PROVIDING (REALLY) OPEN TECHNOLOGY.

Inside Lesslif

Information for the Hungry Programmer

Danny Backx
Mitch Miers

Chris Toshok
Harald Albrecht




LEGAL NOTICE

(© 1996, 2001 by
D. Backx (127113@kb.be ),
M. Miers (miers@packet.net ),
C. Toshok foshok@hungry.com ),
H. Albrecht (editor, figures and typesettin@rald@plt.rwth-aachen.de ).

“Inside LessTif” may be reproduced and distributed in whole or in part for non-commercial pur-
poses, subject to the following conditions:

e The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.

e Any translation or derivative work of “Inside LessTif” must be approved by the authors in
writing before distribution.

o If you distribute “Inside LessTif” in part, instructions for obtaining the complete version of
“Inside LessTif” must be included.

e Small portions may be reproduced as illustrations for reviews or quotes in other works with-
out this permission notice if proper citation is given.

Exception to this rules may be granted for academic purposes. These restrictions are here to protect
us as authors, not to restrict you as educators and learners.

DISCLAIMER

The information contained within this document is subject to change without notice.

No one of the authors shall be liable for errors contained herein or for incidental consequential
damages in connection with the furnishing, performance, or use of this material.
ACKNOWLEDGEMENTS

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and we were aware of a
trademark claim, the designations have been printed in caps or initial caps. We appologize for
some designations being mangled during the process of typesetting. Really.

PIGS"/P3P RTING

Absurd, Perverse, For Programmers Only. Attention: The information contained herein may cause
damage to your opinions about the CSF and Graphical User Interfaces in general. You have been
forewarned.

Edition I, October 2001 (PDF “Reprint”)



Contents |

Contents

[Fareword | VIl

[1  Synthetic Resources and Resolution Independence | 1

(1.2 The Implementation of Synthetic Resoufces . . . . . ... ... ... ......
|I1.3 Howto Use Synthetic Resourges . . . . . . . ... ... .. L

[2.2.1  The Wrapper DataStacks . . .. .. ... ... ... .. ........

2.2.2 The BaseClass ExtensionRetord . . .. ... ..............
23 The MENOTWIAPPENS . « « « o v e oo e e e e e e e e

B2 The GrabLayerandthe Grab LSt . . . . . . .o v oo
B.2.1 _Full Application MOGal DIalogs . . . . . o o oo oot
B2.2 MOGEIESS DIAIONS . . . « « o v o oo e e e e e
B.2.3 SystemModal DIAlonS . . « . o« o o v oo
[3.2.4  Primary Application ModalDialogs . . . . . . . ... ... .......

3.3 Creafing Dialog SREMS the RIGNEWAY . . . . . o o o voe e e e e

[3.4 Extendingthe VendorShell . . . . ... ... ... ... ... ... . .....
3.5 The Shadow Shell Tre

4.2 Making Geometry Requests . . . . . . . . . . . ... ...
2T The XTINNSICSWEY . . . . . v v v v e e e e et e
[4.2.2 ThelessTitWay . . . .. .. .. .. . .. . . . . . . ...

[4.3 Geometry Management and the Widget Methods . . . . .. ... ... .....
[4.3.1 Theinitialize(OMethdd . . . . ... ... ... ... ... ........
[4.3.2 Theset valuesOMetHod . . . . .. ... ... ... . ..........




Il Contents

[A3.3 TheresizeOMethdd . . . . ... .. ... ... .. ... ... ..., 37
[A.3.4 Therealize)Method . . . . ... ... ... . ... ... ... ..... 37
[4.35 Thequery geometry)Metfod . . . . . . ... ... ... ... ..... 37
[4.3.6  The geometry manager)Method . . . .. ... ... ... ....... 37
[4.3. 7 The change managed() Method . . .. ... ... ... ......... 38
[4.3.8  Theinsert child() and delete child)MetHods . . . ... .. .. ... .. 38
[4.3.9  The constraint initializeOMethpd . . . . . . .. .. .. ... ...... 39
[4.3.10 The constraint_set values()Method . . . . .. .. ... ... ...... 39
4.3.11 The Geometry Management Helper Interfaces . . . . . . . ... ... .. 39
i Fun and Pain with the GeoUtils | 41
GBI TInfroductioh . . . . . . . . . . . 42
0.2 TheBulletinBoard Claks . . . . . . . .. . . .. . . . .. ... ... ..... 42
[(.2.1 The change _managed() and realize() Methods . . . . . . . ... ... .. 43
(.22 TheresizeOMethdd . . .. .. ... ... ... .. .. .. .. ..... 47
[(.2.3° The query geometry()Method . . . . . . .. ... ... ... ...... 48
(.24 The geometry manager)Method . . . ... ... ... .. ....... 48
[5.25 Theset valuesOMetHod . . . . .. ... ... ... .. ... .... 50
0.3 TheDataStructures . . . . . . . ... .. 52
B3I TheGeOMalX . . . « v v v oo oo e e e 52
[b.3.2 The MajorLayoutRéc . . . . . . ... ... ... . ... .. ... ... 55
(.3.3 TheKidGeometryRec . . . . ... .. . ... .. .. . ... ... ... 58
5.4 The GeoUtllsFunctions . . . . . . . . . . . oo 59
[5.4.1 The Allocation, Initialization, and Deallocation Functions . . . .. . .. 59
(.4.2  Layout ManagementFunctipns . . . . . . .. ... .. ... ....... 60
[5.4.2.1 QueryingtheChildren . . . . .. ... ... .......... 60
5.4.2.2  Computingthe DesiredSize . . . . ... ... ... ...... 60
[2.4.2.3 Computingthelayqut. . . . .. ... ... .. ... ..... 62
2.4.2.4  ApplyingtheChanges . . . . .. ... ... ... ....... 63
.43 The Method Functiohs . . . . .. .. .. ... ... ... .. ...... 63
.44 Miscellaneous Functigns . . . . . . . . ... oo 65
[0.4.5 BulletinBoard Helper Functions . . . . . . .. .. .. ... ....... 66
.4.0  RowColumn Specific Functigns . . . . . . . .. ... oL 67
[6.5 Howto Build a Subclass Usingthe GeoUtils . . . . ... ... ... ....... 67
0901 TheHeaderFiles . . ... ... ... ... . .. ... .. ... .. 67
[0.9.2 Thelmplementation . . .. ... ... ... ... ... .. ....... 69
[2.9.2.1 ExtraPrototypes . . . ... ... ... . ... . o 73
£.522 TheClass Structire . . . ... ................. 73
[5.5.2.3 Theset valuesOMethod . . ... ... ... ......... 74
(.5.2.4 The NoGeoRequestMethod . . . . .. ... ... ....... 74
£.525 The GeoMatrixCreate Method . . . . ... ... ....... 74
2.6 Conclusionand Credits . . . . . .. ... ... . ... ... 81

[6 Drag and Drop | 83




0.2 Profocol Basics

6.2.1

Drag Operation Modes

6.2.2

Protocol Messades

6.2.3

Drag & Drop Flads

6.2.4

TheTargetsTable . . . . . ... ....

6.2.5

Advertising a Receier

6.2.6

Starting a Drag or Drop

[6.3  The Drag Protocpl

[6.3.3  Changing the Operafion

[6.4" The Drop Protocpl

[6.5 The Preregister Mofe

[/ When the Keyboard Goes Wild |

|7.2  The Virtual Bindings

[7.3Managing the Modifier Mappings

[7.4 Managing the Virtual Bindings

[8 Inside XmStrings |

8.4 Structurgs

[8.0  The Other Side of XmStrings

A Appendix |

Index

.2 The Hash Table Module . . . . ... ... ...

Contents Il



IV  Contents




List of Tables V

List of Tables

[2.1  Tag identifiers for widgetextensiondata . . . . . ... ... ... ... ... .. 18
[6.1 Message types used for the Drag & Drop X client messages. . . . ... ... .. 86
6.2 Operationcodgs. . . . . . . . . . . . .. 87
6.3 Completionstatuscodps. . . . . . ... ... . ... ... .. 87
6.4 Dropsite statuscodes. . . . . . . .. 88
[6.5 Structure of the targets table in the propeM{OTIF DRAG TARGET]S. . . . . 89
6.6 The structure of theMOTIF DRAG RECEIVER INF@roperty describes adrag |

and dropreceiver. . . . . . . . . e e e e 89
[6.7 Drag protocol stylels. . . . . . . . . . . . . . . . . .. 90
[6.8  The structure of theMOTIF_DRAG_INITIATOR_INFO property describes the |

[ initiator] . . . . . . . 90

[6.9 TheXmTOP_LEVEL ENTERessage send by theinitiator. . . . . ... ... .. 92
[6.10 TheXmTOP LEVEL LEAVEessage send by theinitiaior. . . . . ... ... .. 92
[6.11 TheXmDRAG_MOTIONessage send by the initiafor. . . . . . .. ... ... .. 93
[6.12 TheXmDROP_ SITE ENTERiessage replied by thereceiyer. . . . . . ... ... 93
[6.:13 TheXmDROP_SITE _LEAVEnessage replied by thereceiVer. . . . . . . . .. .. 93
[6.14 TheXmDRAG MOTIONessage echoed by therecejver. . . . . .. ... ... .. 94
[6.75 TheXxmOPERATION CHANGHEi2ssage send by the initiator. . . . . . . . . .. 94
[6.16 TheXmOPERATION CHANGHigssage echoed by the recejver. . . . . . . . .. 94
[6.17 TheXmDROP_STARTessage send by theinitiator. . . . . . . . ... ... ... 95
[6.18 TheXmDROP_STARMessage echoed by therecejver. . . . . ... ... .. .. 95
[6.19 The structure of a drop site blockheader . . . . . . ... ... ... ... .... 97
[8.1 Componentidentifiers fofmString s| . ... ... ... ... ... ...... 109

9.1 Results the iterator function of a hash table can return. . . . . . ... ... ... 119



VI List of Tables




List of Figures VI

List of Figures

[I.1 Synthetic resources provide for data conversion as well as information hiding. . . 2
e use oiXm nd Xm en importing
syntheficresourcevalues. . . . . . . . . . . . . 5
[2.1" The hook mechanism encloses superclass-to-subclass chained widget methods like
initialize() ] e 9
[2.2"The wrapper data stack keeps saved method pointers for a widget class. . . . . . 11
[2.3" The method wrappers enclose the non-chained widget methodedlke() | 16
[2.4 A close look at the widget extension data mechafism. . . . . .. ... ... ... 18
[2.5  The widget extension data mechanism helps to organize and manage secondary
objects within some widgets methdds. . . . . . .. .. ... ... ........ 19
[2.6  The widget extension data represents the Tink between a VendorShell and its ei-
teNSION ODJeCE. . . . . . . . . 20
[3.1 Entries on the grab list after a full application modal dialog popped up. . . . . . . 26
[3.2 Entries on the grab list after a modeless dialog poppéd up. . . . . . ... .. .. 26
[3.3" Entries on the grab Tist after a full primary application modal dialog poppéd up. . 27
[3.4 Class hierarchy for extensionobjects. . . . . . .. .. ... ... ... ..... 30
[3.5 The XmDesktopObjects form a tree of XmDesktopObjects with a XmScreen wid
getatthetop. . . . . . . . . . . e 31
[3.6  The shadow shell tree is organized by XmScreen widgets which are in turn gatf-
ered under the hood of a XmDisplaywidget. . . . . . ... ... ... ... ... 32
[6.1 TLayout structures to mess around with when using the GeqUtils. . . . . . .. .. 52
[6.1  The "DnD Flags” signal various status conditions during a drag and drop opération. 87
[6.2 Properties involved inthe Drag & Dropgaine. . . . . . . ... ... ... .... 91
[6.37 Overall structure of theMOTIF_DRAG_RECEIVER _INF®roperty for the pre- |
register mode. . . . . . ... e e 96
[7.1 Keyboard event processing. . . . . . . . . . . . e 100
[7.2"The "virtual bindings™ take care of some basic consistency between different key}
[ boards. . . . . . . .. e 101
[7.3  Displays, Screens and the Virtual Bindihgs. . . . . . .. ... ... ....... 105
[8.1 Internal representation of a "compiledXmString | . . . ... ... ... ... 113




VIII  List of Figures

[A.1 The big picture of all widget classks




Foreword

-
]‘;\ﬁ

— \
~(2
03
]

|—



X  Foreword

When | first heard rumors of £SSTIF, | was already struggling for years with the famoustiv
graphical user interface on different hardware platforms. Every new day unveiled another and — so
to say — exciting feature not written down in the official documentation.

Needless to say that that official documentation was, and still is, lackingetily interesting
aspects: writing not-so-trivial MIF widgets, how MTIF’'s own geometry management utilities
work, what the BaseClass stuff is for, and many other goodies. Ordinarily, this would be the time
to “read the source, Luke”. Unfortunately, the great creator ef IM— the Q. OSED SOFTWARE
FOUNDATION (or CSF for short) — reveals the source only to those willing to pay (“pay-per-view
principle”).

Fortunately, lEsSTIF upheld the flag of “providing open technology” from its early beginning: the
source is freely available under the terms of the GNU Public Library License. And it is common
knowlegde that the source is also the source of information (“may the source be with you...”).

Although standing on its own feetdssTIF provides deep insight not only into itself but also into
the abyss of that other graphical user interface calledriM'. But browsing through the source
and understanding all the intrinsic and intricate things insidedI'IF isn’'t an easy task. You can
easily get lost. Or to cite Mitch Miers and his law #37 of programming:

Real Programmers don’t write documentation, they leave that to the tech writers.
It was hard to code, it should be hard to understand.

This is where “Inside LessTif” comes into play. Written by the creatorsed 4T IF, this book pro-
vides a deep and thorough insight into this freerht “clone”. We show you all the mechanisms
and smart improvements behind the scenes.

This book is definitely not a beginner’s guide but is aimed at the programmer who has already
a working knowledge of programming with — or should | say: fighting against+i i A basic
knowledge about the Xt Intrinsics’ widget class mechanism is necessary too.

I wish to thank especially all the authors for writing down their first-hand knowledge aleagL

TiF. They had to cut off many valueable spare hours from their coding time to make this doc-
umentation real. Also my special thanks to Rob Blue, who has taken the (maybe daunting but
nevertheless very important) part of proofreading.

Harald Albrecht

P.S.: If you find “Inside LessTif” to be useful (and we — the authors — are sure you will) then we
ask you to donate a reasonable amount to a charitable institution.



Synthetic Resources
and Resolution Independence

Mitch Miers

=
]‘;\ﬁ

/

— \
~(2
2
3
)

|—



2 1. Synthetic Resources and Resolution Independence
1.1 Introduction

Synthetic resources are a mechanism included in Motif that allows a developer to modify resource
values as collected by or assigned to the Xt resource mechanism. That is, if a user should want to
find the value of an Xt resource, but<MF would rather that the user not see the true value, the
synthetic resource mechanism allows therh developer to “fake out” the Intrinsics, and replace

the true instance variable values with modified values. Alternatively, the toolkit may prefer to
transform a user specified value into something more palatable by the toolkit.

The more common usage of synthetic resources is to support resolution independence (see figure
[1.7). However, the toolkit developers also realized that the mechanism provided a way to protect
“delicate” resources. For example, those that it would be dangerous for the user to change, or those
that would upset the toolkit if they were unexpectedly modified.

LessTif Application LessTif Widget Instance
import procedure

10 [mm] 256 [pixels]

resource value Essssssssmsmn)p instance variable

(without import procedure)

PP xt [ValSetvaluespp

export procedure
15 [mm] 384 [pixels]

requested value 4= EEEEEEEEEEEN instance variable
(without export procedure)

PP xt [Va]lGetValueshppPp

Figure 1.1: Synthetic resources provide for data conversion as well as information hiding.

The import and export direction is seen fromxIF’s point of view. A user specified resource
value isimported into some widget’s instance variable. Au contraireT M exports a resource
value whenever the user and/or application asks for a resource’s value by aj\ajGet-
Values()

1.2 The Implementation of Synthetic Resources

There are really five important classes irWF: ExtObject, Gadget, Primitive, Manager and Ven-
dorShell. Nearly every Motif widget class inherits behavior from one of these. Somi&log-

Shell for example) inherit from more than one. While this may seem a statement of the obvious,
it must be pointed out that the easiest way for a class to inherit behavior from a superclass is to
subclass from the appropriate “Core” widget. Those aforementioned classes are the “€oire” M
classes (for objects, window-less widgets, core, constraint, and shell widgets respectively). Thus,
if we provide the MTIF “Core” widgets the ability to handle synthetic resources, all subclasses



1.2. The Implementation of Synthetic Resources 3

will inherit that behavior. In practice, the VendorShell class behavior is dictated by the X spec-

ification. Any special behavior related to the VendorShell must be specified in the VendorShell

extension object, which is subclassed from ExtObj — thus the true core widget set contains only
four classes.

There are only four class methods that deal with resource manipulation. They anéidhe
lize() method, theset_values() method, the Constrairdet_values() method, and

the get_values_hook() method. Really there are two more, thet_values_almost()
method, and theet_values_hook() method; the latter is obsolete, the former is in practice
never used.

In terms of resource manipulation, the Ceeg_values() method and the Constraigét_-

values() method can be combined, by simply checking to see if the parent is a Constraint (read
Manager) subclass. The only difference is where the resources are defined (self or parent). Sec-
ond, the alterations that theitialize() method and theet_values() method perform

based on the argument lists are identical; so we can use the same function for both. Therefore, we
really have only two cases to handle — the case where the user specifies the value for a resource
(initialize() andset _values() ), and the case where the user wants to find the value of a
resourcedet_values_hook() ).

Thus, there are two major sets of functions that implement the synthetic resource behavior: four
import functions with the postfiimportArgs() , and five export functions ending witlGet-
ValuesHook() . Both sets appear iResind.c . The prototypes are as follows:

void _XmExtimportArgs(Widget w, ArgList args, Cardinal *num_args);

void _XmPrimitivelmportArgs(Widget w, ArgList args, Cardinal *num_args);

void _XmGadgetimportArgs(Widget w, ArgList args, Cardinal *num_args);

void _XmGadgetimportSecondaryArgs(Widget w, ArgList args, Cardinal *num_args);
void _XmManagerimportArgs(Widget w, ArgList args, Cardinal *num_args);

void _XmPrimitiveGetValuesHook(Widget w, ArgList args, Cardinal *num_args);
void _XmGadgetGetValuesHook(Widget w, ArgList args, Cardinal *num_args);
void _XmManagerGetValuesHook(Widget w, ArgList args, Cardinal *num_args);
void _XmExtGetValuesHook(Widget w, ArgList args, Cardinal *num_args);

The import functions are called from tltialize() andset_values() methods in the
relevant widget classes directly. The export functions are directly registered in thgeatore
values_hook() = method.

Note that there is an extra functiolXmGadgetimportSecondaryArgs() unique to Gadgets.
It is a result of the “cache” subparts that nearly all Gadgets have. It provides the mechanism to
import and export resources from the subpart.

The implementation of the functions is fairly ugly, and | wouldn’t mind suggestions on how to
improve their efficiency. Essentially, they use a doubly nested loop, going through the resource
request list, and finding matches in the synthetic resource list. If a match is found, the import or
export procedure in the synthetic resource structure is invoked.

I'll not go into further detail about how the MIF “core” widget classes hook into the synthetic



4 1. Synthetic Resources and Resolution Independence

resource mechanism. If you read the code to Gadget, Primitive, or Manager, it is fairly obvious (for
example, just a call toXmPrimitivelmportArgs() in Primitive’'s set_values_method ).

One fairly important thing to note, is that the “corefass_part_initialize() methods
combine a subclass’s synthetic resources with all of the superclass’s synthetic resources. This is
done via_XmBuildResources() . This way, access to inherited synthetic resources get sped up
because MrIF doesn't need to search for them in the superclasses. If you subclass from a widget
that has synthetic resources, but add no new ones, you'll end up with synthetic resources after the
class_part_init() method has been called.

1.3 How to Use Synthetic Resources

The XmSyntheticResource  structure looks suspiciously like the Xt resource structure, and in
fact operates in much the same way. Here’s the structure, and some associated information:

typedef enum {
XmSYNTHETIC_NONE,
XmSYNTHETIC_LOAD
} XmImportOperator;

typedef void (*XmExportProc)(Widget w, int offset, XtArgVal *value);
typedef XmlImportOperator (*XmlImportProc)(Widget w, int offset,
XtArgVal *value);

typedef struct _XmSyntheticResource {

String resource_name;
Cardinal resource_size;
Cardinal resource_offset;

XmExportProc export_proc;
XmlmportProc import_proc;
} XmSyntheticResource;

The import and export proceduramport_proc  andexport_proc  respectively) each take

three parameters: the widget for which the value has to be im- or exported, the offset of the resource
value within the widget'’s instance structure, and finally a pointer. In caseXofleportProc it

points to the place where the new resource value can be found. In the otheXmd&sg6rtProc )

the third parameteralue points to the place where the converted result should be stored.

Here’s an example right fromrimitive.c

/* Resources of the primitive class */
static XtResource resources[] = {
%

{
XmNhighlightThickness, sizeof(Dimension),
XtOffset(XmPrimitiveWidget, primitive.highlight_thickness),
_XmFromHorizontalPixels, _XmToHorizontalPixels

5

*o



1.3. How to Use Synthetic Resources 5

This implements the resouréenNhighlightThickness as a synthetic resource. The import
procedure XmToHorizontalPixels as well as the export procedurEmFromHorizontal-
Pixels convert to/from the internal pixel based highlight thickness.

Note that theXmImportProc has a return type. This type is a clue to the synthetic resource
implementation for whether or not the imported value should be loaded into the widget structure
directly, or just into the argument list. Most would suspect that this should always go into the
widget structure; however, remember that many manager widgets have associated children defined
as part of their functionality (e.g., SelectionBox), and don'’t have direct visibility into some of the
resources that can be specified.

Let's go into a little more detail about that. When an import procedure wants a value to go di-
rectly into a resource variable, it returkenSYNTHETIC_LOAsee figur¢ 1]2). This is typically
returned by such functions aXmToHorizontalPixels() , Which implements resolution in-
dependence into widgets. This has the effect of modifying directlywiaéh (or x) instance
variable of a widget.

argument list to
initialize() and set_values()

»| resource name: XmNwidth

Y

new resource value: 10 [mm]

I A~

M 256 [pixels]
f \ import procedure
name value |

converted value

. . . XmSYNTHETIC_NONE
widget instance variable

core.width: 256 [pixels] |<mmXmSYNTHETIC_LOAD

Figure 1.2: The use oKmSYNTHETIC_LOARNd XmSYNTHETIC_NON#&hen importing syn-
thetic resource values.

However, consider thEmNlistitems  in a SelectionBox. This import function typically wants

to copy theXmStringTable  provided by the user (as a “sensitive” resource that the user may
or may not free). At any rate, the SelectionBox doesn’t have visibility into this resource directly.
The implementor has two choices: they can copyXtheStringTable  and store it in the subpart

in the import procedure (and retumSYNTHETIC_LOAD or they can simply make a copy of

the XmStringTable , store it in theXtArgVal pointer, and returtmSYNTHETIC_NONHn
practice, they'll usually want to choose the latter, as they probably already have code in their
set_values() or initialize() method to set theistltems  instance variable, and the
synthetic resource mechanism will take care of the nuisance of making a copy first (at least, it



6 1. Synthetic Resources and Resolution Independence

will if that’s how they've coded the import procedure). However, if they don’t have code already,
they can save some simply by coding the import procedure to do it for them; then they never need
worry about the subpart (beyond checking to seseif values() need returrue ).

For export procedures, much of the same logic applies, except that there is no return value, so
only the resource values can be modified. The export procedures typically want to make a copy of
“sensitive” resources, however (suchx@asaNlabelString  in the Label widget — if the user frees

this (as they should), it won't matter to the instance they got the value from. The same idea applies
to things likeXmsStringTable ’s in the List, etc. This can be a performance win, as well, as calls

to GetValues can be avoided.

Also note that export procedures can play games. For example, consider the Gadget class, and
what it should return for the value #imNtopShadowColor . Take a look at the export procedure
of the Gadget class for tHeopShadowColor color:

static XmSyntheticResource syn_resources[] = {
L

XmNtopShadowColor, sizeof(Pixel), XtOffset(XmGadget, object.parent),
_XmGetParentTopShadowColor, NULL

h
x.*
b
static void

_XmGetParentTopShadowColor(Widget w, int offset, XtArgVal *value) {
*value = XmParentTopShadowColor(w);
}

Here, we cheat. We know that the parent is a Manager, and th@ibfifghadowColor a Gadget
uses is thé@TopShadowColor defined by the parent, so we can just return that. In this way, we
can specify a value, even though we don't directly have an instance variable to define that value.



Pandora’s Box:
The BaseClass Stuff

Harald Albrecht

=
]‘;\ﬁ

/

— \
~(2
2
3
)

|—



8 2. Pandora’s Box: the BaseClass Stuff

2.1 Introduction

The “BaseClass stuff” — which is nicknamed after its implementatiorBfiiseClass.c - con-

sists mainly of three basic, interleaved parts that affect not only all widget classes af4lS€IE

toolkit but also “extend” the object-orientated design of the Xt Intrinsics. The three parts are the
so-called “prehooks” and “posthooks”, the “method wrappers”, and finally the stacks for “wid-
get extension data”. Beside that, the BaseClass module contains some basic helper functions for
messing around with “secondary resources” that are needed especially by gadgets. If you believe
in redemption through Object Orientation, you should better skip this chapter completely and look
out for other object(ive)s. You have been forewarned.

2.2 The Method Hooks

The BaseClass module provides hooks that are activated before and after a chain of widget meth-
ods have been called in superclass-to-subclass order. Prehooks and posthooks can be registered for
arbitrary widget classes. They are available for:

o theinitialize() method that initializes a single widget instance,
e the class_part_initialize() method that initializes a derived part within a class
record,

e theset values() method for setting resources, and finally
e theget values() method that queries resources.

For example, the XmLabel class uses the hooks to do some pre- and post-processing when ini-
tializating a new widget instance — regardless of whether the new widget is a XmLabel or any
subclass of (like XmPushButton). But also most gadgets make heavy use of the hook mechanism
to manage their secondary objects that work as cache parts.

Unfortunately, while the concept of the hook mechanism looks straightforward at first glance,
the implementation is definitely not. The difficulty is that the hook concept must be merged into
the existing object orientated concept of the Xt Intrinsics without any chance of modifying and
recompiling the Xt Intrinsics. Thus, the only way out is to twist method pointers.

But when twisting pointers, you can’t simply hook up the first and last method pointer for any
widget class, for example XmLabel. If some derived class, like XmPushButton, would hook up

its method pointers too, the posthooks would interfere with each other. The reason is that the
parameters supplied to the aforementioned four kinds of methods aren’t enough to do the check
whether the end of the method-chain has been reached and the posthook method must be called.
Such a check could only be done using code generated at run-time — a practice which is definitely
not portable across different systems. Later on, when looking at the wrappers ffiealibe() ,

resize()  andgeometry handler() methods, you'll come across another solution to a quite
similiar problem, but the solution there is even worse than what I'll present next.

To solve the hook problem,dssTIF installs prehooknvrappersas replacements for the meth-
odsinitialize() , Class_part_initialize() , get_values() andset_values()



2.2. The Method Hooks 9

XtCreateWidget (),

Object -
T v opt.
;upi;ciéss o initialize () () initialize ()
1nitla-1z¢ I ’ prehook wrapper prehook method ~ (2))<—
initialize () method
of Object ©
RectObject
superclass e (initialize()nwﬂmd
initialize e - of RectObject
A
Core
superclass e (initialize()nwdmd
initialize e = of Core
A
XmPrimitive
superclass o (initialize()nwﬂmd
initialize e - of XmPrimitive
A flow of contro] s—?
XmLabel (—
superclass e initialize () () initialize () method
initialize eot—» posthook wrapper of XmLabel @ -
extension ¢ (leaf method)
opt.

initialize ()

posthook method  (6)),

-

-

= base class
v extension record

» prehook
posthook
e wrapper

wrapper data

initialize-
Leaf .

Figure 2.1: The hook mechanism encloses superclass-to-subclass chained widget methods like
initialize()

of the Object class. This insures that the hook wrappers are called first before any other subclass-
method. This twisting of the method pointers is carried out XgninitializeExtensions()



10 2. Pandora’s Box: the BaseClass Stuff

when the first VendorShell is created. The pointers to the old methods of the Object class are saved,
so the prehook wrappers can chain them up. Note that there are no posthook (wrappers) installed
at this time.

Now let us see what is happening lateron. I'll discuss this based on figure 2.1 fitilte
lize() method-chain of the XmLabel class. For this example, | assume that there is a prehook
method®® as well as a posthook meth@] registered for the XmLabel class.

Whenever thénitialize() method is invoked, the prehook wrapg@ris called first. In turn,

it calls the prehook metho@) — if there is one present for the widget class in question. Next, the
prehook wrapper checks for the presence of a posthook mé&hednd if there is one, the prehook
wrapper replaces the pointer to the fimatialize() method(®) with a pointer to the posthook
wrapper@). The old pointer is saved using the “wrapper data stack” (you can find out more about
this in the next section). Finally, the prehook wrapper calls the orignitilize() method

() of the Object class.

After this, theinitialize() methods are called (as usual) in superclass-to-subclass order with
the exception of the leaf method. If there is a posthook method registered, then — and only then —
will the posthook wrappe®) be called instead of the leaf method. The posthook wrapper restores
the old method pointer, calls the leaf meth®d and finally activates the posthook meth@d

In one particular case the method-chaindffiialize() andset_values() look different:
whenever a widget is not a shell and it has a Constraint parent (or any subclass of) then the
leaf method isn’t the method of the widget's class but instead the parent’s constraint leaf method
(constraint_initialize() respectiveconstraint_set_values() ).

If you look close at the whole hook concept then it should be clear that this concept is error prone
in certain situations when recursion is involved. The tradegy begins as soon as you eséen¢he
prehook wrapper for a second time and the widget class of the second turn is a subclass of the
widget class from the first visit to the prehook wrapper. In this casditbieprehook wrapper
method, which belongs to the superclass, is erroneously taken instead of the irdecdedbre-

hook wrapper. Fortunately, there is no great chance to tap into this trap as long as you don'tissue —
for example —from thget_values() method of a XmLabel widget a call XtGetValues()

using another XmPushButton widget.

2.2.1 The Wrapper Data Stacks

The wrapper data stack plays an important role for the hook mechanism. For example, the prehook
wrapper forinitialize() etc. must keep the old pointer to the leaf method of the method-chain
when it hooks in the posthook method instead. The old pointer is storexinvrapperDataRec

structure (figur¢ 2]2). These wrapper data records are linked so that they form a stack for every
single widget class. The head of the stack is accessible through a base class extension record. For
the moment, I'll skip the base class extension record and come back to it in the next section.

The layout of aXxmWrapperDataRec structure is as follows:



2.2. The Method Hooks 11

widget class record base class extension record
XmBaseClassExtRec

= next p possibly other
record_type = extension record
N XmQmotif
S
core.extension e
wrapperData [

Y
|
\

\

saved method saved method
pointers pointers

wrapper data records (wrapper data stack)
XmWrapperDataRec

Figure 2.2: The wrapper data stack keeps saved method pointers for a widget class.

typedef struct _XmWrapperDataRec

struct _XmWrapperDataRec *next;

WidgetClass widgetClass;
XtInitProc initializeLeaf;
XtSetValuesFunc setValuesLeaf;
XtArgsProc getValuesLeaf;
XtRealizeProc realize;
XtWidgetClassProc classPartlnitLeaf;
XtWidgetProc resize;
XtGeometryHandler geometry_manager;

} XmWrapperDataRec, *XmWrapperData;

Now for a description of such a wrapper data record:

struct _XmWrapperDataRec *next;
Links to the next wrapper data record, so the data records form a stack.

XtInitProc initializeLeaf;
XtwidgetClassProc classPartInitLeaf;
XtArgsProc getValuesLeaf;
XtArgsProc setValuesLeaf;

These members keep the old pointers to the appropriate leaf method of the method-chain.
XtRealizeProc realize;

XtWidgetProc resize;
XtGeometryHandler geometry_manager;

These members keep the old pointers to methods with the same name. They belong to the



12 2. Pandora’s Box: the BaseClass Stuff

“method wrappers” that are discussed in more detail in the next section.

WidgetClass widgetClass;
Its use is not quite clear and it may be some leftover from an intefudefitaturedhook
mechanism. At least it is currently superflous because you already know the widget class in
order to get the most recent entry from the appropriate wrapper data stack.

Please note that the functions which work on wrapper dataad@ppear in any official header

file (and thus not even iBaseClassP.h ) and aren't accessible from the outside. This is true

at least for MTIF but unfortunately ESSTIF doesn’t declare the wrapper functiostatic , so

they are accessible. Despite this their use is strongly discouraged. | only talk about them here so
you can understand their task within the BaseClass stuff.4niiR.0 the wrapper functions have

lost their_Xmprefix to reflect their private state.

XmWrapperData _XmPushWrapperData(WidgetClass wc);
Allocates a new wrapper data block on the heap (“free store” for all you “Ceplusplusists”)
and pushes it on the wrapper stack (aka LIFO) of the widget class specified liythere
is already a wrapper data block on the stack, the contents of the previous data block are
copied into the new data blockXmPushWrapperData() then returns a pointer to the
most recent wrapper data block.

XmWrapperData _XmPopWrapperData(WidgetClass wc);
Returns the most recent wrapper data block for the widget elas$he data block is also
removed from the wrapper stack, but the data is not being freed. It is the caller’s responsi-
bility to free the wrapper data block as soon as it is not needed any longer.

XmWrapperData _XmGetWrapperData(WidgetClass wc);
Much the same asXmPopWrapperData() but this time the wrapper data blocknst
removed from the wrapper stack of the widget classlf the wrapper stack should be empty
at the time you call XmGetWrapperData() , the function will create a blank wrapper data
block on-the-fly and push it on the wrapper stack.

void _XmFreeWrapperData(XmWrapperData data);
This is a LEsSTIF-specific curiosity. It exists only for orthogonality reasons and is nothing
more than a wrapper aroutxdFree() . Its only task is to free the memory occupied by the
wrapper data structure pointed to dgta .

2.2.2 The BaseClass Extension Record

Every widget class that wants to take part in the BaseClass game of hooks and wrappers must
attach a data structure of typ@nBaseClassExtRec to its class record. From now on I'll use

the abbreviation “BCE record” (although its more an acronym) whenever | refer to a data structure
of the typeXmBaseClassExtRec . A BCE record can be used to add prehook and posthook
methods to any widget class. Beside this, a BCE record also contains information about secondary
objects, wrapper methods and other things right out of Pandora’s box.



2.2. The Method Hooks 13

The layout of a BCE record is as follows:

typedef struct _XmBaseClassExtRec

XtPointer next_extension;
XrmQuark record_type;

long version;

Cardinal record_size;

XtInitProc initializePrehook;
XtSetValuesFunc setValuesPrehook;
XtInitProc initializePosthook;
XtSetValuesFunc setValuesPosthook;
WidgetClass secondaryObjectClass;
XtInitProc secondaryObjectCreate;
XmGetSecResDataFunc getSecResData,;
unsigned char flags[32];

XtArgsProc getValuesPrehook;
XtArgsProc getValuesPosthook;
XtWidgetClassProc classPartInitPrehook;
XtWidgetClassProc classPartInitPosthook;
XtResourcelList ext_resources;
XtResourcelList compiled_ext_resources;
Cardinal num_ext_resources;
Boolean use_sub_resources;
XmWidgetNavigableProc widgetNavigable;
XmFocusChangeProc focusChange;
XmWrapperData wrapperData;

} XmBaseClassExtRec, *XmBaseClassExt;

If you want to attach your own BCE record to a (may be self-writtem¥ ¥ widget class, take
these steps:

@ Within your class record, latore_class.extension point to your BCE record. This
pointer can be set at compile-time.

(@ Set theversion member of your BCE record to the valXenBaseClassExtVersion
(at compile-time). This symbol is defined as soon as you incBaeClassP.h . Cur-
rently XmBaseClassExtVersion  has the value “2”.

(@ Initialize thesize member withsizeof(XmBaseClassExtRec)

@ Initialize therecord_type  member withNULLQUARKThis is a constant, defined in the
header fileX11/Xresource.h , and is here used as a dummy for compile-time. At run-
time, within theclass_initialize() method of your widget class you must assign the
value of the global variablEmQmotif to therecord_type  member.

(® Atrun-time, in your widget'slass_part_initialize() method, set the fast subclass
bit, which represents your widget class, usir{mFastSubclassinit() . More on this
below.

If you don’t need the BaseClass’ whistles and bells for your self-written new widget class and you
subclass from any of MIF’s widget classes, then you can skip the steps mentioned above. If you
don't attach a BCE record to your widget class record you’ll automagically inherit a BCE record
from your widget's superclass.

Now let's look at each member of a BCE record in more detail:



14 2. Pandora’s Box: the BaseClass Stuff

XtPointer next_extension;
Used when you need to chain more than one core class extension. Otherwise initialize with

NULL

XrmQuark record_type;
Indicates the kind of extension record. Within tiass_initialize() method of your
widget class, assign the value of the global variabteQmotif to record_type

long version;
Must be initialized with the constamBaseClassExtVersion

Cardinal record_size;
Must be set taizeof(XmBaseClassExtRec)
XtInitProc initializePrehook;
XtInitProc initializePosthook;
Pointers to the prehook and posthook methods. The prehook is called right before the first
initialize() method triggers — that is, before Objedtigtialize() . The posthook
is called after the lashitialize() method has been called — usually this isithie
ialize() method of your (self-written) widget class.

Instead of specifying your own prehook or posthook method, you can use the identifiers
XminheritinitializePrehook and XminheritlnitializePosthook . In this
case your widget class inherits the initialize hooks from its superclass. If you specify a
NULL value as the pointer to a hook method instead, then you effectively disable for your
widget class any initialize hook that may be present in your widget's superclass.
XtSetValuesFunc setValuesPrehook;
XtSetValuesFunc setValuesPosthook;

XtGetValuesFunc getValuesPrehook;
XtGetValuesFunc getValuesPosthook;

Much the same as the initialize hooks, but this time these hooks guasdtthelues()
and get_values() methods of your widget class. If you want to inherit one of these
hooks simply specify the appropiate symbohinherit[Set|Get]ValuesPrehook
or XmInherit[Set|Get]ValuesPosthook

XtwidgetClassProc classPartInitPrehook;

XtwidgetClassProc classPartInitPosthook;
This is the fourth and last set of hooks, this time for hooking upcthss_part_init-
ialize() method. You surely can’t imagine that there are two predefined symbols avail-
able to be used for inheritancEminheritClassPartInitPrehook and Xminher-
itClassPartInitPosthook . What a surprise...

WidgetClass secondaryObjectClass;
Specifies the widget class that is used to hold the secondary resources. “Secondary objects”
are used for two main reasons. First, they extend such widget classes that already existed
before MTIF and now need new resources (especially VendorShell). Second, the secondary
objects work as caches for such gadget resources that are likely to be the same in many gad-
get instances. When you specKyninheritClass  you'll inherit the object class specified
by the superclass.



2.2. The Method Hooks 15

XtInitProc secondaryObjectCreate;
Points to the method that creates a secondary object of the class specifedndary-
ObjectClass . When you specifiXminheritSecObjectCreate you'll inherit the ob-
ject creation method from the superclass.

XmGetSecResDataFunc getSecResData;
Points to a function that returns descriptions about secondary resources of a widget class.
The officially documented functioKmGetSecondaryResourceData() (see the man
pages from the CSF) uses this function pointer when an application wants to know what
secondary resources a widget class has.

unsigned char flags[32];
Must be initialized with zeros, that {§} . Theflags array represents a bit field of the so-
called “fast subclass bits”. Within tifeags  bit field each bit represents one-MF widget
class. If a bit is set, then this widget class is a subclass of the widget class that correspnds to
the flag bit. The class identifiers look liRMPRIMITIVE_BIT or XmTEXT_FIELD BIT,
and can be found in the header flen/XmP.h. Note that these identifiers are bit numbers
rather than bit masks. Us&XmlsFastSubclass() to check whether a given widget class
has a particular fast subclass bit set.

XtResourceList ext_resources;
— under construction —

XtResourceList compiled_ext_resources;
— under construction —

Cardinal num_ext_resources;
— under construction —

Boolean use_sub_resources;
— under construction —

XmWidgetNavigableProc widgetNavigable;
Points to a method that checks whether a widget is havigable. Depending on the navigability
of the widget the method must return eitbenNOT_NAVIGABLEXmMTAB_NAVIGABLBr
XmCONTROL_NAVIGABLEhis method pointer is used byXxmGetNavigability()
from the keyboard focus traversal code. When you speXiinheritWidgetNavi-
gable for widgetNavigable you'll inherit the method pointer from the superclass.

XmFocusChangeProc focusChange;
Points to a method that will receive notifications from the keyboard focus traversal code
whenever the focus changes. When yousaisChange to XmlinheritFocusChange
you'll inherit the method pointer from the superclass.

XmWrapperData wrapperData,;
Must be initialized withNULL and will be used lateron by the BaseClass stuff. During run-
time, thewrapperData member points to the most recent entry of the wrapper stack for
this widget class.



16 2. Pandora’s Box: the BaseClass Stuff

2.3 The Method Wrappers

In contrast to the hook methods, the method wrappers are a special set of wrappers for the widget
methodgealize() ,resize() andgeometry _handler() . These three wrappers are only
responsible for a few tasks within theeBsTIF toolkit. Therefore the BCE record has no method
wrapper hooks that could be used by widget writers. The duties of the method wrappers are:

e The wrapper of theealize() method is available only for the VendorShell widget class
and any subclass of it. The wrapper first calls the origiealize() method and then
it activates all callbacks registered in tiemNrealizeCallback resource of the Vendor-
Shell extension object.

e Theresize()  wrapper is available for the ExtObject class and any subclass of it. It first
calls the originatesize() = method. Afterwards, it callsXmNavigResize()  so the key-
board focus traversal mechanism stays in sync with the mess on the user’s display.

e Thegeometry_handler() wrapper makes sure that the drag&drop mechanism doesn’t
interfere with geometry management.

To see how the method wrappers are implemented, take a look at[figlre 2.3 that shows this exem-
plary for therealize() method wrapper.

XtRealizeWidget ()
VendorShell -
(or any subclass) A 4
superclass ¢ RealizeWrappern%B base class
initialize et+—» (gateway) extension record
extension e | -
£ wrapper .
=
5]
%’ wrapper data y
2 .
o realize .
=
y

RealizeWrapper()(}

wrapper realize()lnahodci

XmNrealizeCallback
Callbacks

<III

Figure 2.3: The method wrappers enclose the non-chained widget methodsdike=()

Unfortunately, just redirecting thealize() method pointers of all the class records to a wrap-
per method is not enough. How should the wrapper know which (original) method to call later
on? It can’t guess this information just from the widget identifier it got as one parameter to the



2.4. The Widget Extension Data 17

method call: the intended method could be either from the widget'’s class or from one of the super-
classes. A smart solution would be to generate dynamically a short piece of machine code (called
a “thunk” in M$-babble) that is called before the wrapper. This piece of code then would supply
the missing information to the wrapper method. Unfortunately, this isn’t portable coding and is
therefore useless to a project like«MF or LESSTIF.

As a way out, MTIF as well as [ESSTIF use a set of predefined wrapper “gateways” (marked
with a@ in figure[2.3) that are statically compiled into the toolkits. In the case akthieze()

method there are eight wrapper gateways calkedlizeWrapper0() through Realize-
Wrapper7() . They all just call the realealize() wrapper(® and supply to it an additional
parameter that is the distance between the widget class the gateway belongs to and the Vendor-
Shell class. For example, thealize() gateway of the VendorShell widget class has a distance

of zero, whereas the XmDialogShell widget class has a distance of two.

Armed with the distance, the wrapper can then call the mgdiize() method(3) by substract-

ing the distance, that the gateway indicated, from the distance of the class of the current widget,
then walking up the according number of superclasses, and fetching the old method pointer from
the wrapper data record of that superclass.

The description above applies to ttesize()  andgeometry_handler() wrappers as well.

The only difference is that the distance is now measured from the ExtObject class instead. In the
case of thegeometry_handler() the distance should probable have been measured from the
Constraint class and not from the ExtObject class. But asifvican’t count, we can't either for
compatibility reasons.

There are eleven gateway levels available fordsize() = method and ten levels for thygom-
etry_handler() method. So there is still room for larger widget class trees subclassed from
XmPrimitive (six levels) and XmManager (only four levels due to the bug just mentioned) — but
you have to live with these built-in limits, whether you want or not.

2.4 The Widget Extension Data

The widget extension data mechanism is a set of stacks that operate on a per-widget basis. You
can push “extension data” (that is in the end a pointer to any block of memory) on a stack which
belongs to a particular widget, peek at the data at any time, and finally pop it off the stack and free
it.

LEsSTIF uses the extension data mechanism for managing secondary objects and protocol objects.
In order that LESSTIF doesn’t mix up extension data intended for different purposes the extension
data is “typed” or “tagged”. Each widget has a different stack for each type/tag of extension data.

The heart of the widget extension data mechanism is a séCohtext s (you can findXCon-

text s throughout the whole £sSTIF toolkit). With the help of the contexts you can associate

a particular tagged stack of extension data with a widget (figurje 2.4). The stacks for their part
contain pointers to the extension data we're interested in.



18 2. Pandora’s Box: the BaseClass Stuff

widget
tag/extension type
(XmSHELL_EXTENSION,...)

J

XContexts

widget extension data stack
\—> e L . > — |

p
Y

]
/

—

extension data
(XmWidgetExtRec,...)

Figure 2.4: A close look at the widget extension data mechanism.

There are currently five extension data tags defined — sed taple 2.1. Gadgets use extension data that
consists of aXmWidgetExtDataRec  structure, which is tagged asXanCACHE_EXTENSION
VendorShells use the samtenWidgetExtDataRec  structure but tag them asxanSHELL_EX-
TENSION

Identifier Value
XmMCACHE_EXTENSION 1

XMDESKTOP_EXTENSION 2
XmMSHELL _EXTENSION 3
XmPROTOCOL_EXTENSION 4
XmMDEFAULT_EXTENSION 5

Table 2.1: Tag identifiers for widget extension data

A third use of the widget extension data mechanism is to manage a list of protocol objects in a
XmAllIProtocolsMgrRec structure tagged a8mPROTOCOL_EXTENSIOMRhe protocol ob-

jectes are used to store information, so VendorShells can communicate with the window manager.
The identifierXmDEFAULT_EXTENSIOM only used by the (generic) ExtObject class and nor-
mally not needed. The use of tenDESKTOP_EXTENSIGBI currently not known — it might be
related to COSE/CDE.

As you can see from the previous explanations, the data struXtWéidgetExtDataRec plays
an important role for the BaseClass stuff. So let us examine it in more detail:

typedef struct _XmWidgetExtDataRec

Widget widget;



2.4. The Widget Extension Data 19

Widget reqWidget;
Widget oldWidget;
} XmWidgetExtDataRec, *XmWidgetExtData;

With Gadgets, the memberidget of a XmWidgetExtDataRec points to the secondary ob-

ject that acts as a cache for a set of the gadget's resources. The mesdWidget and
oldWidget look suspiciously like the parameters froningialize() , set_values() or
get_values() method of a widget. In fact, they are used much the same, but this time they
refer to a secondary object or a copy of the secondary object. Figure 2.5 illustrates this exemplary
for theset_values() method.

widget o
reqWidget e
oldWidget e

XmCACHE_EXTENSION —»| widget extension
data stack

Y

set_values (current, re pest, set)

| |
| |
XmNXf XmNy, XmNleftMargin,
Xmemlith, XmNalignment,
XmNheight, , XmNlabelType,
XmNtraversalOn, bk k,
XmNhelpCallback, !
gadget instance secondary object instance
(and temporary copies) (and temporary copies)

Figure 2.5: The widget extension data mechanism helps to organize and manage secondary ob-
jects within some widgets methods.

What you've just read about gadgets and their widget extension data applies to VendorShells al-
most the same. The only exception is thasIsTIF is lazy and in this case it creates the sec-
ondary object — which is a VendorShell extension object — uZit€@yeateWidget() . Thus

it needs not to take care oéqWidget andoldWidget . Only thewidget member in the
XmWidgetExtDataRec is used to point to the VendorShell extension object (figure 2.6). A link
(ext.logicalParent ) within each instance of an ExtObject leads the way back to the Vendor-
Shell.

There are four — or rather three — functions within the BaseClass module that work with the widget
wrapper extension data.
void _XmPushWidgetExtData(Widget widget, XmWidgetExtData data,
unsigned char extType);
Pushes an extension data record pointed tddig on the appropriate stack for extension
data of typeextType of the widget specified bwidget .



20 2. Pandora’s Box: the BaseClass Stuff

ext.logicalParent
VendorShell — |[----""-o--mmmommme oo Venc}orShe}l
extension object

! \
XmSHELL_EXTENSION

vy

widget extension widget *
data stack >|(reqwidget)
(oldWidget)

XmWidgetExtRec

Figure 2.6: The widget extension data represents the link between a VendorShell and its extension
object.

void _XmPopWidgetExtData(Widget widget, XmWidgetExtData *dataRtn,
unsigned char extType);

Pops off the most recent entry from the stack for extension data ofedgpe for the
widgetwidget . The pointer to the data is returneddataRtn . You are responsible to free
the data when you don't need it any longer.

XmWidgetExtData _XmGetWidgetExtData(Widget widget,
unsigned char extType);

Nondestructively fetches an extension data record. If there is currently no extension data of
typeextType on the stack ofvidget then the function returndULL Otherwise it returns
a pointer to the most recent extension data record but does not pop it off the stack.

void _XmFreeWidgetExtData(Widget widget);
This one was surely implemented by some joker at the CSF. When called, it'll simply print
out a warning that this function isn’t supported. To be compatibies 4T IF spits out an odd
warning, too. Maybe XmFreeWidgetExtData() once was intended to free all extension
data that is associated with a particular widget. Maybe it was just a red herring.

2.5 Other Undocumented Stuff

There are a few undocumented functions and macros remaining that belong to the BaseClass stuff.

XmGenericClassExt * _ _
_XmGetClassExtensionPtr(XmGenericClassExt *listHeadPtr,
XrmQuark owner);

Can be used either to query any widget extension record you like or a BCE record. The
parametelistHeadPtr must point to thepointer to the head of the list. Setwner to

the kind of extension you're looking for. If you look out for a BCE record use the macro
_XmGetBaseClassExtPtr() instead.

_XmGetBaseClassExtPtr(wc, owner)
This macro is defined iXm/BaseClassP.h and tries to find a extension record of type



2.5. Other Undocumented Stuff 21

owner and then returns pointer to the pointer to the extension record. Typically, you'll
use this macro to locate a BCE record of a particular widget class:

XmBaseClassExt *ext;
int version;

ext = (XmBaseClassExt *)_XmGetBaseClassExtPtr(XtClass(w), XmQmotif);
version = (*ext)->version; [* access any structure member */

Boolean _XmlsStandardMotifWidgetClass(WidgetClass wc);

Checks whether the widget clasgs is a standard widget class of«WF and then returns

True . If the widget class to be tested isn’t a standard widget class, the function returns
False . The test is mainly based on the fast subclass bits within the base class extension
records each widget class of*MF has. The widget class givenwrc is considered to be a
standard class if either:

— its superclass does not have a base class extension record (like XmPrimitve and Xm-
Manager),

— or the fast subclass bits of the widget classdiffer in at least one bit from the fast
subclass bits ofvc’s superclass. This way a self-written widget which is, for example,
derived from XmManager and uses no new fast subclass bit, won't be considered to be
from M+TIF’s core widget set.

Only the fast subclass bits 0—191 belong to standardifwidget classes, whereas the bits
192-255 are application-specific. Therefore the checks will include only the fast subclass
bits in the range from bit O up to bit 191.

Boolean _XmlsSlowSubclass(WidgetClass wc, unsigned int bit);

If the widget class specified imc has the fast subclass bit with the bit numbgr set, this
function returnsTrue . Otherwise it returnfalse .

_XmisFastSubclass(wc, bit)

This is not a real C function but rather a macro defineBaseClassP.h . It checks
whether the fast subclass bit with the bit numbigr is set in the base class extension record

of the widget classvc. If so, _XmlsFastSubclass() returnsTrue . If the fast subclass

bit is either not set or the widget class has no base class extension record, the macro returns
the valueFalse .

_XmFastSubclassInit(wc, bit_field)

void

This is not a real C function but rather a macro defineBaseClassP.h . It sets the fast
subclass bit with the bit number bit_field

_XminitializeExtensions(void)

This function initializes the BaseClass stuff. It is ordinarily called when the first VendorShell
widget is created (typically withirKtApplnitialize() ) and sets up th&XmQmotif
guark. Finally, it hooks the prehook wrappers into the ExtObject class. Normaly, you would
not need to call XminitializeExtensions() directly.



22 2. Pandora’s Box: the BaseClass Stuff




Diverting User Input with Grabs

Harald Albrecht

=
]‘;\ﬁ

/

— \
~(2
2
3
)

|—



24 3. Diverting User Input with Grabs
3.1 Introduction

A “grab” is a mechanism that changes the way in which user input events — from the mouse or
the keyboard — are reported. In addition to the Xlib grabs, which change the handling of user
input within the X server (and which I'm not going to discuss here), the Xt Intrinsics add a sec-
ond grab layer: the “Xt grabs”. They are similar to the Xlib grabs in that they change the way
user input events are reported. But the Xt grabs work entirely within an application and there-
fore do not affect other applications using the same X server: the central event dispatch function
XtDispatchEvent() is mainly responsible for the Xt grab mechanism.

Without going too much into the dirty detalils, it is important to know that the Xt Intrinsics maintain

a grab list. If this list is not empty, only the widgets on the list, as well as their child widgets, will
receive input events. Widgets can be added to the end of the grab list either as exclusive or non-
exclusive. Only the widgets on the list from the most recently added exclusive widget to the end
will receive input events. This way, adding a widget to the grab list exclusively will keep any user
input events away from the widgets (and their children) that were already on the list. In the end,
the grab list treats the widgets as a cascade. When you remove a widget from the list, all widgets
that were added after it are removed, too.

M=TIF uses a different approach to the grab mechanism. Whereas the Intrinsics’ concept of a grab
cascade is sensible for a set of cascading menus, it isn’t for modal dialogs. If there are two modal
dialogs visible, popping down the older one should not remove the younger one from the grab
list. Unfortunately, to achieve the desired grab behaviouriFuses a completely undocumented
grab layer, so the usual omnipotent disclaimer applies: continue reading at your own risk. All
knowledge about MriF’s grab layer results from investigations done on the “living subject” with

the help of a nice test program that can pretty-print various data trees to the console. The test
program lives irf(LESSTIF_ROOT)/testXm/extobj/test2.c

3.2 The Grab Layer and the Grab List

To be compatible with MriF’s grab concept, ESSTIF maintains its own grab list somewhat
paralleling that inside the Xt Intrinsics. Whenevee4sTIF removes a grab from a widget by
calling XtRemoveGrab() it puts back on all the widgets that are on its own list after the widget
just removed.

LEssSTIF manages the grabs on a per-display basis, thus you can find each grab list in the instance
variablemodals within the instance record of dmScreen widget. The number of entries allo-

cated for the list is stored in thmaxModals instance member, whereas thenModals member

—as usual — indicates how many entries currently are in use.

Two pure internal functions work on the private grab lists:

e LTAddGrab() adds a new widget to the grab list as either exclusive or non-exclusive.
e LTRemoveGrab() removes a widget from the grab list and puts back on all the widgets
that were after it on the list.



3.2. The Grab Layer and the Grab List 25

Because the grab lists are mainly used to achieve dialog modality, and dialogs are eventually
special shells, you can find the implementationL®AddGrab() andLTRemoveGrab() in
$(LESSTIF_ROOT)/libXm/Vendor.c

Two additional functions — although not mentioned in the official documentation — are visible
outside thevendor.c module and provide access to-MF’s grab layer (the interface functions
are needed by the drag & drop mechanism and the menu system):

void _XmAddGrab(Widget wid, Boolean exclusive, Boolean spring_loaded);
void _XmRemoveGrab(Widget wid);

They both can be used just the same way as their counterparts from the Xt Intrinsics. It is very
importantnever to useXtAddGrab() or XtRemoveGrab() as this will put LESSTIF’s grab list
out of sync with the Xt grab list.

Each entry of IESSTIF’s grab list stores detailed information about a single grab:

typedef struct _XmModalDataRec {
Widget wid;
XmVendorShellExtObject ve;
XmVendorShellExtObject grabber;
Boolean exclusive;
Boolean springLoaded;
} XmModalDataRec, *XmModalData;

The membersvid , exclusive , andspringLoaded of the XmModalDataRec structure re-
cord the values of the function parameters from the calldddGrab() or_XmAddGrab() .
This way, whenever removing a grabg ST IF can restore the grabs that were on the list after that
grab.

When working with primary application modal dialogss £ST IF needs to remember such dialogs

in grabber so it can remove, later on, any additional grabs it had to add in order to achieve the
primary application modality. Thgrabber member, as well ag, is not an ordinary widget 1D

but rather links to a so-called extension object of a vendor shell. I'll discuss this below in more
detail.

3.2.1 Full Application Modal Dialogs

With a full application modal dialog on the display, the user must respond to it before she or he
can do anything else in the application. To achieve this effeedLIF must block out any user
input events which are not meant for the full application modal dial@&sdI'IF therefore issues

an exclusive grab on the shell widget of the dialog — see figufe 3.1. In this figure, as well as in the
next few ones, I'll leave out those child widgets of shell widgets that aren’t shells themselves —
otherwise the figures would be overcrowded.

In addition, in the following figures you’ll see some entries on the grab list that are framed by thick
edges. These entries form the “active Xt modal cascade”: user input events are dispatched only to



26 3. Diverting User Input with Grabs

those widgets (as well as to their children) that are part of the active Xt modal cascade. The active
Xt modal cascade always starts with the most recent exclusive grab.

Grab List Shell Hierarchy
#1 | wid = @® > top level shell ©
exclusive = False =
#2 Wld = @ \\\\\\
exclusive = True o dialog shell
| (full application modal) @

— grab is set on a shell [ ] receives no user input events
-~ ® has parental shell D active Xt modal cascade
(D@ @) creation order of shells

Figure 3.1: Entries on the grab list after a full application modal dialog popped up.

You may already be wondering why there is another (non-exclusive) grab in slot #1 of the list,
just before our exclusive grab for the application modal dialog. This non-exclusive grab belongs
to the top level shell of the applicationElST IF installs such grabs on every VendorShell (or any
subclass of) which does not serve as a popup shell (that is, as a dialog). Otherwise the top level
shell of an application and any of its children won't receive input anymore as soon as a modeless
dialog shows up, because modeless dialogs use grabs, too.

3.2.2 Modeless Dialogs

Although somewhat weird at a first glances4sTIF even installs a (non-exclusive) grab on the
shells of modeless dialogs — see grab entry #3 in figuije 3.2.

Grab List Shell Hierarchy

41| wid = @® - top level shell ©

exclusive = False
id = ® Y >

#o | wid = |
exclusive = True dialog shell \

a3 |wid = © (full application modal) @ \
exclusive = False

Y

dialog shell

(modeless) @

—® grab is set on a shell [ ] receives no user input events

-~ ® has parental shell active Xt modal cascade

(D@ @) creation order of shells

Figure 3.2: Entries on the grab list after a modeless dialog popped up.



3.2. The Grab Layer and the Grab List 27

The reason for this is that fromessTIF’s point of view the dialogs and their grabs don't form a
cascade. Thus, if you pop up a modeless dialog whenever a full application modal dialog is already
active, the new dialog should receive user input too — even if the modeless dialog is created as a
child of the other dialog’s parent and not as a child of the full application modal dialog.

3.2.3 System Modal Dialogs

System modal dialogs are much the same as full application modal dialogs. But with system modal
dialogs, the user must respond to the dialog before doing anything elagapplication. Because

an exclusive Xt grab is only effective within the application, argsisTIF application needs ad-
ditional help from the window manager to make a dialog system modal. Currentlyyontfand
thusimwm) provides the help needed. If there is no suitable window manager present, the system
modal dialog behaves like any full application modal dialog.

In the case of a system modal dialog the grab list looks like the one presented in figure 3.2.

3.2.4 Primary Application Modal Dialogs

A primary application modal dialog (what a name!) is the fourth — and last — kindesSLIF's

dialog types. Whenever such a dialog is visible, the user can interact with any dialogribgis

parent of the primary application modal dialog, just as with any other top level shell. Unfortunately,
the behaviour just described isn’t suited to the Xt grab mechanism atesEILF therefore has to

do some work behind the scenes to get the desired grab behaviour: it must reissue all grabs that do
not belong to any of the parental shells of our primary application modal dialog. A more elaborate
example, figurg 3|3, shows the grab list after a primary application modal dialog popped up.

Grab List Shell Hierarchy
41 | wid = @® - top level shell ©
exclusive = False < S
gp|wid = ¢ /
exclusive = False . dialog shell
a3 |wid = ¢® = (modeless) @
exclusive = True s
wid = @ - dialog shell
4 exclusive = False (full application modal) ®
— grab is set on a shell [ ] receives no user input events
~~® has parental shell D active Xt modal cascade

(M@ Q) creation order of shells
Figure 3.3: Entries on the grab list after a full primary application modal dialog popped up.

For some reason — yet not fully understood ~TMreissues the grabs for the shells, which aren’t



28 3. Diverting User Input with Grabs

parents of the primary application modal dialog, onlynifviris present. Users of other window
managers — like the famofavm — look (literally spoken) into the tube.

When popping down a primary application modal dialogsisTiF must get rid off all those grabs

that once were necessary to get the desired grab behavior. In[figure 3.3 the two grabs in the slots #2
and #4 are belonging to thmodelesslialog (3). But only the grab from slot #4 must be removed
together with the grab #3 that belongs to the primary application modal dialog.

This is where thgrabber member mentioned above comes in. In the case of a primary applica-
tion modal dialog theyrabber links to an object (of clas¥mVendorShellExtObject ) that
belongs to the shell widget of the primary application modal dialog. All we then have to do inside
LTRemoveGrab() is to remove all grabs from the list whogeabber belongs to the primary
application modal dialog just popped down. In other cases of dialog grabs the mgmaiblgsr

links to the extension object of the same shell as referencedlin

3.3 Creating Dialog Shells the Right Way

There are two major ways of creating dialog shells:

e Either usingXtCreatePopupShell() or one of theXmCreate*Dialog() functions.

The latter ones just stand on the shoulderX@reatePopupShell() but hide this to
some extend from the programmxtCreatePopupShell() also adds the shell widget

just created to the parent’s list of popup shells. All widgets (but neither gadgets nor objects)
maintain such lists.

e UsingXtCreateWidget() — and thus the same way as “ordinary” widgets are commonly
created. If the parent of a shell is of class Composite (or any subclass of) then the (shell)
widget is added to the parent’s list of child widgets — which must be distinguished from the
list of popup shells.

Although not recommended&tCreateWidget() is widely used for creating dialog shells or
shells in general (shame on me, too. Where’s the sack and the ash?). Maybe the most prominent
reason for this is that it makes widget creation more uniform. At the first look there seems to be
no reason why to us¥tCreatePopupShell() anyway. But MTIF needs to know for its grab

layer whether a shell widget serves as an ordinary top level shell (and thus has no modality) or as
a dialog shell. In the latter case tRenNdialogStyle  resource of a BulletinBoard-derived child

of a dialog shell controls the dialog modality and eventually the grabs used.

The only way currently known to distinguish ordinary shells from shells working as popup dialogs

is to check whether the shell is registered with the parent’s list of popup shells. But this will fail
miserably if the dialog shell was created usktCreateWidget() instead ofXtCreate-
PopupShell() . In that case the dialog shell first sets an unnecessary non-modal grab as soon
as the shell is realized. Finally, when popping up the dialog,LfhgéhellPopupCallback

callback sets the real (modal or non-modal) grab. Fortunately the first and unnecessary non-modal
grab doesn't hurt very much — it just pollutesstF’s grab list. But the user won't notice that

anyway.



3.4. Extending the VendorShell 29

3.4 Extending the VendorShell

The objects of th&XmVendorShellExtObject class serve for two purposes. First, they provide
storage for resources that are new witkm#’s particular VendorShell. Second, they form a tree

(or hierarchy) which shadows the instance hierarchy of all the shell widgets an application has.
From now on I'll refer to this hierarchy as the “shadow shell tree”. But first some more information
about the rather less-spotted vendor shell extension objects.

By definition a VendorShell is a subclass of a WMShell and allows software vendors to provide
new resources, class methods, etc. to support their custom window managers. So much for theory.
In practice the spirit (idea) was willing but the flesh (the implementatisrs}ill weak. If you

would have to write your own VendorShell widget class that has additional instance variables
(“resources”) you would be in trouble — or rather those programmers writing their X applications
using your new VendorShell. As several widget classes are derived from the VendorShell class
(for example the TransientShell, the TopLevelShell and the ApplicationShell, see[figure A.1 on
pagg 12P) these classes then would have to be recompiled. Otherwise the VendorShell part of an
already compiled and older ApplicationShell would differ from that part of a new VendorShell. At
this point the object-orientated approach simply can’t handle the case where you need to replace a
classwithin the class tree.

Historically, the CSFeededo add new resources to the VendorShell to support resolution inde-
pendance, specific MWM functions and other “features”. But extending the existing VendorShell
was not desirable at all, as mentioned above, so the programmers at the CSF took another ap-
proach.

With M=TIF, every VendorShell widget (as well as every widget created from a subclass of Ven-
dorShell) is accompanied by a so-called VendorShell extension object. This VendorShell extension
object (or “VSE object” for short) is a descendant of XmDesktopObject, XmExtObject, and thus
finally of the Intrinsics’ Object class (see figlre]|3.4).

The Object class was made public in X11R4 to enable programmers to use the Intrinsics’ classing
and resource handling mechanisms for things besides widgets. WithirF Mhe VSE objects

serve to hold all the instance variables (resources) that had to be added to the VendorShell class
after the Xt Intrinsics had already been written down.

The starting point for all kind of extension object classes withgsE&TIF is the XmExtObject

class. This class provides for synthetic resources as well as external resources. In addition, every
instance of a XmExtObject contains a pointer to its “logical parent” (resoXinellogical-

Parent ) that is the widget that owns the extension object (or that the extension object extends).
You'll never find a XmExtObject in its logical parent’s child list. One reason is thaetiMseems

to use some kind of self-craftettCreateWidget() when creating extension objects. A second
reason is that ESSTIF currently uses a call t&tCreateWidget() when creating VSE objects.

To cite Mitch, the affected logical parents keep “those pesky [extension] objects” out of the child
list using speciainsert_child() anddelete_child() methods.



30 3. Diverting User Input with Grabs

Object
11
|
| RectObject |
A
| unnamed |
A
| Core |
| XmExtObject |
A
[ XmDesktopObject | S (XmDeskiopObject)
W .T ...............
|
| XmVendorShellExtObject | | XmWorldObject | | XmScreen |
A

| XmbDialogShellExtObject |

|:| Xt Intrinsics’ class
D LessTif class

Figure 3.4: Class hierarchy for extension objects.

3.5 The Shadow Shell Tree

The VSE object (XmVendorShellExtObject) is subclassed from the XmDesktopObject class which
in turn is subclassed from XmExtObject. Whereas the XmExtObject only knows of an associated
“logical parent”, the XmDesktopObiject class introduces the concept of children to the extension
objects (see figufe 3.5).

The children of a XmDesktopObject (which must be either XmDesktopObjects again or a subclass
of) are managed in a list much the same way Composite does. But as extension objects have no real
parent (only a logical parent which is merely an associated widget) the XmDesktopObject class
adds a new resource callé@nNdesktopParent . It links to the parental object this particular
XmDesktopObiject is a child of. All the XmDesktopObjects form a “shadow tree” of the shell
instance hierarchy. This tree is much like the well-known widget instance tree any application has
— but this time any widgets that are not shells are left out.

At the top of the tree of XmDesktopObijects there is always a XmScreen widget. But as the Xm-
Screen class is direct subclass of Core and not of Composite it can’t manage a list of children —



3.5. The Shadow Shell Tree 31

| XmScreen
| XmDesktopObject

A

desktop.parent

ext.logicalParent
Associated Widget |;\/\/\/\| XmDesktopObject |

desktop.children
~ 1. W~ N\ 1
L‘lﬂ XmDesktopObject |
L T

Figure 3.5: The XmDesktopObjects form a tree of XmDesktopObjects with a XmScreen widget at
the top.

at least from the Xt Intrinsics’ point of view. This is there the Desktop class part comes in a second
time as “Nobody expects the Spanish Inquisition...”. Oops —wrong movie.

In figure[3.4 you can see the XmDesktopObject (surrounded by dashed edges) reappearing at the
branch between the Core class and the XmScreen class. At this point the principle of inheritance
is somewhat broken as the XmScreen classd&ect subclass of Core. But XmScreen extends

the instance record of the Core class not only by its own XmScreen-specific part but also by the
XmDesktop-specific part.

This makes creating and inserting XmDesktopObjects ponderous because every such object must
push its (desktop) parent to be inserted into the parent’s list of children. But remember that the par-
ent can be not only another XmDesktopObiject but also a XmScreen widget. Thus, both XmDesk-
topObject as well as XmScreen provide methods through their desktop part within the class record
for inserting (nsert_child() ) and deletingdelete_child() ) a single child.

Whenever a XmDesktopObiject is created, ancittNdesktopParent  resource is noNULL, it

calls theinsert_child method that is appropiate for the respective parent. As an example how
this is done here is thiaitialize() method of the XmDesktopObject class (ripped of from
$(LESSTIF_ROOT)/libXm/Desktop.c ):

static void initialize(Widget request, Widget new_w,
ArgList args, Cardinal *num_args)

{
Widget desktopParent;
XtWidgetProc insertChild;
Desktop_Children(new_w) = NULL;
Desktop_NumcChildren(new_w) = 0;
Desktop_NumSlots(new_w) = 0;

desktopParent = Desktop_Parent(new_w);
if ( desktopParent ) {
if ( _XmisFastSubclass(XtClass(desktopParent), XmSCREEN_BIT) ) {
insertChild = ((XmScreenClassRec *) XtClass(desktopParent))->
desktop_class.insert_child;
} else {
insertChild = ((XmDesktopClassRec *) XtClass(desktopParent))->
desktop_class.insert_child;



32 3. Diverting User Input with Grabs

}
if ( insertChild == NULL ) {
_XmError(new_w,
"insert_child method of my desktop parent is NULL");

insertChild(new_wy);
} I+ initialize */
The XmScreen widget at the top of the tree of XmDesktopObijects isn't yet the end of the road.
Instead there’s still another level represented by a XmDisplay widget (see[fighre 316). dvie-

ates such XmDisplay widgets for every display connection an application opens. The XmDisplay
widget then gathers the various shadow shell trees via XmScreen widgets under its hood.

XmbDisplay I per display
.
XmScreen J per screen
¥ / \,A_au_l_
E(m' 4 ~— ¢ ExtObject
XmVendorShellExtObject [ ——

per shadow shell trex

o ’ —

XmVendorShellExtObject

Figure 3.6: The shadow shell tree is organized by XmScreen widgets which are in turn gathered
under the hood of a XmDisplay widget.

From time to time you need to look up the VSE object for a given VendorShell widget. For this
you’'ll need the help of XmGetWidgetExtData()  from the BaseClass stuff. During initializing,
every VendorShell widget creates a widget extension data record aktgdéidgetExtDataRec

and pushes it on an extension data stack tlegdl'IF maintains for some widget (and gadget)
classes. The membeiidget of such a widget extension data structure finally points to the VSE
object for the VendorShell. The following code excerpt shows how to find a VSE object using
_XmGetWidgetExtData()

Widget vendorShell;
XmVendorShellExtObject ve;
XmWidgetExtData extData;

/* vendorShell references a VendorShell widget */

extData = _XmGetWidgetExtData(vendorShell, XmSHELL_EXTENSION);
ve = extData->widget;

/* ve now references the VSE object */



Messy Geometry Management

Danny Backx
Mitch Miers

=
]‘;\ﬁ

/

— \
~(2
2
3
)

|—



34 4. Messy Geometry Management

4.1 Introduction

This chapter describes the way in which LessTif widgets handle their geometry negotiations. As
geometry management is a subject that has much to do with the Xt Intrinsics, part of this document
describes (what we understand of) the Xt geometry model.

The Xt geometry model is based on geometry negotiations: every change that a widget wants to
apply to its own geometry must first be approved by the widget's parent. The resources of the
widget that are part of this geometry negotiation mechanism are:

e the position coordinates andy,
e thewidth andheight
e and finallyborder_width

A widget can request a geometry change by utiakeGeometryRequest() or XtMake-
ResizeRequest() . WhereasKtMakeGeometryRequest() can be used to change all five
geometry resources mentioned aboXtakeResizeRequest() only allows a widget to re-
quest a different size (width and/or height) and is in the end just a convenience function for such
cases where the position of your widget doesn’t matter.

In addition, LESSTIF has a convenience function calledmMakeGeometryRequest()  which
callsXtMakeGeometryRequest() . But more on it below.

4.2 Making Geometry Requests

4.2.1 The Xt Intrinsics Way

The function prototype oktMakeGeometryRequest() is as follows:

XtGeometryResult
XtMakeGeometryRequest(Widget w,
XtWidgetGeometry *desired,
XtWidgetGeometry *allowed);

This function should be called from the widget which is passed as the first parameter. The second
parameter describes the geometry that the widget would like to have. The last parameter returns
the geometry that the widget got, in some circumstances. Finally, the result of the function is a
value indicating whether the request has been granted.

TheXtWidgetGeometry  structure contains the five fields indicated above (position, extend, and
border width), together with a bitset in which you can indicate which fields have been initialized.
In the return parameter, the bitset will also indicate how much information is valid. A common
mistake is to assume that the parent widget will always set the width and height values, and to just
read those fields without looking at the flags.



4.2. Making Geometry Requests 35

The bitset field is calledequest mode . It can be set using an OR of zero or more of the
macrosCWXCWYCWWidth, CWHeight andCWBorderWidth , each of which has exactly one
bit set. A final bitXtCWQueryOnly is currently not used within ESSTIF. When set, the call to
XtMakeGeometryRequest()  will return a result without changing anything to the widget.

The result oXtMakeGeometryRequest() can have four values:

e XtGeometryYes : Means that the request has been granted.

e XtGeometryDone : The request has been granted, also it has been applied to the widget.
According to "X Window System Toolkit" by Asente & Swick, a widget set should choose a
policy: either us&XtGeometryYes in all widgets, or us&XtGeometryDone . In LESSTIF,
we've chosen thxXtGeometryYes approach.

e XtGeometryNo : You can guess this by now: the request has not been granted. Many man-
ager widgets (subclasses of XmManager) BsikT IF will return this when they get a request
to change the ory field (that is, the position) of a child widget.

e XtGeometryAlmost : This is a very useful but difficult return value. It means that the
request has not beemmpletelygranted, and thallowed parameter returns a suggested
geometry. If the widget takes the suggestion and ¢aNsakeGeometryRequest()  with
that same set of values, the parent widgeistallow this request. That’s the hard part.

4.2.2 The LessTif Way
The function prototype of this geometry negotiation convenience function is:

XtGeometryResult
_XmMakeGeometryRequest(Widget w, XtWidgetGeometry *desired);

This function is a wrapper arounttMakeGeometryRequest() . First, it asks the parent of the
widget specified as the first parameteior the new geometry (given idesired ). If the parent’s
answer isXtGeometryAlmost , then_XmMakeGeometryRequest() takes a second round,
asking the parent ofv again, but this time using the geometry proposed by the parent. Then it
returns.

Another programming mistake (introduced by Asente & Swick): given the Xt rule ati@eo-
metryAlmost , you could happily program a loop in which you keep callXtMakeGeo-
metryRequest() until the value is different fronXtGeometryAlmost . The trouble is that

this kind of a loop is only guaranteed to be finite if the parent widget(s) are bug-free. Need | say
more?

_XmMakeGeometryRequest() detects this problem and is verbose about it: you'll see a warn-
ing, saying that a “Parent refused resize request” together with the name and class of the offending
parent and the widget geometries in question. Wids &I IF, you might occasionally see this
warning, because XmForm currently doesn’t always grant a geometry that it just suggested...

If anybody wants a good exercise in understanding this document, she or he is invited to find this
bug. Really. I'll only start tracking it myself when | have no serious bugs to attend to. A couple of
beers (real or virtual? Ed.) can be had in Leuven, Belgium, by the first person to fix this.



36 4. Messy Geometry Management
4.3 Geometry Management and the Widget Methods

The basic cycle involved is:

(@ Calculate youpreferred size

(@ Ask for permission of your new preferred size uskiylakeGeometryRequest()

(3 Run yourlayoutprocedure.
For both primitives and composites, all the following rules for geometry management apply, except
where otherwise stated. The rules mentioned in the subsections fgedheetry_manager()

change_managed() ,insert_child() anddelete_child() methods apply only to com-
posites. For Constraint widgets (and descendants), you should watch the rules mentioned for the
constraint_initialize() andconstraint_set_values() methods.

Just another note: if you have a composite widget, and this widget has either no children, or
it doesn’'t has managed children (by the wa¥(mGeoCount_kids()  will return zero in the
second case, but the GeoUstils are described in more detail in the next chapter), then you probably
shouldn’t bother in either method to compute the preferred size or the layout — mostly because
you don’t have anything to operate on. Instead you should probably return the current geometry in
query_geometry()

4.3.1 The initialize() Method

Don’t do anything if you're a Composite (-derived) widget. You don’t know enough yet (and you
probably don’t have any kids yet, unless the user created you witKtthehildren  resource:

if the user does something like this, they’re on their own). If you are a primitive widget (no pun
intended...), you should know enough to do a basic layout.

4.3.2 The set_values() Method

If a value changed that should cause a layout change, go ahead and recompute the preferred size.
Then, just set your width/height to the computed values: the Xt Intrinisics will automatically see

a change made and cdtMakeGeometryRequest() on your behalf, so (ordinarily) don’t do

the layout step here.

If the request is granted, the Xt Intrinsics will automatically call yoesize() method; that
should be where the layout is done.

Rebuttal: There may be times where this isn’'t true. Some resources may require a Composite
widget to re-layout. When doing so, there are a few warnings that should be noted.

¢ If the user set a resource that triggered a size adjustment, the resize request may not be hon-
ored by the parent. If it is not, and you re-layout, then be aware that you may have layed out
to a geometry that isn't honored. This can cause (grossly understated) unexpected results.
This case can (and does) happen in Label (and LabelGadget); that's why there is a call to



4.3. Geometry Management and the Widget Methods 37

theresize() = method inexpose() —to make sure the widget is displayed correctly. The
same is true of CascadeButton (and CascadeButtonGadget).

e A superclass may have polluted the widget dimensions, or a resource that changed in a su-
perclass may have altered the widget dimensions to cause a request that may not be honored.
Laying out to this geometry may not be valid either.

Unfortunately, the intrinsics do not notify a widget if the resize request wasn'’t honored, so there’s
no way to do a proper job of it unless teepose() method calls the procedure that is responsible

for the layout. Needless to say, this is not good for performance. One optimization that can be
made is due to the nature BfMakeGeometryRequest() (which will be discussed later): if

the widget is not managed, or the parent isn’t realized, then we can be sure that the resize request
will be honored. In this case, we can blithely call our layout procedure and be sure that the request
will be honored.

4.3.3 The resize() Method

You can’'t do any geometry negotiation here. You must take the size you currently have, and lay
yourself out to this geometry. This method, in combination vgith values() , show the re-
quirements of the two basic algorithms: one to compute the preferred size, and one to layout to a
given size.

4.3.4 The realize() Method

For primitive subclasses, you probably want to realize your window, and then layout to it's geom-
etry. For managers, it doesn’t hurt to go through the “preferredBize “ XtMakeGeometry-
Request() @"-"“layout®®"” cycle again, as things may have changed.

4.3.5 The query_geometry() Method

Call the routine that calculates the preferred size, and return the resultéiiest mode is 0.
Otherwise, return the usual rules of the request versus what you've computed.

4.3.6 The geometry_manager() Method

This is the trickiest one. The preferred-size-routine should take two paramiestigator
andinstig_request , and use the values specifiediirstig_request when treating the
instigator

There are two additional rules that you should keep in mgeimetry_manager()  doesn't
get called if the parent isn't realized; it also doesn't get called if the child isn't managed (in both



38 4. Messy Geometry Management

cases, the request is automatically granted). The method should theXcellakeGeometry-
Request() . Doing this guarantees that eithéiGeometryYes or XtGeometryNo is returned
—you’ll never seeXtGeometryAlmost  unless a composite has a bug.

Finally the layout function should be called. The layout function should take two additional pa-
rameters, thénstigator and theinstig_request . What to do next depends on the value
that’s going to be returned by tlygometry_manager()  method:

o If the result of the layout procedure on the instigatoXi&eometryAlmost , then no
change should be made to the instigatar for that matter, to any other children in the
compositethis is an important point, and often alters the behavior of the layout method —
doing a configure on a child when the geometry didn’t change just wastes cycles). Instead,
the reply geometry should reflect the layout computed for the instigator.

IMPORTANT : if the instigator calls back with the geometry that you computedgtue
metry_manager() = methodmustreturnXtGeometryYes .

o If the result of the layout procedure on the instigataXi&eometryYes , thechild's rect-
angle should be modified to reflect the geometry (this is importg#at) must do this so that
XtMakeGeometryRequest()  will reconfigure the requesting child’s window. This is dif-
ferent fromXtGeometryDone in thatXtGeometryDone implies that the window change
was made by the parent, and we don'’t do that @sETIF. The GeoUtils and RowColumn
do this now.

In the layout function, if the child being manipulatechist the instigator, then the child should be
configured (normally usingXmConfigureObject() ), if the return isXtGeometryYes .

4.3.7 The change_managed() Method

You've got to go through the complete cycle of “preferred G¢e- “ XtMakeGeometryRe-

quest() @"-—"layout(®". The Xt Intrinsics don’t help with any of this, so it's got to be explicit.
Remember that you've no instigator here, so all managed children should be configured if a size
change took place.

4.3.8 The insert_child() and delete_child() Methods

These methods are called when a child is added to a manager widget, or when a child is destroyed.
Their use is particularly important in those manager widgets which keep information about their
children in private data structures.

Note that these are unchained methods, which means they are not automatically called for all the
superclasses of a manager widget. XmRowColurmsert_child() needs to call XmMan-
ager’sinsert_child() , Which in turn calls the one in its superclass.



4.3. Geometry Management and the Widget Methods 39

4.3.9 The constraint_initialize() Method

Often, this method (if present) will not cause any geometry changes, but does offer an excel-
lent time to capture information that will affect geometry management in the future. This in-
cludes things like th&XmNpositionindex  resource (RowColumn), o¢tmNpaneMinimum and
XmNpaneMaximum(PanedW).

4.3.10 The constraint_set_values() Method
Tricky. In this method, there can be so many interactions that the mind boggles. Quite often, re-
sources that are set here may haggousimplications for geometry management (llKemNposi-

tionindex ), but it is difficult to know when a change should trigger a re-layout. In genaital,
of the warnings foset_values() apply.

4.3.11 The Geometry Management Helper Interfaces

There are two sets of two basic functions, that roughly have the following signatures. First, the
ones for primitives:

PreferredSize( Widget w [* input */ );
Layout( Widget w  /* input with side effects */ );

and for composites:

PreferredSize( Widget w, [* input */
Widget instig, [* input */
XtWidgetGeometry *instig_request, [* input */
XtWidgetGeometry *preferred_geom [* output */ );

Layout( Widget w, [* input */

Widget instig, /* input */
XtWidgetGeometry *instig_request, /* input/output */
XtWidgetGeometry *preferred_geom /* input */ );

For primitives, an example of the function to calculate the preferred sizeniSalcLabel-
Dimensions() . The equivalent layout procedure would be thsize() = method. Regardless,
your layout function or preferred-size function can be modified for different behavior as appropri-
ate to your class.



40 4. Messy Geometry Management




Fun and Pain with the GeoUtils

Mitch Miers

=
]‘;\ﬁ

/

— \
~(2
2
3
)

|—



42 5. Fun and Pain with the GeoUtils

5.1 Introduction

Recreating the behavior implemented in the GeoUtils aja®t fun, andb) really, really not fun.

They are totally undocumented (as with almost everthing interesting the CSF ever did). What re-
ally kicked off the implementation of the GeoUtils was my discovery of John Cwikla’s SmartMes-
sageBox — without this gem, this work would have been impossible. A round of applause for this
guy, please, and his intentions of “Furthering ‘open software’ into reality. .. ".

The GeoUltils provide a mechanism by which BulletinBoard subclasses can automatically inherit
geometry management for laying out their children. The good thing about the GeoUtils is that
you get to specifytinherit* for most of the class methods for a BulletinBoard subclass. The
drawback is that you lose some flexibility (nevertheless a good tradeoff, because many of these
functions are extremely difficult to write).

The mechanism provides for

e layout changes as a result of a child being managed or unmanaged (the BulletinBoard
change_managed() method),

e layout at realize time (the BulletinBoardalize() method),

e layout for a resize (the BulletinBoardsize() = method),

e a way to generically handle geometry queries from a parent (the BulletinBparg_-
geometry() method),

e a way to generically handle geometry change requests from a child (the BulletinBoard
geometry_manager()  method),

e and finally a way to re-layout due to changes caused by a cAl@a]SetValues (the
subclasset_values() method).

The GeoUtils functions typically begin withXmGeo(but not all do), whereas the corresponding
BulletinBoard methods, for what the GeoUtils do normally, begin wXimGM

5.2 The BulletinBoard Class

There is one and only one clue in a BulletinBoard subclass that indicates that this class wants
to use the GeoUltils — thgeo_matrix_create method in the BulletinBoard class part (see
BulletinBP.h ). If this member is noNULL, the GeoUltils are activated for this subclass. The
prototype for this method looks like:

typedef XmGeoMatrix (*XmGeoCreateProc)(Widget composite,
Widget instigator,
XtWidgetGeometry *desired);

Thecomposite widget is (obviously) the BulletinBoard subclass. Thstigator is used in
thegeometry_manager andquery_geometry methods, as is theesired geometry (more
on the use of those later).



5.2. The BulletinBoard Class 43

5.2.1 The change_managed() and realize() Methods

Let’s start with the two most similar casefiange_managed() andrealize() . First take a
look at BulletinBoard’'schange_managed() method (inBulletinBoard.c in the directory
$(LESSTIF_ROOT)/libXm ). Here, in the book, | will present only lines of concern as | talk
about them (otherwise this book would get even larger).

Note that the first thing we do after we enter this method is look to see if the class record for the
widget has ageo_matrix_create() member. If there is one, we cdibndle_change_-
managed() and return (more about this on pdge 44). If there isn't one, we proceed with generic
BulletinBoard rules.

static void
change_managed(Widget w)

{
Widget p;
XmBulletinBoardClassRec *bb = (XmBulletinBoardClassRec *)XtClass(w);

if (bb->bulletin_board_class.geo_matrix_create) {

handle_change_managed(w, bb->bulletin_board_class.geo_matrix_create);
return;

Next, we call a XmGMEnforceMargin() . This function ensures that the default BulletinBoard
behavior of forcing children to be within the BulletinBoard margins is applied.

_XmGMEnforceMargin(w, BB_MarginWidth(w), BB_MarginHeight(w), False);

Then we clear the old shadow, as what we may do could alter the way the shadow looks.

_XmClearShadowType(w, BB_OIldWidth(w), BB_OIldHeight(w),
BB_OldShadowThickness(w), 0);
BB_OldShadowThickness(w) = 0;

If we are realized, or our width or height is zero (usually indicating that this is the first child to be
added), we call XmGMDoLayout() . This function implements the generic BulletinBoard layout
method.

if (XtlIsRealized(w) || XtWidth(w) == 0 || XtHeight(w) == 0) {
_XmGMDoLayout(w, BB_MarginWidth(w), BB_MarginHeight(w),
BB_ResizePolicy(w), False);

If we shrank, redraw the shadow (thgpose method does this too, but...)

if ((Xtwidth(w) < BB_OldWidth(w) || XtHeight(w) < BB_OldHeight(w)) &&



44 5. Fun and Pain with the GeoUtils

XtlsRealized(w)) {

_XmDrawShadows(XtDisplay(w), XtWindow(w),
MGR_TopShadowGC(w), MGR_BottomShadowGC(w),
0, 0, XtWidth(w), XtHeight(w),
MGR_ShadowThickness(w), BB_ShadowType(w));

Then, we record our width/height/shadow thickness.

BB_OldWidth(w) = Xtwidth(w);
BB_OldHeight(w) = XtHeight(w);
BB_OldShadowThickness(w) = MGR_ShadowThickness(w);

And finally, the required call to XmNavigChangedManaged() that all Manager subclasses
must do.

_XmNavigChangeManaged(w);

If you read the code forealize() in BulletinBoard.c , you'll see almost identical code.
The call to_XmNavigChangeManaged() isn’t necessary in theealize() method, as is the
testXtlsRealized() either. Instead theesalize() method must chain up to its superclass’
realize() method.

Now, let’s take a look at thbandle_change_managed() method that is called from Bullet-
inBoard’'schange_managed() method. We start this function by checking if we are realized, or

if our resize policy allows us to resize (i.e., WNONE If either case is true, we set our desired
width/height to zero; this is a cue to the GeoUtils to compute the desired size of this manager.
If either case is false, we set the desired width/height to our current width/height; this cues the
GeoUtils to lay out the manager to the current geometry (if possible).

static void
handle_change_managed(Widget w, XmGeoCreateProc mat_make)
{

Dimension wd, ht, retw, reth;

XmGeoMatrix geo;

XtGeometryResult result;

if (IXtlsRealized(w))

wd = ht = 0;

else if (BB_ResizePolicy(w) = XmNONE)
wd = ht = 0;

else {

wd = XtWidth(w);
ht = XtHeight(w);

We then call the matrix create function. This function is crucial, as the data structures created tell
the GeoUltils how to layout this particular widget.



5.2. The BulletinBoard Class 45

geo = mat_make(w, NULL, NULL);

Next, we call_XmGeoMatrixGet() . This function essentially iterates through all the children

we want to manage, querying each child (except the instigator) for the geometry the child desires.
But note: this isotthe same as all the managed children of this manager. If you forget to represent

a child in the data structures when you create the matrix, that child won’t be considered when you
lay out the manager. Instead, at least in the case of SelectionBox and friends, the results are as
specified in those class’s documentation — usually “undefined” (in practice, they’ll probably get
piled up in the top lefthand corner of the manager).

_XmGeoMatrixGet(geo, XmGET_PREFERRED_SIZE);

Now the real work-horse routine in the GeoUstils is invokedxmGeoArrangeBoxes() . This
function “parses” the data structure (the GeoMatrix) and lays out the children according to the
rules defined by the matrix. Caveat: this function doesalter the children’s geometry, but in-
stead records the new geometry information inXneKidGeometry structure contained by the
GeoMatrix.

_XmGeoArrangeBoxes(geo, 0, 0, &wd, &ht);

At this point,_XmGeoArrangeBoxes() has computed the size of the manager as it would ide-
ally like to be. The next code fragment checksBie ResizePolicy  for a value oXmRESIZE_-
GROWIf the ideal size is less than the current size, we reject the change (because that would
involve shrinking, and we should only grow). We then must re-layout the manager, by calling
_XmGeoArrangeBoxes()  with our current width and height.

if (BB_ResizePolicy(w) == XmRESIZE_GROW) {
[* check the return against the original. If the procedure would
* like the BB to shrink, call again */
if (wd < XtWidth(w) || ht < XtHeight(w)) {
wd = XtwWidth(w);
ht = XtHeight(w);
_XmGeoArrangeBoxes(geo, 0, 0, &wd, &ht);

Now we look to see if any of the above calculations has indicated that the manager wants to resize
(by comparing the computed width and height with the manZg#fidth andXtHeight ). If no
change is forthcoming, we just free the matrix and return. Otherwise we continue on.

if (wd == XtWidth(w) && ht == XtHeight(w)) {
_XmGeoMatrixFree(geo);
_XmNavigChangeManaged(w);
return;



46 5. Fun and Pain with the GeoUtils

Okay, the manager wants to change size. WextMbkeResizeRequest()  , and ask our parent
if we can change size. Eventually, the parent will respond with the size we can be (hopefully the
size the manager wants, but we can compromise here).

retw = wd;
reth = ht;
do {

result = XtMakeResizeRequest((Widget)w, retw, reth, &retw, &reth);
} while (result == XtGeometryAlmost);

The next fragment of code checks if a compromise was necessary, by evaluating whether the size
our parent said we can be is the same as what we want to be. If the two don’t match, we end up
calling_XmGeoArrangeBoxes() yet again, to arrange our children to suit our parent.

if (retw != wd || reth != ht)
_XmGeoArrangeBoxes(geo, 0, 0, &retw, &reth);

Now that all the geometry calculation has been done, our parent is happy, and the manager is happy,
we can go ahead and dXmConfigureObject() calls on all our children. That particular job

goes to the functionXmGeoMatrixSet() , which basically processes eaémKidGeometry

box and configures the widget that the box represents.

_XmGeoMatrixSet(geo);

If we've gotten this far, then we are pretty sure the manager’s size has changed. If the manager has
a shadow, now is the time to draw it (after erasing the old one).

if (XtlsRealized(w)) {
_XmClearShadowType(w, BB_OldWidth(w), BB_OIldHeight(w),
BB_OldShadowThickness(w), 0);

_XmDrawShadows(XtDisplay(w), XtWindow(w),
MGR_TopShadowGC(w), MGR_BottomShadowGC(w),
0, 0, XtWidth(w), XtHeight(w),
MGR_ShadowThickness(w), BB_ShadowType(w));

We're done with the GeoUstils for now, so we can deallocate the matrix. Then we record our new
width/height/shadow thickness. And finally, the required call XenNavigChangedManaged
that all Manager subclasses must do.

_XmGeoMatrixFree(geo);

BB_OldWidth(w) = Xtwidth(w);

BB_OldHeight(w) = XtHeight(w);
BB_OldShadowThickness(w) = MGR_ShadowThickness(w);
_XmNavigChangeManaged(w);

Therealize() case is identical to this one.



5.2. The BulletinBoard Class 47

5.2.2 The resize() Method

Theresize()  method isalmostidentical to the two described above. The most significant differ-
ence is that we aren’t supposed to talk back in this method, but accept whatever size we currently
are, and lay ourselves out accordingly. Thus, that method is missing the calls that request the man-
ager ideal size, and just does layout. Comparedbize() = method to thehange_managed()

method above:

static void
resize(Widget w)

XmBulletinBoardClassRec *bb = (XmBulletinBoardClassRec *)XtClass(w);
Widget p;

if (bb->bulletin_board_class.geo_matrix_create) {
handle_resize(w, bb->bulletin_board_class.geo_matrix_create);
return;

}

_XmGMEnforceMargin(w, BB_MarginWidth(w), BB_MarginHeight(w), False);

_XmClearShadowType(w, BB_OIldWidth(w), BB_OIldHeight(w),
BB_OldShadowThickness(w), 0);

BB_OldShadowThickness(w) = 0;

if (XtlsRealized(w) || XtWidth(w) == 0 || XtHeight(w) == 0) {

_XmGMDoLayout(w, BB_MarginWidth(w), BB_MarginHeight(w),

BB_ResizePolicy(w), True);

}
if ((XtWidth(w) < BB_OIldWidth(w) || XtHeight(w) < BB_OIldHeight(w)) &&
XtlsRealized(w)) {
_XmDrawShadows(XtDisplay(w), XtWindow(w),
MGR_TopShadowGC(w), MGR_BottomShadowGC(w),
0, 0, XtWidth(w), XtHeight(w),
MGR_ShadowThickness(w), BB_ShadowType(w));

}

BB_OldWidth(w) = XtWidth(w);

BB_OldHeight(w) = XtHeight(w);
BB_OldShadowThickness(w) = MGR_ShadowThickness(w);

You can also see the similaritieshiandle_resize() to handle_change_managed()

static void
handle_resize(Widget w, XmGeoCreateProc mat_make)
{

Dimension wd, ht;

XmGeoMatrix geo;

wd = XtWidth(w);
ht = XtHeight(w);
geo = mat_make(w, NULL, NULL);
_XmGeoMatrixGet(geo, XmGET_PREFERRED_SIZE);
_XmGeoArrangeBoxes(geo, 0, 0, &wd, &ht);
_XmGeoMatrixSet(geo);
if (XtlsRealized(w)) {
_XmClearShadowType(w, BB_OIldWidth(w), BB_OIldHeight(w),



48 5. Fun and Pain with the GeoUtils

BB_OldShadowThickness(w), 0);

_XmDrawShadows(XtDisplay(w), XtWindow(w),
MGR_TopShadowGC(w), MGR_BottomShadowGC(w),
0, 0, XtWidth(w), XtHeight(w),
MGR_ShadowThickness(w), BB_ShadowType(w));

_XmGeoMatrixFree(geo);

BB_OldWidth(w) = Xtwidth(w);

BB_OldHeight(w) = XtHeight(w);
BB_OldShadowThickness(w) = MGR_ShadowThickness(w);

5.2.3 The query_geometry() Method

For BulletinBoard, thejuery _geometry() method is probably the simplest — it does nothing
on it's own behalf, but uses either the GeoMatrix (fe&o_matrix_create() method exists),

or the generic method. This simplicity is deceiving; the complexity isn’t visible in BulletinBoard
— it's been shifted elsewhere.

static XtGeometryResult
query_geometry(Widget w, XtWidgetGeometry *proposed,
XtWidgetGeometry *answer)

{
XmBulletinBoardWidgetClass bbc = (XmBulletinBoardWidgetClass)XtClass(w);
XtGeometryResult res;
if (bbc->bulletin_board_class.geo_matrix_create) {
return _XmHandleQueryGeometry(w, proposed, answer,
BB_ResizePolicy(w),
bbc->bulletin_board_class.
geo_matrix_create);
res = _XmGMHandleQueryGeometry(w, proposed, answer,
BB_MarginWidth(w), BB_MarginHeight(w),
BB_ResizePolicy(w));
return res;
}

5.2.4 The geometry_manager() Method

Similar to thequery_geometry() method, thegeometry_manager() = method passes the
buck on complexity. It looks somewhat like tithange_managed() , resize() , andrea-

lize() methods, but does both less and more. It does less in terms of code in BulletinBoard, but
the code in the GeoUltils is much more complex, and uses little of the code that the other three
methods use. Also, thgeometry _manager() method uses the “cache” variable in the Bul-
letinBoard Widget instance, for repeated callgéometry_mananger() = whengeometry -
manager() returnsXtGeometryAlmost

static XtGeometryResult



5.2. The BulletinBoard Class 49

geometry_manager(Widget w, XtWidgetGeometry *desired,
XtWidgetGeometry *allowed)

{
Widget bb = XtParent(w);
XmBulletinBoardWidgetClass bbc = (XmBulletinBoardWidgetClass)XtClass(bb);
if (bbc->bulletin_board_class.geo_matrix_create) {
return handle_geometry_manager(w, desired, allowed,
bbc->bulletin_board_class.
geo_matrix_create);
return _XmGMHandleGeometryManager(bb, w, desired, allowed,
BB_Marginwidth(bb),
BB_MarginHeight(bb),
BB_ResizePolicy(bb),
BB_AllowOverlap(bb));
}
If you read thehandle_geometry_manager() code below, you'll see a similarity to the
change_managed() ,realize() ,andresize() code above.

static XtGeometryResult

handle_geometry_manager(Widget w,
XtWidgetGeometry *desired, XtWidgetGeometry *allowed,
XmGeoCreateProc mat_make)

Widget bb = XtParent(w);
XmBulletinBoardWidgetClass bbc = (XmBulletinBoardWidgetClass)XtClass(bb);
XtGeometryResult res;

if (I(desired->request_mode & (CWWidth|CWHeight)))
return XtGeometryYes;
if (BB_OIldShadowThickness(bb) '= 0 ||
BB_ResizePolicy(bb) != XmRESIZE_NONE) {
_XmClearShadowType(bb, BB_OIldWidth(bb), BB_OIldHeight(bb),
BB_OldShadowThickness(bb), 0);
BB_OldShadowThickness(bb) = 0;
}
res = _XmHandleGeometryManager(bb, w, desired, allowed,
BB_ResizePolicy(bb), &BB_GeoCache(bb),
bbc->bulletin_board_class.
geo_matrix_create);
if (!BB_InSetValues(bb) ||
Xtwidth(bb) > BB_OIdWidth(bb) || XtHeight(bb) > BB_OIldHeight(bb)) {
if (XtlsRealized(bb)) {
_XmDrawShadows(XtDisplay(bb), XtwWindow(bb),
MGR_TopShadowGC(bb), MGR_BottomShadowGC(bb),
0, 0, XtWidth(bb), XtHeight(bb),
MGR_ShadowThickness(bb), BB_ShadowType(bb));
}

}
BB_OldWidth(bb) = Xtwidth(bb);

BB_OldHeight(bb) = XtHeight(bb);
return res;

Finally, we should discuss trset_values() method.



50 5. Fun and Pain with the GeoUtils

5.2.5 The set_values() Method

The set_values  method is probably the most straight-forward BulletinBoard method there
is. We aren’t concerned about children wanting to change (the Intrinsics toolkit will use our
geometry_manager()  method if that is the case), we're only concerned with the user changing
us There is one issue, thoughset_values() changes which change our geometry.

The reason for all this is that BulletinBoard, and subclasses of BulletinBoard, have a reasonably
high number of children that are specified in instance variables. Rather than “ripple” the parent’s
geometry handler as children are changed, BulletinBoard and subclasses save them up until the
set_values() method in theclass of the widget being changésicalled. The designers of

M=TIF couldn’t stop thegeometry_manager() method from being called, but they added a
mechanism that can control when the negotiation actually occurs.

The BulletinBoard widget has an instance variable calladset values ". This is a Boolean

that is set when aet_values() method is invoked (keep in mind that tliet_values()

method is chained in super- to sub-class order), and cledmsastat the exit of the method. Right

before the exit, the variable is cleared, and a test is used to see if a size update should be performed.
If you look in BulletinBoard and subclasses in & _values method, you'll see the following

code fragment:

if (need_refresh == True && XtClass(new) == xmBulletinBoardWidgetClass)

_XmBulletinBoardSizeUpdate(new);
return False;

For subclasses, replace the class check with a match for the subclass.

This trigger, in conjunction with an exception procedure ftbhegeo_request() field in the
GeoMatrix), keeps thgeometry_manager()  from handling possibly conflicting changes in
the widget. During the XmHandleGeometryManager()  call, theno_geo_request() call

is made to see if geometry negotiation should happen. Take a look ap tigeo_request()

in SelectionBox:

Boolean _XmSelectionBoxNoGeoRequest(XmGeoMatrix _geoSpec)

if (BB_InSetValues(_geoSpec->composite) &&
XtClass(_geoSpec->composite) == xmSelectionBoxWidgetClass)
return TRUE;

return FALSE;

Should a geometry request come from a child dueg values() , the flagBB_InSet-
Values() will be True , and the negotiation will be delayed.

static Boolean



5.2. The BulletinBoard Class 51

set_values(Widget old, Widget request, Widget new,
ArglList args, Cardinal *num_args)

{
BB_InSetValues(new) = True;
/*
* code block to handle set_values changes
*/
BB_InSetValues(new) = False;
if (XtWidth(new) != XtWidth(old) || XtHeight(new) != XtHeight(old)) {
need_refresh = True;
if (need_refresh == True && XtClass(new) == xmBulletinBoardWidgetClass)
_XmBulletinBoardSizeUpdate(new);
return False;
return need_refresh;
}
Note especially the call toXmBulletinBoardSizeUpdate() . This should be done in ev-

ery BulletinBoard subclass that uses the GeoUltilsThis gives the manager class the oppor-
tunity to handle geometry changes in an instance’s children that have occurred as a result of
set_values()

The code for XmBulletinBoardSizeUpdate is as follows:

void
_XmBulletinBoardSizeUpdate(Widget w)

{
XmBulletinBoardWidgetClass bbc = (XmBulletinBoardWidgetClass)XtClass(w);

if (IXtlsRealized(w))
return;
if (bbc->bulletin_board_class.geo_matrix_create == NULL) {
BB_OIldWidth(w) = XtWidth(w);
BB_OldHeight(w) = XtHeight(w);
return;

}
if (!BB_OldShadowThickness(w) && BB_ResizePolicy(w) = XmRESIZE_NONE) {
_XmClearShadowType(w, BB_OIldWidth(w), BB_OIldHeight(w),
BB_OldShadowThickness(w), 0);
BB_OldShadowThickness(w) = 0;

_XmHandleSizeUpdate(w, BB_ResizePolicy(w),
bbc->bulletin_board_class.geo_matrix_create);
if (Xtwidth(w) < BB_OIldWidth(w) || XtHeight(w) < BB_OldHeight(w)) &&
XtlsRealized(w)) {
_XmDrawShadows(XtDisplay(w), XtWindow(w),
MGR_TopShadowGC(w), MGR_BottomShadowGC(w),
0, 0, XtWidth(w), XtHeight(w),
MGR_ShadowThickness(w), BB_ShadowType(w));

}

BB_OldWidth(w) = XtWidth(w);

BB_OldHeight(w) = XtHeight(w);
BB_OldShadowThickness(w) = MGR_ShadowThickness(w);



52 5. Fun and Pain with the GeoUtils

The function_XmHandleSizeUpdate()  is very similar to thechange_managed() method,
in that it does layout computation, and requests a size change from the parent.

5.3 The Data Structures

Now that you have a passingly familiar with the basics, let's digress for a time and take a look at
the data structures involved in the GeoUtils, as they should be understood before we talk about
the implementation of an example subclass. There are three different data structures tangled up in
the GeoUltils layout mechanism (figre5.1): tkeGeoMatrix controls how the layout is to be
performed, theXmGeoMajorLayout contains information about individual rows or columns of
childen, and finally th&XmKidGeometry records the geometry of a single child.

=| [0
row #1 |child #1 | | #2 | | child #3 childen of BulletinBoard subclass widget
- BulletinBoard subclass widget
row#2 ||| #4 || #5 || child#6 | using the GeoUtils
— XmGeoMatrixRec |
XmGé.oMajorLayout layouts; E
— XmKidGeometry boxes; ~ oo
#1 | #2 | #3 # | #5 | #6 children’s geometries
J
Each row is terminated by an
’—4 * entry with widget setto NULL
I
oW | TOW o
= 41 | #2 layout of individual rows

Last entry in the XmGeoMa jorLayout
vector has end set to TRUE

Figure 5.1: Layout structures to mess around with when using the GeoUltils.

5.3.1 The GeoMatrix

The layout of the GeoMatrix structure is as follows:

typedef struct _XmGeoMatrixRec {
Widget composite;



5.3. The Data Structures 53

Widget instigator;
XtWidgetGeometry instig_request;
XtWidgetGeometry parent_request;
XtWidgetGeometry *in_layout;
XmKidGeometry boxes; [* there is a NULL pointer at the end of each row */
XmGeoMajorLayout layouts;
Dimension margin_w;
Dimension margin_h;
Boolean stretch_boxes;
Boolean uniform_border;
Dimension border;
Dimension max_major;
Dimension boxed_minor;
Dimension fill_minor;
Dimension width;
Dimension height;
XmGeoExceptProc set_except;
XmGeoExceptProc almost_except;
XmGeoExceptProc no_geo_request;
XtPointer extension;
XmGeoExtDestructorProc ext_destructor;
XmGeoArrangeProc arrange_boxes;
unsigned char major_order;

} XmGeoMatrixRec;

typedef struct _XmGeoMatrixRec *XmGeoMatrix;

typedef void (*XmGeoArrangeProc)(XmGeoMatrix matrix,
Position x, Position v,
Dimension *width_inout,
Dimension *height_inout);
typedef Boolean (*XmGeoExceptProc)(XmGeoMatrix matrix);
typedef void (*XmGeoExtDestructorProc)(XtPointer extension);
typedef void (*XmGeoSegmentFixUpProc)(XmGeoMatrix matrix, int command,
XmGeoMajorLayout row_layout,
XmKidGeometry kid_info);

enum {
XmMGEO_ROW_MAJOR,
XmGEO_COLUMN_MAJOR

The GeoMatrix is the mother of all GeoUltils structures. In it, we have control information for how
the layout is to be performed, info on each child, margin information, etc. Also, when you look
at the GeoUltils, keep in mind that the developers intended for it to work both in row major and
column major layout (i.e., up and down rows, and side to side columns). The comm&ni®ih
indicate that they didn’t get any further than row major layout, though. Column major layout hasn't
even been implemented in4viF 2.0 — the comments are still there.

Let’s look at each member:
Widget composite;
The BulletinBoard subclass instance that’s currently using the GeoUltils.

Widget instigator;
If from geometry_manager , the child that requested a geometry changéWi L



54 5. Fun and Pain with the GeoUtils

XtWidgetGeometry instig_request;
Fromgeometry_manager ,the change that the instigator requestedyOLL

XtwidgetGeometry parent_request;
If from query_geometry , the way our parent wants us to look,JLL

XtWidgetGeometry *in_layout;
Used in the cases where multiple calls are madxtidakeResizeRequest() or Xt-
MakeGeometryRequest()  from one of the children. There is a GeoMatrix “cache” in-
stance variable in the BulletinBoard widget structure that gets used also. | don't think
MxTIF's usage of this variable, andstig_request is quitethe same as M IF’s.

XmKidGeometry boxes;
This member is used to keep layout information for each of the children of this manager. It
is sort of a “cache” for the current and proposed geometry of each child. It is an array of
structures: one structure for each child, each row of children separated by a structure whose
child pointer isNULL

XmGeoMajorLayout layouts;
This is used to keep layout information for each row of children (especially things like
whether each child in the row should be the same height, or the same width, or both, etc.
More on this when we go throught the structure involved).

Dimension margin_w;
The margin width of the manager.

Dimension margin_h;
The margin height of the manager.

Boolean stretch_boxes;
Whether or not children should be stretched to fill voids in the layout.

Boolean uniform_border;
Whether or not the children should have the saxtiBorderWidth . This can also be
controlled on a row basis (thémGeoMajorLayout has auniform_border  field, too.
This value, if set, overrides the Layout structure’s variable).

Dimension border;
If uniform_border is true, the value that should be usedXoBorderWidth

Dimension max_major;
The maximum value of the major layout dimension. For row major layout, this would be the
maximum computed width of all rows.

Dimension boxed_minor;
For row major layout, this is the cumulative height of all the rows, not including fill.

Dimension fill_minor;
For row major layout, this is the amount of fill space needed. In other words, the amount of
“fill space” needed vertically between the rows.



5.3. The Data Structures 55

Dimension width;
This will hold the computed width of the manager.

Dimension height;
This will hold the computed height of the manager.

XmGeoExceptProc set_except;
A manager can override how the geometry of children are set by providing an override
method here.

XmGeoExceptProc almost_except;
| have no clue. Maybe a method that can be used if a parend@@gometryAlmost  to
aresize request?

XmGeoExceptProc no_geo_request;
There are certain times when you want to avoid geometry negotiation for a while; usually
in set_values() . This function is called from XmHandleGeometryManager to de-
termine if negotiation should really happen.

XtPointer extension;
Extension data for use by the override methods. The GeoUtils don’t do anything with this
member directly.

XmGeoExtDestructorProc ext_destructor;
A function that gets invoked when a GeoMatrix is freed, if the matrix has aNidbk:
extension.

XmGeoArrangeProc arrange_boxes;
An override method for arranging the children. If this is medtL most of the GeoUltils
will not be used.

unsigned char major_order;
An indicator for whether this matrix is row- or column-major. Currently only row-major is
implemented. The values allowed here ¥dneGEO_ROW_MAJ&RI (in principle XmGEQO_-
COLUMN_MAJOR

5.3.2 The MajorLayoutRec

The next level of structures (actually, a union) control how the individual rows or columns are
layed out.

typedef union _XmGeoMajorLayoutRec {
XmGeoRowLayoutRec row;
XmGeoColumnLayoutRec col;

} XmGeoMajorLayoutRec;

typedef union _XmGeoMajorLayoutRec *XmGeoMajorLayout;



56 5. Fun and Pain with the GeoUtils

The only member of interest is thmGeoRowLayoutRec. Here’s the layout for both; below,
I'll describe what the fields mean for tiowlLayoutRec - the fields of &ColumnLayoutRec
(should it ever get implemented) are similar.

typedef struct {
Boolean end;
XmGeoSegmentFixUpProc fix_up;
Dimension even_width;
Dimension even_height;
Dimension min_height;
Boolean stretch_height;
Boolean uniform_border;
Dimension border;
unsigned char fill_mode;
unsigned char fit_mode;
Boolean sticky_end;
Dimension space_above;
Dimension space_end;
Dimension space_between;
Dimension max_box_height;
Dimension boxes_width;
Dimension fill_width;
Dimension box_count;

} XmGeoRowLayoutRec, *XmGeoRowLayout;

typedef struct {
Boolean end;
XmGeoSegmentFixUpProc fix_up;
Dimension even_height;
Dimension even_width;
Dimension min_width;
Boolean stretch_width;
Boolean uniform_border;
Dimension border;
unsigned char fill_mode;
unsigned char fit_mode;
Boolean sticky_end;
Dimension space_|left;
Dimension space_end;
Dimension space_between;
Dimension max_box_width;
Dimension boxed_height;
Dimension fill_height;
Dimension box_count;

} XmGeoColumnLayoutRec, *XmGeoColumnLayout;

enum {
XmMGET_ACTUAL_SIZE = 1,
XmGET_PREFERRED_SIZE,
XmGEO_PRE_SET,
XmGEO_POST_SET

3
[* fill modes for the GeolLayoutRec’'s below */
enum {

XmGEO_EXPAND,
XmGEO_CENTER,
XmGEO_PACK



5.3. The Data Structures 57

h

/* fit modes for the GeolayoutRec's below */
enum {
XmGEO_PROPORTIONAL,
XMGEO_AVERAGING,
XmGEO_WRAP

Now for a description of thmGeoRowLayoutRec:

Boolean end;
If we have processed all the rows, this end flag will be true. In other words, if your widget
has n rows of (child) widgets, your matrix will haye + 1) row layout records, with the
(n+1) row having the end flagrue . All other rows will haveend set toFalse .

XmGeoSegmentFixUpProc fix_up;
Some rows might need special fixing after they've been laid out. For example, a separator
in the SelectionBox should go the full width of the SelectionBox (as opposed to going from
margin to margin). Thisix_up()  method allows such special cases to be handled. The
only other special cases that | know about is a fixup for the MenuBar in SelectionBox and
friends (extending the width so that it stretches for the full width of the parent, much like
what is done for Separators).

Dimension even_width;

Dimension even_height;
These two members are overloaded. At the beginning of matrix processing, they are used as
Booleans to indicate whether the children in this row should end up having the same width
and height across the row. If they areue , they end up containing the maximum width
and height of all the children in a given row, and then applied to each child after the max is
computed.

Dimension min_height;
The minimum height for any given child in a row.

Boolean stretch_height;
Indicates if we can stretch (or shrink) the widgets in a row if the manager isn't quite the size
we want.

Boolean uniform_border;
Assuming that the GeoMatrix didn’t set itmiform_border member, this field indicates
that this row should have a uniform border.

Dimension border;
Assuming that uniform_border (above) is true, the valut®orderwidth  for the wid-
gets in this row.

unsigned char fil_mode;
One of XmGEO_EXPANBMGEO_CENTERr XmGEO_PACK he only one of these I've
seen used iIXMGEO_CENTERsuspect that the other two might be used by RowColumn,



58 5. Fun and Pain with the GeoUtils

and possibly Form. What happens if tlie mode is XmGEO_CENTER that extra fill
space is distributed between the children in a row; if XGIGEO_CENTEEhe children are
resized proportionally.

unsigned char fit_mode;
One of XMGEO_PROPORTIONAMGEO_AVERAGINGr XmGEO_ WRARMGEO PRO-
PORTIONALmMeans layout the widgets in this row in proportion to the individual sizes of
each widgetXmGEO_AVERAGIN@Geans layout the children based on the average dimen-
sions of all childrenXmGEO_WRAReans if we can't fit the children on one line, wrap
them around to what is effectively another row. You can see this behavior when you resize
a MkTIF Dialog to be taller and narrower than it wants to be.

Boolean sticky_end;
Indicates that the last box in the row should be as close to the right margin as possible.

Dimension space_above;
Indicates the amount of space that should be left above this row. if the topspacs_-
above is less than the requested margin, the margin is used.

Dimension space_end;
Indicates the amount of space that should be left at the ends of the row.

Dimension space_between;
Indicates how much space should be between the widgets in a row.

Dimension max_box_height;
Indicates the hight of the largest box in the row.

Dimension boxes_width;
Indicates the cumulative width of all the widgets in a row.

Dimension fill_width;
Indicates the cumulative fill space in a row, both between widgets and at the row end.

Dimension box_count;
The number of boxes in the row.

In general, the user is only interested in fields up to (and includpgie_between . The re-
maining fields are used during the calculations.

5.3.3 The KidGeometryRec

The final structure is the most important one: XmeKidGeometry structure. This structure con-
tains the geometry for a child, and provides a storage place during the layout calculations for that
geometry while the algorithms proceed.

typedef struct _XmKidGeometryRec {



5.4. The GeoUtils Functions 59

Widget kid;
XtWidgetGeometry box;
} XmKidGeometryRec, *XmKidGeometry;

5.4 The GeoUstils Functions

Let's examine the published interface, as these are really the functions that must be understood if
you want to understand BulletinBoard, and its GeoUltils using subclasses. By the waytim M
certain GeoUtils functions are also used by RowColumn. I'll indicate these as each function is
discussed (well, at least the ones | know about).

5.4.1 The Allocation, Initialization, and Deallocation Functions

First, let's talk about the functions used when you want to allocate a GeoMatrix (i.e., the widget
method known ageo_matrix_create() ). In that method, you have to compute the number
of rows of children that you are going to layout, and the number of children (total) involved (more
on this when we actually examine a subclass).

The first function, which is actually called from subclass code, takes the information you've gath-
ered about your children, and allocates the GeoMatrixXim&eoMajorLayout (S) structures,
theXmKidGeometry (s) structures, and mallocs an extextSize " bytes for any extension that

will be used. It returns a pointer to the allocated structure. Note that it doesn't fill in any informa-
tion in the matrix — it just allocates it.

XmGeoMatrix _XmGeoMatrixAlloc(unsigned int numRows,
unsigned int numBoxes,
unsigned int extSize);

The next function verifies that the child being examined is valid, and sets K@ Geometry
structure to point at this kid.

Boolean _XmGeoSetupKid(XmKidGeometry geo, Widget kidwid);

For those of you interested in writing subclass widgets, those two functions are all you really need
to know (well, except for knowing how to use them, of course). The rest of the functions are either
internal, or buried within the BulletinBoard class.

Finally, when geometry management is complete, the following function deallocates the matrix.

void _XmGeoMatrixFree(XmGeoMatrix geo_spec);



60 5. Fun and Pain with the GeoUtils

5.4.2 Layout Management Functions

Layout management is essentially a five phase process:
e We ask our children how they want to look.
We figure out how that would make us look.
We ask our parent if we can look that way.
We take how our parent says we can look, and recompute how we want to look.
We apply the recomputed look to our children.

5.4.2.1 Querying the Children

This first function queries all the manager’s children for their geometry. The parageef€ype
can actually be several different values, but in practice I've never seen the GeoUtils use anything
other tharXmGET_PREFERRED_SIZE

void _XmGeoMatrixGet(XmGeoMatrix geoSpec, int geoType);

The pseudo code for this function is as follows:

_XmGeoMatrixGet()

while ( rows remaining ) {
if ( end of row )
advance to next row
else
_XmGeolLoadValues(kid);

_XmGeoMatrixGet()  uses a lower level function to ask children their prefered goemeXy:-
GeolLoadValues() . The behavior of the function is slightly different when the child is the insti-
gator of a geometry management conversation.

void _XmGeolLoadValues(Widget wid, int geoType, Widget instigator,
XtWidgetGeometry *request,
XtWidgetGeometry *geoResult);

Testing indicates that this function is used by the RowColumnmiM

5.4.2.2 Computing the Desired Size

The next function is the real workhorse in layout computation. Basically, it takes the information
that was recorded from the previous step and determines how that would make us look. It uses
values in theGeoMatrix , the MajorLayoutRec , and theKidGeometryRec to determine

this. It uses this information, in combination with the input parameters, to determine how the total
composite should look.



5.4. The GeoUtils Functions 61

void
_XmGeoArrangeBoxes(XmGeoMatrix geoSpec, Position x, Position v,
Dimension *pW, Dimension *pH);

The pseudo code for this function is as follows:

_XmGeoArrangeBoxes()

if ( user specified an arrange procedure ) {
call user’'s arrange
return

}
_XmGeoAdjustBoxes()
_XmGeoGetDimensions()

adjust the overall layout based on the input parameters

while ( rows remaining )
_XmGeoArrangeList(row);
if ( height needs adjusting ) {
if ( user allows stretching )
_XmGeoStretchVertical()
else
_XmGeoFillVertical()

_XmGeoArrangeBoxes() calls this next function to determine the overall layout. In the current
implementation, XmGeoAdjustBoxes() loops through the rows in the composite, figuring out
how each row would look.

void _XmGeoAdjustBoxes(XmGeoMatrix geoSpec);

The pseudo code for this function is as follows:

_XmGeoAdjustBoxes()

while ( rows remaining ) {
if ( children in row should be even width )
_XmGeoBoxesSameWidth();
if (children in row should be even height )
_XmGeoBoxesSameHeight();
if ( children in row should have the same border )
adjust the border

If the relevant flags are set in thdajorLayoutRec , XmGeoAdjustBoxes()  invokes the
following two functions:



62 5. Fun and Pain with the GeoUtils

Dimension

_XmGeoBoxesSameWidth(XmKidGeometry rowPtr, Dimension width);
Dimension

_XmGeoBoxesSameHeight(XmKidGeometry rowPtr, Dimension height);

Next, XmGeoArrangeBoxes() calls this next function to compute the total picture of the de-
sired geometry. This function takes the overal results computed above, and adjusts values in the
Matrix and Layout data structures.

void
_XmGeoGetDimensions(XmGeoMatrix geoSpec);

5.4.2.3 Computing the Layout

This next function is responsible for actually laying out each row. It is in this function that things
like thefit_mode andfill_mode inthelLayout structure are evaluated.

Position

_XmGeoArrangeList(XmKidGeometry boxes, XmGeoRowLayout layout,
Position x, Position v,
Dimension width, Dimension margin);

The pseudo code for this function is as follows:

_XmGeoArrangeList()
{
figure out the width of our children
figure out the "fill* space wanted
figure out the amount of adjusting necessary
figure out the starting height of this row

if ( things aren’t going to fit, and layout fit_ mode is XmGEO_WRAP) {
_XmGeoLayoutWrap()
return

}

else if ( things aren't going to fit ) {

if ( fit_mode is Xm_GEO_AVERAGING)
FitBoxesAveraging()

else
FitBoxesProportional()
}
else if (  the wanted width is wider than necessary ) {
if (fill_mode is XmGEO_CENTER)
_XmGeoCalcFill()
else
FitBoxesProporitional()
}
_XmGeoLayoutSimple()



5.4. The GeoUtils Functions 63

Finally, after the rows have been laid out, the y offsets or the widget heights in each row may
need adjusting, based on the actual height of the widget, and the vasetoh_height
_XmGeoArrangeBoxes() takes care of that with the following two functions. The first stretches
the rows to fit; the second inserts filler space.

Dimension

_XmGeoStretchVertical(XmGeoMatrix geoSpec, Dimension height, Dimension maxh);
Dimension

_XmGeoFillVertical XmGeoMatrix geoSpec, Dimension height, Dimension maxh);

I'll stop at this level. If you want to know more, you'll need to delve into the codeeoUTtils.c
What I've given should be enough for you to find your way around.

5.4.2.4 Applying the Changes

If after all the above computations have happened, and our parent has agreed to our resize request,
we call the following function:

void _XmGeoMatrixSet(XmGeoMatrix geoSpec);

The pseudo code for this is as follows:

_XmGeoMatrixSet()

for ( each row ) {
for ( each child in row )
_XmSetKidGeo()

The lower level function XmSetKidGeo() usually calls XmConfigureObject() . The be-
havior is slightly different during geometry management conversations.

void _XmSetKidGeo(XmKidGeometry kg, Widget instigator);

5.4.3 The Method Functions

The method functions basically implement most of the behavior for certain Xt required methods;
the GeoUtils provide default implementations fmt_values()  , query_geometry() , and
geometry_manager()

Theset_values() case (really, the implementation ckmBulletinBoardSizeUpdate()

—see the section on BulletinBoasdt_values() ) is handled by XmHandleSizeUpdate()

This function is much like thehange_managed() method in BulletinBoard (see the relevant
section for details).



64 5. Fun and Pain with the GeoUtils

void
_XmHandleSizeUpdate(Widget wid, unsigned char policy,
XmGeoCreateProc createMatrix);

Thequery_geometry() method is handled by the following function. Essentially, this function
implements the geometry calculation without doing the layout common to the other methods.

XtGeometryResult

_XmHandleQueryGeometry(Widget wid,
XtWidgetGeometry *intended,
XtWidgetGeometry *desired,
unsigned char policy,
XmGeoCreateProc createMatrix);

The next function handles ttgeometry_manager() = method. It is truly a nasty function, and

was very difficult to figure out. This is the only place in the entire GeoUtils functionality where
the cache is used (and really, it’s the only place where it needs to be used). There are some pretty
good reasons for this — manager children tend to loop ardiiNékeResizeRequest() , or
XtMakeGeometryRequest() , until their parent says yes or no. By using a cache, you can
eliminate at least one iteration of the negotiation (which is relatively expensive). | don’t really
think most readers of this document are interested in the gory details. If you are, reading through
the code should give you the necessary information.

XtGeometryResult

_XmHandleGeometryManager(Widget wid, Widget instigator,
XtWidgetGeometry *desired,
XtWidgetGeometry *allowed,
unsigned char policy,
XmGeoMatrix *cachePtr,
XmGeoCreateProc createMatrix);

These next two functions do most of the default behavior for the BulletinBoard, when the widget
class does not use the GeoUtils (unless, of course, the subclass overrides them).

This first function is invoked when a parent queries a BulletinBoard widget for its prefered size.

XtGeometryResult

_XmGMHandleQueryGeometry(Widget w,
XtWidgetGeometry *proposed, XtWidgetGeometry *answer,
Dimension margin_width, Dimension margin_height,
unsigned char resize_policy)

The second function is invoked when a child queries a BulletinBoard parent for a resize.

XtGeometryResult
_XmGMHandleGeometryManager(Widget w, Widget instigator,
XtWidgetGeometry *desired,
XtWidgetGeometry *allowed,
Dimension margin_width, Dimension margin_height,
unsigned char resize_policy, Boolean allow_overlap)



5.4. The GeoUtils Functions 65

5.4.4 Miscellaneous Functions
This function determines if two widget geometries are identical.

Boolean
_XmGeometryEqual(Widget wid, XtWidgetGeometry *geoA,
XtWidgetGeometry *geoB);

The next function checks the desired geomeegired of the widgetwid against the parent’s
proposal irresponse . It returnsTrue only if the position (X, y), as well as the width and height,

and finally the border width are equal in the desired and proposed geometry. If any one of these five
geometry characteristics is of no concern (the correspondingfgisponse->request_mode

is unset) then it will be ignored.

Boolean
_XmGeoReplyYes(Widget wid, XtWidgetGeometry *desired,
XtWidgetGeometry *response);

This function asks the parent of the widgetor a new desired geometgeom of w. If the parent
answersK<tGeometryAlmost  then we ask him a second time with the proposed geometry, so he
can accept and set the new geometry. If the parent refuses in any way then we'll inform the user of
our parent’'s impudent habbits (because he doesn’'t conform to the geometry negotiation protocol,
see O'Reilly, Vol. 5, pp. 264 for details aboXtMakeGeometryRequest ). This function is at

least only a convenience function but according to informed sourcesFNlever issues a bare
XtMakeGeometryRequest  but uses alwaysXmMakeGeometryRequest .

XtGeometryResult
_XmMakeGeometryRequest(Widget w, XtWidgetGeometry *geom);

The next function erases the background at both the old and the new position of a rectangle object.
Whereas the old position must be explicitely specifiedlih the new position is determined from
w. Redrawing events will be triggered (and queued) for the affected areas.

void
_XmGeoClearRectObjAreas(RectObj r, XWindowChanges *old);

The next one reappears XseReplyToQueryGeometry in MxTIF 2.0. This function is a
shortcut for simplequery_geometry  methods which are interested only in their width and
height but neither their position nor border width. To use it, first compute your desired width
and height in your widget'guery_geometry  method and then return the result from the call to
_XmGMReplyToQueryGeometry .

void
_XmGMReplyToQueryGeometry(void);



66 5. Fun and Pain with the GeoUtils

These next two functions are “fixup” functions. They are invoked KynGeoMatrixSet() , to
override the generic geometry computation with specific behavionMenuBarFix() forces a
menu bar to be the full width of its composite parerKmSeparatorFix() does the same for
separators.

void
_XmMenuBarFix(XmGeoMatrix geoSpec, int action,
XmGeoMajorLayout layoutPtr, XmKidGeometry rowPtr);
void
_XmSeparatorFix(XmGeoMatrix geoSpec, int action,
XmGeoMajorLayout layoutPtr, XmKidGeometry rowPtr);

5.4.5 BulletinBoard Helper Functions

The next several functions implement bits of BulletinBoard behavior.

This next function ensures that a BulletinBoard child is constrained within the margins of the
BulletinBoard.

void

_XmGMEnforceMargin(Widget w,
Dimension margin_width, Dimension margin_height,
Boolean useSetValues)

The next function implements thmNallowOverlap  behavior (or rather, iIKmNallowOver-
lap isFalse , makes sure that children do not overlap).

Boolean
_XmGMOverlap(Widget w, Widget instigator,
Position x, Position y, Dimension width, Dimension height)

The next function computes the desired size of a BulletinBoard.

void
_XmGMCalcSize(Widget w, Dimension margin_w, Dimension margin_h,
Dimension *retw, Dimension *reth)

The next function performs the BulletinBoard layout behavior.

void
_XmGMDoLayout(Widget w, Dimension margin_w, Dimension margin_h,
unsigned char resize_policy, short adjust)



5.5. How to Build a Subclass Using the GeoUltils 67

5.4.6 RowColumn Specific Functions

The following functions are specific to RowColumn functionality, but reside in the GeoUltils im-
plementation.

I don’'t know what this first function does, but it looks suspiciously likBeoMatrix allocation
function, specialized foRCKidGeometry .

XmKidGeometry

_XmGetKidGeo(Widget wid, Widget instigator,
XtWidgetGeometry *request,
int uniform_border, Dimension border,
int uniform_width_margins,
int uniform_height_margins,
Widget help, int geo_type);

There is an undocumented functiocfmRCGetKidGeo() , that | believe is similar to XmGeo-
MatrixGet() . In LESSTIF, | believe this is implemented asitialize_boxes() in Row-
Column.c .

That function calls this next function, as well a8mGeoLoadValues()

int _XmGeoCount_kids(CompositeWidget c);

Anybody out there who knows that this function does?

5.5 How to Build a Subclass Using the GeoUtils

At this point, we've come full circle. Now that you know something about how the GeoUltils
work, let's examine how a subclass can use them. I'll now talk abouKth&rivial  widget

class. It doesn't implement anything more than an even layout of the button children as if they
were action buttons in a dialog. The order of the buttons in the layout is the same as the creation
order. In order to keep it simple, there are no new Xt or synthetic resources beyond those covered
by BulletinBoard. If you are thinking about using the GeoUtils, Thieial ~ class makes a pretty

good template. The tested implementation live$((rESSTIF_ROOT)/testXm/geometry

5.5.1 The Header Files

There really isn’t much to say about the header files. They are pretty much standard headers for a
widget implementation (same procedure as every widget...). Here’s the public header (from the
file Trivial.h ):

#ifndef TRIVIAL_H



68 5. Fun and Pain with the GeoUtils

#define TRIVIAL_H

#include <Xm/Xm.h>
#include <Xm/BulletinB.h>

extern WidgetClass xmTrivialWidgetClass;

typedef struct _XmTrivialRec *XmTrivialWidget;
typedef struct _XmTrivialConstraintRec *XmTrivialConstraint;

#ifndef XmlsTrivial
#define XmisTrivial(a) (XtlsSubclass(a, xmTrivialWidgetClass))
#endif

Widget XmCreateCreateTrivial(Widget _p, char *_n, ArgList _a,
Cardinal _narg);

#endif

Now, the private headeffivialP.h  ):

#ifndef TRIVIAL_P_H
#define TRIVIAL_P_H

#include <Xm/XmP.h>
#include <Xm/BulletinBP.h>
#include "Trivial.h"

typedef struct _XmTrivialClassPart {
int duh;
} XmTrivialClassPart;

typedef struct _XmSmartMessageBoxClassRec {

CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;
XmManagerClassPart manager_class;
XmBulletinBoardClassPart bulletin_board_class;
XmTrivialClassPart trivial_class;

} XmTrivialClassRec, *XmTrivialWidgetClass;
typedef struct _XmTrivialPart {

int gaah;
} XmTrivialPart;

typedef struct _XmTrivialRec {

CorePart core;
CompositePart composite;
ConstraintPart constraint;
XmManagerPart manager,;
XmBulletinBoardPart bulletin_board;
XmTrivialPart trivial;

} XmTrivialRec, *XmTrivialPtr;

#endif



5.5. How to Build a Subclass Using the GeoUltils 69

5.5.2 The Implementation

In this section I'll describe the various sectionsTinvial.c that are important to the subclass.
The new sections are printed irbald typewriter font. Important parts of the new sections
are typeset in aitalic bold typewriter font.

#include
#include
#include
#include
#include
#include
#include
#include

<LTconfig.h>
<Xm/XmP.h>
<Xm/Xml.h>
<Xm/BulletinBP.h>
<Xm/PushBP.h>
<Xm/PushBGP.h>
<Xm/DebugUtil.h>
"TrivialP.h"

/*
* Forward Declarations
*/

static

static
static

void class_initialize();
void class_part_initialize(WidgetClass class);
void initialize(Widget request, Widget new,
ArgList args, Cardinal *num_args);
void destroy(Widget w);
Boolean set_values(Widget current, Widget request, Widget new,
ArgList args, Cardinal *num_args);

static
static

XmGeoMatrix trivial_matrix_create(Widget _w, Widget _from,

XtWidgetGeometry * pref);

Boolean trivial_NoGeoRequest(XmGeoMatrix _geoSpec);

static XmBaseClassExtRec _XmTrivialCoreClassExtRec = {

/* next_extension */ NULL,

/* record_type */ NULLQUARK,
/* version */ XmBaseClassExtVersion,
[* size */ sizeof(XmBaseClassExtRec),
/* initialize_prehook */ NULL,

/* set_values_prehook */ NULL,

/* initialize_posthook */ NULL,

/* set_values_posthook */ NULL,

/* secondary_object_class */ NULL,

/* secondary_object_create */ NULL,

/* get_secondary_resources */ NULL,

[* fast_subclass * {0}

/* get_values_prehook */ NULL,

/* get_values_posthook */ NULL,

/* class_part_init_prehook */ NULL,

[* class_part_init_posthook */ NULL,

/* ext_resources */ NULL,

/* compiled_ext_resources */ NULL,

/* num_ext_resources */ 0,

/* use_sub_resources */ FALSE,

/* widget_navigable */ NULL,

/* focus_change */ NULL,

/* wrapper_data */ NULL

k

static XmManagerClassExtRec _XmTrivialMClassExtRec = {



70 5. Fun and Pain with the GeoUtils

kh

XmTrivialClassRec xmTrivialClassRec

/*
{
/*

/*

next_extension
record_type
version
record_size
traversal_children

Core class part */
superclass

class_name
widget_size
class_initialize
class_part_initialize
class_inited
initialize
initialize_hook
realize

actions
num_actions
resources
num_resources
xrm_class
compress_motion
compress_exposure
compress_enterleave
visible_interest
destroy

resize

expose

set_values
set_values_hook
set_values_almost
get_values_hook
accept_focus
version

callback offsets
tm_table
query_geometry
display_accelerator
extension

Composite class part

geometry_manager
change_managed
insert_child
delete_child
extension

Constraint class part */

subresources
subresource_count
constraint_size
initialize

~

*/ NULL,

*/ NULLQUARK,

*/ XmManagerClassExtVersion,

*/ sizeof(XmManagerClassExtRec),
* NULL /* FIXME */

={

*/ (WidgetClass)
&xmBulletinBoardClassRec,
* "XmTrivial",
*/ sizeof(XmBulletinBoardRec),
*/ class_initialize,

*/ class_part_initialize,

*/ FALSE,
*/ initialize,
*/ NULL,
*/ XtlnheritRealize,
*/ NULL,
*/ 0,
*/ NULL,
*/ 0,
*/ NULLQUARK,
*/ TRUE,
*/ XtExposeCompressMaximal,
* TRUE,
*/ FALSE,
*/ destroy,
*/ XtlnheritResize,
*/ XtinheritExpose,
*/ set_values,
* NULL,
*/ XtinheritSetValuesAlmost,
* NULL,
*/ NULL,
*/ XtVersion,
* NULL,
* NULL,
*/ XtinheritQueryGeometry,
*/ NULL,
*/ (XtPointer)
& XmTrivialCoreClassExtRec

*/ XtinheritGeometryManager,
*/ XtInheritChangeManaged,
*/ XtInheritinsertChild,
*/ XtinheritDeleteChild,
* NULL

*/ NULL,



5.5. How to Build a Subclass Using the GeoUltils

/* destroy */ NULL,
/* set_values */ NULL,
/* extension */ NULL
3
/* XmManager class part */
{
/* translations */ XtlnheritTranslations,
[* syn_resources */ NULL,
/* num_syn_resources * 0,
/* syn_constraint_resources */ NULL,
/* num_syn_constraint_resources */ 0,
[* parent_process */ XmlInheritParentProcess,
/* extension */ (XtPointer)
& XmTrivialMClassExtRec
b
/* XmBulletinBoard Area part */
{
/* always_install_accelerators */ False,
/* geo_matrix_create */ trivial_matrix_create,
/* focus_moved_proc */ XmlInheritFocusMovedProc,
[* extension */ NULL
8
/* XmTrivial Class Part */
{
/* extension * 0
}
2
WidgetClass xmTrivialWidgetClass = (WidgetClass)&xmTrivialClassRec;
static void
class_initialize()
{
_XmTrivialCoreClassExtRec.record_type = XmQmotif;
}
static void
class_part_initialize(WidgetClass widget_class)
{
}
static void
initialize(Widget request,
Widget new,
ArglList args,
Cardinal *num_args)
{
}
static void
destroy(Widget w)
}

static Boolean

set_values(Widget old,
Widget request,
Widget new,

71



72 5. Fun and Pain with the GeoUtils

ArglList args,
Cardinal *num_args)

{ Boolean refresh_needed = False;
BB_InSetValues(new) = True;
/* do any class specific stuff */
BB_InSetValues(new) = False;
if (refresh_needed && (XtClass(new) == xmTrivialWidgetClass))
_XmBulletinBoardSizeUpdate(new);
return False;
return refresh_needed;
}
XmGeoMatrix

trivial_matrix_create(Widget _w, Widget _from, XtWidgetGeometry * pref)
{

XmGeoMatrix geoSpec;

register XmGeoRowLayout layoutPtr;

register XmKidGeometry boxPtr;

Cardinal numKids;

int i, nrows;

Widget child;

numKids = MGR_NumChildren(_wy);

/* compute the number of rows you want here. */
nrows = 1; /* Trivial only has one */

geoSpec = _XmGeoMatrixAlloc(nrows, numKids, 0);
geoSpec->composite = (Widget)_w;
geoSpec->instigator = (Widget)_from;
if (_pref)
geoSpec->instig_request = *_pref;
geoSpec->margin_w = BB_MarginWidth(_w) + MGR_ShadowThickness(_w);
geoSpec->margin_h = BB_MarginHeight(_w) + MGR_ShadowThickness(_w);
geoSpec->no_geo_request = trivial_NoGeoRequest;

layoutPtr = &(geoSpec->layouts->row);
boxPtr = geoSpec->boxes;

/* row 1 *

layoutPtr->fill_mode = XmGEO_CENTER,;

layoutPtr->fit_mode = XmGEO_WRAP;

layoutPtr->even_width = 1;

layoutPtr->even_height = 1;

layoutPtr->space_above = BB_MarginHeight(_w);

for (i = 0; i < numKids; i++) {
child = MGR_Children(_w)][i];
if ((XmlsPushButton(child) || XmlIsPushButtonGadget(child)) &&

XtlsManaged(child) && _XmGeoSetupKid(boxPtr, child))

{

}

boxPtr++;



5.5. How to Build a Subclass Using the GeoUltils 73

layoutPtr++;

/* end marker */
layoutPtr->space_above = 0;
layoutPtr->end = TRUE;

return(geoSpec);

}

Boolean
trivial_NoGeoRequest(XmGeoMatrix geo)

if (BB_InSetValues(geo->composite) &&
XtClass(geo->composite) == xmTrivialWidgetClass)
return TRUE;

return FALSE;

Not bad, only around 350 lines of code. This is about the mininum you can get away with if you
write a manager widget anyway. But now let us go straight into the details.

5.5.2.1 Extra Prototypes

You'll need to provide two extra prototypes for a GeoUtils subclass - one faggbematrix_-
create() method, and one for th@_geo_request() method. These should match the types
specified inXmP.h. FromTrivial.c

XmGeoMatrix trivial_matrix_create(Widget _w, Widget _from,
XtWidgetGeometry *_pref);
Boolean trivial_NoGeoRequest(XmGeoMatrix _geoSpec);

5.5.2.2 The Class Structure

The first thing to know is how to typEtinherit . Unless you really know what you are doing,
and want to override specific behaviors, you should definitely spetihherit in the class
structure of your subclass for the following methods:

realize() ,

resize()

expose() ,
query_geometry()
geometry_manager()
change_managed()

Unless you are implementing a fairly trivial widget (suchxasTrivial ), you'll probably have
to provide your owrset_values() method. That’s okay, just make sure you follow the rules
outlined in the BulletinBoard section above.



74 5. Fun and Pain with the GeoUtils

5.5.2.3 The set_values() Method

In any interesting widget, theet_values() method will probably do something (but it doesn’t

in Trivial.c ). The code below can be considered boilerplate; you should probably base a sub-
class’sset_values() method on this code. Note especially the region reserved for setting class
specific instance variables.

static Boolean

set_values(Widget old,
Widget request,
Widget new,
ArglList args,
Cardinal *num_args)

Boolean refresh_needed = False;
BB_InSetValues(new) = True;

/* do any class specific stuff HERE */
BB_InSetValues(new) = False;

if (refresh_needed && (XtClass(new) == xmTrivialWidgetClass))

_XmBulletinBoardSizeUpdate(new);
return False;

return refresh_needed;

5.5.2.4 The NoGeoRequest Method

This method actually doesn’t get placed in the class structure, but rather in the GeoMatrix during
its creation. Again, the implementation Thivial.c is boilerplate; the only thing a subclass
needs to do is change the tested widget class:

Boolean
trivial_NoGeoRequest(XmGeoMatrix geo)
if (BB_InSetValues(geo->composite) &&
XtClass(geo->composite) == xmTrivialWidgetClass)

return TRUE;

return FALSE;

5.5.2.5 The GeoMatrixCreate Method

Now we get to the interesting part of the implementation. gée matrix_create() method
in Trivial.c is not boilerplate, but it does show you what you need to do (well, actually, one
small portion is boilerplate). Instead of repeating the code section here you can look up the method



5.5. How to Build a Subclass Using the GeoUltils 75

in the listing on the preceding pages — but take note that the meth®dvial.c is called
trivial_matrix_create()

Note that the function has essentially three sections. In the first section, you need to loop through
your children (or evaluate instance variables, as is done in SelectionBox), deciding on how many
rows of children that need to be controlled. Basically, what you are doing is evaluating how many
MajorLayout  structures you are going to need. You can also choose to count the number of
managed children you have (this may or may not be the same as the number of children you have);
this is optional, as the wasted space is not very large, and it eventually gets deallocated anyway.

In the second section, we have a small piece of boilerplate: it is very important to duplicate this
code exactly. While thepref and_from fields are ofterNULL, they arenot when this method
is called from_XmHandleGeometryManager() . Make sure you copy this right.

geoSpec = _XmGeoMatrixAlloc(nrows, numKids, 0);
geoSpec->composite = (Widget)_w;
geoSpec->instigator = (Widget)_from;
if (_pref)
geoSpec->instig_request = *_pref;
geoSpec->margin_w = BB_MarginWidth(_w) + MGR_ShadowThickness(_w);
geoSpec->margin_h = BB_MarginHeight(_w) + MGR_ShadowThickness(_w);
geoSpec->no_geo_request = trivial NoGeoRequest;

You can be a little creative when you calculate thargin_w andmargin_h variables. Also,
make sure that you hook up tm@_geo_request() method as shown in the last line of the
code excerpt above.

The third section of code is basically where the subclass needs to sefdpjtiteayout  struc-
tures with the desired information for controlling the layout, and settingiti€eometry struc-
tures to point at the widget children that should appear.

XmTrivial ’s implementation of this method igerysimplistic. Now for a little more demanding
example. The following code is SelectionBox’s version — look for the boilerplate above to find the
separation between the sections:

XmGeoMatrix

_XmSelectionBoxGeoMatrixCreate(Widget _w, Widget _from,
XtWidgetGeometry *_pref)

{

XmGeoMatrix geoSpec;

register XmGeoRowLayout layoutPtr;
register XmKidGeometry boxPtr;
Cardinal numKids;

Boolean newRow;

int nrows, i, nextras;

Widget *extras;

numKids = MGR_NumChildren(_wy);

nextras = O;
extras = NULL;



76 5. Fun and Pain with the GeoUtils

for (i = 0; i < numKids; i++)

if (XtisManaged(MGR_Children(_w)[i]) &&
MGR_Children(_w)[i] != SB_ListLabel(_w) &&
(SB_List(_w)
? MGR_Children(_w)[i] '= XtParent(SB_List(_w))
: True) &&
MGR_Children(_w)[i] != SB_SelectionLabel(_w) &&
MGR_Children(_w)[i] != SB_Text(_w) &&
MGR_Children(_w)[i] != SB_Separator(_ w) &&
MGR_Children(_w)[i] != SB_OkButton(_w) &&
MGR_Children(_w)[i] != SB_ApplyButton(_w) &&
MGR_Children(_w)[i] != SB_HelpButton(_w) &&
MGR_Children(_w)[i] != BB_CancelButton(_w))

nextras++;

}

if (nextras)
extras = (Widget *)XtMalloc(sizeof(Widget) * nextras);

nextras = O;
for (i = 0; i < numKids; i++)

if (XtisManaged(MGR_Children(_w)[i]) &&
MGR_Children(_w)[i] !'= SB_ListLabel(_w) &&
(SB_List(_w)
? MGR_Children(_w)[i] = XtParent(SB_List(_w))
: True) &&
MGR_Children(_w)[i] !'= SB_SelectionLabel(_w) &&
MGR_Children(_w)[i] != SB_Text(_w) &&
MGR_Children(_w)[i] != SB_Separator(_w) &&
MGR_Children(_w)[i] '= SB_OkButton(_w) &&
MGR_Children(_w)[i] = SB_ApplyButton(_w) &&
MGR_Children(_w)[i] != SB_HelpButton(_w) &&
MGR_Children(_w)[i] !'= BB_CancelButton(_w))

{
extras[nextras] = MGR_Children(_w)]i];
nextras++;
}
}
nrows = O;

/* note the starting from one. The zero'th child is the "work area" */
if (nextras > 0) {
for (i = 1; i < nextras; i++) {
if (XmIsMenuBar(extras[i]) && XtlsManaged(extrasyi]))

Nrows++;
}
if (extras[0] && XtlsManaged(extras[0]))
Nrows++;
}
if (SB_ListLabel(_w) && XtlsManaged(SB_ListLabel(_w)))
Nrows++;

if (SB_List(_w) && XtlsManaged(SB_List(_w)))



5.5. How to Build a Subclass Using the GeoUltils

Nrows++;

if (SB_SelectionLabel(_w) && XtlsManaged(SB_SelectionLabel(_w)))
nrows++;

if (SB_Text(_w) && XtlsManaged(SB_Text(_w)))
Nrows++;

if (SB_Separator(_w) && XtlsManaged(SB_Separator(_w)))
nrows++;

if ((BB_CancelButton(_w) && XtlsManaged(BB_CancelButton(_w))) ||
(SB_OkButton(_w) && XtlsManaged(SB_OkButton(_w))) ||
(SB_ApplyButton(_w) && XtlsManaged(SB_ApplyButton(_w))) ||
(SB_HelpButton(_w) && XtlsManaged(SB_HelpButton(_w))))
Nrows++;
else {
for (i = i; i < nextras; i++) {
if (extras[i] && XtlsManaged(extras[i]) &&
(XmlIsPushButton(extrasli]) ||
XmisPushButtonGadget(extras|i])))

{
Nrows++;
break;
}
}
}
geoSpec = _XmGeoMatrixAlloc(nrows, numKids, 0);

geoSpec->composite = (Widget)_w;
geoSpec->instigator = (Widget)_from;
if (_pref)

geoSpec->instig_request = *_pref;
geoSpec->margin_w = BB_MarginWidth(_w) + MGR_ShadowThickness(_w);
geoSpec->margin_h = BB_MarginHeight(_w) + MGR_ShadowThickness(_w);
geoSpec->no_geo_request = _XmSelectionBoxNoGeoRequest;

layoutPtr = &(geoSpec->layouts->row);
boxPtr = geoSpec->boxes;

for (i = 1, i < nextras; i++) {
if (XmIsMenuBar(extras[i]) && XtlsManaged(extrasli]))

{
layoutPtr->fix_up = _XmMenuBarFix;
layoutPtr->space_above = 0;
boxPtr += 2;
layoutPtr++;
}

}

if (SB_ChildPlacement(_w) == XmPLACE_TOP && nextras &&
extras[0] && XtlsManaged(extras[0]) &&
_XmGeoSetupKid(boxPtr, extras[0]))

layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);

77



78 5. Fun and Pain with the GeoUtils

layoutPtr++;
boxPtr += 2;
nrows++;

}

if (SB_DialogType(_w) == XmDIALOG_PROMPT &&
SB_ChildPlacement(_w) == XmPLACE_ABOVE_SELECTION && nextras &&
extras[0] && XtlsManaged(extras[0]) &&
_XmGeoSetupKid(boxPtr, extras[0]))

layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr++;

boxPtr += 2;

nrows++;

}

newRow = False;

if (SB_ListLabel(_w) && XtlsManaged(SB_ListLabel(_w)) &&
_XmGeoSetupKid(boxPtr, SB_ListLabel(_w)))

{

layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->fit._ mode = XmGEO_PROPORTIONAL;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1,
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr->space_between = BB_MarginWidth(_w);
newRow = TRUE;

boxPtr++;

}
if (newRow)

layoutPtr++;
boxPtr++;

}

if (SB_DialogType(_w) == XmDIALOG_COMMAND &&
SB_ChildPlacement(_w) == XmPLACE_ABOVE_SELECTION && nextras &&
extras[0] && XtlsManaged(extras[0]) &&
_XmGeoSetupKid(boxPtr, extras[0]))

layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr++;

boxPtr += 2;

nrows++;

}

newRow = FALSE;

if (SB_List(_w) && XtlsManaged(SB_List(_w)) &&
_XmGeoSetupKid(boxPtr, XtParent(SB_List(_w))))

{



5.5. How to Build a Subclass Using the GeoUltils

layoutPtr->stretch_height = 1;

layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->fit_ mode = XmGEO_PROPORTIONAL;
layoutPtr->even_width = 1;

layoutPtr->even_height = 1;

layoutPtr->space_above = 0; /* BB_MarginHeight(_w); */
layoutPtr->space_between = BB_MarginWidth(_w);
newRow = TRUE;

boxPtr++;

}

if (newRow)
layoutPtr++;
boxPtr++;

}

if (SB_DialogType(_w) != XmDIALOG_COMMAND &&
SB_DialogType(_w) !'= XmDIALOG_PROMPT &&
SB_ChildPlacement(_w) == XmPLACE_ABOVE_SELECTION && nextras &&
extras[0] && XtlsManaged(extras[0]) &&
_XmGeoSetupKid(boxPtr, extras[0]))

layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr++;

boxPtr += 2;

Nrows++;

}

if (SB_SelectionLabel(_w) && XtlIsManaged(SB_SelectionLabel(_w)) &&
_XmGeoSetupKid(boxPtr, SB_SelectionLabel(_w)))

{
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 0;
layoutPtr->even_height = 1,
layoutPtr->space_above = BB_MarginHeight(_wy);
layoutPtr++;
boxPtr += 2;

}

if (SB_Text(_w) && XtlsManaged(SB_Text(_w)) &&
_XmGeoSetupKid(boxPtr, SB_Text(_w)))
{

layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->stretch_height = 0;
layoutPtr->even_height = 1;
layoutPtr->even_width = 0;
layoutPtr->space_above =
boxPtr += 2;

layoutPtr++;

0; /* BB_MarginHeight(_w); */

}

if (SB_ChildPlacement(_w) == XmPLACE_BELOW_SELECTION && nextras &&
extras[0] && XtlsManaged(extras[0]) &&
_XmGeoSetupKid(boxPtr, extras[0]))

79



80

5. Fun and Pain with the GeoUtils

layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr++;

boxPtr += 2;

Nrows++;

}

if (SB_Separator(_w) && XtlsManaged(SB_Separator(_w)) &&
_XmGeoSetupKid( boxPtr, SB_Separator(_w)))

{
layoutPtr->fix_up = _XmSeparatorFix;
layoutPtr->space_above = BB_MarginHeight(_w);
boxPtr += 2;
layoutPtr++;

}

newRow = False;

if (SB_OkButton(_w) && XtlsManaged(SB_OkButton(_w)) &&
_XmGeoSetupKid(boxPtr++, SB_OkButton(_w))) {
layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit_ mode = XmGEO_WRAP;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1,
layoutPtr->space_above = BB_MarginHeight(_wy);
newRow = True;

for (i = 1; i < nextras; i++)

if (extras[i] && XtlsManaged(extras[i]) &&
(XmisPushButton(extras[i]) || XmlIsPushButtonGadget(extras[i])) &&
_XmGeoSetupKid(boxPtr++, extras[i]))

layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit_ mode = XmGEO_WRAP;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
newRow = True;

}

if (SB_ApplyButton(_w) && XtlsManaged(SB_ApplyButton(_w)) &&
_XmGeoSetupKid(boxPtr++, SB_ApplyButton(_w))) {
layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit_ mode = XmGEO_WRAP;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_wy);
newRow = True,

}

if (BB_CancelButton(_w) && XtlsManaged(BB_CancelButton(_w)) &&
_XmGeoSetupKid(boxPtr++, BB_CancelButton(_w))) {
layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit mode = XmGEO_WRAP;
layoutPtr->even_width = 1;



5.6. Conclusion and Credits 81

layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
newRow = True;

}
if (SB_HelpButton(_w) && XtlsManaged(SB_HelpButton(_w)) &&
_XmGeoSetupKid(boxPtr++, SB_HelpButton(_w))) {
layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit_ mode = XmGEO_WRAP;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_wy);
newRow = True;

}

if (newRow)
layoutPtr++;
boxPtr++;

}

layoutPtr->space_above = 0; /* BB_MarginHeight(_w); */
layoutPtr->end = TRUE;
if (nextras)
XtFree((char *)extras);
return(geoSpec);

While it may look scary, once you understand what it is doing, it really isn’t. You can see the
advantage of using the GeoUtils in SelectionBox: other than the code above, there really isn’t any
trace of geometry management in SelectionBox — it's all taken care of automagically.

Another point to note is SelectionBox®_geo_request() method — it's slightly different, as
the Command widget class doesn't el@vea geo_matrix_create() method — instead, it
inherits SelectionBox’s.

Boolean
_XmSelectionBoxNoGeoRequest(XmGeoMatrix _geoSpec)

if (BB_InSetValues(_geoSpec->composite) &&
(XtClass(_geoSpec->composite) == xmSelectionBoxWidgetClass ||
XtClass(_geoSpec->composite) == xmCommandWidgetClass))
return TRUE;

return FALSE;

5.6 Conclusion and Credits

Please keep in mind when reading this document that I'm still discovering new things in the
GeoUtils, and | may not be accurate in some places. I'd dearly like feedback from those of you
who really know the MTIF implementation to point out where I'm wrong.

I'd like to thank John Cwikla (again), for providing sample code about how to subclass using



82 5. Fun and Pain with the GeoUtils

the GeoUtils; Chris, for starting this project in the first place; Danny, for motivating me to write
this chapter (thin as it is) — | guess it realfya pain to have significant portions of your widgets
based on somebody else’s undocumented code (I think there may be two or three informational
comments in GeoUtils); and the rest of the core team (Rob, Peter, perhaps a few more) for helping
out; the team as a whole, for putting up with my mess (what? me opinionated? Nah).



Drag and Drop

Harald Albrecht
Mitch Miers

-
]‘;\ﬁ

/

-\
~(2
2
3
)

|—



84 6. Drag and Drop

6.1 Introduction

The "Drag & Drop" mechanism is a metaphor for data transfer, which allows the user to pick up
an object with the mouse pointer, and move it to another location (which can be even in another
application) and drop it there. This metaphor is the same no matter what kind of data is transfered.
In most cases, the “Drag & Drop” gesture results in data being moved or copied to the new location,
but it can also invoke an action — like printing a file when dropping the icon of a file on a printer
icon, or de-installing some so-called “operating system” when dropping its flying logo into the
trash bin.

Although the term “Drag & Drop” suggests that both the drag and the drop operation are insepara-
ble, in fact thedrop operation is independent of tlleag operation. To transfer data, only the drop
operation is needed. The drag operation is just there to make the metaphor work better, as an ap-
plication can provide accurate visual feedback about the state of the operation. As a consequence
of this, we’ll discuss the drag protocol and the drop protocol in separate sections.

As you can easily imagine, a good part of the whole protocol mess is undocumented. Fortunately,
Daniel Dardailler's documentation and initial implementation example of the dynamic drag proto-
col was invaluable help for understanding the drag and drop protocol. Unfortunately, his documen-
tation does only cover théynamicmode of operation, which is now standardized with CDE 2.
The other modepreregister is still undocumented, although it is the default mode for drag and
drop operations in the MIF toolkit (one more own goal for the CSF).

6.2 Protocol Basics

The top level window where the drag and drop operation starts is called the “source window”. The
client who owns this window is called the initiator client, or short “initiator”. The drop operation

then takes place in the “destination window” and the client who owns that window is called the
“receiver”. The initiator and the receiver of the drag and drop operation can be the same client —
but this need not necessarily be always the case. Besides this, even the source and the destination
window may be the same.

From the user’s point of view there are no such things like windows recognizable. The only “ob-
jects” the user deals with are the “drop sites”, which appear to her/him as entities supplying or
receiving information. On the technical side, a drop site may be drawn into its own window or
may be drawn as a part of a larger window containing other objects too. The protocol does not put
any restrictions on how drop sites are organized within windows. To avoid a possible upcoming
confusion, the protocol only knows of and works with the top level windows. Remember, accord-
ing to the ICCCM 2.0, top level windows are distinguishable from ordinary windows by their
WM_STATIproperties.

Okay, after you've now learned some new “drag and drop” buzz words, you're now ready to dive
into the world of bitfields and status codes. Afterwards, you'll meet the various drag and drop
messages which make up the protocol.



6.2. Protocol Basics 85

6.2.1 Drag Operation Modes

Both the drag and the drop protocol are build around X client messages which are send forth and
back between the initiator and receiver of the drag and drop operation. Such messages are emitted
during the start, cancelation or end of a drag and drop operation, or as the user moves the mouse
pointer around the screen and the pointer enters and leaves valid drop sites. This way, the initiator
client and the potential receiver client(s) can provide to the user some visual feedback about the
current state of the drag operation. Such a visual feedback could be highlighting a drop site so
the user notices the existence of a valid drop site. There are two sets of visual feedbacks: the
“drag-over visuals” of the initiator and the “drag-under” visuals of the receiver(s).

The drag operation as well as the handling of the drag-under visuals are different depending on
the operation mode of the drag:

e When both the initiator and receiver have agreed to uselyhamicmode they exchange
protocol messages dealing (for example) with entering and leaving dropdsitesy the
drag operation. The advantages of this mode are that the X server is not grabbed and can
still respond to other event sources, and the receiver can decide what data to accept on-the-
fly. On the other side, the dynamic operation mode requires more overhead on behalf of the
application and the network.

e The preregistermode is the other possible mode of operation (the appropriate protocol is
still undocumented). In this mode, thexMF toolkit handles on behalf of the initiator client
the complete processing of the drag-under visuals which would ordinarily occour in the
receiver client. The receiver is not involved in the process until the drop stage begins. But it
has to supply information about drop sites so the initiator can handle the drag-under visuals
accordingly. This mode minimises network trafic, but the drop site can’t determine whether
it wants to accept the drop data until the drop actually occurs. In addition, the server is
grabbed during the drag operation.

6.2.2 Protocol Messages

Unfortunately, X client messages (of tyg€lientMessageEvent ) are limited in size: you can

only transfer up to 20 bytes within them. For this reasorT M applications use a “drag window”

with special properties attached to it to transfer any additional information which uses up to much
space. Some of the protocol messages therefore just refer to a data structure stored with the drag
window.

The various X client messages used for the drag or drop protocol share a common header and
some common settings.
e Themessage type of such an X client message event is always set to the atom with the
name_MOTIF_DRAG_AND_DROP_MESSAGE
e Theformat of the message event&s so no byte swapping is performed by the X server.
The clients participating in the drag and drop mechanism must do the byte swapping them-
selves. The reason for this is that the available 20 bytes can be exploited best this way.



86 6. Drag and Drop

e Thewindow identifier of theXClientMessageEvent  contains the identifier of the win-
dow receiving this message.

e The first user bytelata.b[0]  of the message event indicates why this message was sent.
It is a bitfield with the high bit (bit 7) indicating whether the originator or the receiver
generated the message, and the remaining bits 6—0 denoting the reason. The reason can be
anyone of the message types listed in tablg 6.1. These message types are discussed in detail
in the sections below.

/ V)

L Reason:
XmTOP_LEVEL_ENTER, XmTOP_LEVEL_LEAVE,

Origin of message:
0 Initiator
1 Receiver

Identifier Value
XmTOP_LEVEL _ENTER | 0x00
XmTOP_LEVEL LEAVE | 0x01
XmDRAG_MOTION 0x02
XmDROP_SITE_ENTER | 0x03
XmDROP_SITE_LEAVE | 0x04
XmDROP_START 0x05
XmDROP_FINISH 0x06
XmMDRAG_DROP_FINISH | 0x07
XMOPERATION_CHANGEMDx08

Table 6.1: Message types used for the Drag & Drop X client messages.

e data.b[1] indicates the byte order used for the encoding of the following data. Like in the
X Protocol it must be set to either the ASCII uppercase leBewhen themostsignificant
byte is transmitted first, or to the ASCII lowercase letteénthen theleastsignificant byte
is transmitted first.

e The data bytedata.b[2]  throughdata.b[19]  contain the remaining bytes of the drag
and drop message.

6.2.3 Drag & Drop Flags

Many of the drag and drop messages contain a flag bitfield, which is called the “DnD Flags”
throughout this documentation. The “DnD Flags” consist of four distinct bitfields — each of it is
four bits wide and is labele@) through@®) in figure[6.].

Not every message makes use of every of the four bitfields. Some drag and drop messages don't
use the “DnD Flags” at all, although they contain a spare field with the same size and in the



6.2. Protocol Basics 87

same position as the “DnD Flags”. Below, the descriptions of the various drag and drop messages
will refer to this bitfields@ through@). Thus, you can easily tell, which bitfields are used for a
particular message.

15 12 3 4 U

BliciEIig

Operation:
one of XmDROP_NOOP, XmDROP_MOVE,
XmDROP_COPY, XmDROP_LINK

Drop Site Status (only used by receiver to inform initiator):
XmNO_DROP_SITE, XmDROP_SITE_INVALID,
XmDROP_SITE_VALID

Other possible operations:
either XmDROP_NOOP or one or more of
XmDROP_MOVE, XmDROP_COPY, XmDROP_LINK

Drop Action (Completion):
XmDROP, XmDROP_HELP, XmDROP_CANCEL

Figure 6.1: The “DnD Flags” signal various status conditions during a drag and drop operation.

Their purpose is as follows:

(@ Operation: this bitfield contains tirecommendedtlype of drag and drop operation, if it is
used in a message sent by the initiator. If the message was sent instead by the receiver, then
this bitfield contains theelectedype of drag and drop operation. Thus, the receiver is free
to “dictate” the kind of drag and drop operation. See tablg 6.2 for possible values.

(@ Drop Site Status: this bitfield is only used by the receiver to inform the initiator whether the
pointer is currently hoovering over a valid/invalid drop site or no drop site at all. See table
[6.4 for possible values.

(3@ Other possible operations: this is a bitset (binary OR) of all the operations that can be carried
out on the current drop site. If the pointer isn’t currently over a valid drop site, then this bitset
has all its bits set to zer&(MDROP_NOQFSee tablé 6]2 for the values of the various flags.

@ Drop Action: this bitfield is used only when starting thep operation. In this particular
case it is used by the receiver to indicate the drop action which the receiver is going to carry
out. See table 63 for valid completion status codes.

Identifier Value Identifier Value
XmMDROP_NOQOPOx00 XmDROP 0x00
XmDROP_MOVEIx01 XmDROP_HELP 0x01
XmDROP_COP)Y0Ox02 XmDROP_CANCEL 0x02
XmDROP_LINK 0x04 XmDROP_INTERRUPT 0x03

Table 6.2: Operation codes. Table 6.3: Completion status codes.



88 6. Drag and Drop

Identifier Value
XmNO_DROP_SITE 0x01
XmDROP_SITE_INVALID 0x02
XmDROP_SITE_VALID 0x03
XmMINVALID DROP_SITE (DeprecatepSymeor) | 0x02
XmVALID_DROP_SITEDEerrecaTEDSYMBOL) 0x03

Table 6.4: Drop site status codes.

6.2.4 The Targets Table

The MkTIF toolkit uses a special persistent, input-only, and override-redirected window to store
some data needed for the whole drag and drop infrastructure. This special window is a child of the
display’s default root window and is called the *MF Drag Window”. In order that clients can

find this window at all, they should watch out for the properyOTIF_DRAG_WINDOWf type
WINDOWwith a size of 32) on their display’s default root window. If there’s no such property,
or the window ID stored in the property is eith@ror invalid, then an client should create the
“M=TIF Drag Window” itself. The “MTIF Drag Window” should have a close-down mode of
RetainPermanent  (useXSetCloseDownMode() for this), so other applications don’t have

to create it themselves.

The “M«TIF Drag Window” currently seems to posses three properties naM@i'IF_DRAG_-
TARGETSof type_ MOTIF_DRAG_TARGETSize is 8), MOTIF_DRAG_ATOM®f type — guess
which —_MOTIF_DRAG_ATONSand finally_MOTIF_DRAG_ATOM_PAIR%f course of the
type_MOTIF_DRAG_ATOM_PAIRS

Of primary interest to us is theMOTIF_DRAG_TARGETgroperty: it is a list of target lists,
which is shared among all clients, and is commonly called the “targets table”. Every target list
within the targets table is a list of target (data types) an initiator can supply to a receiver on
request. Remember, that the X client messages only provide precious little space for the client’'s
data. Thus, instead of passing such lists around, you only need to pass &giRfé6value that

acts as an index (0-based) into the list of target lists. By specifying such an index, a receiver knows
which kinds of data it can request from the initiator during the drop phase.

Whenever a client needs to add his target list(s) to the targets table, it must follow some guidelines,
otherwise the targets table could become messed up. Every target list must be sorted into ascending
order (according to the atom ID’s) to avoid permutations of otherwise compatible target lists. Thus,

if a client supports the target types “B,A,C” and another client supports the target types “C,B,A’,
then they must both use the sorted target types list “A,B,C” instead. Note however that the targets
TARGETSndMULTIPLE — which are mandatory according to the ICCCM — are never listed. The
structure of the targets table is fairly straightforward and is shown inftafle 6.5.

In order to add its target list(s) to the targets table stored in M@TIF_DRAG_TARGETrop-
erty, a client must grab the X server, so the operation is atomically. Then it has to search the targets
table for a match. Otherwise, the client can add the particular (sorted) target list to the table any-



6.2. Protocol Basics 89

Offset | Size Description

+0x00 | BYTE Byte Order: either B’ (MSB first) or 'l * (LSB first).
+0x01 | BYTE Protocol Version: currentlyO.

+0x02 | CARD16| Number of Target Lists: this should be really selft
explanatory.

+0x04 | CARD32| Data Size total size of the data stored in the property:
8 bytes for the header +

Number of Target Lists * 2 +

Total Number of Targets * 4

+0x08 | CARD16 Number of Targets in List

+0x0A | CARD32 List of Targets

+0x?? | CARD16 Number of Targets in List

+0x?? | CARD32 List of Targets

...and soon...

Table 6.5: Structure of the targets table in the propertylOTIF_DRAG_TARGETS

where (the target table itself is not sorted — sigh). After it has updatedMtd IF_DRAG_TARGETS
property, the client can remove the grab.

6.2.5 Advertising a Receiver

Areceiver advertises itself by placing a property with the naM®TIF_DRAG_RECEIVER_INFO

(of type_MOTIF_DRAG_RECEIVER_INF(size is 8) on its top level window. Depending on the
protocol styles the receiver can handle (dynamic mode and/or preregister mode), this property
contains more or less data. But at least the property must be 16 bytes long.

Offset | Size Description

+0x00 | BYTE Byte Order: either B’ (MSB first) or ’l * (LSB first).
+0x01 | BYTE Protocol Version of Receiver currently0.

+0x02 | BYTE Protocol Style one of the protocol styles listed in ta.?
+0x03 | BYTE Padding.

+0x04 | CARD32| Proxy Window: — under construction —
+0x08 | CARD16| Number of Drop Sites number of drop site blocks, which
are immediately following this header.
+0x0A | CARD16| Padding.

+0x0C | CARD32| Total Size — under construction —

Table 6.6: The structure of theMOTIF_DRAG_RECEIVER_INF@roperty describes a drag and
drop receiver.

The second half of the header shown in tgblg 6.6 is only used in the preregister mode. For the
dynamic mode and when the drop site is a drop-only site, then the second half within the header is
not needed. Because the preregister mode is really tricky, we're discussing it later in more detail.



90 6. Drag and Drop

Identifier Value
XmDRAG_NONE 0x00
XmDRAG_DROP_ONLY 0x01
XmDRAG_PREFER_PREREGISTERX02
XmDRAG_PREREGISTER 0x03
XmDRAG_PREFER_DYNAMIC 0x04
XmDRAG_DYNAMIC 0x05
XmDRAG_PREFER_RECEIVER | 0x06

Table 6.7: Drag protocol styles.

When a receiver signals that it can handle the dynamic mode, then it will accept and answer the
drag messages sent by the initiator as specified in the next section. If the protocol style of the
receiver is drop-only, then the initiator should not send any drag messages. The only message the
initiator is allowed to send then is tdmDROP_STARMessage. In this case the visual effects
during the drag and drop gesture should indicate to the user that the whole top level window of the
receiver works as a single drop site accepting all possible targets and operations.

A receiver with a protocol style cKmDRAG_NONREants not to be disturbed by drag and drop
operations at all. The initiator should provide appropriate visual feedback whenever the drag icon
is over such a receiver.

6.2.6 Starting a Drag or Drop

When an initiator starts a drag — or even only a drop —, then it first creates a new property on the
source window. The name of this property can be arbitrary, but it must be of W& IF_DRAG_-
INITIATOR_INFO and have a data size of 8. This property then should contain information about
which targets the initiator is able to serve and what selection atom to use for the data transfer. Table
[6.8 shows the structure of this property.

Offset | Size Description

+0x00 | BYTE Byte Order: either B’ (MSB first) or 'l ’ (LSB first).
+0x01 | BYTE Protocol Version of Initiator : currentlyO.

+0x02 | CARD16| Targets Index the index of a targets list within the targets
table. The first list within the targets list has an indexof
This index advertises which targets the initiator is willing
to handle.
+0x04 | CARD32| Selection Atont atom ID to be used as the selection atom
for the data transfer when the drop actually takes place.

Table 6.8: The structure of the MOTIF_DRAG_INITIATOR_INFO property describes the ini-
tiator.

Figure[6.2 finally shows the four properties which are representing an important part of the infor-



6.2. Protocol Basics 91

mation infrastructure for the drag and drop mechanism.

_MOTIF_DRAG_WINDOW property (on root window of the default display)
III (type =WINDOW, size =32)

Y MOTIF_DRAG_TARGETS property

(type =_MOTIF_DRAG_TARGETS, size =8)

’7 I:I Byte order

Protocol version
T Number of target lists

L Data size of targets table including header

3 | strING | UnICODE | PIxMAP |
1 | STRING
4 | prxvap GIF  |=

eader

|—Lists—|

,_ I:I Byte order

I:I Protocol version receiver

L I:I Protocol style

r I:I Byte order

O I:I Protocol version initiator
=

- I:I Targets index @
Ll:l Selection atom

J.Doe property (name arbitrary)
® | (type=_MOTIF_DRAG_INITIATOR_INFO, size =8)

itiator
Receiver
Info

In

_MOTIF_DRAG_RECEIVER_INFO property
(type =_MOTIF_DRAG_RECEIVER_INFO, size = 8) .\)
o

=]
Initiator [R [% [% H@r& Receiver

Figure 6.2: Properties involved in the Drag & Drop game.

ol @




92 6. Drag and Drop

6.3 The Drag Protocol

During a drag operation the client is free to skip the drag protocol. Reasons for this might be
either complexity or known latencies. But in turn the client looses the ability to provide accurate
(dynamic) feedback during the drag.

6.3.1 Entering/Leaving Top Level Windows

When the pointer enters a new top level window, the initiator notifies the receiver WitiTOP_-
LEVEL_ENTERmMessage.

Message User Data| Size Description

data.b[0] BYTE | Reason XmTOP_LEVEL_ENTERX00)

data.b[1] BYTE Byte Order: either B' (MSB first) or 'l * (LSB first).

data.b[2..3] CARD16| (DnD Flags unused)

data.b[4..7] CARD32| Timestamp: set to the timestamp of the corresponding X
event triggering this message.

data.b[8..11] CARD32| Source Window. source window ID of the initiator.

data.b[12..15] CARD32| Drag Initiator Info Atom : atom ID of a property the inii
tiator set up when it started the drag or drop operation.

Table 6.9: TheXmTOP_LEVEL_ENTERessage send by the initiator.

The atom ID (in tablg 6]9 it is called the “Drag Initiator Info Atom”) sent in Xr@TOP_LEVEL_-
ENTERdrag message is a selection atom. It must be unique for the duration of the Drag & Drop
transaction. In addition, the initiator must own the selection and must be ready to convert data from
the early beginning of the drag operation, since the receiver can ask for a conversion dynamically
during the drag to validate the operation.

When the pointer leaves a top level window, the initiator notifies the receiver WimEOP_-
LEVEL_LEAVEmessage.

Message User Data| Size Description

data.b[0] BYTE | Reason XmTOP_LEVEL_LEAVEDx01)

data.b[1] BYTE Byte Order: either B' (MSB first) or 'l * (LSB first).

data.b[2..3] CARD16| (DnD Flags unused)

data.b[4..7] CARD32| Timestamp: set to the timestamp of the corresponding X
event triggering this message.

Table 6.10: TheXmTOP_LEVEL_LEAVEessage send by the initiator.

A receiver never replies (echoes) tksmTOP_LEVEL_ENTERNdXmTOP_LEVEL_LEAVEes-
sages.



6.3. The Drag Protocol 93

6.3.2 Pointer Motion

When the pointer moves, the initiator sediaDRAG_MOTIOMNessages to the receiver (which is
the top level window the pointer is currently in and which is willing to accept drag messages).

Message User Data| Size Description

data.b[0] BYTE Reason XmDRAG_MOTIOM@x02 )

data.b[1] BYTE Byte Order: either B’ (MSB first) or 'l * (LSB first).

data.b[2..3] CARD16| DnD Flags @D + ®

data.b[4..7] CARD32| Timestamp: set to the timestamp of the corresponding X
event triggering this message.

data.b[8..9] CARD16| Root X: x position of the drag-over icon relative to the rgot
window.

data.b[10..11] CARD16| Root Y: y position relative to the root window.

Table 6.11: TheXmDRAG_MOTIONessage send by the initiator.

Whenever the initiator sendsXmDRAG_MOTIOMessage, the receiver responds with one out
of three different messages, depending on whether the pointer entered or left a valid drop site
(XmDROP_SITE_ENTERMDROP_SITE_LEAVE or just moved aroundXmDRAG_MOTION

Message User Data| Size Description

data.b[0] BYTE Reason XmDROP_SITE_ENTEFOx83)

data.b[1] BYTE Byte Order: either B' (MSB first) or 'l * (LSB first).

data.b[2..3] CARD16| DnDFlags @+ @ +(®

data.b[4..7] CARD32| Timestamp: set to the timestamp of the corresponding X
event triggering this message.

data.b[8..9] CARD16| Root X: better x position (hint for the initiator) of the drag-
over icon relative to the root window.

data.b[10..11] CARD16| Root Y: better y position relative to the root window.

Table 6.12: TheXmDROP_SITE_ENTERiessage replied by the receiver.

Message User Data| Size Description

data.b[0] BYTE Reason XmDROP_SITE_LEAVEOx84 )

data.b[1] BYTE Byte Order: either B’ (MSB first) or 'l ' (LSB first).

data.b[2..3] CARD16| (DnD Flags unused)

data.b[4..7] CARD32| Timestamp: set to the timestamp of the corresponding X
event triggering this message.

Table 6.13: TheXmDROP_SITE_LEAVEn1essage replied by the receiver.



94 6. Drag and Drop

Message User Data| Size Description

data.b[0] BYTE Reason XmDRAG_MOTIOM@x82)

data.b[1] BYTE Byte Order: either B’ (MSB first) or 'l * (LSB first).

data.b[2..3] CARD16| DnDFlags @+ @ +(®

data.b[4..7] CARD32| Timestamp: set to the timestamp of the corresponding X
event triggering this message.

data.b[8..9] CARD16| Root X: better x position (hint for the initiator) of the drag-
over icon relative to the root window.

data.b[10..11] CARD16| Root Y: better y position relative to the root window.

Table 6.14: TheXmDRAG_MOTIONessage echoed by the receiver.

6.3.3 Changing the Operation

The user is free to change the drag operation (copy, move, link) at any time during the drag
gesture — for example, if she/he presses or releases modifier keys. The initiator then sends an
XmOPERATION_CHANGEi2ssage.

Message User Data| Size Description

data.b[0] BYTE | Reason XmOPERATION CHANGHIX08)

data.b[1] BYTE Byte Order: either B' (MSB first) or 'l ' (LSB first).

data.b[2..3] CARD16| DnDFlags @ + (3

data.b[4..7] CARD32| Timestamp: set to the timestamp of the corresponding X
event triggering this message.

Table 6.15: TheXmOPERATION_CHANGEHEi2ssage send by the initiator.

The receiver then echoes tKemMOPERATION_CHANGEi2ssage.

Message User Data| Size Description

data.b[0] BYTE | Reason XmOPERATION _CHANGHIX88)

data.b[1] BYTE Byte Order: either B' (MSB first) or 'l * (LSB first).

data.b[2..3] CARD16| DnDFlags @+ @ +(®

data.b[4..7] CARD32| Timestamp: set to the timestamp of the corresponding X
event triggering this message.

Table 6.16: TheXmOPERATION_CHANGEi2ssage echoed by the receiver.



6.4. The Drop Protocol 95
6.4 The Drop Protocol

The drop protocol can be used independently of the drag protocol, for example when a drop site
is in theXmDRAG_DROP_ONMode. Fortunately, the whole drop protocol is really lean — it just
consists of the single messagmDROP_STAR3Jent by the initiator, which must be echoed by the
receiver.

Message User Data| Size Description

data.b[0] BYTE Reason XmDROP_STAR(Dx05 )

data.b[1] BYTE Byte Order: either B' (MSB first) or ’l * (LSB first).

data.b[2..3] CARD16| DnDFlags @ + ®

data.b[4..7] CARD32| Timestamp: set to the timestamp of the corresponding X
event triggering this message.

data.b[8..9] CARD16| Root X: x position relative to the root window.

data.b[10..11] CARD16| Root Y: y position relative to the root window.

data.b[12..15] CARD32| Drag Initiator Info Atom : atom ID of a property the ini
tiator set up when it started the drag (or drop, if we're in
XmDRAG_DROP_ONmode).

data.b[16..19] CARD32| Source Window. source window ID of the initiator.

Table 6.17: TheXmDROP_STARMessage send by the initiator.

The receiver then echoes ttHenDROP_STARMessage, indicating whether it is willing to accept
the drop and what operation (move, copy or link) it want to carry out.

Message User Data| Size Description

data.b[0] BYTE Reason XmDROP_STAR(Dx85 )

data.b[1] BYTE Byte Order: either B' (MSB first) or ’l * (LSB first).

data.b[2..3] CARD16| DnDFlags ® +2@+Q3 +®

data.b[4..5] CARD16| Better X: better x position (hint for the initiator) of the
drag-over icon relative to the root window.

data.b[6..7] CARD16| Better Y: better y position (hint for the initiator) of the
drag-over icon relative to the root window.

Table 6.18: TheXmDROP_STARMessage echoed by the receiver,

If the receiver did not cancel the drop (which it must indidicate within the echoed message), then

it can proceed to transfer the drop data using the X selection transfer mechanism. The receiver can
request as many transfers as it wants, using the selected targets. For each conversion request, the
initiator replies using the ICCCM selection.

The resources allocated during the drag operation should not be released until the drop is finished.
The receiver indicates this by requesting a conversion for the taxgeTRANSFER_SUCCESS6
XmTRANSFER_FAILURBNhen the initiator receives such a conversion request, then it must reply



96 6. Drag and Drop

with an empty value.The receiver as well as the initiator can then release all resources allocated for
the drop operation. In addition, it's the right time to show the melting or failure/snapback visual
effect.

6.5 The Preregister Mode

The full protocol described in this chapter so far is only used when both the initiator and receiver
have agreed to use the dynamic mode. When using the preregister mode, the initiator grabs the
server when the drag starts, and whenever the pointer enters a new top level window, it reads all
the drop site information it needs for doing its tracking, visual feedback, etc., from a preregistered
database attached to thIOTIF_DRAG_RECEIVER_INF@roperty of each participating client

top level window. Obviously, no drag X client messages are sent, since no one is listening to them
(remember, that the X server is grabbed). The server gets ungrabbed when the user drops the
object, at which point the documented drop protocol comes in effect (together with the convention
for the transfer success or failure).

For the preregister mode, th&1OTIF_DRAG_RECEIVER_INF®roperty has also valid informa-

tion stored in the second half, as descibed in tgble 6.6. In addition, the header (which has a size of
16 bytes) is followed by “drop site blocks” that describe the drop sites located within the top level
window of a receiver.

_MOTIF_DRAG_RECEIVER_INFO property

Receiver Info Header

Drop Site Block

Drop Site Block

Drop Site Header

Visual Info Block

Geometry Box
Drop Site Block

Geometry Box

Figure 6.3: Overall structure of the MOTIF_DRAG_RECEIVER_INF@roperty for the prereg-
ister mode.

For each drop site there is a corresponding drop site block inMi@TIF_DRAG_RECEIVER_INFO
property. Each drop site block starts with a 8 bytes long “drop site header”, and is followed by a
“visual info block” and a series of geometry boxes giving geometry information about a drop site.
This overall structure is shown in figure b.3.



6.5. The Preregister Mode 97

Offset | Size

Description

+0x00 | CARD16

+0x02 | CARD16

+0x04 | CARD32

Drop Site Flags bitfield containing various flags whic

describe the possible operations, the drop type, the anima-

tion style, as well as some other things.

Targets Index the index of a targets list within the targets

table. The first list within the targets table has an index of

0. This index advertises which targets the initiator is w|
ing to handle. This value is used in the same way as
Targets Index of the MOTIF_DRAG_INITIATOR_INFO
property.

Number of Geometry Boxes the number of geometr

boxes following the visual info block for this drop site

block.

Il-
the

Table 6.19: The structure of a drop site block header

— under construction —



98 6. Drag and Drop




When the Keyboard Goes Wild

Harald Albrecht

=
]‘;\ﬁ

/

— \
~(2
2
3
)

|—



100 7. When the Keyboard Goes Wild

7.1 Introduction

To some extent, the way X treats keyboard input is more complicated than handling the pointing
device events (or many other events). The information about a key in the event structure isn't
suitable for immediate use, instead it has to go through one of several conversion stages before it
becomes useful to the application. The main reason is that X is designed to support all kinds of
keyboards. However, the drawback is increased complexity.

Keyboard input appears in three “flavours”: as keycodes, keysyms or keystrings. Natugalily, M
adds a fourth one: the CSF keysyms. They are a special set of keysyms.[Figure 7.1 shows how
keycodes, keysyms and keystrings relate.

I
X Server \ X/LessTif Client
I
KeyPress event with \
hardware-dependent keycode \
X . XTranslateKey () keystring ’x’
XmTranslateKey () keysym XK_X

Modifier state E
| Shift || [Caps |||| Ctrl | _j'

I .
keyboard mapping keyboard mapping
MappingNotify cache
or
t XRefreshKeyboardMapping ()
I
. XChangeKeyboardMapping ()

Figure 7.1: Keyboard event processing.

A keycode is a hardware-dependent coding of the key being pressed or released. Thus, keycodes
aren'’t really usefull to ESSTIF application writers. With the help of the keyboard mapping, ev-

ery Xlib and/or Xt intrinsics client converts the hardware-dependent keycodes into hardware-
independent keysyms. These keysyms are integers representing the symbol engraved on a key
(“a”, “A’, “+" as well as “Shift”, “PageDn” and other ones). The keyboard mapping is read from

the server and cached to speed up look-ups and prevent unnecessary round-trips to the server. The
translation from keycodes to keysyms can be done XiffranslateKeycode() . This calls

the currently registered key translator procedure, whic¢tnmgranslateKey() by default. The
translation manager calls the key translator procedure, too.

Keysyms that represent printable characters can be further translated into keystrings by calling
XTranslateKey() . This mapping between keysyms and keystrings is not stored in the X server,
but rather hardwired into the Xlib.



7.2. The Virtual Bindings 101

7.2 The Virtual Bindings

Unfortunately the concept of keysyms leaves too much room for vendor-dependent interpretations
on how to bind keycodes to keysyms. A constant source for confusion and frustration is the key
at the top right of the alphanumeric key area. Some vendors bind this key to the keysym

XK_BackSpace , some others to the keysy®¥K_Delete .

The simplest way would be to change the keyboard mapping of the server. But this would af-
fect all clients connected to that server — especially the nessLIF ones. In order to reassert
some (basic) consistency, the CSF introduced the “CSF keysyms”. The CSF keysyms form a
special set of keysyms. Depending on the X server’s vendor, certain keycodes are translated into
CSF keysyms. The mappings between keysyms and CSF keysyms are also known as the “vir-
tual bindings” (see figurg 7.2). The conversion between keypresses and keysyms takes place in
XmTranslateKey()

incomming keycode virtual bindings
mapping table

7?7

incomming keysym outgoing keysym

1
I
T
]
1
|
]
XK_BackSpace : ﬁ 0sfXK_BackSpace
I
1
I
T
]
1
T
I
]

| Shift || [Caps |||| Ctrl |

Al

N

keysym and CSF keysym
modifiers

Figure 7.2: The “virtual bindings” take care of some basic consistency between different key-
boards.

When converting ordinary innocent keysyms into CSF keysyms the modifiers must be taken into
consideration. Unfortunately, we have to cope with different kinds of modifiers when looking at
the virtual binding mechanism or the translation manager. An example shall enlighten the problem
arising from this. Suppose your new WY SIWYWAA widget (T YOU SEEISN' T WHAT YOU
WANTED AFTER ALL) also features an “undo” operation. The undo is activated by pressing the
keys|ALT | and— ] together. Somewhere in your widget's translation table you'll have to write:

Alt<Key>osfDelete: undo()
Meta<Key>osfDelete: undo()

As LESSTIF — or its “alter ego” MTIF — converts some of the standard keysyms into virtual



102 7. When the Keyboard Goes Wild

keysyms, you can't use the standard keysym nBeiete but must usesfDelete . The trans-
lation manager will never see the original keysym but only the virtual keysym.

Although the ‘Alt " modifier preceeding the keypress translaticrkKe&y>" looks suspiciously

like any ordinary modifier (e.gShift ), it isn’t one! X provides for eight modifiers alltogether,

but only Shift , Lock , andControl are predefined. The remaining five modifidsdl up to

Mod5 can be freely mapped to any key. Smart as the Xt intrinsics are, they convert the translation
Alt<Key>osfDelete into a translation using thet| keyinstead of a (ficious) “Alt'modifier
Unfortunately, many programmers aren't aware of this.

Thus, when looking at translations, it is very important to distinct between the two setalof
modifiers andakemodifiers: The real modifiers ar8hift , Lock , Ctrl , Mod1 up toMod5, and
the mouse buttonButtonl up toButton5 , whereas fake modifiers aralt , Meta, Super ,
andHyper .

During the process of converting keysyms into CSF keysymxXrtifiranslateKey() ) no trans-

lation mechanism is present. All we have is the current state of the modifiers recorded in the Key-
Press event. But onIghift , Lock , andControl are predefined. So what to do with virtual
bindings which are supposed to translate 'ed keysyms into CSF keysyms?

The CSF decided to ignore the problem as good as possible when developimg &hd depends
on the user mapping tHeit| key on the keyboard to thlod1 modifier. You can test this by
changing your mapping such, that | maps toMod2. The respective virtual bindings won't work
any longer.

LEsSTIF is much smarter than MiF (What?! Impossible!). Unfortunately, thémTranslate-

Key() converter can’t maintain the current keyboard state of shgand|meta | keys as it gets
called from the translation manager many times even for esienyle keystroke. Thus, during
startup LESSTIF tries to find out to which modifier tHeut| key has been bound toEissTIF does

this basically by scanning the modifier mapping (as returne®gtModifierMapping() )

for the modifier bound to the keysynX&_Alt L or XK_Alt_R . If none can be found ESSTIF

falls back to uséModl. The whole procedure is so easy to implement, | can’'t understand why the
CSF didn't get the trick in the past. If you're interested ho®sISTIF does it, take a look at the

file $(LESSTIF_ROOT)/libXm/VirtKeys.c . The source is commented (really!).

7.3 Managing the Modifier Mappings

There are three functions available for messing about with the current mappingidif timeodifier
(remember that these ones aredsT IF-specific!):

XmModifierMaskSetReference _XmGetModifierMappingsForDisplay(Display *dpy);
void _XminvalidateModifierMappingsForDisplay(Display *dpy);
void _XmRefreshVirtkeys(Widget w);

You'll normally use only_XmGetModifierMappingsForDisplay() . This function reports
the current mapping as a pointer tXmModifiersMaskSet  (and surely gets an olympic medal



7.4. Managing the Virtual Bindings 103

for its name’s length). This set is simply an array that holds the modifier masks foutheveta,
’Super , and] Hyper‘ modifier keys. If LESSTIF can't find a binding for theait| key it will fall back
to theMod1 modifier mask as thalt modifier mask.

To get the modifier mask of thélt maodifier, just use the indeXLTModifier  into the array:

#ifdef LESSTIF_VERSION
#include <Xm/VirtKeysP.h>
XmModifierMaskSetReference ModifierMasks;
#endif
Modifiers Alt, someModifierFlags;

#ifdef LESSTIF_VERSION
ModifierMasks = _XmGetModifierMappingsForDisplay(dpy);

Alt = ModifierMasks[ALTModifier];
#else

Alt = Mod1Mask;
#endif

someModifierFlags = ... ;
if ( someModifierFlags & Alt ) {

} o

The result of XmGetModifierMappingsForDisplay() is cached so all but the first request
won't result in a round-trip to the X server. The modifier mask set belongs to the cache, so be sure
to never free it.

When the user changes the modifier mapping during the lifetime &ssLIF based application,
LESSTIF receives a MappingNotify event and updates its modifier cache as well as the virtual
bindings by calling XmRefreshVirtKeys() . If for any reason you must invalidate the modi-
fier mapping cache, you can calkminvalidateModifierMappingsForDisplay() . Any
pointer to the modifier mapping array for the respective display then gets invalid!

7.4 Managing the Virtual Bindings

The virtual binding mechanism Wirtkeys.c ~ provides four additional (“undocumented”) func-
tions to mess with:

void _XmVirtualToActualKeysym(Display *Dsp, KeySym VirtualKeysym,
KeySym *RealKeysymReturn,
Modifiers *ModifierReturn);

void _XmVirtKeyslnitialize(Widget w);

Boolean _XmVirtKeysLoadFileBindings(String filename, String *binding);

int _XmVirtkeysLoadFallbackBindings(Display *Dsp, String *Bindings);

These four functions are available with-MF as well as with IESSTIF. With _XmVirtualTo-
ActualKeysym()  you can check how a virtual keysym would look like in real life. You also get



104 7. When the Keyboard Goes Wild

back from the function the necessary modifiers which must be active in order to convert the real
keysym into a CSF keysym.

The contents of a file can be loaded into memory by means of XinéVirtKeysLoadFile-

Bindings()  function. The memory needed to hold the contents is allocated by the function and
must be freed when it's not needed any more. If the function fails for any reason (file not found,
not enough memory availableXmVirtKeysLoadFileBindings() returnskFalse .

If for any reason you need to set up tHdOTIF_DEFAULT_BINDINGSproperty of the root win-
dow of a given display, you can us&XmVirtKeysLoadFallbackBindings() for this task.

If applicable, the function will load a vendor-specific set of virtual bindings. Otherwise it will fall
back to a generic set of virtual bindingsXmVirtKeysLoadFallbackBindings() returns

in the parameteBindings the current set of virtual bindings. You are responsible for freeing the
string withXtFree() when you don’t need it any longer. The most interesting use of this function
is within thexmbind client. If no binding file is specified and there is maotifbind file avail-
able, therxmbind can install the default fallback bindings in th®IOTIF_DEFAULT_BINDINGS
property. More on this in the next section.

You will hardly need to call XmVirtKeyslInitialize() , as this sets up the virtual bind-
ings on aXmDisplay widget. It gets automatically called during the initialising phase of this
kind of widget. This function is solely for use within theessTIF modulesVirtKeys.c  and
Display.c

7.5 The xmbind Client

The current virtual bindings are stored in one of two possible properties on the root window of
screen#0. There can be only one set of active virtual bindings at the same time on adgspésy

as there exists onlgnekeyboard per display. Therefore the current bindings are always stored

in a property of the root window of screen #0. Please note that theya@tached to the root
window of the default screen, as the default screen can be any screen of a given display and may
even change from application to application (see figurg 7.3). The storage for the current virtual
bindings is provided by one of the following properties (both of tyge STRING:

e The property MOTIF_DEFAULT_BINDINGS(if existent) contains the default virtual bind-
ings for the display.

e The property MOTIF_BINDINGS contains virtual bindings loaded either from the user’s
$(HOME)/.motifbind file or from xmbind.alias (available in several good places).

If none of the two properties exist,HsSTIF's startup-code first tries to find user-specific bind-
ings and if it succeeds, it sticks them to thdOTIF_BINDINGS property. Otherwise the starup-
code figures out the default virtual bindings (according to the display) and loads them into the
_MOTIF_DEFAULT_BINDINGSproperty. In every case, after starting adsTiF application the

root window of screen #0 contains a property specifying the current virtual bindings.

The xmbind client can be used to change or setup the properties related to the virtual bindings.
This client is remarkable simple, as most of the functionality needed is already laid down in the



7.5. The xmbind Client 105

Property _MOTIF_BINDINGS
or MOTIF_DEFAULT_BINDINGS D'Splay
\ Default Screen

I
| v ¥ !
| A\l |4 |
| Root Window Screen #0 Root Window Screen #1 :
I
I = o3 :
| = o= T —— |
Please stand by...stand by... |
| ...stand by...stand by...0 |
! I
: |
! I
: I
I i I | i o Y | :
: EII:H:H:H:H:II:H:I| ||:||:||:||:||:||:||:||:| :
! I
: [ | [ | I
! &_/\_J I
! I
' |
! I
! I
: |
! I
! I
: |
! I
! I
' |
I

Figure 7.3: Displays, Screens and the Virtual Bindings.

LEessTIF library (mostly in the form of “undocumented” functions). Following is the pseudo-code
of xmbind (the source resides B(LESSTIF_ROOT)/clients/xmbind/xmbind.c ):

if ( user specified a file on the command line ) {
delete the _MOTIF_DEFAULT_BINDINGS property
load the file into the _MOTIF_BINDINGS property
} else {
if ( there is a .motifbind file
delete the _MOTIF_DEFAULT_BINDINGS property

load the file into the _MOTIF_BINDINGS property
} else {
delete the _MOTIF_BINDINGS property
load fallback bindings into the _MOTIF_DEFAULT_BINDINGS property

}

flush the connection to the display and terminate



106 7. When the Keyboard Goes Wild




Inside XmStrings

Chris Toshok
Harald Albrecht

-
]‘;\ﬁ

/

-\
~(2
2
3
)

|—



108 8. Inside XmStrings

8.1 Introduction

This chapter gives a cursory explanation of the way XmStrings are encodedrir M2 (and
LESSTIF). This information is still being discovered, so explanations of where it is wrong are
welcome.

Sometime last year on theelssTiF mailing list, a well known SGI persona, Doug Rand, sent an
email that described the things that were changed from 1.2 to 2.0. One of the things he mentioned
was that the encoding rules for the external representation of XmStrings can no longer be consid-
ered to be in ASN.1 format (ASN means “Abstract Syntax Notation Number One”). If you wonder
why there is a full stop in the acronym — there’s a simple reason for it. First written as “ASN1”
many people just misread it as ASNI (note the letter “I” and not the digit “1” at the end). And this
rapidly mutated into ANSI, what was probably not meant at all. So the OSI wrote it with a full
stop and no-one every confused it with the ANSI anymore.

8.2 Get Ready for the Acronyms

If you don’t care where the rules come from, or what they are for, you can skip this section.

| happen to work in the telecommunications industry, and | have experience with ASN.1 and re-
lated standards as defined by the ITU (others know these standards either through the ISO or from
RFC’s). ASN.1 is used by the GDMO (roughly, “Guidelines for the Development of Managed
Objects” — there are several ways | know of to decompose that acronym) to describe MIBs (Man-
agement Information Bases). The “Simple Network Management Protocol” (SNMP) for example
works with a MIB describing various aspects of a networked device (like network cards, routing
tables, and IP addresses).

Basically, ASN.1 is a way to describe data types in a machine independent way from a text de-
scription (something like XDR — the eXternal Data Representation used by ONC/RPC. Go and

find out yourself what the latter is). Vaguely associated with ASN.1 are sets of encoding rules,

such as BER (or Basic Encoding Rules) which describe how to actually create external represen-
tations of data. There are other encoding rules (e.g., FER), but you've had enough acronyms for
now. ASN.1 is really a very powerful tool — you may want to learn more about it on your own.

8.3 How It Works

Ok, enough of the background. Let’'s see how it works in practice. The basic idea is to describe
data elements as a three piece combination: tag/length/value, sometimes referred to as TLV. You
basically have:

e atag, which describes what type of data this is,
¢ alength, which says how long the following value is,
e and a value, which is basically an octet (or byte) sequence that describes the value.



8.3. How It Works 109

The basic unit of information is the octet (or byte): 8 bits of information. You can see how 8 bits
might be a little small to describe large strings — more on that later. One thing that must be noted
is that TLVs can be nested, that is, the value part of a TLV tuple can contain TLVs.

I’'m going to skip a full description of BER and just report the basics of how they relate to
XmString s. Let's take a trivial example:

xmstr = XmStringCreateLtoR("Hello\nWorld", XmFONTLIST_DEFAULT_TAG);

The first thing to notice is thXmFONTLIST_DEFAULT_TAGThat's a clue to MTIF that the

string passed in is represented in the current locale (I'm not even going to try to talk about NLS —
look elsewhere for what locale means). The second thing to notice is that wEmStdngCreate-

LtoR , which means the function should be aware of separators (normally, this means “look for
newlines”). So MTIF would parse that asHello ” (locale text), ‘\n ” (separator in this locale),

and ‘World ” (locale text).

Identifier Value
XMSTRING_COMPONENT_UNKNOWN | 0x00
XMSTRING_COMPONENT_CHARSET | 0x01
XMSTRING_COMPONENT_TEXT 0x02
XMSTRING_COMPONENT_DIRECTION| 0x03
XMSTRING_COMPONENT_SEPARATORO0x04
XmSTRING_COMPONENT_LOCALE_TEXIX05

Table 8.1: Component identifiers fokmString s.

Let's look at what Motif does tell us about encodings — €doiString component has a different
identifier (see figure 8] 1). Hmm, these could be the tag part of the TLVs! Given th&iiing
that MkTIF 1.2 generates is the following (in hex and chars, withGkeprefix removed from the
hex):

DF 80 06 10 05 05 'H" e’ 'I" 'I' '0’ 04 00 05 05 'W' o' v T 'd’

which makes absolutely no sense when you look at it that way. Try this:

OxDF 0x80 this is a M-TIF string (essentially)
0x06 0x10 which contains a 16 bytémsString
0x05 0x05 which contains 5 bytes of locale text
“Hello ” which has the valueMello "
0x04 0x00 and a separator
—nothing— which has no data (never does)
0x05 0x05 and 5 more bytes of locale text

“World ” which has the valueWorld ”



110 8. Inside XmStrings

The first number (on lines that have them) is the tag; the second number is the length. You
can see that this description shows how TLVs can be nested. Look at it this way; if | just de-
scribe the string above structurally, it comes out as (using parentheses as an indicator of nesting):
TLV=(TLV=(TLV,TLV,TLV)).

The first tag valu®xDF identifies everyKmsString . While this value seems arbitrary at the first
glance it makes some sense. The tag value can be decomposed into three separate fields as shown
below.

—  format bit: primitive encodin,

110111 {1]|1
N

L——— tag ID

private tag class

The most significant bits 7 and 6 indicate that this is a private tag class, thus the bits 4 to O are just
set to an arbitrary value. The “F” flag (bit 5) indicates that this is a simple tag encoding and not a
composed one. Ok, after this you're scratching your head once again. Where does the next value
0x80 (the first length) fit in? Remember how | said that 8 bits was a little small for describing
lengths? Well, that's where BER kicks in. There are really three ways for describing lengths: short
form, long form, and indeterminate form. As far as | know, Motif cheats horribly on this (more on
this below). Here’s how you describe lengths in BER:

o If the length< 0x80, then length is contained in one octet.

0 1 data octets : : data octets
L e - - o I 1

Length of following Value block

data block

e If the length> 0x80 (but not indeterminate), then the length octet is define@x&88 plus
the number of octets needed to describe the length (up to 127 additional octets, so this can
describe lengths up td2"8, or 21916 which isreally huge). The octets describing the length
immediately follow the length octet and come before the value octets. In practice (as far as
I know), M=TIF limits this to two additional length octets, which implies a maximum value
length of 65535. Maybe the CSF once planned to pertikito M$Windooze. ..



8.3. How It Works 111

Most Significant Byte Least Significant Byte

\ \

Number of octets Length of following value block Value block
describing the size
block following

e If the length> 2196 or you are really lazy (like MriF is), then the length octect contains
0x80, and you're to parse the value (which contains TLV tuples) until you come to a TLV
whose tag and length are both O« NF uses the indeterminate form only for encoding the
first TLV, but never when encoding the subsequent TLV's.

M*#tif allows only for one Tag/Len/Value tuple End TL tuple
following, and no end TL tuple! without a value block

11010(0{0]0|0|0| | Tag| Len| Value| | Tag )bn:’ﬁue OxOO@,@ﬁ)\/x’/

Indeterminate size Any number of Tag/Len/Value tuples

As | said before, MTIF is really lazy (what else did you expect?!). The first hea@gbDF 0x80)
should imply that aiXmString parser should look for a tag and length that are both 0. In practice,
Motif strings contain onhyoneelement in the value: thémString . I've parsed strings in MriF
looking for the 0x00 0x00 ) tag/length, and run off into space. ThereforedsTIF stops after
finding the firstXmString component. In effect, a length 6k80 in M«TIF means “l don’t know
how long my value is, but my value is really a TLV, and there’s only one of them”.

Let’s look at our example string again, in light of this information:

OxDF 0x80 XMSTRING_TAGXmSTRING_LENGTH
0x06 0x10 XmSTRING_COMPONENT_XMSTRINI® bytes

0x05 0x05 XmSTRING_COMPONENT_LOCALE_TEXSTbytes
“Hello ” “Hello ”

0x04 0x00 XmSTRING_COMPONENT_SEPARATORytes
—nothing—

0x05 0x05 XmSTRING_COMPONENT_LOCALE_TE)8Ibytes
“World ” “World ”

That should make more sense, now. Note that the tags 6—125 are said to be reservedsm M
header files; now you should understand why the valueXBiSTRING_COMPONENT_XMSTRING
(which doesn’t appear in any Motif header). The lendtinSTRING_LENGTHs used within

LEsSTIF as a synonym for the indeterminate length valu®xg80 . You'll find its definition in
$(LESSTIF_ROOT)/libXm/XmString.c



112 8. Inside XmStrings

8.4 Structures

[Need to explain here why order is important in the strings — the charsets MUST come before the
strings that use them].

8.5 The Other Side of XmStrings

As you can easily imagine, the ASN.1 representation &frestring isn’t very suitable for fast
handling, yet saves memory. Another advantage #h&String is that it is independent of a
XmFontList . Only when you need to know the height and/or width ofraString or want to
render it into a drawable @mFontList must be specified so that the individual string compo-
nents can be “connected” to the fonts from the font list.

If you need to work many times with a particulAmString (like the list widget) it is more
convenient to “compile” the ASN.1 representation oXeString into an internal form — a
_XmsString . The individual TLV's from the ASN.IXmString are thereby transformed into
string components accessible through pointers. The compilation is carried oudmittringCreate()
which takes &msString and returns aXmsString . Next after the transformation the references
to the fonts should be resolved —usémStringUpdate()  for this task. Lateron, you can update
the fonts the (internal)XmString  will use whenever you want by callingKmStringUpdate()

A _XmString is merely a pointer to a_XmStringRec . This structure points to a table of
pointers to the string’s components. In addition th&XmStringRec also accounts for the size

of that table of pointers (see figure B.1). As the table of pointers can grow and shrink whenever
the string gets manipulated, it may also move in memory. Thus theXheString  pointer can'’t

point directly to the components table but must point to a data structure instead which stays at
the same memory location all the time (well — at the sdmggcal or linear memory location as
modern virtual memory management may move memory blocks at any time around the physical
memory).

In turn the string components are described b¥mStringComponentRec s, which contain the

type of a component (see taple]8.1 on 109), the component’s data, its length, and finally the
font to be used. Every XmStringComponentRec can thus be regarded as a TLV converted

to a more suitable form to the CPU. Tfemt member of the component record is just an index
into aXmFontList . So be sure to update these indices wikmStringUpdate() whenever

the font list changes which is used for rendering tenString .



8.5. The Other Side of XmStrings 113

||_XmString

. Components Table
— ___XmStringRec >

__XmStringComponentRec **components;
int number_of_components;

v

Y

_ XmStringComponentRec

XmStringComponentType type;
int length; >
char *data;

short font;

|
b

XmFontList

_XmFontListRec |-

Figure 8.1: Internal representation of a “compiled” XmString



114 8. Inside XmStrings




Hash & Cache

Harald Albrecht

-
]‘;\ﬁ

/

-\
~(2
2
3
)

|—



116 9. Hash & Cache

9.1 Introduction

Caches within [ESSTIF serve two main purposes: avoiding unnecessary round-trips to the X server
as well as resource sharing. The resource sharing can either occur on the server side (pixmaps,
graphics contexts,...) or on the side of the client (images, memory). Caching can also improve
performance (although this is at some times only an idle wish...).

When working with caches, very often you need to check a cache for the existence of a particular
item. Because the cache may contain many items this lookup has to be fast. In almost every case a
simple linked list isn't suitable when you need speed — but (at least) a linked list is easy to code.

As a way out theXContext s of the Xlib come to mind. Unfortunately, they can only be used
if you have a display pointer ready at hand. AnX@ontext is destroyed when the display it
belongs to is closed. Therefore tk€ontext s are neither suitable for all caching purposes nor
as a general associative array.

9.2 The Hash Table Module

Whenever you need a cache or an associative array that must be independent of a particular display
pointer then you should use the generic hash table mechanism wihkigTLF. Generally, it offers

much better performance than a simple linked list, especially if there are many items to manage.
The hash table mechanism makes reinventing the wheel unnecessary in almost every case.

You can think of a hash table as some kind of associative array. You first put a value named by
an identifier into the hash table. Lateron you can ask for the value using the identifier. Both an

identifier and its associated value make up an “item”. The values and identifiers for the hash tables
within LESSTIF are typedef’ed in a portable fashion:

typedef XtPointer LTHashitemID;
typedef XtPointer LTHashltemValue;

This allows you to use the broad range of integral data types in C for both values and identifiers.
And if the space provided by these data types isn't sufficient, you can use the identifiers and values
as pointers to structures instead. Because of this broad range of data types you may have to provide
functions for comparing two items and calculating a hash value of an item:

typedef unsigned int (*LTHashGetHashFunction)(LTHashltemID);
typedef Boolean (*LTHashCompareFunction)(LTHashltemID, LTHashltemID);

A LTHashGetHashFunction  returns an unsigned integer that represents the hash value for that
particular item specified as the parameter to the functionTMashCompareFunction — must
returnTrue if the two items specified by the parameters are equal.



9.2. The Hash Table Module 117

Hash tables are created and destroyed using the following two functions. You don’t have to supply
a size when creating a hash table becaussdlIF’'s hash tables grow as needed whenever new
entries are added.

LTHashTable LTHashTableCreate(LTHashGetHashFunction GetHash,
LTHashCompareFunction Compare,
unsigned int IDSize);

Creates a fresh hash table and returns a pointer to it for subsequent use. You can either
specify your own functions for calculating a hash key and comparing items (more precisely:
comparing their identifiers) iGetHash andCompare or NULL In the latter case the hash

table will use default functions. If you use data structures as identifiers then you probable
have to supply your own functions.

The final parametelDSize indicates what type of identifiers you're working with and
whether the memory occupied by the identifier belongs to the hash table. If you specify
hereLTHASH_ID_NOCOPthen the hash table will not make a copy of a data structure

an identifier points to when adding or replacing items. Another special case are strings for
which you can specifi THASH_ID_STRING The hash table will then take care of copying

and freeing the string identifiers. If you specify {@Size any size (other than zero or one,

as these ones are reserved), then the hash table mechanism will copy the data structure of
that size pointed to by BTHashltemID to private allocated storage whenever you add or
replace items in the hash table.

void LTHashTableDelete(LTHashTable ht);
Deletes a hash table and frees all memory occupied by it.

At any time you can ask a hash table how much items it currently contains.
int LTHashTableGetNumitems(LTHashTable ht);

After creating a hash table you can add (or remove) items to (from) it.
Boolean LTHashTableAddltem(LTHashTable ht, LTHashitemID id,
LTHashltemValue value);
Adds the item identified bid with the valuevalue to the hash table. If there is already an
item with the same identifier in the hash table then the function doesn’t modify the value of
that item and returnBalse . Otherwise, the function adds the item to the table and indicates
success by returningrue .

If eitherid orvalue are pointers to data structures, make sure that these data structues are
not allocated in automatic storage. Because the hash table only stores the pointers you must
not free the data structures until the item is removed from the hash table. The only exception
occurs when you have specified the size of the data structure of your item identifiers when
creating the hash table. In this case the hash table will make a copy of the identifier.

Boolean LTHashTableReplaceltem(LTHashTable ht,
LTHashltemID id,
LTHashltemValue value,
LTHashltemValue *value_ret);



118

9. Hash & Cache

Much the same asTHashTableAddltem() . But when the hash table already contains
an item with the identifierd , thenLTHashTableReplaceltem() replaces the item’s
value withvalue . The item’s previous value is returned*ivalue ret  as long as you
don’t specify aNULL pointer for the final parameter. If a replace took place then the function
returnsTrue . This return value is especially useful if the value of an item is a pointer to
memory allocated usingtMalloc() . In this case you can free the memory occupied by
the old value wheneva&rTHashTableReplaceltem() returnsTrue .

Boolean LTHashTableReplaceltemAndID(LTHashTable ht,

LTHashltemID id,
LTHashltemValue value,
LTHashltemID *id_ret,
LTHashltemValue *value_ret);

Much the same akTHashTableReplaceltem but this time even the identifier of the

item will be replaced with the new identifier. If you don’t specMyJLL for id_ret  then

you'll get the old identifier of the item. In the cases where the hash table mechanism takes
care of the memory occupied by identifiers (within the hash table), it'll free that storage if
the identifier of an item was replaced.

Boolean LTHashTableRemoveltem(LTHashTable ht, LTHashltemID id,

LTHashltemID *id_ret,
LTHashltemValue *value_ret);

Removes an item identified it from the hash table and returfisie if it succeeds In this

case you will get back the identifier and the value of the itefidinret ~ and*value_ret

as long as you don’t specifyULL for these pointers. The information returned can help you

to free the data allocated to hold the identifier and the value. In the cases where the hash
table mechanism takes care of the memory occupied by identifiers (within the hash table),
it'll free the storage used by the identifier.

Boolean LTHashTableLookupltem(LTHashTable ht, LTHashltemID id,

LTHashltemValue *value);
Looks up an item identified big within the hash tablét . If it succeeds then it returns the
value of the item irvalue and returngrue . Otherwise the function returizlse if the
item can’t be found.

int LTHashTableForEachltem(LTHashTable ht,

LTHashForEachFunction iter,
XtPointer ClientData);

From time to time you need to iterate over the contents of a hash table. This is where you'll
use this iterator function. For every item in the hash table the iterator funiton is
called. The function prototype for such an iterator function is as follows:

typedef LTHashForEachlteratorResult
(*LTHashForEachFunction)(LTHashTable,
LTHashltemID, LTHashltemValue, XtPointer);

The iterator gets as its final parameter tientData  parameter from the call tbT-
HashTableForEachltem . The iterator function then should return one of the following
results depending on whether the iteration process should continue or not. The function
LTHashTableForEachltem  returns the value of a counter that is initialized at the start



9.2. The Hash Table Module 119

Identifier Operation

LTHASH_BREAK Exit the iteration loop.

LTHASH_CONT Continue.

LTHASH COUNT Continue and increment the counter.
LTHASH_COUNTANDBREAHKncrement the counter but exit the iteration loop.

Table 9.1: Results the iterator function of a hash table can return.

of the iteration process and is incremented whenever the iterator function indicates this.



120 9. Hash & Cache




A

Appendix

-
“\—
I—
~{2

OR

Q)
A

|—



122 A. Appendix

Object ‘

Xn‘\l‘)mme ferObject

“XmTextinner

XmCascadeButtonGadget ]

XmPushButtonGadget ]

XmToggleButtonGadget ]

: ) -XmEXlObJSC( o
RectObject |
XmLabelGCacheObjC:
<—| XmGadget l<—| XmArrowButtonGadget
unnamed ‘ T—' XmSeparatorGadget
T—' XmLabelGadget
Core ‘
<—| XmDragContext ]
] XmDraglcon |
4—{ XmScreen ‘

XmPrimitive XmArrowButton

Composite ‘

P

4

<[
XmCascadeButton ]
«I XmLabel
XmDrawnButton ]
«[ XmList ]
XmPushButton
T—' XmToggleButton ]
«[ XmScrollbar ]
«I XmSeparator ]
«[ XmText ]
H XmTextField |
Constraint
XmManager 144 XmBulletinBoard l<—| XmForm ]
«I XmDrawingArea ] T—' XmMessageBox ]
4 XmFrame ] T—' XmSelectionBox l<—| XmCommand ]
«I XmPanedWindow ] T—' XmFileSelectionBox ]
4 XmRowColumn ]
«I XmScale ]
H XmScrolledWindow = XmMainWindow |
Shell
OverrideShell =] XmMenuShell |
WMShell |

KEY

[T Xt Intrinsics class
[ LessTit class

L...t LessTif internal class

4

(Xm)VendorShell |

SessionShell (X11R6 only) ‘

TopLevelShell

ApplicationShell ‘

XmDisplay ]

TransientShell

XmbDialogShell |

Figure A.1: The big picture of all widget classes.



Index 123

Index

_MOTIF_DRAG_AND_DROP_MESSABE
_MOTIF_DRAG_RECEIVER_INF@8Y,[90
_MOTIF_DRAG_TARGETB]

_XmAddGrab, 2§

_XmBuildResources ,[4
_XmBulletinBoardSizeUpdate ,[50,[51[68

_XmClearShadowType ,[43,[46[47} 49,51
_XmConfigureObject ,[63

_XmDrawShadows, [43,[46[4¥[ 49, 31
_XmExtGetValuesHook ,[3
_XmExtimportArgs ,[3
_XmFastSubclassinit 21
_XmFreeWidgetExtData ,[20
_XmFreeWrapperData ,[17
_XmGMCalcSize ,[68§

_XmGMDolLayout [43,[47[66
_XmGMEnforceMargin ,[43,[47[66
_XmGMHandleGeometryManager ,[48,[49[ 64

_XmGMHandleQueryGeometry ,[64
_XmGMOverlap,[68
_XmGMReplyToQueryGeometry ,[65
_XmGadgetGetValuesHook ,[3
_XmGadgetimportArgs ,[3
_XmGadgetimportSecondaryArgs  ,[3
_XmGeoAdjustBoxes ,[6]]
_XmGeoArrangeBoxes ,[43,[47[ 60} 61L
_XmGeoArrangeList ,[61,[62
_XmGeoBoxesSameHeight ,[6]
_XmGeoBoxesSameWidth, [6]
_XmGeoCalcFill ,[63
_XmGeoClearRectObjAreas ,[65
_XmGeoFillVertical ,[61,63
_XmGeoGetDimensions ,[61,[62
_XmGeoLayoutSimple ,[67
_XmGeoLayoutWrap ,[67
_XmGeoLoadValues ,[60
_XmGeoMatrixAlloc ,[59

_XmGeoMatrixFree ,[45[47[59
_XmGeoMatrixGet ,[45,[47[6D
_XmGeoMatrixSet ,[48,[47[68

_XmGeoReplyYes,[63
_XmGeoSetupKid ,[59
_XmGeoStretchVertical ,[61,[63
_XmGeometryEqual ,[65
_XmGetBaseClassExtPtr ,[20
_XmGetClassExtensionPtr .20
_XmGetCount_kids ,[67
_XmGetKidGeo, [67
_XmGetModifierMappingsFor-
Display ,[I02
_XmGetWidgetExtData ,[20
_XmGetWrapperData ,[12
_XmHandleGeometryManager ,[50,[64
_XmHandleQueryGeometry ,[48,[64
_XmHandleSizeUpdate ,[51,[63
_XminitializeExtensions 8,23
_XminvalidateModifierMappings-
ForDisplay ,[102
_XmisFastSubclass ,[2]]
_XmlsSlowSubclass ,[2]]
_XmisStandardMotifwidgetClass 21
_XmMakeGeometryRequest ,[34,[35[65
_XmManagerGetValuesHook ,[3
_XmManagerlmportArgs ,[3
_XmMenuBarFix ,[6§
_XmNavigChanged ,[44
_XmNavigResize() ,[I§
_XmPopWidgetExtData ,[I9
_XmPopWrapperData ,[12
_ XmPrimitiveGetValuesHook 3
_ XmPrimitivelmportArgs B
_XmPushWidgetExtData ,[I9
_XmPushWrapperData ,[13
_XmRCGetKidGeo,[61
_XmRefreshVirtkeys ,[103
_XmRemoveGrah [2§
_XmSelectionBoxGeoMatrix-
Create ,[73
_XmSelectionBoxNoGeo-

Request ,[50,81



124 Index

_XmSeparatorFix ,[66
_XmSetKidGeo ,[63
_XmStringCreate()  ,[I12
_XmStringUpdate() ,[I12
_XmVirtKeysinitialize ,[103
_XmVirtkeysLoadFallbackBin-

dings ,[I03
_XmVirtKeysLoadFileBindings ,[103
_XmVirtualToActualKeysym ,[103

A

Abstract Syntax Notatiofi, IP8
ASN,[108

B

BaseClass extension recdrd] 12
Basic Encoding Rulep, Ip8
BB_InSetValues ,[50

BCE record[ 1P

BER,[108
BulletinBoard[4P

byte order] 86

C

change_managed method[3B] 22
class_part_initialize method[ 8
client messagé, 5
constraint_initialize method[ 3P
constraint_set_values method[ 3P
creating

dialog shells, 28
CWBorderWidth ,[34
CWHeight ,[34
CWWidth, [34
cwx34
Ccwy34

D

delete_child method[ 3B
drag
client messagé, 5
dynamic mod¢, 85
flags[86
initiator info atom[ 92
preregister mod¢, 5

protocol[92
window,[8%

drop
initiator,[84
protocol[ 9%
receiver 8}

site [84
dynamic mode], 85

E

export

procedure, 4
extension
object[Z9
record (BaseClasg), [12

G

geo_matrix_create ,[42
geometry managemeft,42
geometry policy 35
geometry_handler  method[Ip
geometry_manager method[ 3] 42
GeoUtils[42
get values method[8
grabs
adding or removing, 25
exclusive and non-exclusivg, |24

internal layer] 2pb
Xlib and Xt,[24

H

handle_change_managed method[ 4}
hash tabld, 116
hook

method[8

wrapper[ 8

import
operator] 4

procedure, 4
initialize method[ 8] 3p

initiator,[84
insert_child method[ 3B
internal grab layef, 25



Index

keycode| 100
keysym[T0D

L

LTAddGrab ,[24

LTHashitemID ,[118
LTHashltemValue ,[I18
LTHashTableAdditem ,[I17
LTHashTableCreate ,[I17
LTHashTableDelete ,[I17
LTHashTableGetNumlitems ,[II7
LTHashTableLookupltem ,[I18
LTHashTableRemoveltem ,[I18
LTHashTableReplaceltem ,[117
LTHashTableReplaceltemAndID X183
LTRemoveGrab,[24

M
mapping chaché§, 102
method hook;]8
method wrappers§, 16
modifiers[ IO}l
fake[I01
get mapping for displaf, 102
invalidate mapping cachle, 702

O

object
secondary, 14

P
policy

geometry] 3b
posthook| B

prehook[ B
preregister mod¢, 85

Q

query_geometry  method[ 3] 4R

R

realize  method[ 15, 31,42
receiver 8%
resize  method[1H, 37, 42
resolution independendg, 2
resource

synthetic[ 2

S

secondary

object[T4

resourceg, 14,15
set_values method[ 8] 3[, 42
shadow shell tre§, 29
SmartMessageBof, $#2
synthetic resourcef) 2

T

tag/length/valug, 108
targets tablg, §8
LV,

Vv

virtual bindings[ I0fL

W

wrapper
data stacK, 70

method[ 8} 1p

X

XClientMessageEvent ,[85
Xlib grabs[2%
XmBaseClassExtRec ,[I3
XmDesktopObject ,[30
XmDisplay ,[32
XmDRAG_MOTIOE
XmDROP_SITE_ENTED3
XmDROP_SITE_LEAVED]
XmDROP_STAR[BY
XmeReplyToQueryGeometry ,[63
XmExportProc ,[4
XmExtObject ,[29
XmGEO_AVERAGINGE
XmGEO_CENTEES]

125



126 Index

XmGEO_COLUMN_MAJBR
XmGEO_EXPANBS
XmGEO_PAC[KH
XmGEO_POST_SEFq
XmGEO_PRE_SE[F§
XmGEO_PROPORTIONA&SR
XmGEO_ROW_MAJBR
XmGEO_WRAB]
XmGeoArrangeProc ,[52
XmGeoColumnLayoutRec ,[58
XmGeoCreateProc ,[42
XmGeoExceptProc ,[53
XmGeoExtDestructorProc  ,[52
XmGeoMajorLayoutRec ,[55
XmGeoMatrixRec ,[57
XmGeoRowLayoutRec, [5§
XmGeoSegmentFixUpProc ,[52
XmGET_ACTUAL_SIZH5§
XmGET_PREFERRED_SIZ[E]
XmimportOperator ,[4
XmimportProc ,[4
XmKidGeometryRec ,[5§
XmNlogicalParent ,[29
XmOPERATION_CHANGE33
XmScreen, [30
XmSTRING_COMPONENT_CHARSEN

XmSTRING_COMPONENT_DIRECTI{N9
XmSTRING_COMPONENT_LOCALE_THKI9
XmSTRING_COMPONENT_SEPARATTIR

XmSTRING_COMPONENT_TERT3
XmSTRING_COMPONENT_UNKNEH

XmSTRING_COMPONENT_XMSTRIEGI

XmSYNTHETIC_LOAIg
XmSYNTHETIC_NONBF
XmSyntheticResource ,[4
XmTOP_LEVEL_ENTERZ
XmTOP_LEVEL_LEAVE9Z
XmTRANSFER_FAILUABY
XmTRANSFER_SUCCESH
XmTrivial ,[61
XmVendorShellExtObject ,[30
XmWwidgetExtDataRec ,[18
XmWrapperDataRec ,[10
Xt grabs[ 24

XtAddGrab ,[25
XtCreatePopupShell ,[28
XtCreateWidget ,[2§
XtCWQueryOnly ,[34
XtDispatchEvent ,[24

XtGeometryAlmost ,[33
XtGeometryDone ,[35

XtGeometryNo ,[35

XtGeometryYes ,[33
XtMakeGeometryRequest ,[34,[35[65
XtMakeResizeRequest ,[34
XtRemoveGrab ,[24,[2%
XtWidgetGeometry ,[34



	Foreword
	Synthetic Resources and Resolution Independence
	Introduction
	The Implementation of Synthetic Resources
	How to Use Synthetic Resources

	Pandora's Box: the BaseClass Stuff
	Introduction
	The Method Hooks
	The Wrapper Data Stacks
	The BaseClass Extension Record

	The Method Wrappers
	The Widget Extension Data
	Other Undocumented Stuff

	Diverting User Input with Grabs
	Introduction
	The Grab Layer and the Grab List
	Full Application Modal Dialogs
	Modeless Dialogs
	System Modal Dialogs
	Primary Application Modal Dialogs

	Creating Dialog Shells the Right Way
	Extending the VendorShell
	The Shadow Shell Tree

	Messy Geometry Management
	Introduction
	Making Geometry Requests
	The Xt Intrinsics Way
	The LessTif Way

	Geometry Management and the Widget Methods
	The initialize() Method
	The set_values() Method
	The resize() Method
	The realize() Method
	The query_geometry() Method
	The geometry_manager() Method
	The change_managed() Method
	The insert_child() and delete_child() Methods
	The constraint_initialize() Method
	The constraint_set_values() Method
	The Geometry Management Helper Interfaces


	Fun and Pain with the GeoUtils
	Introduction
	The BulletinBoard Class
	The change_managed() and realize() Methods
	The resize() Method
	The query_geometry() Method
	The geometry_manager() Method
	The set_values() Method

	The Data Structures
	The GeoMatrix
	The MajorLayoutRec
	The KidGeometryRec

	The GeoUtils Functions
	The Allocation, Initialization, and Deallocation Functions
	Layout Management Functions
	Querying the Children
	Computing the Desired Size
	Computing the Layout
	Applying the Changes

	The Method Functions
	Miscellaneous Functions
	BulletinBoard Helper Functions
	RowColumn Specific Functions

	How to Build a Subclass Using the GeoUtils
	The Header Files
	The Implementation
	Extra Prototypes
	The Class Structure
	The set_values() Method
	The NoGeoRequest Method
	The GeoMatrixCreate Method


	Conclusion and Credits

	Drag and Drop
	Introduction
	Protocol Basics
	Drag Operation Modes
	Protocol Messages
	Drag & Drop Flags
	The Targets Table
	Advertising a Receiver
	Starting a Drag or Drop

	The Drag Protocol
	Entering/Leaving Top Level Windows
	Pointer Motion
	Changing the Operation

	The Drop Protocol
	The Preregister Mode

	When the Keyboard Goes Wild
	Introduction
	The Virtual Bindings
	Managing the Modifier Mappings
	Managing the Virtual Bindings
	The xmbind Client

	Inside XmStrings
	Introduction
	Get Ready for the Acronyms
	How It Works
	Structures
	The Other Side of XmStrings

	Hash & Cache
	Introduction
	The Hash Table Module

	Appendix
	Index

