.1

JavaSoft

Each instance afontext (Or DirContext) can have associated with it @anvironmentvhich
contains preferences expressed by the application of how it would like to access the services
offered by the context. Examples of information found in an environment are security-related
information that specify the user’'s credentials and desired level of security (none, simple,
strong), and configuration information, such as the server to use. Appendix AJbiDhAPI
document specifies a preliminary list of environment properties.

Environment properties are defined generically in order to ensure maximum portability. Indi-
vidual service providers should map these generic properties to characteristics appropriate for
their service. Properties that are not relevant to a provider are silently ignored. The environ-
ment may also be used for storing service-specific properties or preferences, in which case their
applicability across different providers is limited.

Initializing a Context’s Environment

When creating an initial context (eitheitialContext or InitialDirContext), the appli-
cation can supply an environment as a parameter. The parameter is represemisictasea
or any of its subclasses (eRgoperties). The service provider should make a copy of the con-

8 12/1/97

Java Naming and Directory SPI Implementing the Context Interface

2.6.2

2.6.3

JavaSoft

tents of the environment so that changes by the caller to the argument would not affect what
the provider sees and vice versa. Note also that if the environment argumermpistias

instance, enumeration amthshtable.get() on the argument only examine the top-level
properties (not any nested defaults). This is the expected behavior. The provider is not expected
to retrieve or enumerate values in Heperties instance’s nested defaults.

Inheritance

The environment is inherited from parent to child as the context methods proceed from one
context to the next. The entire environment of a context instance is inherited by the child con-
text instances, regardless of whether certain properties within the environment are ignored by
a particular context.

A service provider must pass on the environment from one context instance to the next in order
to implement this “inheritance” trait of environments. Within one provider it can do so by pass-
ing the environment as an argument todhetext constructor, or to theamingManager.ge-
tObjectinstance() method for creatingontext instances.

Across providers in a federation, this is supported by passing the environment as part of the
CannotProceedException parameter of th@&amingManager.getContinuationContext()

method, which in turn will use this environment when creating an instance of the context in
which to continue the operation.

Inheritance can be implemented in any way as long as it preserves the semantics that each con-
text has its own view of its environment. For example, a copy-on-write implementation could
be used to defer copying of the environment until it is absolutely necessary.

Updates to the Environment

The environment of a context can be updated via the use afdh&Environment() and re-
moveFromEnvironment() ~ methods in th€ontext interface.

public interface Context {

public Object addToEnvironment(String propName, Object propVal)
throws NamingException;

public Object removeFromEnvironment(String propName)
throws NamingException;

}

These methods update the environment of this instanteneikt . An environment property

that is not relevant to the provider is silently ignored but maintained as part of the environment.
The updated environment affects this instanceonfext , and will be inherited by any new
child Context instances, but does not affect atpntext instances already in existence. A
lookup of the empty name orcantext will return a newContext instance with an environ-

ment inherited as with any other child.

9 12/1/97

Java Naming and Directory SPI The Initial Context

3

The Initial Context

Since all INDI methods are performed relative to a context, an application needs a starting con-
text in order to invoke JNDI methods. This starting context is referred to emstidlecontext

The bindings in the initial context are determined by policies set forth by the initial context ser-
vice provider, perhaps using standard policies for naming global and enterprise-wide
namespaces. For example, the initial context might contain a binding to the Internet DNS
namespace, a binding to the enterprise-wide namespace, and a binding to a personal directory
belonging to the user who is running the application.

An application obtains an initial context by making the following call:
Context ctx = new InitialContext();

An alternate constructor allows an environment to be passed as an argument. This allows the
application to pass in preferences or security information to be used in the construction of the
initial context.

Hashtable env = new Hashtable(5, 0.75); 1
env.put(“java.naming.security.principal”, “jsmith”);
env.put(“java.naming.security.credentials”, “xXxxxxxx”);
Context ctx = new InitialContext(env);

Subsequent to getting an initial context, the application can inv@kext methods.
Object obj = ctx.lookup(“this/is/a/test”);

The InitialContext class selects an actual initial context implementation using a default al-
gorithm that can be overridden by installingiaiial context factory buildedescribed be-
low).

ThelnitialDirContext is an extension ohitialContext . It is used for performing direc-
tory operations using the initial context. The algorithms and policies described in this section
also apply tanitialDirContext . Places wherpirContext is required instead @fontext

have been noted.

3.1 Implementing An Initial Context

An initial context implements theontext orDirContext interface. Its implementation should
follow the same guidelines outlined in “Implementing the Context Interface” on page 2.

In addition to the implementation classesdontext and/orDirContext , the provider must
also supply an implementation fiaitialContextFactory , Which is responsible for gener-
ating instances of the initial contexitialContextFactory contains a single methogk-
tinitialContext()

1. You can also use a subclas$iashtable (e.g.Properties) for this.

JavaSoft

10 12/1/97

Java Naming and Directory SPI The Initial Context

public interface InitialContextFactory {
public Context getinitialContext(Hashtable env)
throws NamingException;

}
This method generates instance€aftext orDirContext that serve as initial contexts. The
implementation class fanitialContextFactory must be public and contain a pubiigl

constructor. Appendix A contains an example ofnaialContextFactory

3.2 Making An Initial Context Implementation Available to JNDI

3.2.1

3.2.2

There are three ways in which an initial context implementation is made available to JNDI:
» Thejava.naming.factory.initial environment or system property.
* URL Context Implementations.
* An initial context implementation factory.

The java.naming.factory.initial Property

The propertyjava.naming.factory.initial contains the fully-qualified class name of an
initial context factory. The class must implement Ith#lContextFactory interface and
have a publiaull constructor. JNDI will load the initial context factory class and then invoke
getlnitialContext() on it to obtain &ontext OrDirContext instance to be used as the ini-
tial context.

An application that wants to use this initial context must supplyatheaming.facto-

ry.initial property either in the environment passed to Itit@iContext or Ini-
tialDirContext constructors, or as one of the program’s system properties. If the property is
supplied as part of the environment, the system property is not consulted.

URL Context Implementations

If a URL stringt is passed to the initial context, it will be resolved using the corresponding URL
context implementation. This is independent of any initial context implementations obtained
using thgava.naming.factory.initial environment or system property.

The URL context implementation is obtained using an object factory for the URL scheme iden-
tified in the URL string. The factory’s class name is of the forf8chem®RLContextFacto-

ry in the package specified using tlaga.naming.factory.url.pkgs environment or
system propertyava.naming.factory.url.pkgs contains a colon-separated list of package
prefixes. Each package prefix in this property is tried in the order specified to load the factory
class. If none of the prefixes work, the default package pta@fixun.jndi.url is tried. The
factory’s fully qualified class name is constructed using the following rule:

package prefix + “.” + URL scheme + “.” + class name

1. The mention of “URL” in this document refers to a URL string as defined by RFC 1738 and its related RFCs. It is
any string that conforms to the syntax described therein, and may not always have corresponding support in the
java.net.URL class or Web browsers. The URL string is either passedsagiie name parameter, or as the first
component of th&lameparameter.

JavaSoft

11 12/1/97

Java Naming and Directory SPI The Initial Context

For example, if thaurlSchemeis “ldap” and java.naming.factory.url.pkgs contains
“com.widget:com.wiz.jndi ", JNDI will attempt to locate the corresponding object factory
class by loading the following classes until one is successfully instantiated:

com.widget.ldap.ldapURLContextFactory
com.wiz.jndi.ldap.ldapURLContextFactory
com.sun.jndi.url.ldap.ldapURLContextFactory

The object factory class implements thigectFactory interface (see “URL Context Factory”
on page 16) and has a publigi constructor. It providesgetObjectinstance() method,
which will create instances @ontext or DirContext for the URL scheme. These instances
will then be used to carry out the originally intendedtext orDirContext operation on the
URL supplied to the initial context.

3.2.3 Initial Context Factory Builder

If an initial context factory builder has been installed, the application is effectively defining its
own policy of how to locate and construct initial context implementations. When a factory has
been installed, it is solely responsible for creating the initial context implementation. None of
the default policiesjdva.naming.factory.initial property or URL context implementa-
tions) normally used by JNDI are employed.

A service provider for an initial context factory builder must define a class that implements
InitialContextFactoryBuilder . This class’sreatelnitialContextFactory() meth-
od generates instanceslfialContextFactory

An application that wants to use this factory must first install it.

NamingManager.setlnitialContextFactoryBuilder(factory);

3.3 Implementing a Subclass of InitialContext

When there is a need to provide an initial context that supports an interface that extends from

Context OrDirContext , the service provider should supply a subclagstafContext (or
InitialDirContext). To add support for URLs in the same wayalContext andini-
tialDirContext do, the subclass would use the protected methods availatiteliTon-

text as follows.

For example, suppos&XContext is a subinterface afirContext . Its initial context imple-
mentation would defingetURLOrDefaultinitX XXCtx() methods (for botlameandstring
parameters) that retrieve the real initial context to use.

JavaSoft 12 12/1/97

Java Naming and Directory SPI The Initial Context
public class InitialXXXContext extends InitialDirContext {

protected XXXContext getURLOrDefaultinitXXXCtx(Name name)
throws NamingException {
Context answer = getURLOrDefaultInitCtx(name);
if (I(answer instanceof XXXContext)) {
throw new NolnitialContextException(“Not an XXXContext”);

}

return (XXXContext)answer;

}
/I similar code for getURLOrDefaultInitX XXCtx(String name)

}

When providing implementations for the new methods irx#context interface that accept
a name argumengetURLOrDefaultinitXXXCtx() is used in the following way.

public Object XXXMethod1(Name name, ...) throws NamingException {
return getURLOrDefaultinitXXXCtx(name).XXXMethod1(name, ...);
}

When providing implementations for the new methods irxgeontext interface that do not
have a name argument, usi@alContext.getDefaultinitCtx()
protected XXXContext getDefaultinitXXXCtx() throws NamingException {
Context answer = getDefaultInitCtx();

if (!(answer instanceof XXXContext)) {
throw new NolnitialContextException(“Not an XXXContext");
}

return (XXXContext)answer;

}

public Object XXXMethod2(Args args) throws NamingException {
return getDefaultinitXXXCtx(). XXXMethod2(args);
}

The implementation would also provide appropriate constructors for the class.
Client programs that use this new initial context would look as follows.

import com.widget.jndi.InitialXXXContext;

XXXContext ctx = new InitiaIXXXContext(env);
Object obj = ctx.lookup(name);
ctx. XXXMethodl1(name, ...);

3.3.1 Using the SPI to get the Initial Context

The client application can bypass the usenigéiContext and nitialDirContext by

calling javax.naming.spi.getlnitialContext() directly to return an arbitrary subclass of
Context . This has the disadvantage of losing the URL support providedifiZontext

(The service provider can, of course, provide the URL support on its own.) This style of usage
may be suitable for a client application that sets its own initial context factory builder.

JavaSoft 13 12/1/97

Java Naming and Directory SPI The Initial Context

import javax.naming.spi.*;
NamingManager.setlnitial ContextFactoryBuilder(myBuilder);
Context ctx = NamingManager.getlnitialContext(env);

Object obj = ctx.lookup(name);
(XXXContext)ctx. XXXMethod1(name,...);

JavaSoft 14 12/1/97

Java Naming and Directory SPI Objects Bound in the Namespace

4 Objects Bound in the Namespace

A natural way for a printer client to use the JNDI namespace is to look up a printer name in the
namespace and get back a printer object on which to perform printing methods.

Context ctx = new InitialContext();
Printer prt = (Printer)ctx.lookup(somePrinterName);
prt.print(someStreamOfData);

This is possible if the printer object is directly bound in the namespace. However, as mentioned
earlier, there are many directories and naming services in which names are not bound directly
to objects, but rather to information used to locate or communicate with the actual object. In
the printer example, perhaps what is bound in the namespace is the address of the printer server
At the same time, we do not want the a directory or naming service implementation to know
explicitly about printer addresses and printer objects and how to transform one into the other.

JNDI addresses the different ways in which information about objects can be stored and the
desire to turn such information into Java objects applications can use via th@bgefac-
tories

4.1 Object Factories

JNDI provides a generic way for creating objects (including instancgsiekt) using infor-
mation stored in the namespace. That information may be of arbitraryotyipet (). For ex-
ample it may be Reference , or a URL, or any other data required to create the object. Turning
such information stored in the namespace into an object is supported through thebjset of
factories An object factory is a class that implements dbgctFactory interface, which
contains a single method:

public interface ObjectFactory {
public Object getObjectinstance(Object refObj,
Name name,
Context nameCtx,
Hashtable env)
throws Exception;

}

Given some reference informatianfQbj), optional information about the name of the object
and where it is bound, and optionally some additional environment information (for example,
some identity or authentication information about the user creating the ofpent)ectin-

stance() will create an instance of the object for which this factory is responsible. For exam-
ple, for a printer object factorgetObjectinstance() would return instances of printers. If

an object cannot be created using the arguments supgliedijectinstance() should re-
turnnull . ThegetObjectinstance() method should only thrown an exception if no other
object factories should subsequently be tried. Consequestthpjectinstance() should be
careful about runtime exceptions that might be thrown from its implementation.

JavaSoft 15 12/1/97

Java Naming and Directory SPI Objects Bound in the Namespace

41.1

4.1.2

4.1.3

JavaSoft

Context Factory

A context factory is an object factory that creates instancesnsdxt . The implementation
of these contexts for a particular naming or directory service is referred $emasce provider
or context implementation

URL Context Factory

A URL context factory is a special kind of context factory. It follows these rules when imple-
mentingObjectFactory.getObjectinstance()

» If refObj isnull , create a context for resolving URLs of the scheme associated with
this factory. The resulting context is not tied to a specific URL. For example, invoking

getObjectinstance(null, null, null, env)

on an “ldap” URL context factory returns a context that can resolve LDAP URLs (e.g.
“|dap://ldap.wiz.com/o=wiz,c=us " or “ldap://ldap.umich.edu/
o=umich,c=us 7, ...).

» If refObj is a URL string, create the object identified by the URL. For example,
invoking

getObjectinstance(“Idap://ldap.wiz.com/o=wiz,c=us”, null, null, env);

on an “ldap” URL context factory returns a context for resolving LDAP names (e.g.
“cn=Jane Smith ") relative to the contextd=wiz,c=us ” on the LDAP server
Idap.wiz.com

* If refObj is an array of URL strings, the assumption is that the URLs are equivalent in
terms of the context to which they refer. Verification of whether the URLSs are, or need
to be, equivalent is up to the context factory. The order of the URLs in the array is not
significant. The object returned lggtObjectinstance() is the same as that for the
single URL case—it is an object (perhaps a context) named by the URLSs.

URL context factories are used by the initial context when it is passed a URL to resolve. URL
context factories are also used for creating Java objects from URLSs stored in the namespace
(see “URLs as Reference Information” on page 19).

Making Object Factories Available to JNDI

The methodNamingManager.getObjectinstance() is used to turn reference information
into Java object®lamingManager.getObjectinstance() locates and instantiates an instance
of ObjectFactory and invokes thgetObjectinstance() method on the factory.

In addition to being a public method to be used by service providers to turn reference informa-
tion into Java objects “Java Object Support” on page@pingManager.getObjectin-

stance() Is also used internally (for example, in the implementatigetoRLContext() and
getContinuationContext()).

There are four ways in which object factories are made available to JNDI:
 Information inReference ,
» URLs as reference,

16 12/1/97

Java Naming and Directory SPI Objects Bound in the Namespace

» Use of thgava.naming.factory.object system property,
* Installation of arobject factory builder

4.2 References and Referenceable

42.1

JavaSoft

JNDI defines &eference class to provide a uniform way of representing reference informa-
tion stored in the namespaceRAference contains a list of addresses and class information
about the object to which this reference refers. An object thatisrence implements the
Referenceable interface. Tha&referenceable interface contains a single method for retriev-
ing the reference of the object.

public interface Referenceable {
public Reference getReference() throws NamingException;

}
Storing References in the Namespace

When binding areferenceable object in the namespace, the information bound iRéhe
erence Of the object. When the object is looked up,Rbference is used to create an instance
of the corresponding object. Thiad() andiookup() operations are inverses of each other
with regard to how they treat references.

In the printer example, a particular implementatiorrdfier , sayBSDPrinter , might have
the following class declaration:

public class BSDPrinter implements Printer, Referenceable {
String serverName;

BSDPrinter(String srv) {

public void print(InputStream data) throws PrinterException {

}

public Reference getReference() throws NamingException {
return new Reference(“Printer”,
new StringRefAddr(“bsd”, serverName));

}

When this object is bound in the namespace, the service providegtrsgsence() to re-

trieve the object’s reference, in this case its protocol type (y and server name (the instance
variableserverName), and stores this information in the namespace. When the reference is re-
trieved from the namespace, the object factory mechanism described in “Class information in
Reference” is used to turn the reference into an instargeeD@finter

It is not a requirement that all service providersriserence . A service provider may bind

other reference-like information in the namespace (such as a URL, or the serialized form of a
serializable object), and use that information to create corresponding objects to be returned to
applicationsReference was introduced so that different providers need not invent different
ways of achieving the same result.

17 12/1/97

Java Naming and Directory SPI Objects Bound in the Namespace

4.2.2

Class information in Reference

A Reference contains methods for returning the class name and location of the object factory.
The following methods are found Reference .

public class Reference {

public String getClassName();
public String getFactoryClassName();
public String getFactoryClassLocation();

}

If the object is an instance BEference Or Referenceable , its corresponding object factory
can be located using information Reference . The getFactoryClassName() method re-
trieves the name of the factory class that implementsijeetFactory interface. This facto-

ry must implement thedbjectFactory interface and have a publiull constructor.
getFactoryClassLocation() retrieves the location of the class implementation for the facto-
ry. This will typically be a URL of the factory’s class file.

The object is created by invoking the&Objectinstance() method on the object factory in-
stance with th&®eference and environment as arguments. This creates an instance of a class
identified bygetClassName()

Note that all the classes necessary to instantiate the object returned to the application are made
available using mechanisms provided by JNDI. The application doesn’'t have to install the
classes locally.

Figure 3: Example Using Reference to Get Back An Object From the Namespace

PrinterFactory

JavaSoft

getObjectinstance()

PrinterReference
bound in namespace

@

Printer object

lookup printer name namespace

application O

Returning to the printer exampBSDPrinter uses thareference class to store information
regarding how to construct instance®sbpPrinter and address information for communicat-

ing with the print server. Theeference contains the class name of the objeetifter’),

the class name of the printer object factomrigterFactory ") and a URL for loading the
factory’s class implementation. Using the factory class name and implementation location, the
provider first loads the implementation BfinterFactory and creates an instance of a

18 12/1/97

Java Naming and Directory SPI Objects Bound in the Namespace

PrinterFactory . The provider then invokegtObjectinstance() on the factory to create

an instance ofrinter using the address information in the reference. For example, one ad-
dress in the reference may have an address of bgaé tontaining the print server’s host
name (fobby-printserver "). The PrinterFactory uses the address type4d ™) to decide

to create @SDPrinter instance and passes the address contaoigy(printserver ") to

its constructor. The resultirgsDPrinter object is returned as the resultiakup()

When the application invokesint() on theBsDPrinter instance returned kbyokup()

the data is sent to the print server on the machebhey-printserver " for printing. The ap-
plication need not know the details of tReference stored in the namespace, the protocol
used to perform the job, or whether 8&bprinter class was defined locally or loaded over

the network. The transformation of the information stored in the underlying service into an ob-
ject that implements timinter interface is done transparently through the cooperation of the
service provider (which stores bindings of printer names to printer address information), the
printer service provider (which provides the JavaterFactory andBSDPrinter classes),

and the JNDI SPI framework (which ties the two together to return an object that the applica-
tion can directly use).

4.3 URLs as Reference Information

When an object in the namespace is bound to a URL string, or an array of URL strings. the
object factory is identified using the same mechanism used to identify the factory when a URL
is passed to the initial context (see “URL Context Implementations” on page 11). If this mech-
anism does not successfully locate an object factoryjatlagmaming.factory.object

property (described in the next section) is used.

For the printer example, instead of usirge&rence to represent a printer in the namespace,

a URL may be stored (perhaps something lik@ter:bsd://lobby-printserver "). The
NamingManager.getObjectinstance() method will look for and create the URL context fac-
tory classrinterURLContextFactory . If successful, naming manager passes the URL to the

factory to create BRrinter instance.

Note that this approach differs from tReference approach in that the classes for the URL
context factory grinterURLContextFactory) must be available to the application (perhaps
by appropriate setting of class paths). InRe&rence approach, the classes for the factory
are located dynamically.

4.4 Storing Serializable Objects

JavaSoft

When an object being bound in the namespaserigizable but notReferenceable , the
service provider should if possible store the serialized form of the object. When the object is
later looked up, the object should be deserialized and returned.

Note that for a service provider to store serialized objects it must be able to store binary data,
and it must not have a data size limit too small for the serialized objects in question. Not all
service providers meet these requirements. Note also that, as with the use of URLSs for storing
reference information, the dynamic class-loading facility of the Reference mechanism cannot
be used. The required classes must be made available to the application by some other means
(such as the appropriate setting of class paths).

19 12/1/97

Java Naming and Directory SPI Objects Bound in the Namespace

4.5 The java.naming.factory.object Property

In addition to extracting factory information froReference s, or using URLS, factories may
be made available to JNDI with tl@a.naming.factory.object property.

The propertyava.naming.factory.object contains a colon-separated list of fully-qualified

class names of object factories. Each class must implemebibjteecactory interface and

have a publiaull constructor. For each class in the list, JINDI attempts to load and instantiate
the factory class, and to invoke thejectFactory.getObjectinstance() method on it us-

ing the object and environment arguments supplied. If the creation is successful, the resulting
object is returned, otherwise, JNDI goes on to attempt the same procedure on the next class in
the list.

Thejava.naming.factory.object property is made available to an application either in the
environment property set passed toltit@alContext Or InitialDirContext constructors,

or as one of the program’s system properties. If the property is supplied as part of the environ-
ment, the system property is not consulted.

Figure 4: Example using java.naming.factory.object to Get Back an Object from the Namespace

Obiject factories
in java.naming.factory.object

JavaSoft

getObjectinstance()

information about printer
bound in namespace

Printer object

0 .

lookup printer name namespace

application)

For the printer example, instead of usirgegrence to represent a printer in the namespace,
some other information is stored. When that information is later retrieved, the object factories
specifiedjava.naming.factory.object are tried in turn to attempt to turn that information
into aPrinter instance.

A service provider for such an object must do the following:
1. Define the class for the object (8$pDPrinter).

2. Define the class for reference information for the object. This is the object that will be
bound in the namespace. This need nakdierence . It can be anything that will be
understood by its corresponding object factory (e.g. some string containing the server
name printer type=bsd; host=lobby-printserver ").

20 12/1/97

Java Naming and Directory SPI Objects Bound in the Namespace

3. Define a factory class that implementgectFactory ~ (e.g.PrinterFactory). This

class’sgetObjectinstance() method will create an instance of the class from step 1
(e.g. BSDPrinter) when given an instance of class from step 2 (epdntér
type=bsd; host=lobby-printserver ”).

The service provider should automatically convert between the actual objeBs(®gnter)
and the reference information (step 2, emginter type=bsd; host=lobby-printserv-
er ") when binding or looking up the object.

An application that wants to use a particular factory for generating objects must include the fac-
tory’s class name in itava.naming.factory.object environment or system property and
make the factory’s classes and object classes available.

4.6 Object Factory Builder

If an object factory buildehas been installed, the application is effectively defining its own
policy of how to locate and construct object factories. When a builder has been installed, it is
solely responsible for creating object factories. None of the default pokeiiesefce , URL

string, orjava.naming.factory.object property) normally used by JNDI are employed.

Figure 5: Example using an Object Factory Builder to Get Back an Object from the Namespace

Installed Object factory builder

information about printer
bound in namespace

PrinterFactory

@

Printer object

lookup printer name namespace

application

A service provider for an object factory builder must do the following:
1. Define object factories that implemetjectFactory

2. Define a class that implementbjectFactoryBuilder . This class’s
createObjectFactory() method will use the constructors for tbejectFactory

classes in step 1.
An application that wants to use this factory builder must first install it.
NamingManager.setObjectFactoryBuilder(builder);

JavaSoft 21 12/1/97

Java Naming and Directory SPI Making Context Implementations Available to JNDI

5

JavaSoft

Making Context Implementations Available to JNDI

In general, the JNDI mechanisms for creating generic objects using object factories described
in “Object Factories” on page 15 also apply to how JNDI crezigext instances using con-

text factories. However, if there is just one provider (that obtained through the initial context),
and there is no need for that provider to use other providers, then the initial context is the sole
controller of how context implementations are located. (See service provider example in Ap-
pendix A). This section is only relevant for serving composite namespaces, in which multiple
providers are involved.

A service provider must define a class that implementsdhext interface, and a class that
implements th@bjectFactory interface for creating instances of thisitext class. A pro-
vider can use eith@eference s, URLS, or the other alternatives described in “Objects Bound
in the Namespace” on page 15 to create instancesnadxt using object factories for their
Context classes. Usually, context implementations act as object factoriesnfext classes
(i.e. they implement thebjectFactory interface). In these factorie3pjectFactory.getO-
bjectinstance() returns instances afontext (or DirContext). The provider must ensure
that the object factories are made known to JNDI either via the wsgeafnce , URLS, the
java.naming.factory.object property, or by installing its own object factory builder.

22 12/1/97

Java Naming and Directory SPI Overview of the Interface

6 Overview of the Interfacée

The JNDI SPI is contained in the pack#gyex.naming.spi . The following sections provide
an overview of the SPI. For more details on the SPI, see the correspjandithoc.

‘ java.lang.Object J <In'it'ia'IContextFactory)
NamingManager J <In'i tialContextFactoryBuilder)

]—{ DirectoryManager | <0bjectFactory)
ResolveResult | <0bjectFactoryBu‘i'Ider)
<Reso'|ver)

6.1 NamingManager and DirectoryManager

The NamingManager class contains static methods that perform provider-related operations.
For example, it contains methods to create instances of objectReg&iregce , to obtain an
instance of the initial context using tfaga.naming.factory.initial property, and to in-

stall ObjectFactoryBuilder and InitialContextFactoryBuilder . The DirectoryMan-

ager class provides similar static methodsocContext related operations.

6.2 Federation Support

TheResolver interface defines a method for providers to implement that allows them to par-
ticipate in a federation for supporting extended interfacesrext . See “Resolving Through
to Subinterfaces of Context” on page 3 for more details.

ResolveResult is the return value of callinBesolver.resolveToClass() . It contains the
object to which resolution succeeded, and the remaining name yet to be resolved.

6.3 Object Factories

ObjectFactory is the interface for supporting creation of objects using information stored in
the namespace. See “Object Factories” on page 15 for more details.

ObjectFactoryBuilder Is the interface for creating object factories. See “Object Factory
Builder” on page 21 for more detalils.

6.4 Initial Contexts

InitialContextFactory is the interface for creating an initial context instance. See “Imple-
menting An Initial Context” on page 10 for more details.

InitialContextFactoryBuilder is the interface for creatingitialContextFactory in-
stances. See “Initial Context Factory Builder” on page 12 for more detalils.

1. See Appendix B for legend of class diagram.

JavaSoft 23 12/1/97

Java Naming and Directory SPI Overview of the Interface

JavaSoft 24 12/1/97

Java Naming and Directory Interface

Appendix A: Service Provider Example

JavaSoft 25 12/1/97

Java Naming and Directory Interface

This appendix contains a simple service provider. It implements a flat namespace (with no
federation support). It shows how to produce a context implementation by providing all the
methods in th€ontext interface.

An instance of this context is bound directly as the initial context. This example provides the
correspondingnitialContextFactory definition.

JavaSoft 26 12/1/97

Java Naming and Directory Interface

A.1 Simple Flat Context

A.1.1 Context

/*

Implementation

* Copyright (c) 1997. Sun Microsystems. All rights reserved.

*

package ctxegs.flat;

im
im

/7\-*

* Asample service provider thatimplements a flat namespace in memory.

*

port javax.naming.*;
port java.util.*;

class FlatCtx implements Context {

JavaSoft

Hashtable myEnv;
private Hashtable bindings = new Hashtable(11);
static NameParser myParser = new FlatNameParser();

FlatCtx(Hashtable environment) {
myEnv = (environment != null)
? (Hashtable)(environment.clone())
:null;

}

public Object lookup(String name) throws NamingException {

if (name.equals(*)) {

Il Asking to look up this context itself. Create and return
/I a new instance with its own independent environment.
return (new FlatCtx(myEnv));

}

Object answer = bindings.get(name);

if (answer == null) {
throw new NameNotFoundException(name + “ not found”);

}

return answer,

}

public Object lookup(Name name) throws NamingException {
/I Flat namespace; no federation; just call string version
return lookup(name.toString());

}

public void bind(String name, Object obj) throws NamingException {
if (name.equals(*)) {
throw new InvalidNameException(“Cannot bind empty name”);
}
if (bindings.get(hame) != null) {
throw new NameAlreadyBoundException(
“Use rebind to override”);

27

12/1/97

Java Naming and Directory Interface

bindings.put(name, obj);

}

public void bind(Name name, Object obj) throws NamingException {
I/l Flat namespace; no federation; just call string version
bind(name.toString(), obj);

}

public void rebind(String name, Object obj) throws NamingException {
if (name.equals(*)) {
throw new InvalidNameException(“Cannot bind empty name”);
}
bindings.put(name, obj);

}

public void rebind(Name name, Object obj) throws NamingException {
I/l Flat namespace; no federation; just call string version
rebind(name.toString(), obj);

}

public void unbind(String name) throws NamingException {
if (name.equals(*)) {
throw new InvalidNameException(“Cannot unbind empty name”);
}

bindings.remove(name);

}

public void unbind(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version
unbind(name.toString());

}

public void rename(String oldname, String newname)
throws NamingException {
if (oldname.equals(**) || newname.equals(**)) {
throw new InvalidNameException(“Cannot rename empty name”);

}

/I Check if new name exists
if (bindings.get(newname) != null) {
throw new NameAlreadyBoundException(newname +
“is already bound”);
}

I/l Check if old name is bound
Object oldBinding = bindings.remove(oldname);
if (oldBinding == null) {
throw new NameNotFoundException(oldname + “ not bound”);

}

bindings.put(newname, oldBinding);

}

public void rename(Name oldname, Name newname)

JavaSoft 28

12/1/97

Java Naming and Directory Interface

throws NamingException {
I/l Flat namespace; no federation; just call string version
rename(oldname.toString(), newname.toString());

}

public NamingEnumeration list(String name)
throws NamingException {
if (name.equals(*)) {
/I listing this context
return new FlatNames(bindings.keys());

}

/l Perhaps ‘name’ names a context

Obiject target = lookup(name);

if (target instanceof Context) {
return ((Context)target).list(*);

}

throw new NotContextException(name + “ cannot be listed”);

}

public NamingEnumeration list(Name name)
throws NamingException {
I/l Flat namespace; no federation; just call string version
return list(name.toString());

}

public NamingEnumeration listBindings(String name)
throws NamingException {
if (name.equals(*)) {
/I listing this context
return new FlatBindings(bindings.keys());

}

/l Perhaps ‘name’ names a context
Obiject target = lookup(name);
if (target instanceof Context) {

return ((Context)target).listBindings(*“);
}

throw new NotContextException(name + “ cannot be listed”);

}

public NamingEnumeration listBindings(Name name)
throws NamingException {
I/l Flat namespace; no federation; just call string version
return listBindings(name.toString());

}

public void destroySubcontext(String name) throws NamingException {
throw new OperationNotSupportedException(
“FlatCtx does not support subcontexts”);
}

public void destroySubcontext(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version

JavaSoft 29 12/1/97

Java Naming and Directory Interface

destroySubcontext(name.toString());

}

public Context createSubcontext(String name)
throws NamingException {
throw new OperationNotSupportedException(
“FlatCtx does not support subcontexts”);

}

public Context createSubcontext(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version
return createSubcontext(hame.toString());

}

public Object lookupLink(String name) throws NamingException {
Il This flat context does not treat links specially
return lookup(name);

}

public Object lookupLink(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version
return lookupLink(name.toString());

}

public NameParser getNameParser(String name)
throws NamingException {
return myParser;

}

public NameParser getNameParser(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version
return getNameParser(name.toString());

}

public String composeName(String name, String prefix)
throws NamingException {
Name result = composeName(new CompositeName(name),
new CompositeName(prefix));
return result.toString();

}

public Name composeName(Name name, Name prefix)
throws NamingException {
Name result = (Name)(prefix.clone());
result.addAll(name);
return result;

}

public Object addToEnvironment(String propName, Object propVal)
throws NamingException {
if (myEnv == null) {
myEnv = new Hashtable(5, 0.75f);

}
return myEnv.put(propName, propVal);

JavaSoft 30 12/1/97

Java Naming and Directory Interface

}

public Object removeFromEnvironment(String propName)
throws NamingException {
if (myEnv == null)
return null;

return myEnv.remove(propName);

}

public Hashtable getEnvironment() throws NamingException {
return myEnv;

}

public void close() throws NamingException {
myEnv = null;
bindings = null;

}

/I Class for enumerating name/class pairs
class FlatNames implements NamingEnumeration {
Enumeration names;

FlatNames (Enumeration names) {
this.names = names;

}

public boolean hasMoreElements() {
return names.hasMoreElements();

}

public boolean hasMore() throws NamingException {
return hasMoreElements();

}

public Object nextElement() {
String name = (String)names.nextElement();
String className = bindings.get(name).getClass().getName();
return new NameClassPair(hname, className);

}

public Object next() throws NamingException {
return nextElement();
}
}

/I Class for enumerating bindings
class FlatBindings implements NamingEnumeration {
Enumeration names;

FlatBindings (Enumeration names) {
this.names = names;

}

JavaSoft 31 12/1/97

Java Naming and Directory Interface

public boolean hasMoreElements() {
return names.hasMoreElements();
}

public boolean hasMore() throws NamingException {
return hasMoreElements();
}

public Object nextElement() {
String name = (String)names.nextElement();
return new Binding(name, bindings.get(name));

}

public Object next() throws NamingException {
return nextElement();
}
}
2

JavaSoft 32 12/1/97

Java Naming and Directory Interface

A.l.2

A.13

JavaSoft

Name Parser

/7\-

* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

package ctxegs.flat;

import java.naming.NameParser;
import java.naming.Name;

import java.naming.CompoundName;
import java.naming.NamingException;
import java.util.Properties;

class FlatNameParser implements NameParser {

static Properties syntax = new Properties();

static {
syntax.put(“jndi.syntax.direction”, “flat”);
syntax.put(“jndi.syntax.ignorecase”, “false”);

}

public Name parse(String name) throws NamingException {
return new CompoundName(name, syntax);

}
}

Initial Context Factory

/*

* Copyright (c) 1997. Sun Microsystems. All rights reserved.
*

package ctxegs.flat;

import java.util.Hashtable;
import java.naming.Context;
import java.naming.spi.lnitialContextFactory;

public class FlatInitCtxFactory implements InitialContextFactory {

public Context getlnitialContext(Hashtable env) {
return new FlatCtx(env);
}

}

33

12/1/97

Java Naming and Directory Interface

JavaSoft 34 12/1/97

Java Naming and Directory Interface

Appendix B: Legend for Class Diagram

In a class diagram, we visually distinguish the different kinds of Java entities, as follows:

1. The interface: A rounded rectangle

2. The class: A rectangle

3. The abstract class: A rectangle with an empty dot

4. The final class: A rectangle with a black dot

5. Classes with subclasses: A rectangle with a small black triangle on the lower right corner

Most of these elements are shown below. The class or interface being described in the current chapter is shaded grey (this is
not applicable for package class diagrams). A solid line represeeatsls while a dotted line representsplements

Class from Abstract class i
another package Class with subclasses

‘ j ava. | ang. Obj ect J

MenuConponent OJ

]—{ Menul tem J

CheckboxMenul t em / | ~~~~~~ <I tenBel ectabl e
/
/ Menu / J

extends Interface
The current class

\)

implements

JavaSoft 35 12/1/97

Java Naming and Directory Interface

JavaSoft 36 12/1/97

Java Naming and Directory Interface

Appendix C: JNDI Change History

1.1Betal: JNDI Changes Since 1.0Licensee Release

Package Name Change

JNDI is being packaged as a Java 1.1-compatible Standard Extension. The JNDI packages have been renamed to use the
“javax” prefix, following the convention for Java Standard Extensions. The new package najesamaming
javax.naming.directory , andjavax.naming.spi

General Changes

« Property names have been renamed following the convention used by the JDK. They have a “java.naming” prefix. See
Appendix A ofJINDI API document for details on the new names.

e Makejava.naming.provider.url a system property in addition to being available as an environment property.

» Replaced use #roperties with Hashtable (Properties ' superclass) for the environment properties/settings so
that service providers and applications can completely enumerate its cdtepésties can still be passed as argu-
ments and returned as values whiashtable is called for. But declaring the methods to Hsshtable makes clear
the fact that nestelfroperties are not examined for the operation at hand.

APIl-related Changes

As most of these changes are renames, the 1.1Betal release of the code includes a Java Cléwagmmnmat assists
you with the renames. See the instructions for the release for details.

» AddedContext.close() to allow applications to release resources immediately.

* AddedInterruptedNamingException to indicate a naming operation has been interrupted.

* Class rename®SContext ->DirContext , InitialDSContext ->|nitialDirContext ,
AttributeSet ->Attributes , InvalidAttributeSetException ->InvalidAttributesException ,
SearchConstraints ->SearchControls, InvalidSearchConstraintsException->Invalid-

SearchControlsException.
* MakeAttributes ' methods Iooklikd\/laﬁsz, Attribute ’s methods look lik&et s, andName CompoundName
CompositeName , andReference ’'s methods look likd.ist 's.

* Added protectedttribute.Attribute() constructor so that subclasses can avoid allocsteatpr .

» Added constructors tattributes that accept an attribute.

* Addedthrows NamingException clause toAttribute ’s schema methods.

* RenamedirContext. DELETE_ATTRIBUTE ->DirContext REMOVE_ATTRIBUTE

* ReplacedModificationEnumeration with Modificationltem[]

* ReplacedRefAddrEnumeration andStringEnumeration with Enumeration

* ReplacedAttributeEnumeration , NameClassEnumeration , BindingEnumeration , aandSearchEnu-
meration with NamingEnumeration to allow generic means of doing JNDI enumerations.

« Attribute.getAll() returnsNamingEnumeration instead oEnumeration

« Link.getLinkName() returnsString instead oName

e BinaryRefAddr.buf andStringRefAddr.contents made private. DeletdBinary.getAddressBy-
tes() , StringRefAddr.getAddressString() , BinaryRefAddr.size()

* RenamedrefAddr.getAddressContents() ->getContent()

* RemovedSException , re-parented exceptions to be subcladsarhingException

* Removed most constructors froamingException and its subclasses. Each has two constructors: one that accepts an
explanation and a public constructor that takes no parameters.

* RemovedName.toString() ,equals() ,hashCode() as these are already defineddlyject .

» Constructors for abstract class&sfAddr andReferralException are now protected.

1. Thanks to the Swing team for use and distribution of this program.
2. See http://java.sun.com/products/jdk/preview/docs/guide/collections/ for informatMamet andList

JavaSoft 37 12/1/97

Java Naming and Directory Interface

SPI-related Changes

» NamingManager.getObjectinstance() andObjectFactory.getObjectinstance() allow the caller
to supply two optional parameters: a name and a context. The nhame is the name of the object resolved relative to the con-
text supplied. An object factory can make use of this information to gather further information about the object to create.
See the corresponding javadoc for these methods for details. Corresponding fields and accessor methods were added to
CannotProceedException so that this information, if supplied, can be propagated.

» Constants used NamingManager for property names remove@bjectFactoryProperty, InitialCon-

textFactoryProperty , PkgPathProperty . These were used for internal development. Programs should use the
appropriate strings instead.

» NamingManager.getObjectinstance() returns original input if it cannot create a factory using the reference of
the object (it used to retumull).

* InitialContext constructor that takes no parameters dddimingManager.getinitialContext() with a

null environment instead of empty environment.

1.0Licensee Release: JNDI Changes Since 1.0Betal

Package Name Change

To allow this release to work in all Java 1.1 systems, the JNDI classes have been temporarily renamegaviaomarie
ing hierarchy tocom.sun.java.naming

API-related Changes

» SearchConstraints now implementgava.io.Serializable

» AddedReferralException.skipReferrals() to allow application to skip individual referrals.

* Added constructor tdlolnitialContextException that accepts an explanation string.

* AddedSchemaViolationException for reporting schema-related problems.

* Renamedava.naming.directory.SearchTimeLimitExceededException tojava.naming.Time-
LimitExceededException so that it can be used by tlawa.naming package. Addefiva.naming.Limi-
tExceededException , which is the super class dimeLimitExceededException and
SizeLimitExceededException (new as well).

» To assist in debugging and displaying classes, adtteduteSet.toString() , Binding.toString() ,
SearchResult.toString()

» Clarified semantics of the overloaded fornseérch() that accepts a matching attribute gdtributeSet). If the
matching attribute set iull or empty, return all the objects in the target context.
« AttributeSet now implement€loneable , and has alone() method.

SPI-related Changes

* Added “set” methods thlameClassPair , Binding , andSearchResult classes and made the protected fields pri-
vate. This enables service providers to update the fields in these classes without subclassing.

» Added a constructor tdameClassPair , Binding , andSearchResult that accepts a “relative” parameter, and
isRelative() andsetRelative() methods. This allows service providers to return names that are not relative to
the target context of the search. Non-relative names are named using URL strings.

» Contract betweeNamingManager.getObjectinstance() andObjectFactory s clarified. An object factory
returnsnull if it cannot create the object; it only throws an exception (which is passed up to the ddderiogMan-
ager.getObjectinstance()) if no other object factories should be tried.

* ReplacedResolver.resolvePenultimate() with Resolver.resolveToClass() . This allows more effi-
cient implementation of service providers by allowing the resolution to stop at the first context that exports a target class,
rather than requiring resolution to proceed to the penultimate context. The final service provider in a chain of federated
naming systems no longer needs to implerRasolver ; only the intermediate providers.must do so.

* Removed\otDSContextException . Service providers should usetContextException with the target class
name in the explanation to indicate that a particular subcla@sraéxt is required but not found.

» The default package prefix for loading URL context factories has changed from “sun.jndi.url” to “com.sun.jndi.url”
because of package renaming.

JavaSoft 38 12/1/97

Java Naming and Directory Interface

Document Version Numbers Reset

The earlier versions of the INDI documents were labeled as versions 1.0, 1.1. and 1.2. They should have been “Early Access”,
“Betal” and so on, to match the code releases.

1.0Betal: JNDI Changes Since 1.0Early Access

API-related Changes

Addedjava.naming.ReferralException to support client-side referrals. This abstract class is used to represent
a referral exception, such as that available in LDAP v3. A service provider defines a suliR&fssrafException
to handle its own style of referrals.

AddedcompareTo() toName(and related class€ompositeName , CompoundNamsg.

public int compareTo(Object obj);

This method compares tHi&amewith the specifie®bject for order. It returns a negative integer, zero, or a positive
integer as thidlameis less than, equal to, or greater than the gieject . This method is useful for sorting a list of
names.

Added throws NamingException ' to Referenceable.getReference() so that the implementor of
getReference() can throw an exception if it encounters one.

public Reference getReference() throws NamingException;

AttributeSet was originally case-sensitive. That is, the case of an attribute identifier was considered when retrieving
or adding an attribute to the set. To better support service providers that support case-insensitive attribute identifiers, an
AttributeSet may now be made case-insensitive. This change involved adding a new constiitttdyute-

Set and a new method for interrogating an attribute set about its handling of case.

public AttributeSet(boolean caselgnore);
public boolean isCaselgnored();

Context.setEnvironment() was insufficient to allow both addition and removal of environment properties. The
change is to replacgetEnvironment() with addToEnvironment() andremoveFromEnvironment()

public Properties addToEnvironment(Properties additions) throws NamingException;

public Properties removeFromEnvironment(Properties deletions) throws
NamingException;

AddedhasMore() toBindingEnumeration , NameClassEnumeration = andSearchEnumeration so that a

service provider can throw an exception when this query fails for some unexpectedEeasoeration.has-

MoreElements() cannot throw exceptions. The workaround isHfasMoreElements() to returntrue and save

the exception until the program catlext() . hasMore() allows a provider to indicate to the caller that it has encoun-
tered an exception while determining whether there are more elements. The caller that wants to be notified of exceptions
can usénasMore() instead ohasMoreElements()

public boolean hasMore() throws NamingException;

Added a new constructor @perationNotSupportedException that accepts an explanation message as argu-
ment. This avoids the provider having to use the two steps of creating an@pepationNotSupportedExcep-
tion and then setting the explanation.

AddedcomposeName() methods tcContext class. These may be used to keep track of the full name of an object as
name resolution proceeds from context to context.

JavaSoft 39 12/1/97

Java Naming and Directory Interface

* Removed extraneous parameteNemingException.getRootCause()

SPI-related Changes

» Clarified how URL context factories and contexts are located and created. Eliminafttitigaur| "argument from
NamingManager.getURLContext() and clarified its semantics.
getURLContext(String scheme, Properties env) now returns a context for resolving URLs with scheme

id scheme. It is not tied to any specific URLS, only the scheme id.JB#& SPI document anéllamingMan-
ager.getURLContext() for details.

» Clarified howNamingManager.getObjectinstance() treats URLs. Formerly, it only treat&ferences and
Referenceables specially. It now treats URLSs specially as well. You can nowgeaDbjectinstance() with a
URL string or an array of URL strings and get back an object identified by the URINS&&SPI document and
NamingManager.getObjectinstance() for details.

» Placed additional requirements on URL context factories on how to treat its arguments so that all URL context factories
behave consistently. S8bIDI SPI document an@®bjectFactory.getObjectinstance() for details.

* NamingManager.getContinuationContext() andDirectoryManager.getContinuationDSCon-
text() accept as an argumedannotProceedException instead of a resolved object. This allows information
required to create a continuation context to be passed using one argument and accommodates a common programming
scenario of service providers usi@gnnotProceedException to indicate the state of the operation.

* Added a ‘remaining newname’ part@nnotProceedException so that information required to continue a
rename() can be represented, and an environment part for storing and retrieving the environment to use when resolution
continues..

System Properties
* Two new system properties are introduced.

* jndi.urlfactory.pkgs : Specifies package prefixes to use when loading URL context
factories. Se@lamingManager.getURLContext()

* jndi.dns.url . Specifies DNS service location when using DNS names in “jndi”
URLSs (e.g fndi://dnsname/... ").

These can also be passed as environment propertiesihitifi€ontext constructor.

Environment Properties

e jndi.service.host andjndi.service.port have been replaced by the more gerjatilservice.url
jndi.service.url specifies the location information for configuring a context.
Context service provider are encouraged to use this new environment property. They are still free to use additional envi-
ronment properties as needed for their provider.

e Addedjndi.service.followReferrals : Specifies that referrals encountered by the service provider are to be
followed automatically.

1.0Early Access: JNDI Changes Since Initial Documentation Release

General Changes

* Renamed packages
jndi.ns -> java.naming

jndi.ds -> java.naming.directory

jndi.spi -> java.naming.spi

JavaSoft 40 12/1/97

Java Naming and Directory Interface

* Added implementgava.io.Serializable to the following classes and interfaces:
Name
NameClassPair
RefAddr
Reference
Attribute
AttributeSet
Modificationltem
ModificationEnumeration
SearchConstraints
* Renamed the “count” methods to be more descriptive.
Reference.count() -> Reference.getAddressCount()
Name.count() -> Name.getComponentCount()
[same for CompoundName and CompositeName]
Attribute.count() -> Attribute.getValueCount()
AttributeSet.count() -> AttributeSet.getAttributeCount()
ModificationEnumeration.count() ->
ModificationEnumeration.getModificationltemCount()
* Renamed methods witsubContext ’to ‘Subcontext ’. The new method names are n@ontext.createSub-
context() , Context.destroySubcontext() , andDSContext.createSubcontext()

Name-related Changes

» NameParser is now an interface instead of abstract class. None of its methods contain any implementation so it is more
flexible for it to be an interface. Removed geNamingConvention() method fromNameParser .
* Added class hierarchy tdamingException for security-related exceptions.
NamingException

NamingSecurityException
NoPermissionException
AuthenticationException
AuthenticationNotSupportedException

» Addedthrows lllegalNameException to name-manipulation methods so that they have a way of indicating
error. This applies to thdameinterface, th&€ompositeName andCompoundNameclasses.
prependName()
appendName()
insertName()
prependComponent()
appendComponent()
insertComponent()
deleteComponent()

» The following constructors throlegalNameException instead oNamingException
CompositeName()
CompoundName()

DSContext-related Changes:

» Dropped WithAttributes " suffix from bindWithAttributes(), rebindWithAttributes(), and
createSubContextWithAttributes() . They are now simplipSContext.bind(), DSCon-
text.rebind(), andDSContext.createSubcontext(), respectively.

* RemovedSContext.SearchFilter class and replaced two existiD§Context.Search() methods:

public SearchEnumeration search(String name, String filterExpr,

Object(] filterArgs, SearchConstraints constraints);

JavaSoft 41 12/1/97

Java Naming and Directory Interface

public SearchEnumeration search(Name name, String filterExpr,

Object(] filterArgs, SearchConstraints constraints);

wherefilterExpr contains{n} ’, nis an integer and denotes the n’th elemefitémrgs

to substitute in the expression. The reason for this change iSethétFilter had limited
capabilities and a full class for it was not justified. These changes make the syntax for substi-
tution of variables within an expression consistent with the formatting methjagls. iext

* RenamedittributeSet.modify() to AttributeSet.replace() for consistent usage of ‘replace’ with
Attribute.replaceValue() andDSContext. REPLACE_ATTRIBUTE .
» Changes t@ttribute class:
» Added Attribute.contains() for testing whether an attribute contains a specified
value.
* Attribute.add() throws AttributelInUseException instead of the more general

NamingException

» Schema methods returnill by default. Removed protected variabtgstax and
attr_defn

» AddedInvalidAttributeSetException to deal with the case of incorrectly or insufficiently specified attribute
sets.

SPI-related Changes

* Renamed some class and interface namgs&naming.spi for consistency
InitialContextlmpl -> InitialContextFactory

InitialContextimplFactory -> InitialContextFactoryBuilder

setlnitialContextimplFactory() -> setlnitialContextFactoryBuilder()

haslnitialContextimplFactory() -> haslInitialContextFactoryBuilder()

InitialContextimplFactory.createlnitialContextimpl() ->
InitialContextFactoryBuilder.createlnitial ContextFactory()

JNDIManager -> NamingManager

JNDIDSManager -> DirectoryManager

* RenamedreateObject() to getObjectinstance() so that it is consistent with similar usage in other Java
packages.
JNDIManager.createObject() -> NamingManager.getObjectinstance()

ObjectFactory.createObject() -> ObjectFactory.getObjectinstance().

* Renamed propertydi.initialContext to jndi.initialContextFactory for consistency with method
names.
* Thejndi.initialContextFactory property now contains a single class name instead of a colon-separated list

because it does not make sense to have more than one class.

» To provide more flexibility and to avolBecurityManager -related problems in some configurations, the system prop-
ertiesjndi.initialContextFactory andjndi.objectFactories can be passed as part of the environment
properties passed to the constructordrdialContext andlInitialDSContext , andObjectFac-
tory.getObjectinstance() .

» Some protected methodsNtamingManager andDirectoryManager are now private. This provides more flexibil-
ity in subsequent changes to these classes without exposing details of the implementation

JavaSoft 42 12/1/97

Java Naming and Directory Interface

JavaSoft 43 12/1/97

