
The Java Naming and Directory application programming interface (JNDI API).

Please send comments to jndi@java.sun.com.

JavaSoft

JNDI: Java Naming and Directory Interface

1.1

January 29, 1998

Java Naming and Directory

Java Naming and Directory Interface

JavaSoft ii 1/29/98

Copyright © 1997 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303.

All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of Sun Micro-
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.,
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

JavaSoft iii 1/29/98

Java Naming and Directory Interface

Contents

1 Introduction . 1

2 Goals and Design Principles . 2

3 Fundamentals . 3

3.1 Naming — The Foundation . 3
3.2 Directory Objects . 4
3.3 URLs and Composite Names . 6

4 Overview of the Architecture. 7

5 Overview of the Interface . 8

5.1 The Naming Interface —javax.naming . 8
5.1.1 Contexts and Names . 8
5.1.2 Bindings. 10
5.1.3 References . 10

5.2 The Directory Interface —javax.naming.directory 11
5.2.1 Directory Objects and Attributes . 12
5.2.2 Directory Objects as Naming Contexts . 13
5.2.3 Searches . 13
5.2.4 Schema. 14

5.3 Context Environment . 16
5.4 Referrals . 17

6 Scenarios . 19

6.1 User authentication . 19
6.2 Electronic Mail . 19
6.3 Databases . 20
6.4 Browsing . 20
6.5 Network Printing . 21

6.5.1 Browsing and searching for printers . 22

7 Security Considerations . 23

8 Design Choices . 27

 Appendix A: JNDI Context Environment . 31

 Appendix B: Examples for LDAP Programmers . 35

 Appendix C: Legend for Class Diagram . 55

 Appendix D: JNDI Change History . 57

JavaSoft iv 1/29/98

Java Naming and Directory Interface

Java Naming and Directory Interface Introduction

JavaSoft 1 1/29/98

1 Introduction

Directory services play a vital role in Intranets and Internets by providing access to a variety
of information about users, machines, networks, services, and applications. By its very nature,
a directory service incorporates a naming facility for providing human understandable
namespaces that characterize the arrangement and identification of the various entities.

The computing environment of an enterprise typically consists of several naming facilities of-
ten representing different parts of acomposite namespace. For example, the Internet Domain
Name System (DNS) may be used as the top-level naming facility for different organizations
within an enterprise. The organizations themselves may use a directory service such as LDAP
or NDS or NIS. From a user’s perspective, there is one namespace consisting of composite
names. URLs are examples of composite names because they span namespaces of multiple
naming facilities. Applications which use directory services must support this user perspective.

Many JavaTM application developers can benefit from a directory service API that is not only
independent of the particular directory or naming service implementation, but also enables
seamless access to directory objects through multiple naming facilities. In fact, any application
can attach its own objects to the namespace. Such a facility enables any Java application to dis-
cover and retrieve objects of any type.

End users can benefit from logical namespaces that allow easier discovery and identification
of the objects in the network.

Directory service developers can benefit from a service-provider capability that enables them
to incorporate their respective implementations without requiring changes to the client.

JNDI is an API specified in the Java programming language that provides directory and nam-
ing functionality to Java applications. It is defined to be independent of any specific directory
service implementation. Thus, a variety of directories can be accessed in a common way.

Here are two examples to briefly illustrate some of the more commonly used features ofJNDI .

An application that wants to access a printer needs the corresponding printer object. This is
simply done as follows:

prt = (Printer) building7.lookup("puffin");
prt.print(document);

JNDI does all the work of locating the information needed to construct the printer object.

An application that wants to find a person’s phone numbers, which are stored in the organiza-
tion’s directory, can simply do:

String[] attrs = {"workPhone", "cellPhone", "faxNumber"};
bobsPhones = directory.getAttributes("cn=Bob, o=Widget, c=US", attrs);

If there may be several Bobs in the Widget organization, the application can search the organi-
zation’s directory to find the right Bob as follows:

bob = directory.search("o=Widget, c=US", "cn=Bob", searchctls);

This document describes the architecture and interfaces ofJNDI .

Java Naming and Directory Interface Goals and Design Principles

JavaSoft 2 1/29/98

2 Goals and Design Principles

We followed several principles and maxims in designing the API.

2.1 Keep it Consistent and Intuitive

Wherever possible, we have used existing components from the rest of the Java development
environment.

Adhering to this principle not only makes JNDI consistent with existing core classes in the Java
platform but also reduces needless proliferation of classes.

The object-oriented nature of the Java programming language allows for an intuitive and sim-
ple API design, in which the directory service functionality is expressed as a natural extension
to the more fundamental naming service functionality.

2.2 Pay for What you Use

The API is structured in a tiered manner so that the application programmer interested in a cer-
tain directory service capability need not necessarily know about a more advanced capability.
We have strived to keep the lower tiers simple and also make them represent the common case
capability, relegating the more complex ones to the upper tiers.

2.3 JNDI must be implementable over common Directory and Naming service
interface and protocols

This goal is important for two reasons. First, it enables Java applications to take advantage of
information in a variety of existing naming and directory services — existing ones such as
DNS, NDS, NIS (YP), and X.500, and emerging ones such as LDAP servers. Second, it helps
prevent the appearance of any implementation specific artifacts in the API.

Providing a unified interface to multiple naming and directory services does not imply that ac-
cess of unique features of a particular service is precluded. The unified API which is designed
to cover the common case is still beneficial to applications that have explicit knowledge of the
underlying naming or directory service. Such applications still benefit from sharing the com-
mon portions that use the API. This is analogous to applications sharing commonly used class-
es and yet adding needed specificity via subclassing.

2.4 Enable Directory services to be seamlessly plugged in behind JNDI

This is important not only because of the diversity of directory service and naming services in
the installed base that need to be supported, but also because new Java application and service
programmers can export their own namespaces and directory objects in a uniform way.

We also wanted to make a variety of implementation choices possible without having the ap-
plication pay for this freedom. For example, a “thin-client” may be better served by a proxy-
style protocol in which the access to specific naming and directory services is relegated to a
server. Whereas, a performance sensitive, resource rich client, may choose to use an implemen-
tation which directly allows it to access the various servers. However, the application should
be insulated from these implementation choices. It should be possible to defer such choices
even until run-time.

Java Naming and Directory Interface Fundamentals

JavaSoft 3 1/29/98

3 Fundamentals

A directory service provides access to diverse kinds of information about users and resources
in a network environment. It uses anaming systemfor purpose of identifying and organizing
directory objects to represent this information. A directory object provides an association be-
tweenattributes andvalues. Thus, a directory service enables information to be organized in a
hierarchical manner to provide a mapping between human understandable names and directory
objects.

3.1 Naming — The Foundation

A fundamental facility in any computing system is the naming service – the means by which
names are associated with objects, and by which objects are found given their names. In tradi-
tional systems, the naming service is seldom a separate service. It is usually integrated with an-
other service, such as a file system, directory service, database, desktop, mail system,
spreadsheet, or calendar. For example, a file system includes a naming service for files and di-
rectories; a spreadsheet has a naming service for cells and macros.

The computing environment of an enterprise typically consists of several naming services.
There are naming services that provide contexts for naming common entities in an enterprise
such as organizations, physical sites, human users and computers. Naming services are also in-
corporated in applications offering services such as file service, mail service, printer service,
and so on. From a user’s perspective, there exist several natural and logical relationships be-
tween these naming services. For example, it is natural to think of naming a variety of services
such as files, mail, appointment calendar, and so on, in the context of a user. It is also natural
to think of a user in the context of a department, within a division of an enterprise. Meaningful
names can be composed using useful arrangements of naming services reflecting these rela-
tionships.

Every name is generated by a set of syntactic rules called anaming convention. An atomic
name is an indivisible component of a name, as defined by the naming convention.

A compound name represents a sequence of zero or more atomic names composed according
to the naming convention.

For example, in UNIX pathnames, atomic names are ordered from left to right, and are delim-
ited by slash (‘/’) characters. The UNIX pathnameusr/local/bin is a compound name rep-
resenting the sequence of atomic names,usr, local, and bin . In names from the Internet
Domain Name System (DNS), atomic names are ordered from right to left, and are delimited
by dot (‘.’) characters. Thus, the DNS namesales.Wiz.COM is a compound name representing
the sequence of atomic names,COM, Wiz, sales .

The association of an atomic name with an object is calledbinding.

A context is an object whose state is a set of bindings with distinct atomic names. Every context
has an associated naming convention. A context provides a lookup (resolution) operation that
returns the object, and may provide operations such as for binding names, unbinding names,
listing bound names. An atomic name in one context object can be bound to another context
object of the same type, called asubcontext, giving rise to compound names.

Java Naming and Directory Interface Fundamentals

JavaSoft 4 1/29/98

Resolution of compound names proceeds by looking up each successive atomic component in
each successive context. The reader will find a familiar model inUNIX file naming, where di-
rectories serve as contexts, and pathnames may be compound names.

A naming system is a connected set of contexts of the same type (having the same naming con-
vention) and providing the same set of operations with identical semantics.

A namespaceis the set of all names in a naming system.

A composite nameis a name that spans multiple naming systems. It consists of an ordered list
of zero or more components. Each component is a name from the namespace of a single naming
system.

For example, the namejurassic.eng:/export/home/jdoe/.signature is a composite
name representation made up of a host namejurassic.eng from a host namespace, and the
file name/export/home/jdoe/.signature from aUNIX file namespace. Another example is
the InternetURL http://www.moon.org/public/index.html, which is a composite name
representation made up of the scheme-idhttp from the “URL scheme-id” namespace,
www.moon.org which is theDNS name of the machine on which the web server is running, and
public/index.html which is a file name from a file namespace.

Every name is interpreted relative to some context, and every naming operation is performed
on a context object. A client can obtain aninitial context object that provides a starting point
for resolution of names.

3.2 Directory Objects

The primary function of a naming system is to map names to objects. The objects can be of any
type. Adirectory is a particular type of object that is used to represent the variety of information
in a computing environment. A directory object can have associated with itattributes. An at-
tribute has an identifier and a set of values.

A directory object provides operations for creating attributes, adding, removing, and modifying
attributes associated with the directory object. If we make a directory object also be a naming
context, we can represent trees of directory information where the interior nodes not only be-
have like naming contexts but also contain attributes.

Figure 1 is an example used for illustrating several things.

Java Naming and Directory Interface Fundamentals

JavaSoft 5 1/29/98

Figure 1: Example of a Composite Namespace

LDAP

DNS

“User” objects

File System

Printer Service

NDS

File

Printer

InitialContext

Java Naming and Directory Interface Fundamentals

JavaSoft 6 1/29/98

• ‘There can be multiple naming systems that can be represented by a composite
namespace. In this case, DNS is the used as the global naming system; one division uses
NDS, while a second division uses LDAP.

• Each namespace has interior nodes that represent naming contexts, which may be
directory objects as well. Leaf nodes can be objects of any type.

• TheInitialContext is configured to have bindings to useful starting contexts in different
naming and directory systems.

• Applications just see a composite namespace. They can access any type of object bound
in any naming system in this arrangement.

• Services can incorporate their own namespaces which appear as first-class citizens in
JNDI.

• Arbitrary directory services can be added and accessed without requiring client
applications to be changed.

3.3 URLs and Composite Names

Universal Resource Locators (URLs) are composite names. Clients of JNDI can use URLs to
refer to arbitrary types of objects. For example, a client can usenfs://nfs.sun.com/export/

jndi/src/README to refer to a file object that is being accessed using the Network File System
(NFS) protocol. Similarly, a client can perform directory operations on a directory object in an
LDAP server using the URLldap://ldap.widget.com/cn=Jonathan,ou=marketing .

Java Naming and Directory Interface Overview of the Architecture

JavaSoft 7 1/29/98

4 Overview of the Architecture

The JNDI architecture consists of the JNDI API and the JNDI SPI. The JNDI API allows Java
applications to access a variety of naming and directory services. The JNDI SPI is designed to
be used by arbitrary service providers including directory service providers. This enables a va-
riety of directory and naming services to be plugged in transparently to the Java application
(which uses only the JNDI API). Figure 2 shows the JNDI architecture and includes a few ser-
vice providers of directory and naming contexts as examples.

Figure 2: JNDI Architecture

Java Application

JNDI Implementation Manager

JNDI API

JNDI SPI

JNDI-RMI
JNDI-
COSNaming

LDAP NDS

Java Naming and Directory Interface Overview of the Interface

JavaSoft 8 1/29/98

5 Overview of the Interface

The JNDI API is contained in two packages:javax.naming for the naming operations, and
javax.naming.directory for directory operations. The JNDI service provider interface is
contained in the packagejavax.naming.spi (see theJNDI SPI document for details).

The following sections provide an overview of the JNDI API. For more details on the API, see
the correspondingjavadoc.

5.1 The Naming Interface —javax.naming 1

5.1.1 Contexts and Names

Context is the core interface that specifies a naming context. It defines basic operations such
as adding a name-to-object binding, looking up the object bound to a specified name, listing
the bindings, removing a name-to-object binding, creating and destroying subcontexts of the
same type,etc.

1. See Appendix C for legend of class diagram.

(exception classes are not shown)

java.lang.Object

CompositeName

CompoundName

InitialContext

NameClassPair

Binding

RefAddr

BinaryRefAddr

StringRefAddr

Reference

LinkRef

Name

Context

java.io.Serializable

NameParser

NamingEnumeration

java.lang.Cloneable

Referenceable

Java Naming and Directory Interface Overview of the Interface

JavaSoft 9 1/29/98

public interface Context {
public Object lookup(Name name) throws NamingException;
public void bind(Name name, Object obj) throws NamingException;
public void rebind(Name name, Object obj) throws NamingException;
public void unbind(Name name) throws NamingException;
public void rename(Name old, Name new) throws NamingException;
public NamingEnumeration listBindings() throws NamingException;
...
public Context createSubcontext(Name name) throws NamingException;
public void destroySubcontext(Name name) throws NamingException;
...

};

Every naming method inContext takes a name as an argument. The operation defined by the
method is performed on theContext object that is obtained by implicitly resolving the name.
If the name is empty (“”) the operation is performed directly on the context itself. The name of
an object can be a composite name reflecting the arrangement of the namespaces used to refer
to the object. Of course, the client is not exposed to any naming service implementation. In fact,
a new type of naming service can be introduced without requiring the application to be modi-
fied or even disrupted if it is running.

In JNDI, every name is relative to a context. There is no notion of “absolute names.” An appli-
cation can bootstrap by obtaining its first context of classInitialContext :

public class InitialContext implements Context {
public InitialContext() throws NamingException;
...

}

The initial context contains a variety of bindings that hook up the client to useful and shared
contexts from one or more naming systems, such as the namespace of URLs or the root of DNS.

The Name interface represents a generic name — an ordered sequence of components. Each
Context method that takes aName argument has a counterpart that takes the name as aString

instead. The versions usingName are useful for applications that need to manipulate names:
composing them, comparing components, and so on. The versions usingString are likely to
be more useful for simple applications, such as those that simply read in a name and look up
the corresponding object.

TheCompositeName class represents a sequence of names (atomic or compound) from multi-
ple namespaces. TheName parameter supplied to a method of theContext class will typically
be a composite name.

TheCompoundName class represents hierarchical names from a single namespace. A context’s
name parser can be used to manipulate compound names in the syntax associated with that par-
ticular context:

Java Naming and Directory Interface Overview of the Interface

JavaSoft 10 1/29/98

public interface Context {
...
public NameParser getNameParser(Name name) throws NamingException;
...

}

A namespace browser is an example of the kind of application that may need to manipulate
names syntactically at this level. Most other applications will work with strings or composite
names.

5.1.2 Bindings

Context.lookup() is the most commonly used operation. The context implementation can re-
turn an object of whatever class is required by the Java application. For example, a client might
use the name of a printer to look up the correspondingPrinter object, and then print to it di-
rectly:

Printer printer = (Printer) ctx.lookup(“treekiller”);
printer.print(report);

Context.listBindings() returns an enumeration of name-to-object bindings, each binding
represented by an object of classBinding . A binding is a tuple containing the name of the
bound object, the name of the object’s class, and the object itself.

TheContext.list() method is similar tolistBindings() , except that it returns an enumer-
ation of NameClassPair objects. EachNameClassPair contains an object’s name and the
name of the object’s class. Thelist() method is useful for applications such as browsers that
wish to discover information about the objects bound within a context, but don’t need all of the
actual objects. AlthoughlistBindings() provides all of the same information, it is poten-
tially a much more expensive operation.

public class NameClassPair {
public String getName() ...;
public String getClassName() ...;
...

}

public class Binding extends NameClassPair {
public Object getObject() ...;
...

}

5.1.3 References

Different Context implementations are able to bind different kinds of objects natively. A par-
ticularly useful object that should be supported by any general-purpose context implementation
is theReference class. A reference represents an object that exists outside of the directory.
References are used to give JNDI clients the illusion that objects of arbitrary classes are able

Java Naming and Directory Interface Overview of the Interface

JavaSoft 11 1/29/98

to be bound in naming or directory services—such as X.500—that do not have native support
for objects in the Java programming language.

When the result of an operation such asContext.lookup() or Binding.getObject() is a
Reference object, JNDI attempts to convert the reference into the object that it represents be-
fore returning it to the client. A particularly significant instance of this occurs when a reference
representing aContext of one naming system is bound to a name in a different naming system.
This is how multiple independent naming systems are joined together into the JNDI composite
namespace. Details of how this mechanism operates are provided in theJNDI SPI document.

Objects that are able to be represented by a reference should implement theReferenceable
interface. Its single method —getReference() — returns the object’s reference. When such
an object is bound to a name in any context, the context implementation may store the reference
in the underlying system if the object itself cannot be stored natively.

Each reference may contain the name of the class of the object that it represents, and may also
contain the location (typically a URL) where the class file for that object can be found. In ad-
dition, a reference contains a sequence of objects of classRefAddr . EachRefAddr in turn con-
tains a “type” string and some addressing data, generally a string or a byte array.

A specialization ofReference called aLinkRef is used to add “symbolic” links into the
JNDI namespace. It contains the name of a JNDI object. By default, these links are followed
whenever JNDI names are resolved.

5.2 The Directory Interface — ²Åjavax.naming.directory1

1. See Appendix C for legend of class diagram.

(exception classes are not shown)

java.lang.Object

BasicAttribute

BasicAttributes

ModificationItem

SearchControls

javax.naming.InitialContext

InitialDirContext

javax.naming.NameClassPair

javax.naming.Binding

SearchResult

Attribute

Attributes

java.io.Serializable

DirContext

javax.naming.Context

Java Naming and Directory Interface Overview of the Interface

JavaSoft 12 1/29/98

5.2.1 Directory Objects and Attributes

The DirContext interface enables the directory capability by defining methods for examining
and updating attributes associated with a directory object. Each directory object contains a set
of zero or more objects of classAttribute . Each attribute is denoted by a string identifier and
can have zero or more values of any type.

public interface DirContext extends Context {
public Attributes getAttributes(Name name)

throws NamingException;

public Attributes getAttributes(Name name,
String[] attrIds)

throws NamingException;
...
public void modifyAttributes(Name name,

 int modOp,
 Attributes attrs)

throws NamingException;

public void modifyAttributes(Name name,
ModificationItem[] mods)

throws NamingException;
...

}

public class Attribute ... {
...
public String getID();
public Object get() throws NamingException;
public NamingEnumerationEnumeration getAll()

throws NamingException;
...

}

The getAttributes() operations on a directory return some or all of its attributes. Attributes
are modified using two forms ofmodifyAttributes() . Both forms make use a “modification
operation”, one of:

ADD_ATTRIBUTE
REPLACE_ATTRIBUTE
REMOVE_ATTRIBUTE

TheADD_ATTRIBUTE operation adds values to an attribute if that attribute already exists, while
the REPLACE_ATTRIBUTE operation discards any pre-existing values. The first form of
modifyAttributes() performs the specified operation on each element of a set of attributes.
The second form of takes an array of objects of classModificationItem :

Java Naming and Directory Interface Overview of the Interface

JavaSoft 13 1/29/98

public class ModificationItem {
public ModificationItem(int modOp, Attribute attr) ...;
...

}

Each operation is performed on its corresponding attribute in the order specified. When possi-
ble, a context implementation should perform each call tomodifyAttributes() as an atomic
operation.

5.2.2 Directory Objects as Naming Contexts

TheDirContext interface also behaves as a naming context by extending theContext inter-
face. This means that any directory object can also provide a naming context. In addition to a
directory object keeping a variety of information about a person, for example, it is also a natural
naming context for resources associated with that person: a person’s printers, file system, cal-
endar,etc.An application that is performing directory operations can useInitialDirContext

instead of javax.naming.InitialContext to create its initial context:

public class InitialDirContext
extends InitialContext implements DirContext {

public InitialDirContext() throws NamingException;
...

}

Hybrid operations perform certain naming and directory operations in a single atomic opera-
tion:

public interface DirContext extends Context {
...
public void bind(Name name, Object obj, Attributes attrs)

throws NamingException;
...

}

Other hybrid operations that are provided arerebind() andcreateSubcontext() that accept
an additionalAttributes argument.

5.2.3 Searches

TheDirContext interface supports content-based searching of directories. In the simplest and
most common form of usage, the application specifies a set of attributes — possibly with spe-
cific values — to match. It then invokes theDirContext.search() method on the directory
object, which returns the matching directory objects along with the requested attributes.

Java Naming and Directory Interface Overview of the Interface

JavaSoft 14 1/29/98

public interface DirContext extends Context {
...
public NamingEnumeration search(Name name,

 Attributes matchingAttributes)
throws NamingException;

public NamingEnumeration search(Name name,
Attributes matchingAttributes,
String[] attributesToReturn)

throws NamingException;
...

}

The results of the search are returned as aNamingEnumeration containing an enumeration of
objects of classSearchResult :

public class SearchResult extends Binding {
...
public Attributes getAttributes() ...;

}

In the more sophisticated case, it is possible to specify a search filter and to provide controlling
information such as the scope of the search and the maximum size of the results. The search
filter specifies a syntax that follows Internet RFC 2254 for LDAP. TheSearchControls ar-
gument specify such things as the scope of the search: this can include a single directory object,
all of its children, or all of its descendants in the directory hierarchy.

public interface DirContext extends Context {
...
public NamingEnumeration search(Name name,

 String filter,
 SearchControls ctls)

throws NamingException;

public NamingEnumeration search(Name name,
 String filter,
 Object[] filterArgs,
 SearchControls ctls)

throws NamingException;
...

}

5.2.4 Schema

A schema describes the rules that define the structure of a namespace and the attributes stored
within it. The granularity in the use of the schema can range from a single schema that is asso-
ciated with the entire namespace, to a per-attribute, fine-grained schema description.

Because schemas can be expressed as an information tree, it is natural to use for this purpose
the naming and directory interfaces already defined in JNDI. This is powerful because the sche-
ma part of a namespace is accessible to applications in a uniform way. A browser, for example,
can access information in the schema tree just as though it were accessing any other directory
objects.

Java Naming and Directory Interface Overview of the Interface

JavaSoft 15 1/29/98

Applications can retrieve the schema associated with a directory object when the underlying
context implementation provides the appropriate support.

DirContext.getSchema() is used to retrieve the root of the schema tree associated with a di-
rectory object. The root has children such as “ClassDefinition”, “AttributeDefinition”, “Syn-
taxDefinition”, and “MatchingRules”, each denoting the kind of definition being described.
The schema root and its descendents are objects of typeDirContext . The DirCon-

text.getSchemaClassDefinition() method returns a node under “ClassDefinition” that
contains information about a particular directory object.

public interface DirContext extends Context {
...
public DirContext getSchema(Name name)

throws NamingException;

public DirContext getSchemaClassDefinition(Name name)
throws NamingException;

...
}

In addition, the schema associated with any attribute can be accessed using theAt-

tribute.getAttributeDefinition() andgetAttributeSyntaxDefinition() methods.

public class Attribute ... {
...
public DirContext getAttributeDefinition() throws NamingException;
public DirContext getAttributeSyntaxDefinition()

throws NamingException;
...

}

Figure 3 is an example showing the different associations for accessing schema information.

Java Naming and Directory Interface Overview of the Interface

JavaSoft 16 1/29/98

Figure 3: Example mapping Directory to Schema

5.3 Context Environment

JNDI applications need a way to communicate various preferences and information that define
the environment in which naming and directory services are accessed. For example, an appli-
cation that wants to specify the level of security for accessing a directory service can do so by
setting the java.naming.security.* environment properties.

As another example, when directory and naming services are distributed, the source of infor-
mation is in more than one place—replicas, master, caches,etc. An application may need to
access information from the authoritative source. It can do so by using thejava.naming.au-

thoritative environment property.

Environment properties are defined in relatively generic terms. For example, an application can
state a preference for the strength of authentication by setting the environment propertyja-

va.naming.security.authentication to none , simple , or strong . Individual directory

AttributeDefinition

getSchema()
Schema Tree

SyntaxDefinition

DirContext

Atttribute

getAttributeDefinition()

getAttributeSyntaxDefinition()

Directory Tree

ClassDefinition

getSchemaClassDefinition()

Java Naming and Directory Interface Overview of the Interface

JavaSoft 17 1/29/98

service providers implement the mapping of the environment properties appropriate to their
service.

A context’s environment is represented as aHashtable or any of its subclasses (e.g.Proper-

ties 1). It is typically specified using an argument to theInitialContext andInitialDir-

Context constructors. They are inherited from the parent context as context methods proceed
from one context to the next. For example, the following code creates an environment consist-
ing of two security-related properties and creates an initial context using that environment.

Hashtable env = new Hashtable(5, 0.75);
env.put(Context.SECURITY_PRINCIPAL, "jsmith");
env.put(Context.SECURITY_CREDENTIALS, "xxxxxxx");
Context ctx = new InitialContext(env);

You can also do the same thing usingProperties .

Properties env = new Properties();
env.put(Context.SECURITY_PRINCIPAL, "jsmith");
env.put(Context.SECURITY_CREDENTIALS, "xxxxxxx");
Context ctx = new InitialContext(env);

There are three environment-related methods in theContext interface.

Object addToEnvironment(String propName, Object propValue)
throws NamingException;

Object removeFromEnvironment(String propName)
throws NamingException;

Hashtable getEnvironment() throws NamingException;

The first two methods update the environment of this context by adding or deleting individual
entries. The last method returns the context’s environment.

Appendix A specifies a preliminary list of environment properties. TheContext interface de-
fines constants for these environment property names.

See Section 7.5 for security-related considerations when using environment properties.

5.4 Referrals

Some directory services support the notion ofreferrals for redirecting a client’s request to an-
other server. If thejava.naming.referral environment property is set to “follow ” , the ser-
vice provider implementation will automatically attempt to follow each referral that it
encounters. It the value is “ignore ”, referrals are ignored. If the value is “throw ”, the option
of whether or not to follow a referral—and thereby complete the context operation—is left up
to the application through the use of areferral exception.

The abstract classReferralException is used to represent a referral:

1. Note that if you useProperties , only the top-level properties are consulted—its defaults are not consulted—
becauseHashtable.get() is used when retrieving entries from the environment. Seejava.util.Proper-

ties for details.

Java Naming and Directory Interface Overview of the Interface

JavaSoft 18 1/29/98

public abstract class ReferralException extends NamingException {
public abstract Context getReferralContext()

throws NamingException;

public abstract Object getReferralInfo();
public abstract boolean skipReferral();

}

When a referral is encountered and the client has requested that referrals not be ignored or au-
tomatically followed, aReferralException is thrown. ThegetReferralInfo() method pro-
vides information—in a format appropriate to the service provider—about where the referral
leads. The application is not required to examine this information; however, it might choose
to present it to a human user to help him determine whether to follow the referral or not.
skipReferral() allows the application to discard a referral and continue to the next referral
(if any).

To continue the operation, the application re-invokes the method on the referral context using
the same arguments it supplied to the original method. The following code sample shows how
ReferralException may be used:

while (true) {
try {

bindings = ctx.listBindings(name);
while (bindings.hasMore()) {

b = (Binding)bindings.next();
...

}
break;

} catch (ReferralException e) {
ctx = e.getReferralContext();

}
}

Java Naming and Directory Interface Scenarios

JavaSoft 19 1/29/98

6 Scenarios

This section outlines a few application scenarios to help illustrate the capabilities enabled by
JNDI.

• The examples below are not meant to be prescriptive. There are often several ways to solve
a problem, and JNDI is designed with flexibility in mind.

6.1 User authentication

In secure systems, a user must authenticate himself to the computer, network, or service that
he wishes to access. For example, logging into Unix requires the user to supply a password.
Similarly, use of SSL requires that the user supply his X.509 certificate. Such authentication
information can be stored as attributes associated with each user in the directory. The system
performing the authentication would look up the attribute (for example, “password”) of the
user and verify the authenticity using the information supplied by the user.

DirContext ctx = new InitialDirContext();
Attribute attr = ctx.getAttributes(userName).get("password");
String password = (String)attr.get();

6.2 Electronic Mail

A useful feature of an electronic mail system is a directory service that provides a mapping be-
tween users and email addresses. This allows mail users to search for the email address of a
particular user. This is analogous to searching for an individual’s telephone number in the
phone book in order to dial his phone number. For example, when I want to send mail to John
Smith in my department, I search for “John Smith” in the directory using a “search” widget in
the mail application. The widget returns to me five entries of John Smith, from which I select
the one that is in a building on my site and use the email address attribute associated with that
entry.

NamingEnumeration matches =
deptCtx.search("user", new BasicAttributes("name", "John Smith"));

// use matches to construct a selectable list for end-user
while (matches.hasMore()) {

SearchResult item = (SearchResult) matches.next();
Attributes info = item.getAttributes();
/* display attributes */
...

}

The directory could also be used by users to set up personalized address books. For example,
once I have located John Smith’s email address, I may not want to search the directory again
each time I send him mail. Instead, I can create a personal subtree in the directory in which I
maintain entries that I frequently use, possibly by creating links to the existing entries.

Java Naming and Directory Interface Scenarios

JavaSoft 20 1/29/98

6.3 Databases

Database applications can use the directory to locate database servers. For example, a financial
application needs to get the stock quotes from a stock quote server using JDBC. This applica-
tion can enable the user to select the stock quote server based on specification of some at-
tributes (such as coverage of which markets and frequency of quote updates). The application
searches the directory for quote servers that meet these attributes, and then retrieves the “loca-
tion” attribute (a JDBC URL) of the selected quote server and connects to it.

NamingEnumeration matches =
ctx.search("service/stockQuotes",

"(&(market=NASDAQ)(updateFreqency<=300))",
searchctls);

while (matches.hasMore()) {
SearchResult item = (SearchResult)matches.next();
Attribute location = item.getAttributes().get("location");
...

}

6.4 Browsing

When using almost any kind of interactive application that asks a user to input names, the us-
er’s job is made easier if a namespace browser is available to him. The browser can either be
built into the application and tailored to suit that application in particular, or it can be more gen-
eral-purpose such as a typical web browser.

A very simple example of a JNDI browser allows a user to “walk” through a namespace, view-
ing the atomic names at each step along the way. The browser prints a “*” to highlight the name
of eachContext , thus telling the user where he can go next.1

1. TheisContext() method used in the example is not part of JNDI. It is a method that must be provided by the
application.

Java Naming and Directory Interface Scenarios

JavaSoft 21 1/29/98

// Start at the top -- the initial context.
Context ctx = new InitialContext();
while (ctx != null) { // display one level

NamingEnumeration items = ctx.list();
while (items.hasMoreElements()) {

NameClassPair item = (NameClassPair)items.next();
if (isContext(item.getClassName())) {

System.out.print("*");
}
else {

System.out.print(" ");
}
System.out.println(" " + item.getName());

}
// Take the next step down into the namespace.
String target = input.readLine();
try {

ctx = (Context)ctx.lookup(target);
} catch (NamingException e) {

...
} catch (ClassCastException e) {

// not a context; cannot traverse
...

}
}

6.5 Network Printing

An important function of a printing service is to provide a means for its human users to easily
discover and select printers in the network. An application that needs to print, or the machine
on which it runs, should not have to be configured each time a new printer is added to the net-
work. The scope of network access to printers may range from a workgroup to global. The
printing service can use the directory to provide this capability.

Assume that printers are represented by aPrinter interface. One of the methods in it could be
print() which, when given anInputStream , will read data fromInputStream and print it
on the printer represented by this instance ofPrinter .

interface Printer {
void print(InputStream data) throws PrinterException;
...

}

A user selects a printer using a logical printer name, either explicitly or through default settings.
For example, the user may have specified a default printer to use for all his applications, which
is overridden only when he explicitly specifies another printer to use. The application that is
accepting the print request takes the printer name and looks it up in the directory service. The
application expects to receive as the result an object that implements thePrinter interface.

Java Naming and Directory Interface Scenarios

JavaSoft 22 1/29/98

void myAppPrint(String printerName, String fileName)
throws IOException {
try {

DirContext ctx = new InitialDirContext();
Printer prt = (Printer) ctx.lookup(printerName);
prt.print(new FileInputStream(fileName));

} catch (NamingException e){
System.err.println("Could not locate printer: " + e);

} catch (ClassCastException e) {
System.err.println(printerName + "does not name a printer");

}
}

6.5.1 Browsing and searching for printers

Selecting a printer by explicitly giving its name is but one way of identifying a printer. The user
can also use the directory to see the different printers available (browsing), or to search for
printers with particular attributes. For example the user can ask the directory to list all the print-
ers on the second floor of building 5 in the Mountain View campus, or search for all color laser
printers with 600dpi resolution. From the application’s perspective, just aslookup() returned
a Printer object, the list and search operations also provide the same capability of returning
Printer objects that the application could use to submit print requests.

Java Naming and Directory Interface Security Considerations

JavaSoft 23 1/29/98

7 Security Considerations

There are two main settings in which JNDI is used: in Java applications and applets.

In the case of Java applications, the code is trusted and the application can access service pro-
viders from the local classpath. Furthermore, there is no restriction if the service providers ac-
cess local files, or make network connections to naming or directory servers anywhere on the
network.

In the case of applets, there can be trusted applets and untrusted applets. Within an applet, there
can be portions that are trusted and portions that are not trusted. TheSharing Context Handles
andContext Environment sections below are especially applicable to applets containing both
trusted and untrusted code.

An applet’s access to service providers, especially service providers that require the use of re-
stricted resources (like the file system or network connections) may be severely limited.

7.1 JNDI Classes

The classes in thejavax.naming , javax.naming.directory andjavax.naming.spi pack-
ages contain no native methods. They do not require any special installation in order to run in-
side an applet or an application.

JNDI uses several system properties (see Appendix A). This allows applets and applications to
be configured easily without much programming. However, an applet may have restricted ac-
cess to some or all system properties as a result of the security manager installed on the plat-
form on which the applet is running. Consequently, JNDI also allows these same properties to
be specified as environment properties of a context.

In JDK1.2, the JNDI classes will only usebegin privileged /end privileged sections when
accessing the system properties listed in theProgram Configuration andAccess Configuration
sections in Appendix A.

7.2 Security Model

JNDI does not define a security model or a common security interface for accessing naming
and directory servers. Security-related operations, such as those required for authentication or
access control to the directory service, are dealt with by individual service providers. JNDI pro-
vides the means by which an application or applet can pass such security-related information
to service providers in order to establish a connection with the service, but does not itself take
part in such security-related activities.

JNDI also provides the means by which security-related problems can be indicated to the client
in the form of security-related exceptions.

JNDI service providers are controlled by the security manager in place when they try to gain
access to protected resources such as the file system or network. Some service providers may
control directory access by making use of the new JDK1.2 security architecture (for example,
allowing access to special ports for administration-related applets).

Java Naming and Directory Interface Security Considerations

JavaSoft 24 1/29/98

7.3 Access To Servers

Naming and directory services typically have their own security system in place to protect in-
formation stored therein. For example, one directory might require that its users first “login” to
the directory before reading or updating information in the directory. Some services might al-
low anonymous access to part of its namespace/directory.

Once a user has logged to a service, it is imperative for security reasons not to share that priv-
ilege with untrusted code.

7.4 Sharing Context Handles

In the following discussion, we refer to acontext handle as a reference to aContext instance.
This is analogous to how a reference to aReader /Writer /InputStream /OutputStream in-
stance is often referred to as afile handle.

A context handle should be treated like any other protected resource. If a piece of trusted code
obtains a context handle (possibly by authenticating its access with the directory server), it
should protect the use of that context against unauthorized or untrusted code. This is analogous
to how application and/or applet code should protect file handles. For example, if a piece of
trusted code opens a file for writing (and it was granted such privilege because of its trusted
nature), it should be careful about passing that file handle to any other pieces of code, trusted
or otherwise.

Similarly, giving access of a context handle to untrusted code may lead to its misuse in access-
ing or updating information in the directory, or accessing security-sensitive environment prop-
erties associated with the context.

7.5 Context Environment

JNDI allows the application/applet to pass preferences and information to a context in the form
of an environment. The application/applet can also get the current environment from a context.
See Section 5.3 and Appendix A for more information on a context’s environment.

The nature of the information contained in a context’s environment might be sensitive and need
protection from untrusted access. Specifically, the environment propertiesjava.naming.se-

curity.principal and java.naming.security.credentials contain information that
should not be given out to untrusted code. Service providers might take precaution to protect
against accessing these properties (see Responsibilities of Service Providers below). Client ap-
plications and applets should take care not to pass context handles with such sensitive environ-
ment properties to untrusted code.

7.6 Class Loading

JNDI allows the class files of object factories to be loaded dynamically. The current implemen-
tation uses the RMI class loader. The classes can only be loaded if there is a security manager
installed, and if that security manager permits the class to be loaded. When such classes are
loaded, they run in the security context dictated by the security manager.

Java Naming and Directory Interface Security Considerations

JavaSoft 25 1/29/98

7.7 Serializable Objects

Several of the JNDI classes are serializable. This allows the objects to be accessed in the form
of a byte stream, possibly outside of the environment in which they were created. See the doc-
ument at the following URL regarding security issues related to serialized objects.

http://java.sun.com/products/jdk/1.1/docs/guide/serialization/spec/security.doc.html

7.8 Responsibilities of Service Providers

7.8.1 Context Environment

When a context handle is created (either by getting the initial context or by looking it up or by
creating it from the directory), some environment properties may be specified for it. Sometimes
security-related properties are required for the creation of the context handle (such as user in-
formation that “logs” the user in with the directory). The service provider should take care to
protect this security-sensitive information from untrusted code.

The service provider needs to protect the context’s environment from being tampered or oth-
erwise modified by untrusted code. The service provider needs to protect the security-sensitive
environment properties from being read by untrusted code. It might do this by disallowing any
thread whose execution context and/or trust level is different than that originally held by the
thread that created the context handle to use the context handle. Or it might disallow certain
operations (such as accessing security-sensitive environment properties). Or it might simply
not return security-sensitive environment properties, or only return them to trusted code.

7.8.2 Network Security

Untrusted code (such as those found in untrusted applets) have limited access to the network.
Untrusted applets, for example, can only create a network connection to the host from which
they were downloaded. With finer-grain security models, it will be possible for the service pro-
vider itself be trusted code, and hence be allowed to connect to hosts not allowed for untrusted
applets. In such a scenario, the service provider should be careful not to compromise the secu-
rity intended by the security manager. If the service provider is sure that access by an untrusted
applet to the directory will cause no security problems, then it may proceed to offer such a ser-
vice to untrusted code. For example, allowing untrusted code to access a directory “anony-
mously” would post no security problems because the directory already allows any anonymous
client (written in the Java programming language or otherwise) to access the same data.

Most naming and directory services are accessed over the network. Although the data request-
ed is protected by the server’s authentication and access control mechanisms, some protocols
do not protect (encrypt) the data being sent as replies. Again, this is not a problem particular to
a client using JNDI but a problem for any client accessing the directory. The service provider
should document the security implications associated with using the associated directory over
a network.

7.8.3 Accessing Local Files

Similar to network access, untrusted code has limited access to the local file system. If the ser-
vice provider has special privileges for accessing local files, it should do so with utmost pre-
caution so as not to compromise the security policies intended by the runtime/platform.

Java Naming and Directory Interface Security Considerations

JavaSoft 26 1/29/98

7.8.4 Privileged Code, Native Methods

A service provider that is written completely in the Java programming language with no priv-
ileged sections is controlled by the same security policies afforded other code written in the
Java programming language. All protected resources that it attempts to access go through the
same security manager and access controller.

If a service provider contains privileged code sections, or if it contains native methods, then it
needs to be especially careful to preserve the security policies intended by the runtime/plat-
form.

Java Naming and Directory Interface Design Choices

JavaSoft 27 1/29/98

8 Design Choices

8.1 Separation of Interfaces into Context and DirContext

There are two core interfaces in JNDI:Context , andDirContext , with DirContext extending
the base naming operations inContext with directory service operations. They have been sep-
arated into separate interfaces both for modularity and also in keeping with the “pay for what
you use” goal of JNDI.

Naming is a basic component found in many computing services such as file systems, spread-
sheets, calendar services, and directory services. By having a baseContext interface for the
naming operations, we enable its use by all these other services, not just for directory services.

DirContext extendsContext to provide basic directory service operations, which include ma-
nipulation of attributes associated with named objects, attribute-based searches, and schema-
related operations of those attributes and named objects.

8.2 Separation of JNDI into Different Functional Packages

JNDI is separated into two client packages (javax.naming , javax.naming.directory) and
a service provider package (javax.naming.spi). The idea is that each package contains the
interfaces and classes required for a particular category of applications, again in keeping with
the “pay for what you use” goal. For example, an application that just wants to perform name-
lookups only needs to use thejavax.naming package. An application that wants to examine/
modify attributes associated with an object uses thejavax.naming and javax.naming.di-

rectory packages. There is a step-by-step progression of what classes and interfaces each cat-
egory of application writer needs to learn and use.

8.3 Separation of Client APIs and Service Provider Interfaces

JNDI separates interfaces and classes that a client application needs to use from those that are
only of interest to service providers into different packages. For example, a client would use
interfaces and classes fromjavax.naming , while a service provider that is hooking up a nam-
ing service would use bothjavax.naming andjavax.naming.spi . The package delineation
minimizes confusion for the application developer and makes clear which packages he needs
to examine when writing his program.

8.4 Multiple methods for listing Context

There are two common types of applications that list contexts: browser-style applications, and
applications that need to perform operations on the objects in a context en-masse. Browser-
style applications typically want to display the names of the contents of a context. In addition
to the names, many browsers often require type information of the objects bound to the names,
so that it can display appropriate pictorial representations of the objects. The browser is usually
interactive. Once a user has used a browser to display the contents of a context, he would then
select one or a few of the entries displayed and request more information on it.

Java Naming and Directory Interface Design Choices

JavaSoft 28 1/29/98

Some applications need to perform operations on objects within a context en-masse. For exam-
ple, a backup program might want to perform “file stats” operations on all the objects in a file
directory. A printer administration program might want to restart all the printers in a building.
To perform such operations, these programs need to obtain all the objects bound in a context.

With these two common styles of usage in mind, theContext interface has two types of list
methods:list() andlistBindings() . list() returns a list of name/class-name pairs while
listBindings() returns a list of name/class-name/object tuples.list() is designed for
browser-style applications that want mostly just the names and types of objects bound in a con-
text. listBindings() is for applications that want to potentially get all the objects in the con-
text, as well as its name and type.listBindings() returns an enumeration ofBinding . Both
thelistBindings() operation itself and invocation of methods in theBinding class (e.g.ge-

tObject()) could be implemented lazily or eagerly. UsinglistBindings() simply indicates
the potential that the caller might be wanting all or many of the objects in the context so that
implementations that are able can optimize for it. Usinglist() indicates that the caller is un-
likely to want all, if any, objects in the context so implementations can optimize for that if pos-
sible.

An alternative is to have a single list operation and have the lazy or eager behavior as part of
the implementation ofBinding . The advantage of this is that there is a single list operation to
learn. The disadvantage is that the caller has no way of indicating which piece of information
he wants back from list, and subsequently, implementations cannot optimize for the eventual
behavior of the program.

8.5 Support for Federation

Federation is a first-class concept in JNDI. In the client interfaces, it is supported by of the use
of theName interface for specifying names that can span one or more namespaces. The caller
of the methods in the client interface need not know anything else regarding federation. Reso-
lution of names across multiple systems is handled by the SPI and does not involve any inter-
vention on the part of the caller.

Although federation is a first-class concept, that does not mean that all callers and service pro-
viders must make use of it. If an application or service does not want to take advantage of fed-
eration, there is no requirement thatName always span multiple namespaces.Name can just
name objects within a single namespace, and the SPI can handle name resolution within a sin-
gle namespace as well (as a degenerate case of multiple namespace support).

8.6 DirContext versus DirObject

Instead of havingDirContext extendContext , an alternative would be to not extendContext

at all but to have a separate interface calledDirObject that encapsulates all the directory-re-
lated methods. In that case, an object can implement bothContext andDirObject if it sup-
ports both the naming and directory operations; another object might implement just
DirObject .

The problem with eliminatingDirContext is thatDirContext contains some hybrid opera-
tions that involve both naming and directories (bind() , createSubcontext() methods that
accept attributes as arguments). To keep these operationsand haveDirObject at the same time

Java Naming and Directory Interface Design Choices

JavaSoft 29 1/29/98

would produce the need for a third interface (perhaps calledDirContext) to contain just these
hybrids.

Furthermore, havingDirContext instead ofDirObject is somewhat more convenient in that
you can perform some operations in one step instead of two. For exampleDirContext.getAt-

tributes() could be used to get the attributes associated with a named object, whereas with
DirObject , you would need first to resolve to the object (Context.lookup()) and then use
DirObject.getAttributes() to get the attributes from it.

8.7 Support for Schemas

TheDirContext interface contains support for schemas. For example, from aDirContext ob-
ject you can obtain its schema object, which points to the directory space where the schema for
this particularDirContext instance is defined. From aDirContext object, you can also obtain
its schema class definition (i.e. information about what type of object this represents in the di-
rectory). There is further support for schemas in theAttribute class, which contains methods
for obtaining an attribute’s syntax information (i.e. what is the type of the attribute’s value) and
the attribute’s definition (e.g. is it multivalue, syntax, constraints on its syntax). There is no
requirement that any of this schema information be dynamically accessible (i.e. points to live
directory spaces). Support for such schema information could be generated statically by the
service provider. For example, a particular directory service might only support string attribute
values, so it can hard-wire the syntax of the attributes that it returns. Another directory might
support only static schemas (where information in the schema are not modifiable). Yet another
directory might support fully dynamic schemas. The interfaces and classes inDirContext are
flexible enough that these different levels of support for schemas can be accommodated.

8.8 Overloaded Methods in Context and DirContext

For each method in theContext andDirContext interfaces that accepts aName argument,
there is a corresponding overloaded form that accepts aString argument for specifying a
name.

The motivation for having theString -based methods is that there are many applications that
simply accepts a string name from the end-user and perform context methods on the object
named by that string name. For those applications, it is useful to have the context methods ac-
cepts a string for the name directly, instead of requiring the applications to first construct a
Name object using the string name.

The motivation for having theName-based methods is that there are also many applications that
manipulate names and do not want to worry about syntactic details of the names’ string forms
when composing and modifying names. These applications deal with the parsed form of names
and hence would prefer to deal withName objects rather than string names. For these applica-
tions, we provide theName-based methods in the context interfaces. Not providing these meth-
ods would probably cause proliferation ofName-like interfaces/classes to support manipulation
of names in their structural form in applications developed on top of JNDI.

Java Naming and Directory Interface Design Choices

JavaSoft 30 1/29/98

8.9 Reference and Referenceable

There are different ways in which applications and services can use the directory to locate ob-
jects. JNDI is general enough that it accommodates several different models. For some appli-
cations, the object bound in the directory is the object itself. An application may build up a
dynamic directory while the application is active, and delete the directory when the application
exits. Another application might store URLs as attributes for locating objects in its namespace.
Other systems might bind some reference information in the directory, which can subsequently
be used to locate or access the actual object. This last case is quite common, especially for mak-
ing Java applications take advantage of services in the installed base. The reference in the di-
rectory acts as a “pointer” to the real object.

JNDI defines aReference class to provide a uniform way of representing reference informa-
tion. A Reference contains information on how to access an object. It consists of a list of ad-
dresses and class information about the object to which this reference refers. When binding a
name to an object that is to be represented in the directory as a reference, the desired effect is
that the object’s reference be extracted and bound. To allow for this behavior, the object’s class
must implement theReferenceable interface, which contains the methodgetReference() .

There is some similarity between the interfacesSerializable andReferenceable and a nat-
ural question is “why not just useSerializable instead?” The answer is that a serialized ob-
ject is really a frozen version of the object, whereas the reference contains just the information
needed to construct it. The serialized version may have a lot more state which may not be ap-
propriate for storage in the directory.

8.10 Automatically Turning References into Objects

For an object that is bound as aReference in the directory, JNDI SPI framework automatically
creates and instantiates the object identified by the reference. In this way, the program can sim-
ply narrow the result oflookup() to the expected class, instead of calling a separate operation
to transform the result oflookup() into an object of the expected class.

For example, if you are looking up a printer object, a successful lookup would return to you a
printer object that you can directly use.

Printer prt = (Printer) ctx.lookup(somePrinterName);
prt.print(someFileName);

JNDI does this automatically, instead of requiring an explicit conversion step, because this is
expected to be the common usage pattern. By having theReference class, and a common
mechanism for converting aReference into the object identified by theReference , JNDI en-
courages different applications and system providers to utilize this mechanism, rather than in-
venting separate mechanisms on their own.

Java Naming and Directory Interface

JavaSoft 31 1/29/98

 Appendix A: JNDI Context Environment

Java Naming and Directory Interface

JavaSoft 32 1/29/98

Table 1: JNDI Environment Propertiesa

Program Configuration

java.naming.factory.initial
(Context.INITIAL_CONTEXT_FACTORY)

Class name of initial context factory to use.
When unspecified, determined by the
java.naming.factory.initial system property.
SeeInitialContext .

java.naming.factory.object
(Context.OBJECT_FACTORIES)

Colon-separated list of class names of object factory classes to use.
When unspecified, determined by the
java.naming.factory.object system property.
SeeNamingManager.getObjectInstance() .

java.naming.factory.url.pkgs
(Context.URL_PKG_PREFIXES)

Colon-separated list of package prefixes to use when loading in
URL context factories.
When unspecified, determined by the
java.naming.factory.url.pkgs system property.
SeeNamingManager.getURLContext() .

Access Configuration

java.naming.provider.url
(Context.PROVIDER_URL)

Specifies configuration information for provider to use.
When unspecified, determined by the
java.naming.provider.url system property.
When unspecified as system property or in environment, deter-
mined by provider using its own configuration or discovery proto-
cols.

java.naming.dns.url
(Context.DNS_URL)

Specifies the DNS host and domain names to use for the JNDI
URL context.
When unspecified, determined by the
java.naming.dns.url system property.

Service-Related

java.naming.authoritative
(Context.AUTHORITATIVE)

Specifies the authoritativeness of the service requested. If “true”,
specifies most authoritative source is to be used (e.g. bypass any
caches, or bypass replicas in some systems). Otherwise, source
need not be (but can be) authoritative.
When unspecified, defaults to false.

java.naming.batchsize
(Context.BATCHSIZE)

Specifies the preferred batch size to use when returning data via
the service’s protocol. This is a hint to the provider to return the
results of operations in batches of the specified size, so that the
provider can optimize its performance and usage of resources.
When unspecified, determined by provider.

java.naming.referral
(Context.REFERRAL)

Specifies that referrals encountered by the service provider are to
be followed automatically. If “follow”, follow referrals automati-
cally. If “ignore”, ignore referrals encountered. If “throw”, throw
ReferralException when a referral is encountered.
When unspecified, determined by provider.

Security

java.naming.security.protocol
(Context.SECURITY_PROTOCOL)

Security protocol to use for service.
When unspecified, determined by provider.

Java Naming and Directory Interface

JavaSoft 33 1/29/98

a. TheContext interface defines constants for these property names. The names of the constants are shown in
parentheses below the property’s string names.

java.naming.security.authentication
(Context.SECURITY_AUTHENTICATION)

Takes values “none” , “simple” , “strong” , or a provider-specific
string (e.g. “CRAM-MD5”).
When unspecified, determined by provider.

java.naming.security.principal
(Context.SECURITY_PRINCIPAL)

Identity of principal (e.g. user) for the authentication scheme.
When unspecified, defaults to the identity (specific to the authenti-
cation scheme selected) of user running the application.

java.naming.security.credentials
(Context.SECURITY_CREDENTIALS)

Principal’s credentials for the authentication scheme.
When unspecified, obtained by the provider on behalf of the user,
using the security infrastructure available to the provider.
Examples of different types of credentials are passwords, keys, and
certificates. The particular type of credentials is determined by the
authentication scheme chosen.

Internationalization

java.naming.language
(Context.LANGUAGE)

Specifies a colon-separated list of preferred language to use with
this service (e.g. “en-US”, “fr”, “fr-CH”, “ja-JP-kanji”).
Languages are specified using tags defined in RFC 1766.
When unspecified, the language preference—if any—is deter-
mined by the provider.

Table 1: JNDI Environment Propertiesa

Java Naming and Directory Interface

JavaSoft 34 1/29/98

Java Naming and Directory Interface

JavaSoft 35 1/29/98

 Appendix B: Examples for LDAP Programmers

Java Naming and Directory Interface

JavaSoft 36 1/29/98

This appendix contains sample JNDI programs intended to help a developer familiar with the
LDAP C API. Starting with sample programs from the Netscape Directory SDK for accessing
and updating the directory using the LDAP C API, we show the equivalent way of doing the
same thing for Java applications using JNDI.

Java Naming and Directory Interface

JavaSoft 37 1/29/98

B.1 Search the Directory

B.1.1 Search Using LDAP C API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
 * rights reserved.
 *
 * Search the directory for all people whose surname (last name) is
 * “Jensen”. Since the “sn” attribute is a caseignorestring (cis), case
 * is not significant when searching.
 *
 */

#include “examples.h”

int
main(int argc, char **argv)
{
 LDAP *ld;
 LDAPMessage *result, *e;
 BerElement *ber;
 char *a, *dn;
 char **vals;
 int i;

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }
 /* authenticate to the directory as nobody */
 if (ldap_simple_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_simple_bind_s”);
 return(1);
 }
 /* search for all entries with surname of Jensen */
 if (ldap_search_s(ld, MY_SEARCHBASE, LDAP_SCOPE_SUBTREE,
 MY_FILTER, NULL, 0, &result) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_search_s”);
 return(1);
 }
 /* for each entry print out name + all attrs and values */
 for (e = ldap_first_entry(ld, result); e != NULL;
 e = ldap_next_entry(ld, e)) {
 if ((dn = ldap_get_dn(ld, e)) != NULL) {
 printf(“dn: %s\n”, dn);
 ldap_memfree(dn);
 }
 for (a = ldap_first_attribute(ld, e, &ber);
 a != NULL; a = ldap_next_attribute(ld, e, ber)) {
 if ((vals = ldap_get_values(ld, e, a)) != NULL) {
 for (i = 0; vals[i] != NULL; i++) {
 printf(“%s: %s\n”, a, vals[i]);
 }
 ldap_value_free(vals);
 }
 ldap_memfree(a);
 }

Java Naming and Directory Interface

JavaSoft 38 1/29/98

 if (ber != NULL) {
 ber_free(ber, 0);
 }
 printf(“\n”);
 }
 ldap_msgfree(result);
 ldap_unbind(ld);
 return(0);
}

B.1.2 Search Using JNDI

/*
 * Copyright (c) 1997. Sun Microsystems. All rights reserved.
 *
 * Search the directory for all people whose surname (last name) is
 * "Jensen". Since the "sn" attribute is a caseignorestring (cis), case
 * is not significant when searching.
 *
 * [equivalent to search.c in Netscape's SDK.]
 *
 */

import java.util.Hashtable;
import java.util.Enumeration;

import javax.naming.*;
import javax.naming.directory.*;

class Search {

public static void main(String[] args) {

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * This could also be set by using the -D option to the java program.
 * For example,
 * java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Search
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 try {
 /* get a handle to an Initial DirContext */
 DirContext ctx = new InitialDirContext(env);

 /* specify search constraints to search subtree */
 SearchControls constraints = new SearchControls();
 constraints.setSearchScope(SearchControls.SUBTREE_SCOPE);

 /* search for all entries with surname of Jensen */
 NamingEnumeration results
 = ctx.search(Env.MY_SEARCHBASE, Env.MY_FILTER, constraints);

Java Naming and Directory Interface

JavaSoft 39 1/29/98

 /* for each entry print out name + all attrs and values */
 while (results != null && results.hasMore()) {
 SearchResult si = (SearchResult)results.next();

 /* print its name */
 System.out.println("name: " + si.getName());

 Attributes attrs = si.getAttributes();
 if (attrs == null) {
 System.out.println("No attributes");
 } else {
 /* print each attribute */
 for (NamingEnumeration ae = attrs.getAll();
 ae.hasMoreElements();) {
 Attribute attr = (Attribute)ae.next();
 String attrId = attr.getID();

 /* print each value */
 for (Enumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println(attrId + ": " + vals.nextElement()))
 ;
 }
 }
 System.out.println();
 }
 } catch (NamingException e) {
 System.err.println("Search example failed.");
 e.printStackTrace();
 }
}
}

B.2 Read An Entry

B.2.1 Read Using LDAP C-API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
 * rights reserved.
 *
 * Search the directory for the specific entry
 * “cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US”.
 * Retrieve all attributes from the entry.
 *
 */

#include “examples.h”

int
main(int argc, char **argv)
{
 LDAP *ld;
 LDAPMessage *result, *e;
 BerElement *ber;
 char *a, *dn;
 char **vals;

Java Naming and Directory Interface

JavaSoft 40 1/29/98

 int i;

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }
 /* authenticate to the directory as nobody */
 if (ldap_simple_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_simple_bind_s”);
 return(1);
 }
 /* search for Babs’ entry */
 if (ldap_search_s(ld, ENTRYDN, LDAP_SCOPE_SUBTREE,
 “(objectclass=*)”, NULL, 0, &result) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_search_s”);
 return(1);
 }
 /* for each entry print out name + all attrs and values */
 for (e = ldap_first_entry(ld, result); e != NULL;
 e = ldap_next_entry(ld, e)) {
 if ((dn = ldap_get_dn(ld, e)) != NULL) {
 printf(“dn: %s\n”, dn);
 ldap_memfree(dn);
 }
 for (a = ldap_first_attribute(ld, e, &ber);
 a != NULL; a = ldap_next_attribute(ld, e, ber)) {
 if ((vals = ldap_get_values(ld, e, a)) != NULL) {
 for (i = 0; vals[i] != NULL; i++) {
 printf(“%s: %s\n”, a, vals[i]);
 }
 ldap_value_free(vals);
 }
 ldap_memfree(a);
 }
 if (ber != NULL) {
 ber_free(ber, 0);
 }
 printf(“\n”);
 }
 ldap_msgfree(result);
 ldap_unbind(ld);
 return(0);
}

B.2.2 Read Using JNDI

/*
 * Copyright (c) 1997. Sun Microsystems. All rights reserved.
 *
 * Search the directory for the specific entry
 * "cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
 * Retrieve all attributes from the entry.
 *
 * [Equivalent to rdentry.c in Netscape SDK]
 */

import java.util.Hashtable;

Java Naming and Directory Interface

JavaSoft 41 1/29/98

import javax.naming.*;
import javax.naming.directory.*;

class Rdentry {
public static void main(String[] args) {

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * This could also be set by using the -D option to the java program.
 * For example,
 * java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Rdentry
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 try {
 /* get a handle to an Initial DirContext */
 DirContext ctx = new InitialDirContext(env);

 /* Read Babs' entry */
 Attributes attrs = ctx.getAttributes(Env.ENTRYDN);

 if (attrs == null) {
 System.out.println(Env.ENTRYDN + "has no attributes");
 } else {
 /* print each attribute */
 for (NamingEnumeration ae = attrs.getAll();
 ae.hasMoreElements();) {
 Attribute attr = (Attribute)ae.next();
 String attrId = attr.getID();

 /* print each value */
 for (NamingEnumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println(attrId + ": " + vals.nextElement()))
 ;
 }
 }
 } catch (NamingException e) {
 System.err.println("Rdentry example failed.");
 e.printStackTrace();
 }
}
}

B.3 Get Attributes

B.3.1 Get Attributes Using LDAP C API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All

Java Naming and Directory Interface

JavaSoft 42 1/29/98

 * rights reserved.
 *
 * Retrieve several attributes of a particular entry.
 */

#include “examples.h”

int
main(int argc, char **argv)
{
 LDAP *ld;
 LDAPMessage *result, *e;
 char **vals, *attrs[5];
 int i;

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }

 attrs[0] = “cn”; /* Get canonical name(s) (full name) */
 attrs[1] = “sn”; /* Get surname(s) (last name) */
 attrs[2] = “mail”; /* Get email address(es) */
 attrs[3] = “telephonenumber”; /* Get telephone number(s) */
 attrs[4] = NULL;

 if (ldap_search_s(ld, ENTRYDN, LDAP_SCOPE_BASE,
 “(objectclass=*)”, attrs, 0, &result) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_search_s”);
 return(1);
 }

 /* print it out */
 if ((e = ldap_first_entry(ld, result)) != NULL) {
 if ((vals = ldap_get_values(ld, e, “cn”)) != NULL) {
 printf(“Full name:\n”);
 for (i = 0; vals[i] != NULL; i++) {
 printf(“\t%s\n”, vals[i]);
 }
 ldap_value_free(vals);
 }
 if ((vals = ldap_get_values(ld, e, “sn”)) != NULL) {
 printf(“Last name (surname):\n”);
 for (i = 0; vals[i] != NULL; i++) {
 printf(“\t%s\n”, vals[i]);
 }
 ldap_value_free(vals);
 }
 if ((vals = ldap_get_values(ld, e, “mail”)) != NULL) {
 printf(“Email address:\n”);
 for (i = 0; vals[i] != NULL; i++) {
 printf(“\t%s\n”, vals[i]);
 }
 ldap_value_free(vals);
 }
 if ((vals = ldap_get_values(ld, e, “telephonenumber”)) != NULL) {
 printf(“Telephone number:\n”);

Java Naming and Directory Interface

JavaSoft 43 1/29/98

 for (i = 0; vals[i] != NULL; i++) {
 printf(“\t%s\n”, vals[i]);
 }
 ldap_value_free(vals);
 }
 }
 ldap_msgfree(result);
 ldap_unbind(ld);
 return(0);
}

B.3.2 Get Attributes Using JNDI

/*
 * Copyright (c) 1997. Sun Microsystems. All rights reserved.
 *
 * Retrieve several attributes of a particular entry.
 *
 * [equivalent to getattrs.c in Netscape SDK]
 */

import java.util.Hashtable;
import java.util.Enumeration;

import javax.naming.*;
import javax.naming.directory.*;

class Getattrs {

public static void main(String[] args) {

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * For example,
 * This could also be set by using the -D option to the java program.
 * java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Getattrs
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 try {
 /* get a handle to an Initial DirContext */
 DirContext ctx = new InitialDirContext(env);

 String[] attrs = new String[4];
 attrs[0] = "cn"; /* Get canonical name(s) (full name) */
 attrs[1] = "sn"; /* Get surname(s) (last name) */
 attrs[2] = "mail"; /* Get email address(es) */
 attrs[3] = "telephonenumber"; /* Get telephone number(s) */

 Attributes result = ctx.getAttributes(Env.ENTRYDN, attrs);

 if (result == null) {
 System.out.println(Env.ENTRYDN +

Java Naming and Directory Interface

JavaSoft 44 1/29/98

 "has none of the specified attributes.");
 } else {
 /* print it out */
 Attribute attr = result.get("cn");
 if (attr != null) {
 System.out.println("Full name:");
 for (NamingEnumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println("\t" + vals.nextElement()))
 ;
 }

 attr = result.get("sn");
 if (attr != null) {
 System.out.println("Last name (surname):");
 for (NamingEnumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println("\t" + vals.nextElement()))
 ;
 }

 attr = result.get("mail");
 if (attr != null) {
 System.out.println("Email address:");
 for (NamingEnumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println("\t" + vals.nextElement()))
 ;
 }
 attr = result.get("telephonenumber");
 if (attr != null) {
 System.out.println("Telephone number:");
 for (NamingEnumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println("\t" + vals.nextElement()))
 ;
 }
 }
 } catch (NamingException e) {
 System.err.println("Getattrs example failed.");
 e.printStackTrace();
 }
}
}

B.4 Compare An Attribute

B.4.1 Compare Using LDAP C API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
 * rights reserved.
 *
 * Use ldap_compare() to compare values agains values contained in entry
 * “cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US”.
 * We test to see if (1) the value “person” is one of the values in the
 * objectclass attribute (it is), and if (2) the value “xyzzy” is in the

Java Naming and Directory Interface

JavaSoft 45 1/29/98

 * objectlass attribute (it isn’t, or at least, it shouldn’t be).
 *
 */

#include “examples.h”

int
main(int main, char **argv)
{
 LDAP *ld;
 int rc;

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }

 /* authenticate to the directory as nobody */
 if (ldap_simple_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_simple_bind_s”);
 return(1);
 }

 /* compare the value “person” against the objectclass attribute */
 rc = ldap_compare_s(ld, ENTRYDN, “objectclass”, “person”);
 switch (rc) {
 case LDAP_COMPARE_TRUE:
 printf(“The value \”person\” is contained in the objectclass “
 “attribute.\n”);
 break;
 case LDAP_COMPARE_FALSE:
 printf(“The value \”person\” is not contained in the objectclass “
 “attribute.\n”);
 break;
 default:
 ldap_perror(ld, “ldap_compare_s”);
 }

 /* compare the value “xyzzy” against the objectclass attribute */
 rc = ldap_compare_s(ld, ENTRYDN, “objectclass”, “xyzzy”);
 switch (rc) {
 case LDAP_COMPARE_TRUE:
 printf(“The value \”xyzzy\” is contained in the objectclass “
 “attribute.\n”);
 break;
 case LDAP_COMPARE_FALSE:
 printf(“The value \”xyzzy\” is not contained in the objectclass “
 “attribute.\n”);
 break;
 default:
 ldap_perror(ld, “ldap_compare_s”);
 }

 ldap_unbind(ld);
 return(0);
}

Java Naming and Directory Interface

JavaSoft 46 1/29/98

B.4.2 Compare Using JNDI

/*
 * Copyright (c) 1997. Sun Microsystems. All rights reserved.
 *
 * Use search() to compare values against values contained in entry
 * "cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
 * We test to see if (1) the value "person" is one of the values in the
 * objectclass attribute (it is), and if (2) the value "xyzzy" is in the
 * objectlass attribute (it isn't, or at least, it shouldn't be).
 *
 * [equivalent to compare.c in Netscape SDK]
 *
 */

import java.util.Hashtable;

import javax.naming.*;
import javax.naming.directory.*;

class Compare {

public static void main(String[] args) {

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * This could also be set by using the -D option to the java program.
 * For example,
 * java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Compare
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 DirContext ctx = null;
 SearchControls ctls = new SearchControls();
 ctls.setSearchScope(SearchControls.OBJECT_SCOPE);
 ctls.setReturningAttributes(new String[0]); // do not return any attrs

 try {
 /* get a handle to an Initial DirContext */
 ctx = new InitialDirContext(env);
 } catch (NamingException e) {
 System.err.println("Cannot get initial context.");
 return;
 }

 try {
 NamingEnumeration results =
 ctx.search(Env.ENTRYDN, "objectclass=person", ctls);

 if (results != null && results.hasMoreElements()) {
 System.out.println(
 "The value \"person\" is contained in the objectclass attribute.");
 } else {
 System.out.println(

Java Naming and Directory Interface

JavaSoft 47 1/29/98

 "The value \"person\" is not contained in the objectclass attribute.");
 }
 } catch (NamingException e) {
 System.err.println("Comparison of value person failed.");
 }

 try {
 NamingEnumeration results =
 ctx.search(Env.ENTRYDN, "objectclass=xyzzy", ctls);

 if (results != null && results.hasMoreElements()) {
 System.out.println(
 "The value \"xyzzy\" is contained in the objectclass attribute.");
 } else {
 System.out.println(
 "The value \"xyzzy\" is not contained in the objectclass attribute.");
 }
 } catch (NamingException e) {
 System.err.println("Comparison of value xyzzy failed.");
 }
}
}

B.5 Modify Attributes

B.5.1 Modify Attributes Using LDAP C API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
 * rights reserved.
 *
 * Modify an entry:
 * - replace any existing values in the “mail” attribute with “babs@ace.com”
 * - add a new value to the “description” attribute
 */

#include “examples.h”

int
main(int argc, char **argv)
{
 LDAP *ld;
 LDAPMod mod0;
 LDAPMod mod1;
 LDAPMod *mods[3];
 char *vals0[2];
 char *vals1[2];
 time_t now;
 char buf[128];

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }
 /* authenticate */
 if (ldap_simple_bind_s(ld, ENTRYDN, ENTRYPW) != LDAP_SUCCESS) {

Java Naming and Directory Interface

JavaSoft 48 1/29/98

 ldap_perror(ld, “ldap_simple_bind_s”);
 return(1);
 }
 /* construct the list of modifications to make */
 mod0.mod_op = LDAP_MOD_REPLACE;
 mod0.mod_type = “mail”;
 vals0[0] = “babs@ace.com”;
 vals0[1] = NULL;
 mod0.mod_values = vals0;

 mod1.mod_op = LDAP_MOD_ADD;
 mod1.mod_type = “description”;
 time(&now);
 sprintf(buf, “This entry was modified with the modattrs program on %s”,
 ctime(&now));
 /* Get rid of \n which ctime put on the end of the time string */
 if (buf[strlen(buf) - 1] == ‘\n’) {
 buf[strlen(buf) - 1] = ‘\0’;
 }
 vals1[0] = buf;
 vals1[1] = NULL;
 mod1.mod_values = vals1;

 mods[0] = &mod0;
 mods[1] = &mod1;
 mods[2] = NULL;

 /* make the change */
 if (ldap_modify_s(ld, ENTRYDN, mods)
 != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_modify_s”);
 return(1);
 }
 ldap_unbind(ld);
 printf(“modification was successful\n”);
 return(0);
}

B.5.2 Modify Attributes Using JNDI

/*
 * Copyright (c) 1997. Sun Microsystems. All rights reserved.
 *
 * Modify an entry:
 * - replace any existing values in the "mail" attribute with "babs@ace.com"
 * - add a new value to the "description" attribute
 *
 * [equivalent to modattrs.c in Netscape SDK]
 */

import java.util.Hashtable;
import java.util.Date;

import javax.naming.*;
import javax.naming.directory.*;

class Modattrs {

Java Naming and Directory Interface

JavaSoft 49 1/29/98

public static void main(String[] args) {

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * This could also be set by using the -D option to the java program.
 * For example,
 * java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Modattrs
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 /* specify authentication information */
 env.put(Context.SECURITY_AUTHENTICATION, "simple");
 env.put(Context.SECURITY_PRINCIPAL, Env.MGR_DN);
 env.put(Context.SECURITY_CREDENTIALS, Env.MGR_PW);

 try {
 /* get a handle to an Initial DirContext */
 DirContext ctx = new InitialDirContext(env);

 /* construct the list of modifications to make */
 ModificationItem[] mods = new ModificationItem[2];

 Attribute mod0 = new BasicAttribute("mail", "babs@eng");
 // Update mail attribute
 mods[0] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE, mod0);

 // Add another value to description attribute
 Attribute mod1 =
 new BasicAttribute("description",
 "This entry was modified with the Modattrs program on " +
 (new Date()).toString());
 mods[1] = new ModificationItem(DirContext.ADD_ATTRIBUTE, mod1);

 /* Delete the description attribute altogether */
 /*
 Attribute mod1 = new BasicAttribute("description");
 mods[2] = new ModificationItem(DirContext.REMOVE_ATTRIBUTE, mod1);

*/

 /* make the change */
 ctx.modifyAttributes(Env.ENTRYDN, mods);
 System.out.println("modification was successful.");

 } catch (NamingException e) {
 System.err.println("modification failed. " + e);
 }
}
}

B.6 Rename An Entry

Java Naming and Directory Interface

JavaSoft 50 1/29/98

B.6.1 Rename Using LDAP C API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
 * rights reserved.
 *
 * Modify the RDN (relative distinguished name) of an entry. In this
 * example, we change the dn “cn=Jacques Smith, o=Ace Industry, c=US”
 * to “cn=Jacques M Smith, o=Ace Industry, c=US”.
 *
 * Since it is an error to either (1) attempt to modrdn an entry which
 * does not exist, or (2) modrdn an entry where the destination name
 * already exists, we take some steps, for this example, to make sure
 * we’ll succeed. We (1) add “cn=Jacques Smith” (if the entry exists,
 * we just ignore the error, and (2) delete “cn=Jacques M Smith” (if the
 * entry doesn’t exist, we ignore the error).
 *
 * We pass 0 for the “deleteoldrdn” argument to ldap_modrdn2_s(). This
 * means that after we change the RDN, the server will put the value
 * “Jacques Smith” into the cn attribute of the new entry, in addition to
 * “Jacques M Smith”.
 */

#include “examples.h”

#define NMODS 4

unsigned long global_counter = 0;

static void free_mods(LDAPMod **mods);

int
main(int argc, char **argv)
{
 LDAP *ld;
 char *dn, *ndn, *nrdn;
 int i;
 int rc;
 LDAPMod **mods;

 /* Values we’ll use in creating the entry */
 char *objectclass_values[] = { “top”, “person”, “organizationalPerson”,
 “inetOrgPerson”, NULL };
 char *cn_values[] = { “Jacques Smith”, NULL };
 char *sn_values[] = { “Smith”, NULL };
 char *givenname_values[] = { “Jacques”, NULL };

 /* Specify the DN we’re adding */
 dn = “cn=Jacques Smith, o=Ace Industry, c=US”;
 /* the destination DN */
 ndn = “cn=Jacques M Smith, o=Ace Industry, c=US”;
 /* the new RDN */
 nrdn = “cn=Jacques M Smith”;

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }

Java Naming and Directory Interface

JavaSoft 51 1/29/98

 /* authenticate to the directory as the Directory Manager */
 if (ldap_simple_bind_s(ld, MGR_DN, MGR_PW) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_simple_bind_s”);
 return(1);
 }

 if ((mods = (LDAPMod **) malloc((NMODS + 1) * sizeof(LDAPMod *)))
 == NULL) {
 fprintf(stderr, “Cannot allocate memory for mods array\n”);
 return(1);
 }
 /* Construct the array of values to add */
 for (i = 0; i < NMODS; i++) {
 if ((mods[i] = (LDAPMod *) malloc(sizeof(LDAPMod))) == NULL) {
 fprintf(stderr, “Cannot allocate memory for mods element\n”);
 return(1);
 }
 }
 mods[0]->mod_op = 0;
 mods[0]->mod_type = “objectclass”;
 mods[0]->mod_values = objectclass_values;
 mods[1]->mod_op = 0;
 mods[1]->mod_type = “cn”;
 mods[1]->mod_values = cn_values;
 mods[2]->mod_op = 0;
 mods[2]->mod_type = “sn”;
 mods[2]->mod_values = sn_values;
 mods[3]->mod_op = 0;
 mods[3]->mod_type = “givenname”;
 mods[3]->mod_values = givenname_values;
 mods[4] = NULL;

 /* Add the entry */
 if ((rc = ldap_add_s(ld, dn, mods)) != LDAP_SUCCESS) {
 /* If entry exists already, fine. Ignore this error. */
 if (rc == LDAP_ALREADY_EXISTS) {
 printf(“Entry \”%s is already in the directory.\n”, dn);
 } else {
 ldap_perror(ld, “ldap_add_s”);
 free_mods(mods);
 return(1);
 }
 } else {
 printf(“Added entry \”%s\”.\n”, dn);
 }
 free_mods(mods);

 /* Delete the destination entry, for this example */
 if ((rc = ldap_delete_s(ld, ndn)) != LDAP_SUCCESS) {
 /* If entry does not exist, fine. Ignore this error. */
 if (rc == LDAP_NO_SUCH_OBJECT) {
 printf(“Entry \”%s\” is not in the directory. “
 “No need to delete.\n”, ndn);
 } else {
 ldap_perror(ld, “ldap_delete_s”);
 return(1);
 }
 } else {

Java Naming and Directory Interface

JavaSoft 52 1/29/98

 printf(“Deleted entry \”%s\”.\n”, ndn);
 }

 /* Do the modrdn operation */
 if (ldap_modrdn2_s(ld, dn, nrdn, 0) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_modrdn2_s”);
 return(1);
 }

 printf(“The modrdn operation was successful. Entry\n”
 “\”%s\” has been changed to\n”
 “\”%s\”.\n”, dn, ndn);

 ldap_unbind(ld);
 return 0;
}

/*
 * Free a mods array.
 */
static void
free_mods(LDAPMod **mods)
{
 int i;

 for (i = 0; i < NMODS; i++) {
 free(mods[i]);
 }
 free(mods);
}

B.6.2 Rename Using JNDI

/*
 * Copyright (c) 1997. Sun Microsystems. All rights reserved.
 *
 * Modify the RDN (relative distinguished name) of an entry. In this
 * example, we change the dn "cn=Jacques Smith, o=Ace Industry, c=US"
 * to "cn=Jacques M Smith, o=Ace Industry, c=US".
 *
 * Since it is an error to either (1) attempt to modrdn an entry which
 * does not exist, or (2) modrdn an entry where the destination name
 * already exists, we take some steps, for this example, to make sure
 * we'll succeed. We (1) add "cn=Jacques Smith" (if the entry exists,
 * we just ignore the error, and (2) delete "cn=Jacques M Smith" (if the
 * entry doesn't exist, we ignore the error).
 *
 * After renaming, we add back the attribute "Jacques Smith" into the cn
 * attribute.
 *
 * [based on modrdn.c of Netscape SDK]
 */

import java.util.Hashtable;
import java.util.Date;

Java Naming and Directory Interface

JavaSoft 53 1/29/98

import javax.naming.*;
import javax.naming.directory.*;

class Modrdn {

public static void main(String[] args) {

 /* Values we'll use in creating the entry */
 Attribute objClasses = new BasicAttribute("objectclass");
 objClasses.add("top");
 objClasses.add("person");
 objClasses.add("organizationalPerson");
 objClasses.add("inetOrgPerson");

 Attribute cn = new BasicAttribute("cn", "Jacques Smith");
 Attribute sn = new BasicAttribute("sn", "Smith");
 Attribute givenNames = new BasicAttribute("givenname", "Jacques");

 /* Specify the DN we're adding */
 String dn = "cn=Jacques Smith, " + Env.MY_MODBASE;
 /* the destination DN */
 String ndn = "cn=Jacques M Smith, " + Env.MY_MODBASE;
 /* the new RDN */
 String nrdn = "cn=Jacques M Smith";

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * This could also be set by using the -D option to the java program.
 * For example,
 * java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Modrdn
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 /* specify authentication information */
 env.put(Context.SECURITY_AUTHENTICATION, "simple");
 env.put(Context.SECURITY_PRINCIPAL, Env.MGR_DN);
 env.put(Context.SECURITY_CREDENTIALS, Env.MGR_PW);

 DirContext ctx = null;

 try {
 /* get a handle to an Initial DirContext */
 ctx = new InitialDirContext(env);
 Attributes orig = new BasicAttributes();
 orig.put(objClasses);
 orig.put(cn);
 orig.put(sn);
 orig.put(givenNames);

 /* Add the entry */
 ctx.createSubcontext(dn, orig);
 System.out.println("Added entry " + dn + ".");

 } catch (NameAlreadyBoundException e) {

Java Naming and Directory Interface

JavaSoft 54 1/29/98

 /* If entry exists already, fine. Ignore this error. */
 System.out.println("Entry " + dn + " already exists, no need to add");
 } catch (NamingException e) {
 System.err.println("Modrdn: problem adding entry." + e);
 System.exit(1);
 }

 try {
 /* Delete the destination entry, for this example */
 ctx.destroySubcontext(ndn);
 System.out.println("Deleted entry " + ndn + ".");

 } catch (NameNotFoundException e) {
 /* If entry does not exist, fine. Ignore this error. */
 System.out.println("Entry " + ndn + " is not in the directory. " +
 "No need to delete.");
 } catch (NamingException e) {
 System.err.println("Modrdn: problem deleting entry." + e);
 System.exit(1);
 }

 /* Do the modrdn operation */
 try {
 ctx.rename(dn, ndn);
 System.out.println("The modrdn operation was successful. Entry " +
 dn + " has been changed to " + ndn + ".");
 } catch (NamingException e) {
 System.err.println("Modify operation failed." + e);
 }
}
}

Java Naming and Directory Interface

JavaSoft 55 1/29/98

 Appendix C: Legend for Class Diagram

In a class diagram, we visually distinguish the different kinds of Java entities, as follows:

1. The interface: A rounded rectangle
2. The class: A rectangle
3. The abstract class: A rectangle with an empty dot
4. The final class: A rectangle with a black dot
5. Classes with subclasses: A rectangle with a small black triangle on the lower right corner

Most of these elements are shown below. The class or interface being described in the current chapter is shaded grey (this is
not applicable for package class diagrams). A solid line representsextends, while a dotted line representsimplements.

java.lang.Object

MenuComponent

MenuItem

CheckboxMenuItem

Menu

ItemSelectable

Interface

Abstract class

The current class

Class with subclasses

implements

extends

Class from
another package

Java Naming and Directory Interface

JavaSoft 56 1/29/98

Java Naming and Directory Interface

JavaSoft 57 1/29/98

 Appendix D: JNDI Change History

1.1: JNDI Changes Since 1.1Beta1

API-related Changes

• DirContext.search() accepts RFC 2254 filters instead of RFC 1960 filters.
• Added constants for environment properties toContext interface.
• ChangedAttributes.remove() andAttributes.put() to returnAttribute instead ofObject .
• Name.add() andName.addAll() (and related methods inCompositeName andCompoundName) are changed

so that they return the updated instance ofName. This allows constructs such as
new CompositeName("a").add("b").add("c") to be supported.

• Moved implements Cloneable from CompositeName andCompoundName to Name, where theclone()
method is declared.

• TurnedAttribute andAttributes into interfaces and renamed the original classesBasicAttribute and
BasicAttributes , respectively.

• Allow class name to be specified inBinding andSearchResult constructors, and addedNameClassPair.set-
ClassName() .

• DirContext.REMOVE_ATTRIBUTE does not require nonexistent attributes or their values to be ignored.
• Addedthrows NamingException clause toInitialContext andInitialDirContext constructors so that

connection problems can be reported and thrown at construction time.

SPI-related Changes

• InitialContextFactory.getInitialContext() must return a non-null initial context (instead of possibly
null).

• InitialContextFactoryBuilder.createInitialConetxtFactory() andObjectFactory-
Builder.createObjectFactory() now have athrows NamingException clause and must return non-null.

• NamingManager.getObjectInstance() andgetURLContext() pass up exceptions thrown for operational
errors (e.g. problem instantiating a factory class).

1.1Beta1: JNDI Changes Since 1.0Licensee Release

Package Name Change

JNDI is being packaged as a Java 1.1-compatible Standard Extension. The JNDI packages have been renamed to use the
“javax” prefix, following the convention for Java Standard Extensions. The new package names are:javax.naming ,
javax.naming.directory , andjavax.naming.spi .

General Changes

• Property names have been renamed following the convention used by the JDK. They have a “java.naming” prefix. See
Appendix A ofJNDI API document for details on the new names.

• Make java.naming.provider.url a system property in addition to being available as an environment property.
• Replaced use ofProperties with Hashtable (Properties ’ superclass) for the environment properties/settings so

that service providers and applications can completely enumerate its contents.Properties can still be passed as argu-
ments and returned as values whenHashtable is called for. But declaring the methods to useHashtable makes clear
the fact that nestedProperties are not examined for the operation at hand.

API-related Changes

As most of these changes are renames, the 1.1Beta1 release of the code includes a Java ClassRenamer1 program that assists
you with the renames. See the instructions for the release for details.

1. Thanks to the Swing team for use and distribution of this program.

Java Naming and Directory Interface

JavaSoft 58 1/29/98

• AddedContext.close() to allow applications to release resources immediately.
• AddedInterruptedNamingException to indicate a naming operation has been interrupted.
• Class renames:DSContext ->DirContext , InitialDSContext ->InitialDirContext ,

AttributeSet ->Attributes , InvalidAttributeSetException ->InvalidAttributesException ,
SearchConstraints ->SearchControls, InvalidSearchConstraintsException->Invalid-
SearchControlsException.

• MakeAttributes ’ methods look likeMap’s1, Attribute ’s methods look likeSet ’s, andName, CompoundName,
CompositeName , andReference ’s methods look likeList ’s.

• Added protectedAttribute.Attribute() constructor so that subclasses can avoid allocatingVector .
• Added constructors toAttributes that accept an attribute.
• Addedthrows NamingException clause toAttribute ’s schema methods.
• RenamedDirContext.DELETE_ATTRIBUTE ->DirContext.REMOVE_ATTRIBUTE .
• ReplacedModificationEnumeration with ModificationItem[] .
• ReplacedRefAddrEnumeration andStringEnumeration with Enumeration .
• ReplacedAttributeEnumeration , NameClassEnumeration , BindingEnumeration , aandSearchEnu-

meration with NamingEnumeration to allow generic means of doing JNDI enumerations.
• Attribute.getAll() returnsNamingEnumeration instead ofEnumeration .
• Link.getLinkName() returnsString instead ofName.
• BinaryRefAddr.buf andStringRefAddr.contents made private. DeletedBinary.getAddressBy-

tes() , StringRefAddr.getAddressString() , BinaryRefAddr.size() .
• RenamedRefAddr.getAddressContents() ->getContent() .
• RemovedDSException , re-parented exceptions to be subclass ofNamingException
• Removed most constructors fromNamingException and its subclasses. Each has two constructors: one that accepts an

explanation and a public constructor that takes no parameters.
• RemovedName.toString() , equals() , hashCode() as these are already defined byObject .
• Constructors for abstract classesRefAddr andReferralException are now protected.

SPI-related Changes

• NamingManager.getObjectInstance() andObjectFactory.getObjectInstance() allow the caller
to supply two optional parameters: a name and a context. The name is the name of the object resolved relative to the con-
text supplied. An object factory can make use of this information to gather further information about the object to create.
See the corresponding javadoc for these methods for details. Corresponding fields and accessor methods were added to
CannotProceedException so that this information, if supplied, can be propagated.

• Constants used inNamingManager for property names removed:ObjectFactoryProperty, InitialCon-
textFactoryProperty , PkgPathProperty . These were used for internal development. Programs should use the
appropriate strings instead.

• NamingManager.getObjectInstance() returns original input if it cannot create a factory using the reference of
the object (it used to returnnull).

• InitialContext constructor that takes no parameters callsNamingManager.getInitialContext() with a
null environment instead of empty environment.

1.0Licensee Release: JNDI Changes Since 1.0Beta1

Package Name Change

To allow this release to work in all Java 1.1 systems, the JNDI classes have been temporarily renamed from thejava.nam-
ing hierarchy tocom.sun.java.naming .

API-related Changes

• SearchConstraints now implementsjava.io.Serializable .
• AddedReferralException.skipReferrals() to allow application to skip individual referrals.

1. See http://java.sun.com/products/jdk/preview/docs/guide/collections/ for information onMap, Set andList .

Java Naming and Directory Interface

JavaSoft 59 1/29/98

• Added constructor toNoInitialContextException that accepts an explanation string.
• AddedSchemaViolationException for reporting schema-related problems.
• Renamedjava.naming.directory.SearchTimeLimitExceededException to java.naming.Time-

LimitExceededException so that it can be used by thejava.naming package. Addedjava.naming.Limi-
tExceededException , which is the super class ofTimeLimitExceededException and
SizeLimitExceededException (new as well).

• To assist in debugging and displaying classes, addedAttributeSet.toString() , Binding.toString() ,
SearchResult.toString() .

• Clarified semantics of the overloaded form ofsearch() that accepts a matching attribute set (AttributeSet). If the
matching attribute set isnull or empty, return all the objects in the target context.

• AttributeSet now implementsCloneable , and has aclone() method.

SPI-related Changes

• Added “set” methods toNameClassPair , Binding , andSearchResult classes and made the protected fields pri-
vate. This enables service providers to update the fields in these classes without subclassing.

• Added a constructor toNameClassPair , Binding , and SearchResult that accepts a “relative” parameter, and
isRelative() andsetRelative() methods. This allows service providers to return names that are not relative to
the target context of the search. Non-relative names are named using URL strings.

• Contract betweenNamingManager.getObjectInstance() andObjectFactory is clarified. An object factory
returnsnull if it cannot create the object; it only throws an exception (which is passed up to the caller ofNamingMan-
ager.getObjectInstance()) if no other object factories should be tried.

• ReplacedResolver.resolvePenultimate() with Resolver.resolveToClass() . This allows more effi-
cient implementation of service providers by allowing the resolution to stop at the first context that exports a target class,
rather than requiring resolution to proceed to the penultimate context. The final service provider in a chain of federated
naming systems no longer needs to implementResolver ; only the intermediate providers.must do so.

• RemovedNotDSContextException . Service providers should useNotContextException with the target class
name in the explanation to indicate that a particular subclass ofContext is required but not found.

• The default package prefix for loading URL context factories has changed from “sun.jndi.url” to “com.sun.jndi.url”
because of package renaming.

Document Version Numbers Reset

The earlier versions of the JNDI documents were labeled as versions 1.0, 1.1. and 1.2. They should have been “Early Access”,
“Beta1” and so on, to match the code releases.

1.0Beta1: JNDI Changes Since 1.0Early Access

API-related Changes

• Addedjava.naming.ReferralException to support client-side referrals. This abstract class is used to represent
a referral exception, such as that available in LDAP v3. A service provider defines a subclass ofReferralException
to handle its own style of referrals.

• AddedcompareTo() to Name (and related classesCompositeName , CompoundName).

public int compareTo(Object obj);

This method compares thisName with the specifiedObject for order. It returns a negative integer, zero, or a positive
integer as thisName is less than, equal to, or greater than the givenObject . This method is useful for sorting a list of
names.

• Added ‘throws NamingException ’ to Referenceable.getReference() so that the implementor of
getReference() can throw an exception if it encounters one.

public Reference getReference() throws NamingException;

Java Naming and Directory Interface

JavaSoft 60 1/29/98

• AttributeSet was originally case-sensitive. That is, the case of an attribute identifier was considered when retrieving
or adding an attribute to the set. To better support service providers that support case-insensitive attribute identifiers, an
AttributeSet may now be made case-insensitive. This change involved adding a new constructor toAttribute-
Set and a new method for interrogating an attribute set about its handling of case.

public AttributeSet(boolean caseIgnore);

public boolean isCaseIgnored();

• Context.setEnvironment() was insufficient to allow both addition and removal of environment properties. The
change is to replacesetEnvironment() with addToEnvironment() andremoveFromEnvironment() .

public Properties addToEnvironment(Properties additions) throws NamingException;

public Properties removeFromEnvironment(Properties deletions) throws
NamingException;

• AddedhasMore() to BindingEnumeration , NameClassEnumeration andSearchEnumeration so that a
service provider can throw an exception when this query fails for some unexpected reason.Enumeration.has-
MoreElements() cannot throw exceptions. The workaround is forhasMoreElements() to returntrue and save
the exception until the program callsnext() . hasMore() allows a provider to indicate to the caller that it has encoun-
tered an exception while determining whether there are more elements. The caller that wants to be notified of exceptions
can usehasMore() instead ofhasMoreElements() .

public boolean hasMore() throws NamingException;

• Added a new constructor toOperationNotSupportedException that accepts an explanation message as argu-
ment. This avoids the provider having to use the two steps of creating an emptyOperationNotSupportedExcep-
tion and then setting the explanation.

• AddedcomposeName() methods toContext class. These may be used to keep track of the full name of an object as
name resolution proceeds from context to context.

• Removed extraneous parameter inNamingException.getRootCause() .

SPI-related Changes

• Clarified how URL context factories and contexts are located and created. Eliminated the ‘String url ’ argument from
NamingManager.getURLContext() and clarified its semantics.
getURLContext(String scheme, Properties env) now returns a context for resolving URLs with scheme
id scheme . It is not tied to any specific URLs, only the scheme id. SeeJNDI SPI document andNamingMan-
ager.getURLContext() for details.

• Clarified howNamingManager.getObjectInstance() treats URLs. Formerly, it only treatedReferences and
Referenceables specially. It now treats URLs specially as well. You can now callgetObjectInstance() with a
URL string or an array of URL strings and get back an object identified by the URL. SeeJNDI SPI document and
NamingManager.getObjectInstance() for details.

• Placed additional requirements on URL context factories on how to treat its arguments so that all URL context factories
behave consistently. SeeJNDI SPI document andObjectFactory.getObjectInstance() for details.

• NamingManager.getContinuationContext() andDirectoryManager.getContinuationDSCon-
text() accept as an argumentCannotProceedException instead of a resolved object. This allows information
required to create a continuation context to be passed using one argument and accommodates a common programming
scenario of service providers usingCannotProceedException to indicate the state of the operation.

• Added a ‘remaining newname’ part toCannotProceedException so that information required to continue a
rename() can be represented, and an environment part for storing and retrieving the environment to use when resolution

Java Naming and Directory Interface

JavaSoft 61 1/29/98

continues..

System Properties

• Two new system properties are introduced.

• jndi.urlfactory.pkgs : Specifies package prefixes to use when loading URL context
factories. SeeNamingManager.getURLContext() .

• jndi.dns.url : Specifies DNS service location when using DNS names in “jndi”
URLs (e.g “jndi://dnsname/... ”).

These can also be passed as environment properties to theInitialContext constructor.

Environment Properties

• jndi.service.host andjndi.service.port have been replaced by the more generaljndi.service.url .
jndi.service.url specifies the location information for configuring a context.
Context service provider are encouraged to use this new environment property. They are still free to use additional envi-
ronment properties as needed for their provider.

• Addedjndi.service.followReferrals : Specifies that referrals encountered by the service provider are to be
followed automatically.

1.0Early Access: JNDI Changes Since Initial Documentation Release

General Changes

• Renamed packages
jndi.ns -> java.naming

jndi.ds -> java.naming.directory

jndi.spi -> java.naming.spi

• Added implementsjava.io.Serializable to the following classes and interfaces:
Name
NameClassPair
RefAddr
Reference
Attribute
AttributeSet
ModificationItem
ModificationEnumeration
SearchConstraints

• Renamed the “count” methods to be more descriptive.
Reference.count() -> Reference.getAddressCount()
Name.count() -> Name.getComponentCount()

[same for CompoundName and CompositeName]
Attribute.count() -> Attribute.getValueCount()
AttributeSet.count() -> AttributeSet.getAttributeCount()
ModificationEnumeration.count() ->

ModificationEnumeration.getModificationItemCount()
• Renamed methods with ‘SubContext ’ to ‘Subcontext ’. The new method names are nowContext.createSub-

context() , Context.destroySubcontext() , andDSContext.createSubcontext() .

Name-related Changes

• NameParser is now an interface instead of abstract class. None of its methods contain any implementation so it is more
flexible for it to be an interface. Removed thegetNamingConvention() method fromNameParser .

Java Naming and Directory Interface

JavaSoft 62 1/29/98

• Added class hierarchy toNamingException for security-related exceptions.
NamingException

NamingSecurityException

NoPermissionException

AuthenticationException

AuthenticationNotSupportedException

• Addedthrows IllegalNameException to name-manipulation methods so that they have a way of indicating
error. This applies to theName interface, theCompositeName andCompoundName classes.

prependName()
appendName()
insertName()
prependComponent()
appendComponent()
insertComponent()
deleteComponent()

• The following constructors throwIllegalNameException instead ofNamingException
CompositeName()
CompoundName()

DSContext-related Changes:

• Dropped ‘WithAttributes ’ suffix from bindWithAttributes(), rebindWithAttributes(), and
createSubContextWithAttributes() . They are now simplyDSContext.bind(), DSCon-
text.rebind(), andDSContext.createSubcontext(), respectively.

• RemovedDSContext.SearchFilter class and replaced two existingDSContext.Search() methods:
public SearchEnumeration search(String name, String filterExpr,

Object[] filterArgs, SearchConstraints constraints);

public SearchEnumeration search(Name name, String filterExpr,

Object[] filterArgs, SearchConstraints constraints);

wherefilterExpr contains ‘{n} ’, n is an integer and denotes the n’th element infilterArgs

to substitute in the expression. The reason for this change is thatSearchFilter had limited
capabilities and a full class for it was not justified. These changes make the syntax for substi-
tution of variables within an expression consistent with the formatting methods injava.text .

• RenamedAttributeSet.modify() to AttributeSet.replace() for consistent usage of ‘replace’ with
Attribute.replaceValue() andDSContext.REPLACE_ATTRIBUTE .

• Changes toAttribute class:

• AddedAttribute.contains() for testing whether an attribute contains a specified
value.

• Attribute.add() throws AttributeInUseException instead of the more general
NamingException .

• Schema methods returnnull by default. Removed protected variablessyntax and
attr_defn .

• AddedInvalidAttributeSetException to deal with the case of incorrectly or insufficiently specified attribute

Java Naming and Directory Interface

JavaSoft 63 1/29/98

sets.

SPI-related Changes

• Renamed some class and interface names injava.naming.spi for consistency
InitialContextImpl -> InitialContextFactory

InitialContextImplFactory -> InitialContextFactoryBuilder

setInitialContextImplFactory() -> setInitialContextFactoryBuilder()

hasInitialContextImplFactory() -> hasInitialContextFactoryBuilder()

InitialContextImplFactory.createInitialContextImpl() ->

InitialContextFactoryBuilder.createInitialContextFactory()

JNDIManager -> NamingManager

JNDIDSManager -> DirectoryManager

• RenamedcreateObject() to getObjectInstance() so that it is consistent with similar usage in other Java
packages.

JNDIManager.createObject() -> NamingManager.getObjectInstance()

ObjectFactory.createObject() -> ObjectFactory.getObjectInstance().

• Renamed property jndi.initialContext to jndi.initialContextFactory for consistency with method
names.

• The jndi.initialContextFactory property now contains a single class name instead of a colon-separated list
because it does not make sense to have more than one class.

• To provide more flexibility and to avoidSecurityManager -related problems in some configurations, the system prop-
ertiesjndi.initialContextFactory andjndi.objectFactories can be passed as part of the environment
properties passed to the constructors forInitialContext andInitialDSContext , andObjectFac-
tory.getObjectInstance() .

• Some protected methods inNamingManager andDirectoryManager are now private. This provides more flexibil-
ity in subsequent changes to these classes without exposing details of the implementation

