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Abstract

We performed molecular dynamics (MD) simulation of 9 million pairs of NaCl ions with the
Ewald summation and obtained a calculation speed of 1.34 Tflops. In this calculation we used a
special-purpose computer, MDM, which we are developing for the calculations of the Coulomb
and van der Waals forces. The MDM enabled us to perform large scale MD simulations without
truncating the Coulomb force. It is composed of WINE-2, MDGRAPE-2 and a host computer.
WINE-2 accelerates the calculation for wavenumber-space part of the Coulomb force, while
MDGRAPE-2 accelerates the calculation for real-space part of the Coulomb and van der Waals
forces. The host computer performs other calculations. We performed MD simulation with the
early version of the MDM system: 45 Tflops of WINE-2 and 1 Tflops of MDGRAPE-2. The
peak performance of the final MDM system will reach 75 Tflops in total by the end of the year
2000.
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1 Introduction

Molecular dynamics (MD) simulations have been widely used to study the physical properties of
condensed matter at the atomic level. There are strong motivations to perform MD simulations
with a large number of atoms to study large molecular systems, such as proteins or lipid bilayers.
In MD simulations each atom is treated as a classical particle. An atom interacts with the other
atoms through the Coulomb, van der Waals and bonding forces. Newton’s equation of motion of
atoms are solved by numerical integration. The most time consuming part is the calculation of
Coulomb and Van der Waals forces. In particular, the calculation cost for the Coulomb force is
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Figure 1: Basic structure of the Molecular Dynamics Machine

prohibitively high for systems larger than 10,000 atoms, since the Coulomb force is a long-range
force; you cannot basically ignore the force from an atom no matter how far it is.

There are many algorithms to reduce the calculation cost for the Coulomb force. The Ewald
method [1] is often used under the periodic boundary condition to reduce the calculation cost
for the Coulomb force to O(N3/2) instead of the native method’s O(N?). Moreover, many other
faster methods [2, 3, 4, 5] which scales as O(N) or O(N log N) have been developed. However,
the accuracy of these methods has not been well discussed on the actual system with large
number of particles, such as 100,000 or 1,000,000.

In order to meet the huge computational requirements for the Coulomb force and to realize a
large scale simulation with one million particles, we are developing a special purpose computer,
the Molecular Dynamics Machine (MDM), based on the Ewald method. MDM is divided into
three parts: WINE-2, MDGRAPE-2 and a host computer (figure 1). WINE-2 calculates the
wavenumber-space part of the Coulomb force. MDGRAPE-2 calculates the real-space part
of the Coulomb and van der Waals forces. The host computer performs the bonding force
calculation and the other operations; for example, updating the positions and velocities of the
particles. The peak speed of MDM will be about 75 Tflops and it will be completed by the end
of the year 2000. The detailed description was given by Narumi et al. [6, 7].

Sugimoto et al. [8] have developed a series of hardwares called GRAPE, which is a special-
purpose hardware designed to accelerate the gravitational force calculation. Their approach
combines special-purpose and general-purpose computers and it has already been shown very
effective. In fact, GRAPE-4 [9, 10] and GRAPE-5 [11] were awarded the Gordon Bell prize in
1995, 96 and 99. Their group also developed a special-purpose hardware for MD simulations,
such as MD-GRAPE [12] and WINE-1 [13]. MDM is the successor of these machines.

We started a preliminary performance measurement of the system, since a part of MDM is
ready for use in July 2000. We performed molecular dynamics simulation of 9 million pairs of
NaCl ions and obtained a calculated speed of 1.34 Tflops. One of our target is to investigate
the solid-liquid phase transition of ionic system with over million particles. The reason why we
performed MD simulation of NaCl is that it is a typical ionic system and many experimental
data are available.

MD simulations with very large number of particles benefits us in several points. The first



is, for example, the equilibrium properties of a system can be calculated with better accuracy
in the case of large number of particles since the fluctuations of temperature and pressure are
generally very small. Temperature and pressure computed for a system with smaller number of
particles tend in fact to show larger fluctuations because they are calculated from a finite number
of particles. Also in the case of phase transition, we need a very large number of particles to
investigate properly the dynamic of the process. In the previous work [14], we performed 1 ns of
solidification simulations with 13,824 particles of NaCl, and obtained small size of polycrystals
which contain few grains. We therefore need much larger number of particles to get large size
of polycrystals with many grains. In this respect, the simulation described in this paper was
the preliminary test for the target runs, even though it was not the solid-liquid phase transition
process but molten salt phase.

In the present paper we give a general description of the simulation and the results obtained.
Section 2 presents the method of calculation adopted; section 3 gives an outline of the MDM
hardware specifications while in section 4 is described the software for MDM. The results of
molecular dynamics simulation as well as the measured speed are reported in section 5 and in
section 6 we discuss the prospect of improving performance in the near future.

2 Calculation of Forces in the Ewald Method

In this section, we describe the Ewald method especially targeted on the number of floating point
operations since we need to translate the performance of our hardware by a unit of floating point
operations per second. First, we describe the basic equations of the Ewald method. Second, we
discuss the number of floating point operations for them.

2.1 Basic equation
The force, F’i, on a particle 7 is expressed as:
F, = F,(CIb) + F;(vdW) + F;(bd),

where E(Clb) is the Coulomb force, F}(vdW) is the van der Waals force, and F’i(bd) is the
bonding force by covalent and hydrogen bonds.

The Coulomb force, F’i(Clb), on a particle 7 is divided into two parts: the real-space part,
F;(re), and the wavenumber-space part, F;-(Wn), in the Ewald method:

F;(Clb) = Fi(re) + Fi(wn). (1)

Here, F;(re) and F(wn) are expressed as
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where 7; is the position of particle 7, ;; is the relative vector from particle j to particle 4, r;;
is the distance between particles ¢ and j, ¢; is the electrostatic charge of particle i, k is the
wavenumber vector, k is the length of 1?5, L is the length of a side of the computational box,
Teut and kg, are the cut-off lengths of relative vector and wavenumber vector, respectively, ¢g
is the dielectric constant of vacuum, « is a parameter to balance the computational cost for the
real and wavenumber parts of the Coulomb force calculation, and erfc(z) is the complementary
error function.

The van der Waals force, F’i(vdw), on particle ¢ is calculated as follows when the potential
function is Lennard-Jones:
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where ¢(at;, at;) and o(at;, at;) are parameters which are determined by the particle types, at;
and at;. at; is the particle type of particle i.

In the following subsections, we describe how many floating-point operations are needed for
the real-space and wavenumber-space parts, respectively.

2.2 Real-space part

The number of floating-point operations between a pair of particles in the real-space part of the
Coulomb force (equation 2) is estimated as 59, including one complementary error function, one
exponential function, one square root function, one division, ten multiplications, six additions,
and three subtractions. Here, we assumed the number of floating-point operations for erfc(z),
exp(z), sqrt(z) and division to ten, respectively. The number of floating-point operations per
time-step for the real-space part is calculated as 59N N;,,;, where N;,; is the number of particles
to be taken into account in the force calculation exerted on one particle. It is half number of
particles within the cut-off radius, 7..;:

Nipt = — - _Trrcut(ﬁ)') (5)

since they use Newton’s third law in the calculation of the force.
However, the number of particles, NV;,; 4, to be taken into account on one particle differs
from N;,; when we use MDGRAPE-2 as:

N
Nint g ~ 277’3@(?)' (6)

Nint_g is about 13 times larger than N;,:, which means that MDGRAPE-2 performs 13 times
more operations for calculating the same force. This is caused by two reasons. First, MDGRAPE-
2 does not use Newton’s third law since the logic to support it makes the hardware complicated.

Second, MDGRAPE-2 uses cell-index (link-cell) method [15] to search the neighboring par-
ticles instead of comparing the distance of each particle. A simulation box is divided into cells,
and particles are allocated to them. We can get the neighboring particles by searching only
neighboring cells. The calculation cost for searching neighboring cells is very small compared
with that for directly searching neighboring particles. In the case of MDGRAPE-2, we set



the size of a cell to a little larger than r.,;. So a particle in a cell interact with particles in
neighboring 27 cells including itself; equations 2 and 4 can be rewritten as:
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Fi(vdW) =3 3 fi;(vdW). (8)

c=1 j=jstart,

Here c is the index of a neighboring cell, jstart, is the first index of a particle in cell ¢, jend,
is the last index of a particle in cell ¢, ﬁt’j (re) and ﬁ,j (vdW) are pairwise Coulomb and van der
Waals forces between particles ¢ and j, respectively. We assumed that the indices of particles in
a cell are contiguous. The disadvantage of cell-index method with MDGRAPE-2 is the increase
of calculation cost for force calculation. MDGRAPE-2 does not skip the force calculation even
if the distance between two particles are larger than r.,;, since the logic to skip it is also very
complicated.

Therefore, we use N;,; 4, instead of N;,; for MDGRAPE-2. Readers may suspect that we
would increase the number of floating point operations unreasonably. Is is not true because
we correct this increase when evaluating the effective performance of our machine in the later
section.

2.3 Wavenumber-space part

The wavenumber-space part of the Coulomb force, F’i(wn), is actually calculated with WINE-2
by the following two steps. In the first step, it performs discrete Fourier transform (DFT) as:

N
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where N is the number of particles. In the second step, WINE-2 performs inverse DFT (IDFT)
using S,, and C,, as:

Num
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and N, is half of the number of wavenumber vectors whose lengths are shorter than k.,;:

Nuyw ~ = - —wL2E2,,. (13)

The number of floating-point operations between one particle and one wave (wavenumber) in
a DFT (equations 9 and 10) is estimated as 29, including one sine, one cosine, five multiplications



and four summations. Here, we assumed the number of floating-point operations for sin(z) or
cos(z) corresponds to ten. On the other hand, the number of floating-point operations in IDFT
(equation 11) is estimated as 35 including one sine, one cosine, 9 multiplications, 5 summations,
and 1 subtraction. In summary, the number of floating-point operations per time-step for
the wavenumber-space part is calculated as 64N N,,. Note that the other calculations in the
wavenumber-space part (e.g., equation 12) are negligibly small compared with DFT and IDFT
for large N and N,,.

One may point out that we can use addition formula to reduce the floating point operations
for equations 9, 10 and 11. However, we need 6 N Lk.,; X 8byte of storage, which is very large
for large N.

3 MDM System

3.1 Architecture

The MDM system is composed of three parts, WINE-2, MDGRAPE-2, and a host computer
(see figure 1). The two special-purpose computers, which we are developing, work as a back-
end processors. The host computer is a general-purpose computer, and works as a front-end
processor. WINE-2 calculates the wavenumber-space part of the Coulomb force. MDGRAPE-2
calculates the real-space forces. The host computer performs short range force calculation and
other operations.

The basic calculation flow in one time-step of MD simulation is as follows. First, the host
computer sends the coordinates of particles to WINE-2 and MDGRAPE-2. Second, WINE-2 cal-
culates the Coulomb force from wavenumber-space, and MDGRAPE-2 calculates the Coulomb
force from real-space and van der Waals force. Third, the host computer receives the forces on
particles from WINE -2 and MDGRAPE-2. Forth, the host computer performs other operations;
bonding force calculation, time integration of particles, file I/0O, etc.

The calculation cost on two special-purpose computers scales as O(N 3/ ?), while that on
the host computer and the communication between them scale as O(N). Therefore, we can
accelerate the MD simulation by accelerating only the long-range force calculation in the case
of large N; the host computer and the communication do not cause the bottleneck of the system.

3.2 Basic structure

The current MDM system, which is under construction, is shown in figure 3. The host computer
is composed of four node computers, and they are connected with each other by a network. Each
node computer has 5 WINE-2 clusters and 4 MDGRAPE-2 clusters via links. Each WINE-2
cluster has 7 WINE-2 boards connected by a bus. Each MDGRAPE-2 cluster has 2 MDGRAPE-
2 boards connected by a bus. Table 1 shows the components that we used.

WINE-2 is composed of 2,240 WINE-2 chips and has a peak speed of 45 Tflops. MDGRAPE-
2 is composed of 64 MDGRAPE-2 chips and has a peak speed of 1 Tflops. In the following
sections, we describe the hardware in detail.



Table 1: Components of the MDM system

‘ Component H Product ‘ Manufacturer ‘
Node computer Enterprise 4500 Sun
CPU Ultra SPARC-II 400 MHz Microsystems
Network Myrinet
Switch 16-port LAN switch Myricom
Network card LAN PCI card (LANai 4.3)
Link Bus bridge SBS
Interface PCI host card/(Compact)PCI | Technologies
card backplane controller card
Bus CompactPCI (WINE-2) PCI local bus
/ PCI (MDGRAPE-2) spec. rev. 2.1

3.3 Host computer

The host computer is composed of four node computers. As a node computer, we used a Sun
Enterprise 4500 server which has 6 Ultra SPARC II processors of 400 MHz clock. Myrinet [16]
network connects the node computers with each other.

3.4 WINE-2

WINE-2 (figure 4a) is composed of 20 WINE-2 clusters. Each WINE-2 cluster has 7 WINE-2
boards. A WINE-2 board (figure 4b) has 16 WINE-2 chips (figure 4c).

3.4.1 WINE-2 cluster

A WINE-2 cluster is composed of 7 WINE-2 boards which are connected via CompactPCI bus.
It is connected to a node computer through PCI-CompactPCI bus bridge. Therefore, a WINE-2
board looks like a normal PCI device from the host computer.

3.4.2 WINE-2 board

A WINE-2 board (figure 5) is composed of 16 WINE-2 chips, the interface logic, particle
index counter, and particle memory. A node computer communicates with WINE-2 chips
and particle memory through interface logic. A WINE-2 board has a 6U CompactPCI
standard form factor, except that its depth is 40cm instead of 16cm. The interface logic
and particle index counter are integrated in an FPGA (XC4062XLA by Xilinx). 16 Mbyte
of SDRAM is used for the particle memory.

3.4.3 WINE-2 chip

A WINE-2 chip (figure 6) has eight identical WINE-2 pipelines. Peak performance of a WINE-2
chip corresponds to about 20 Gflops at a clock frequency of 66.6 MHz. It is made by LSI logic



K.K. with LCB500K technology, whose design rule is 0.5p¢m and operation voltage is 3.3V. The
number of transistors of a WINE-2 chip is 1.2 million.

3.4.4 WINE-2 pipeline

A WINE-2 pipeline performs DFT (equations 9 and 10) in DFT mode and IDFT (equation 11)
in IDFT mode to calculate the wavenumber-space part of the Coulomb force.

Figure 7 shows the structure of the pipeline in DFT mode. The pipeline calculates the inner
product of vectors 7; and En, and then calculates their sine and cosine. It multiplies the results
to ¢;, and accumulates the products to get S, +C),, and S,, — C,,. The host computer calculates
S, and C, from S, + C,, and S, — C,,. Wavenumber vectors (En) are loaded into a pipeline
before starting the calculation. The pipeline in the IDFT mode is similar to that in DFT mode.

Fixed-point two’s complement format is used in all the arithmetic calculations in a pipeline.
The relative accuracy of F;(wn) is about 10~*5, which is accurate enough for MD simulations.
Researchers usually truncate the accumulation with the Ewald method at a relative error of
1073 to 10~°. In actual cases, F;(wn) is several times smaller than Fi(re). The error in F;(wn)
is smaller than either that of F;(re) or the truncation error of the Ewald sum. Therefore, the
accuracy of the pipeline is enough for usual MD simulations.

3.5 MDGRAPE-2

MDGRAPE-2 (figure 8a) consists of 16 MDGRAPE-2 clusters. Each MDGRAPE-2 cluster has
two MDGRAPE-2 boards. An MDGRAPE-2 board (figure 8b) has two MDGRAPE-2 chips
(figure 8c).

3.5.1 MDGRAPE-2 cluster

An MDGRAPE cluster is composed of two MDGRAPE-2 boards which are connected via P-
CI bus. It is connected to a node computer through PCI-PCI bus bridge. Therefore, an
MDGRAPE-2 board also looks like a normal PCI device from the host computer.

3.5.2 MDGRAPE-2 board

An MDGRAPE-2 board (figure 9) is composed of two MDGRAPE-2 chips, interface logic,
cell index counter, cell memory, particle index counter, and particle memory. The
basic function of the board is the same as WINE-2 board except that the index of a particle
is determined by dual counters to support cell-index method (equations 7 and 8). Cell index
counter specifies the neighboring cell index ¢, and cell memory outputs the range of indices in
the cell c. Particle index counter indicates the particle index j to particle memory. The
position, charge, and particle type of a particle j are supplied to both of the MDGRAPE-2 chips.
An MDGRAPE-2 board is a PCI long size card. Interface logic, cell index counter,
cell memory, particle index counter are integrated in an FPGA (FLEX10K100ABC600-1
by Altera). 8 Mbyte of SSRAM is used for the particle memory.



3.5.3 MDGRAPE-2 chip

An MDGRAPE-2 chip (figure 10) has four identical MDGRAPE-2 pipelines, atom coefficient
RAM, and neighbor list RAM. Atom coefficient RAM stores the coefficients o(at;,at;) and
¢(at;,at;). The maximum number of particle types is 32, which is enough for MD simulation
with proteins. Neighbor list RAM, which was not used in our simulation, can be used to
search neighboring particles. Peak performance of an MDGRAPE-2 chip corresponds to about
16 Gflops at a clock frequency of 100 MHz. It is made by IBM with SA-12 technology, whose
design rule is 0.25pm and operation voltage is 2.5V. The number of transistors of an MDGRAPE-
2 chip is 5 million.

3.5.4 MDGRAPE-2 pipeline
A MDGRAPE-2 pipeline calculates the pairwise force ﬁ,j as:

fii = bijg(airi) i, (14)

where g(z) is an arbitrary central force, and a;; and b;; are coefficients determined by particle
types of particles ¢ and j.

Figure 11 shows the structure of the pipeline. The pipeline calculates 7;; and a,ijr?j, and
then evaluate g(z) in the function evaluator. Function evaluator performs fourth-order
interpolation segmented by 1,024 region. The coefficients of the interpolation function are
stored in the RAM in function evaluator. Therefore, we can use any arbitrary central force
by changing the contents of the RAM. After the function evaluator, the pipeline multiplies
bi; and 7;;, and then accumulates them. The relative accuracy of a pairwise force is about 1077,
since most of the arithmetic units in the pipeline use IEEE754 single floating point format. The
double floating point format is used for accumulating the force in order to prevent the underflow
when large number of particles are used.

In the case of real-space part of the Coulomb force, f_';,j (re) in equation 7 is calculated as:

2exp(—z) erfc(z'/?)

g(:ﬂ) = 71'1/2Z :E3/2 )
a; = o’L7%
bij = q;-

In the case of van der Waals force, f_;:,j (vdW) in equation 8 is calculated as:

g(:c) = 213_7 - 3_4’
a;; = cr(ati, atj)_2,
bij = E(G,ti, atj).

4 Software

We developed MD program written in C for MDM, which is parallelized with Message Passing
Interface (MPI). We used 16 processes for real-space part, and 8 processes for wavenumber-part.
The simulation box is divided into 16 domains, and one process for real-space part performs all



the calculation in each domain except wavenumber-space part. The difference of the program
when we use MDM is that we call library routines to calculate real-space and wavenumber-space
forces instead of calling internal force subroutines. Tables 2 and 3 include all the library routines
that were called from the MD program.

For wavenumber-space part, the library routine for force calculation is already parallelized
with MPI, and users do not care any communication between processes. We used 8 processes
for wavenumber-space part, so each of them has about N/8 particle positions. All the processes
call WINE-2 library routines with the same parameters except the force calculation routine. In
the force calculation routine, the positions of particles are different from each other.

For real-space part, communication between processes must be done by user. We divide a
simulation box to 16 domains, and each process calculates real-space part forces in its domain
(N/16 particles) by calling MRicalcvdw_block2 once. Note that each process should know
positions of neighboring particles before calling MR1calcvdw block2, that is what you have to
manage with MPI routines. The function table for g(z) is generated beforehand by a separate
utility program, and loaded to MDGRAPE-2 chips at the beginning of the simulation by calling
MR1SetTable.

Table 2: Library routine for WINE-2

‘ Category ‘ ‘ Name ‘ Function

wine2 set MPI community | set the MPI community for
wavenumber-space part

Initialization wine2 allocate_board set the number of WINE-2 boards to acquire

wine2 initialize board | acquire WINE-2 boards

wine2 set nn set the number of particles for each process

Force calculation || calculate_force_and calculate the wavenumber-space part
_pot_wavepart nooffset | of force

‘ Finalization H wine2_free_board ‘ release WINE-2 boards

Table 3: Library routine for MDGRAPE-2

‘ Category H Name ‘ Function
MRilallocateboard | set the number of MDGRAPE-2 boards to acquire
Initialization MR1init acquire MDGRAPE-2 boards
MR1SetTable set the function table g(z)

Force calculation || MRicalcvdw_block2 | calculate the real-space part of force with
cell-index method

Finalization MRifree release MDGRAPE-2 boards

10



Table 4: Performance of simulation
System || MDM current | Conventional system | MDM future |
N 1.88 x 107
o 85.0 30.1 50.3
Peus 26.4 74.4 44.5
Lkys 63.9 22.7 37.9
Nint - 2.65 x 10* -
Nint_g 1.52 x 10* - 7.32 x 10*
N 5.46 x 10° 2.44 x 10* 1.14 x 10°
Number of floating-point operations 59N Nipn: ¢ 59N N; .+ 59N Nipn: g
for the real-space part 1.69 x 103 2.94 x 1013 8.13 x 103
Number of floating-point operations 64N Ny,
for the wavenumber-space part 6.58 x 1014 | 2.94 x 103 | 1.37 x 10
Total number of floating-point
operations per time-step 6.75 x 104 5.88 x 10'3 2.18 x 10
sec/step 43.8 4.48
Calculation speed (Tflops) 15.4 ‘ 1.34 48.7
Effective speed (Tflops) 1.34 13.1

5 MD Simulation

We performed 3,000 time-steps of a canonical ensemble (NVT constant) MD-simulation of
9,410,548 pairs of NaCl ions (18,821,096 particles) for 36.5 hours (131,443 seconds). We obtained
an effective calculated speed of 1.34 Tflops as shown in table 4.

We adopted Tosi-Fumi potential [17] as a force field between ions:

. S . o dys
o(r) = 5% 4 A pexp (M) _ G %
p

r

(15)

where A;j;, b, 05, 0j, p, ¢;; and d;; are parameters. We used a time-step of 2 fsec and a
temperature of 1200 K. The cut-off length, r.,:, of the real-space part of the Coulomb and other
forces is 26.4 A. The length, L, of a side of the simulation box is 850 A. The non-dimensional
cut-off length in the wavenumber-space part of the Coulomb force is set to be Lk.,; = 63.9.

We performed other two small simulations; 1,481,544 and 110,592 particles, respectively.
Figure 2a shows the temperature (Kelvin) calculated during the simulation plotted versus the
time-step (ps) in the case of N = 1.88 x 107 particles. For comparison, in figures 2b and 2c
are plotted the same parameters as obtained using a lower number of particles, respectively
N =1.48 x 10° (figure 2b) and N = 1.10 x 10° (figure 2c). As clearly shown, the fluctuation of
the the temperature becomes smaller as the number of particles becomes larger, confirming the
necessity of using very large number of particles in order to characterize with good accuracy
the physical-chemical property of a system of interacting ions.

In any case, the first 2,000 time-steps (0 - 4 ps) are NVT constant ensemble by scaling the
velocity and the last 1,000 time-steps (4 - 6 ps) are NV E constant ensemble. The total energies
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Figure 2: Temperature fluctuation against time-steps (ps) respectively for N = 1.88 x 107 (a),
N =1.48 x 10% (b) and N = 1.10 x 10° (c)

are well conserved; relative error of the total energy is less than 5 x 10~° percent in the case of
N = 1.88 x 107. The gradual decrease of the temperature in figure 2a is probably caused by
the shortage of the time-steps for NV T ensemble. In the initial condition the particles are in
the crystal state whose potential energy is lower than that of liquid state. It seems that 2,000
time-steps is not enough to make the configuration of particles to the liquid state. If we perform
longer simulation with scaling velocity, the temperature would not decrease any more.

The second column of table 4 summarizes the floating-point operations per time-step and
performance with MDM. The number of floating-point operations per time-step is calculated
as 59N N;ps g + 64N Ny, (see section 2). Here we note that the force calculation other than
the Coulomb is excluded because the calculation cost for them is not so large. Moreover, the
potential energy calculation, which is performed every 100 time-steps, is also excluded for the
same reason. Most of the floating point operations are included for wavenumber-space part of
the Coulomb force calculation, because we adopted very large o = 85.0. This value is optimized
for our hardware system, which itself has especially high performance in the calculation of
wavenumber-space part. The average calculation speed is 15.4 Tflops, since one time-step took
43.8 seconds.

We point out that if we perform the same simulation on a conventional general-purpose
computer, we would need only about 10 times smaller number of floating-point operations with
the same Ewald method’s accuracy since the optimal a would be 30.1 not 85.0. The third column
of table 4 shows, for comparison, the number of floating point operations and the performance,
that a conventional general-purpose computer with the same effective performance as MDM
would provide. The reason that optimal « is small for a conventional computer is that the
speed for the real-space and that for wavenumber-space are almost the same in a conventional
system in contrast to our system. The number of floating point operations for real-space and
wavenumber-space parts are made the same (59N N;,; = 64N N, = 2.94 X 1013), which means
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that a = 30.1 is best for reducing the total number of floating point operations. It must be
noted that the fast algorithm which use addition formula (see section 2.3) is not practical to
reduce the floating point operations for equations 9, 10 and 11 since the required data storage
for it exceeds 20 Gbyte.

Therefore, we have to make correction to get the effective performance of the MDM. The
lowest number of floating point operations per time-step is 5.88 x 10!% with the same accuracy
of simulation as that performed with the MDM, and one time-step took 43.8 seconds. So the
effective performance of the MDM is 1.34 Tflops instead of 15.4 Tflops.

6 Discussions

6.1 Performance improvement

When considering the result of our simulation test we notice that the value obtained for the
speed is sensibly lower when compared with the 46 Tflops peak speed of the system. The
difference between the peak and the obtained performance can be explained in terms of the
following considerations, listed below together with the modifications, partially in progress,
planned in order to furtherly improve the performance of our system.

1. The miss-balance of the calculation speed between WINE-2 and MDGRAPE-2 reduces
the effective performance by a factor of ten. To overcome this point we plan to increase
MDGRAPE-2 chips to 1,536 by the end of 2000 so that the performance will be comparable
to WINE-2.

2. The communication between a node computer and the WINE-2 boards or MDGRAPE-2
boards is slow when compared with the calculation speed of the boards. We therefore plan
to increase this bandwidth by a factor of two with 64-bit PCI-bus instead of 32-bit one.

3. The communication among node computers is slow compared with WINE-2 or MDGRAPE-
2. As a consequence, we plan to increase this bandwidth by a factor of three with new
Myrinet network cards.

Table 5 compares the current and future versions of MDM. The number of chips will be
increased. The last two ranks show the efficiency of MDGRAPE-2 and WINE-2. The efficiencies
of current version of MDM were calculated from the MD simulation described in the last section,
while those of future version of MDM are roughly estimated from the increase of the performance
of the host computer and the communication. The forth column of table 4 shows that future
version of MDM will reach 13.1 Tflops. Note that the number of floating point operations for
real-space and wavenumber-space parts are almost the same, which means that MDGRAPE-
2 and WINE-2 are well balanced. The gap between calculation speed (48.7 Tflops) and the
effective speed (13.1 Tflops) is caused by the difference bewteen N;,; and N;,: 4 (see section 2).
We already have a project to decrease this difference with small hardware modification.

6.2 MDD simulation with the future version of MDM

The total MDM will be completed at the end of 2000. MDM should take 0.19 seconds per
time-step for MD simulations with a million particles using the Ewald method. Accordingly,
it should take only one week (~ 6.0 x 10° s) to perform the simulations for a time span of 1.6
ns (~ 3.2 x 10% time-steps). We believe that the very large-scale MD simulations possible with
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Table 5: Comparison of current and future versions of MDM

‘ System H Current ‘ Future ‘
Number of MDGRAPE-2 chips 64 1,536
Number of WINE-2 chips 2,240 2,688
Peak performance of MDGRAPE-2 (Tflops) 1 25
Peak performance of WINE-2 (Tflops) 45 54
Efficiency of MDGRAPE-2 (%) 26 50
Efficiency of WINE-2 (%) 29 50

MDM will lead to major breakthroughs, such as the understanding of the function of protein
molecules as enzymes. For example, when it will be possible to perform MD simulation with
very large number of particles in a rate of video (30 frame/sec), we will be able to interact with
the molecule via computer by means of a virtual reality technology.

6.3 Comparison between Ewald and other methods

One of the purpose of our hardware is to investigate the accuracy and speed of the Ewald
summation compared with other fast methods. An important result is that we can accelerate fast
methods with MDGRAPE-2. In fact, Makino et al. [18] performed gravitational calculation with
tree-code, one of a major O(N log N) method, and found that GRAPE machine can accelerate
tree-code. If we use tree-code with MDM, we can not only compare the accuracy with Ewald
method but also perform larger simulation that cannot be done with Ewald method.

6.4 Other applications

MDM can be used for other applications, such as cosmological simulation [13], Smoothed Par-
ticle Hydrodynamics (SPH) [19, 20], and vortex dynamics simulation [21]. There are many
application even though MDM is a special-purpose computer designed for MD simulation.
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Figure 3: Block diagram of the Molecular Dynamics Machine

MDM is composed of WINE-2, MDGRAPE-2 and a host computer.
The host computer is composed of four node computers, and they are
connected with each other by a network. Each node computer has 5
WINE-2 clusters and 4 MDGRAPE-2 clusters via links. Each WINE-2
cluster has 7 WINE-2 boards connected by a bus. Each MDGRAPE-2
cluster has 2 MDGRAPE-2 boards connected by a bus.

Myrinet
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Figure 4: (a) WINE-2 (left). (b) A WINE-2 board with 16 WINE-2 chips (middle). (c) A WINE-2
chip (right).
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Figure 5: Block diagram of a WINE-2 board
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Figure 7: Block diagram of a pipeline of a WINE-2 chip in DFT mode
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Figure 8: (a) MDGRAPE-2 and a host computer (left). (b) An MDGRAPE-2 board with two
MDGRAPE-2 chips (middle). (¢) An MDGRAPE-2 chip (right).
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Figure 9: Block diagram of an MDGRAPE-2 board
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