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Abstract

Direct numerical simulation of the Navier-Stokes equations (DNS) is an important
technique for the future of computational fluid dynamics (CFD) in engineering applications.
However, DNS requires massive computing resources. This paper presents a new approach for
implementing high-cost DNS CFD using low-cost cluster hardware.

After describing the DNS CFD code DNSTool, the paper focuses on the techniques and
tools that we have developed to customize the performance of a cluster implementation of
this application. This tuning of system performance involves both recoding of the application
and careful engineering of the cluster design. Using the cluster KLAT2 (Kentucky Linux
Athlon Testbed 2), while DNSTool cannot match the $0.64 per MFLOPS that KLAT2
achieves on single precision ScaLAPACK, it is very efficient; DNSTool on KLAT2 achieves
price/performance of $2.75 per MFLOPS double precision and $1.86 single precision. Further,
the code and tools are all, or will soon be, made freely available as full source code.

1 Introduction

Computational fluid dynamics (CFD) always has been a discipline in search of greater computer
power. As coding techniques and processor speeds have improved, user demands for increased
accuracy have met and exceeded each increase in computational ability. This problem has
been magnified as the phenomena studied with CFD simulations have expanded from traditional
applications used by aerospace engineers and meteorologists to more diverse problems. For
instance, the CFD group at the University of Kentucky has worked on noise reduction in inkjet
printers [18] and on optimizing the thermal performance of a fan-sink cooling system for high
power electronics [17].

High computational cost CFD problems typically are solved at national supercomputer centers
or similar facilities. However, access to these facilities is limited, with most organizations
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outside of government and academia having no access at all. Alternately, large corporations
and universities can purchase shared-memory supercomputers such as those built by SGI and
HP; however, these machines are expensive, with unclear upgrade paths and relatively high
maintenance costs. Smaller companies and research institutions simply cannot afford these
systems. Thus, the very high up-front cost of CFD analysis has placed the technology beyond
the reach of many of the researchers and engineers whose applications could benefit the most from
the new abilities of CFD codes.

This paper presents an alternative approach to the computational challenges of advanced CFD
problems: use inexpensive, high-performance, clusters of PCs – "Beowulfs."[1] Over the past few
years, many very positive claims have been made in favor of PC clusters, and the hype usually
gives better performance than the actual systems do. However, by carefully engineering the
cluster design, using (and building) tools to improve application performance, and restructuring
the application code for the cluster, it is possible to realize most of the benefits that are so often
claimed for clusters.

Since February 1994, when we built the first parallel-processing Linux PC cluster, we have
been very aggressively pursuing any hardware and software system technologies that can improve
the performance or give new capabilities to cluster supercomputers. DNSTool requires a good
network with high bisection bandwidth; we developed a new class of network architectures, and
design tools for them, that make it possible to build an appropriate network at minimal cost.
DNSTool also requires lots of memory bandwidth and fast floating point math; we provide these by
using uniprocessor Athlon PCs and tools to accelerate floating point performance using 3DNow!.
Our cluster, KLAT2 (Kentucky Linux Athlon Testbed 2), was not designed to only run DNSTool,
but it was designed to run applications like DNSTool exceptionally well.

KLAT2 (figure 1) is a cluster of 64 (plus 2 "hot spare") 700MHz AMD Athlon PCs. Each PC
contains 128MB of main memory and four 100Mb/s Fast Ethernet interfaces. Nine (and one spare)
32-way Ethernet switches are used in an unusual network architecture to interconnect the machines
with low latency and high bandwidth.

Of course, it was necessary to restructure DNSTool to run more efficiently on KLAT2. Many of
the changes were generic and would improve the code performance on any cache-based machine.
Some of the changes reduced the total FLOPs needed for the computations, reducing total time
somewhat by replacing floating point recomputations with more awkward reference patterns – not
really what we should have done if achieving the "peak MFLOPS rate" was our goal. Still other
changes were highly specific to the features of KLAT2, such as use of Athlon 3DNow! support.
The changes were not easy, but applying them to other CFD codes will now be less difficult.

The combination of DNSTool and KLAT2 yields exceptionally good price/performance: $2.75
per MFLOPS double-precision 80/64-bit operations and $1.86 per MFLOPS using single-precision
3DNow!. Maintenance is made relatively painless by including spares in the initial system (and
we have included these "unnecessary" spare parts in the system cost). Upgrading the system can
be done incrementally by our tools to design an improved network, replacing the processors with
a later (faster) version, etc. Further, although we have not experimented with clusters larger than
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Figure 1: Kentucky Linux Athlon Testbed 2 (KLAT2)

KLAT2, given larger CFD problems, there is nothing about the design of KLAT2 or DNSTool that
would prevent efficiently scaling the system to many more processors.

Thus, the design tools and implementation of KLAT2 and DNSTool represent a significant step
toward moving complex CFD simulations from the supercomputer center to the center of your lab.

The next section of this paper describes the equations that govern DNSTool’s CFD simulation.
Section 3 describes KLAT2 and, more importantly, the tools that we have created to optimize
the system design and to help code use the system more efficiently. In section 4, we detail how
DNSTool was restructured and how we used our tools to tune the code for KLAT2. Section 5
presents both the CFD output and computational performance obtained from applying DNSTool
to a real engineering problem: flow over a single turbine blade. The complete parts list and
itemized cost of KLAT2 also is given in section 5. The final section of the paper summarizes
the contributions and suggests directions for future research.

2 The CFD Algorithm

In theory, almost all fluid dynamics problems can be solved by the direct application of the Navier-
Stokes equations to a sufficiently fine grid. Direct numerical simulation of the Navier-Stokes
equations (DNS) provides a useful tool for understanding the complex physics in engineering
processes. Even though with current computer technology, DNS can only be applied to simplified
problems, DNS is likely to become the standard practice for engineering simulations in the
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21st century. The challenges in applying DNS to practical engineering problems involve: (1)
more accurate numerical solutions, (2) high demands on computer memory, and (3) greater
computational speed. Traditionally, the focus of CFD research was on improving the numerical
accuracy of the solution through more complicated modeling of the physical phenomena.
Continual advances in computer architecture and technology have opened the door for focusing on
the latter two areas. Meeting the latter two challenges will allow the application of DNS directly
to practical engineering problems.

2.1 The Governing Equations for DNS

Direct numerical simulation is based on solving the full, time-dependent Navier-Stokes Equations
for an ideal gas which express the conservation of mass, momentum, and energy for a compressible
Newtonian fluid. The equations written in curvilinear coordinates are
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where Q is the vector of the conservative variables multiplied by the volume of the computational
cell, V , and is defined by

Q = V (�; �u; �v; �w; �e)T : (2)

The F ’s and G’s denote the convective and viscous fluxes, respectively, and the subscripts �, �
and � represent the directions of the fluxes. The inviscid fluxes are given by
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where � is the density, p is the pressure, u, v, w are the cartesian velocity components, e = E +K

is the total energy per unit volume and equal to the sum of the internal energy, E, and the kinetic
energy, K = (u2 + v2 + w2)=2, and the U ’s are the contravariant velocity components defined by
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The viscous fluxes in the �, � and � directions are given by
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where

g1 = u�xx + v�xy + w�xz � qx ;

g2 = u�xy + v�yy + w�yz � qy ; (10)

g3 = u�xz + v�yz + w�zz � qz :

The stress tensor � and the heat flux vector q are defined by
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where � and k are molecular viscosity and thermal conductivity, respectively.
The pressure is related to the density and temperature, T , according to the equation of state

p = (
 � 1)(e� �K) (20)

where 
 is the ratio of the specific heats. The coefficient of viscosity, �, and thermal conductivity,
k, are related by the constant Prandl number Pr.

k =
�cp

Pr
(21)

2.2 Numerical Algorithms

There are wide variety of CFD techniques that can solve these governing equations. Of the several
CFD codes employed or under development at the University of Kentucky, we have chosen to use
DNSTool [9], a code package originating at the University of Technology Munich and undergoing
further development at the University of Kentucky. DNSTool is specifically designed to solve
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three-dimensional flow problems using the direct numerical simulation model for turbulence. It has
primarily been used to simulate hypersonic flow around blunt objects [10], but is readily applicable
to a wide range of engineering CFD problems. The choice of this particular code is based on
it being MPI-ready, having been tested on numerous multiprocessor platforms, and on its clean
program organization, making it readily accessible to code-performance enhancements.

The base DNSTool code is over 20000 lines of C, broken into more than 100 separate files.
Briefly, DNSTool solves the governing equations as follows. The flux vector, representing the
advective and dissipation flux terms of the Navier-Stokes equations, are solved with the AUSM
flux-splitting scheme [14]
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where the geometrical quantities to account for the curvilinear coordinates are contained in
�!
S

and sx; sy; sz. The L subscript corresponds to the values extrapolated from the left volume center
(i) to the face, the R subscript to those extrapolated from the right volume center (i+1) to the face.
A key feature of the AUSM technique, which was designed to handle high Mach number flows,
is the replacement of the normal velocity through the face,

��!u � �!S � = ����!S ���, with Mc, or the Mach
number multiplied by the speed of sound. The term Mi+ 1

2

is evaluated as follows
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Likewise, the pressure is evaluated as per Liou [13]
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The dissipation term evaluation is also M-dependent, although the construct is somewhat
different:
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and the AUSM dissipation term from
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The values of ! are a function of the pressure distribution, while the value of e� is a function of the

eigenvalues, �i = �!u � �!S
i
+ c

�����!S i
����.

The left and right extrapolated values of the conservative variables are determined by a third-
order MUSCL-type extrapolation, in which any given quantity qL or qR is defined by
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The diffusive flux gradients are evaluated using a variation of the circulation methodZ
V
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or in terms of the finite volume grid
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These spatial calculations are performed in a series of three sweeps in the i-, j-, and k-directions.
This trio of sweeps are made each sub-iteration of the multi-step time integration, leading to
as many as 12 sweeps in the case of the 4th-order Runge-Kutta method. Both the 2nd-order
(for unsteady solutions) and 4th-order (for steady solutions) Runge-Kutta methods were used by
DNSTool/KLAT2 machine.

2.3 Parallelization

The parallel structure of DNSTool is based on splitting the computational grid into sub-blocks,
which are then distributed to each processor (figure 2). For a complex geometry, this is a nontrivial
exercise where an uneven load-balance across different processors could significantly reduce the
computational efficiency of the overall code. The partitioning of the grid into sub-blocks is
performed independently of the grid generation, using virtual partitions to define the domains
corresponding to each processor. The current algorithm governing the partition process is based
on spectral recursive bisection in conjunction with a small database of the computational speeds
associated with each node. The splitting is performed as a preprocessing task, generating a file that
maps the grid sub-blocks onto the processors. This file is the only difference between performing
a serial computation and a parallel computation with DNSTool.

Communications between the grid sub-blocks occurs when the sub-blocks exchange data about
the flow variables at the boundaries. As show in figure 2, the flow variables on the edge of
one grid block are communicated to the dummy points of the neighboring grid block, and vice
versa. DNSTool requires such a communication step after each update, or subiteration, of the
flow variables. The low-level implementation of the communication between the sub-blocks uses
a MPI-based communications system. The communication model is a mailbox algorithm where
the data is sent in a non-blocking communication mode as early as possible.

The overall parallel framework of DNSTool is managed by MBLIB, a code library that
efficiently controls the domain decomposition and associated communication patterns. On top of
this library the efficient compressible Navier-Stokes solver described previously is implemented.
Thanks to MBLIB, the Navier-Stokes solver is isolated from the parallel decomposition-the solver
code is the same whether the overall computation is performed on a single domain or any number
of subdomains.
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Figure 2: Communication pattern of DNSTool

3 Engineering a Cluster Supercomputer

Since February 1994, when we built the first parallel-processing Linux PC cluster [4], we have been
very aggressively pursuing any hardware and software system technologies that can improve the
performance or give new capabilities to cluster supercomputers. As the latest in a long sequence of
clusters that we have built, KLAT2 continues our tradition of using innovative new technologies.
However, unlike all our previous systems, KLAT2’s base configuration uses no custom hardware
- all of the performance improvements are accomplished by changing the way in which standard
hardware components are configured and/or restructuring the software to take better advantage of
the hardware.

Without using custom hardware, there are three key approaches that we can use to improve the
performance of a CFD code on KLAT2:

1. Optimization and general restructuring of the CFD code to improve performance. Many
of these optimizations are not really specific to KLAT2, but improve performance on
most computers. We have performed many such optimizations, most of which involve
restructuring to change the memory reference behavior and to reorder the calculations so that
more redundant computations can be eliminated. Our goal has been to minimize execution
time despite the fact that some of the optimizations also reduce the achieved FLOPs rate.

2. Tailoring of the network hardware structure and communication patterns to optimize network
performance. The new techniques we used to design KLAT2’s network allow us to optimize
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network performance in general or even to specialize KLAT2’s network for this CFD code.
All runs reported here were performed with a generalized network rather than one specialized
for this code.

3. Use of the Athlon’s 3DNow! vector floating point instructions. Unfortunately, these
instructions only support 32-bit precision for floating point arithmetic and also have various
performance issues that make them difficult to use. However, we have developed compiler
technology and other support that makes use of 3DNow! feasible. This is one of the key
reasons that KLAT2 uses AMD Athlon processors.

Achieving high performance from this CFD code requires the first two approaches. The third
approach, use of 3DNow!, we viewed with skepticism until we were able to verify that 3DNow!
single-precision floating-point arithmetic has sufficient precision to ensure that the CFD results are
valid.

The following subsections discuss KLAT2’s special architectural characteristics, its network
and support for 3DNow!, that we have used to improve the performance of this CFD code. The
specific optimizations and general restructuring of the CFD are discussed in section 4.

3.1 Optimizing Network Performance

The cost and baseline performance of AMD Athlon processors is outstanding, and KLAT2’s
basic performance relies heavily upon that fact, but processors alone are not a supercomputer
– a high-performance interconnection network is needed. Further, KLAT2 uses uniprocessor
nodes instead of multiprocessor (shared-memory SMP) nodes for two key reasons: (1) using
single-processor nodes eliminates inter-processor memory access conflicts, making full memory
bandwidth available to each processor and (2) SMP Athlon PCs were not widely available at the
time KLAT2 was built. This increases the importance of network performance and also increases
the number of nodes, making the network larger and more expensive. Our solution to these network
design problems is a new type of network: a "Flat Neighborhood Network" (FNN) [7].

This network architecture came from the realization that the switching fabric need not be the
full width of the cluster in order to achieve peak performance. Using multiple NICs (Network
Interface Cards) per PC, single-switch latency can be achieved by having each PC share at least one
switch with each other PC – all PCs do not have to share the same switch. A switch defines a local
network neighborhood, or subnet. If a PC has several NICs, it can belong to several neighborhoods.
For two PCs to communicate directly, they simply use NICs that are in the same neighborhood. If
two PCs have more than one neighborhood in common, they have additional bandwidth available
with the minimum latency.

Before discussing how we design and use FNNs, it is useful to consider a small example. What
is the best interconnection network design that can be built using four-way switches for an eight-PC
cluster?
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A very popular answer is to use a fat tree [12], because fat trees easily provide the full bisection
bandwidth. Unfortunately, most inexpensive switches cannot handle routing for a fat tree topology.
Assuming that appropriate switches are available, the eight-PC network would look like figure 3.

For this fat tree, the bandwidth available between any pair of PCs is precisely that of one link;
thus, we say that the pairwise bandwidth is 1.0 link bandwidth units. The bisection bandwidth of
a network is determined by dividing the machine in half in the worst way possible and measuring
the maximum bandwidth between the halves. Because the network is symmetric, it can be cut
arbitrarily in half; the bisection bandwidth is maximal when all the processors in each half are
sending in some pattern to the processors in the other half. Thus, assuming that all links are
bidirectional, the bisection bandwidth is 8*1.0 or 8.0.

Pairwise latency also is an important figure of merit. For a cluster whose nodes are physically
near each other, we can ignore the wire latency and simply count the average number of switches a
message must pass through. Although some paths have only a single switch latency, e.g. between
A and B, most paths pass through three switches. More precisely, from a given node, only 1 of each
of the 7 other nodes can be reached with a single-switch latency. Thus, 1/7 of all pairs will have
1.0 switch latency and 6/7 will have 3.0 switch latency; the resulting average is (1.0 + 3.0*6)/7, or
2.7 switch latency units.

Instead of using a fat tree, suppose that we use a FNN to connect these same eight PCs
with four-way switches. Unlike the fat tree configuration, the FNN does not connect switches
to switches, so cheap, dumb, switches can be used. However, more NICs are needed. At least for
100Mb/s Ethernet, the cost savings in using dumber switches more than compensates for the larger
number of NICs. In this case, each PC must have 3 NICs connected in a configuration similar to
that shown by the switch numbers and colors in figure 4.

Unlike the fat tree, the FNN pairwise bandwidth is not the same for all pairs. For example,
there are 3.0 link bandwidth units between A and B, but only 1.0 between A and C. Although
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Figure 4: Flat neighborhood network

the FNN shown has some symmetry, FNN connection patterns in general do not have any basic
symmetry that could be used to simplify the computation of pairwise bandwidth. However, no PC
has two NICs connected to the same switch, so the number of ways in which a pair of connections
through an S-port switch can be selected is S*(S-1)/2. Similarly, if there are P PCs, the number of
pairs of PCs is P*(P-1)/2. If we sum the number of connections possible through all switches and
divide that sum by the number of PC pairs, we have a tight upper bound on the average number of
links between a PC pair. Because both the numerator and denominator of this fraction are divided
by 2, the formula can be simplified by multiplying all terms by 2. In other words, the average
pairwise bandwidth for the above FNN is ((4*3)*6)/(8*7), or about 1.28571428.

Not only does the average pairwise bandwidth of the FNN beat that of the fat tree, but the
bisection bandwidth also is greater. Bisection bandwidth of a FNN is very difficult to compute
because the definition of bisection bandwidth does not specify which communication pattern to
use; for FNNs, the choice of pattern can dramatically alter the value achieved. Clearly, the
best-case bisection bandwidth is the number of links times the number of processors; 8*3.0
or 24.0 in our case. If we assume that only pairwise permutation communication patterns are
used, a very conservative bound can be computed as the number of processors times the average
pairwise bandwidth; 8*1.28571428 or 10.28571428. However, pairwise permutation patterns
do not generally yield the maximum bisection bandwidth for a given cut because they ignore
bandwidth available using multiple NICs within each PC to send to distinct destinations at the
same time. In any case, bisection bandwidth is significantly better than the fat tree’s 8.0.

Even more impressive is the FNN design’s pairwise latency: 1.0 as compared with 2.7 for the
fat tree. No switch is connected to another, so only a single switch latency is imposed on any
communication.

However, the biggest surprise is in the scaling. Suppose that we replace the six 4-way switches
and eight PCs with six 32-way switches and 64 PCs? Simply scaling the FNN wiring pattern yields
pairwise bandwidth of ((32*31)*6)/(64*63) or 1.47619047, significantly better than the 8 PC value
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of 1.28571428. FNN bisection bandwidth increases relative to fat tree performance by the same
effect. Although average fat tree latency decreases from 2.7 to 2.5 with this scaling, it still cannot
match the FNN’s unchanging 1.0.

It also is possible to incrementally scale the FNN design in another dimension – by adding
more NICs to each PC. Until the PCs run out of free slots for NICs, bandwidth can be increased
with linear cost by simply adding more NICs and switches with an appropriate FNN wiring pattern.
This is a far more flexible and cheaper process than adding bandwidth to a fat tree.

If FNNs are so great, why has it not been done before? There are four important reasons:

1. It only works well if fairly wide wire-speed switches are available; only recently have such
switches become inexpensive.

2. Routing is not trivial; as a minimum, each machine must have its own unique routing table.
Optimal routing using multiple NICs as a higher-bandwidth channel is conceptually like
channel bonding [2], but requires a much more sophisticated implementation because this
bonding is destination-sensitive (i.e., NICs may be used together when sending to one PC,
but grouped differently when sending to another PC).

3. The network wiring pattern for a flat-neighborhood network is typically not symmetric
and often has poor physical locality properties. This makes everything about the network,
especially physical construction, somewhat more difficult.

4. It is not easy to design a wiring pattern that has the appropriate properties. For example,
KLAT2’s network interconnects 64 PCs using nine 31-way switches. Although 32-way
switches would have made the design easier, we needed to reserve the 32nd port of each
switch for the cluster’s connections to the outside world.

We solved the last three problems by creating a genetic search algorithm (GA) [11] that can design
an optimized network, print color-coded wiring labels, and construct the necessary routing tables.
Although it was somewhat difficult to create the GA, and the execution time was sufficiently large
that we actually run it on a cluster, the GA program is capable of optimizing the network design
for any communication patterns or other characteristics specified – an important new capability
beyond that of traditional networks. KLAT2’s genetically designed FNN is shown in figure 5.

This version of KLAT2’s FNN was partially optimized for another code (ScaLAPACK [3]) that
uses communication patterns that are completely different from those of the CFD code discussed
here – it was not optimized for this CFD. However, KLAT2’s FNN uses its nine 31-way switches to
yield average pairwise bandwidth of (((31*30)*8)+(8*7))/(64*63) or 1.859 bidirectional 100Mb/s
Ethernet links/pair (371.8Mb/s per pair). Multiplying that by 32 PC pairs communicating across
the bisection yields a very conservative bisection bandwidth of 11.9Gb/s; the uplink switch (which
holds the two hot spares and the links to the outside world) adds an additional 1.8Gb/s of bisection
bandwidth, for a total of 13.7Gb/s. The upper bound bandwidth on KLAT2’s FNN without the
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Figure 5: Physical wiring of KLAT2
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Figure 6: Comparison of FNN for ScaLAPACK (left) and DNSTool (right)

uplink switch is 25.6Gb/s. Our CFD program enqueues multiple communications at a time, making
good use of parallel overlap in NIC operation and thus yielding performance much closer to the
upper bound. The basic performance of KLAT2’s network is sufficient to keep communication
overhead under 20% of program runtime – despite the fact that the network was not optimized for
this code.

Redesigning and physically rewiring KLAT2’s FNN to be optimal for the CFD code is a
relatively simple and quick process; we let the GA run for about two hours on a single 1GHz Athlon
to design the network and the physical rewiring took two people a total of about 2.5 hours. Figure
6 shows KLAT2’s color-coded wiring tags for the network partially optimized for ScaLAPACK
(left) and the new network pattern optimized for DNSTool (right). The immediate result of
this optimization was an additional speedup of about 1%; much more substantial performance
improvements are possible by adjusting DNSTool’s order of communications within a timestep and
using FNN advanced routing[6]. Certainly, this rewiring and tuning of the communication code
is appropriate if KLAT2 (or any other cluster) is dedicated to running this code. However, even
with the extra pressure of using uniprocessor nodes, the basic FNN properties proved sufficient to
efficiently handle the demands of this communication-intensive CFD code. Thus, throughout this
paper, we have quoted the conservative “generic” FNN performance numbers for DNSTool.

At this writing, a version of the FNN design GA has been made freely available at
http://aggregate.org/FNN/ via an interactive WWW form. In order to make the GA run fast enough
for interactive use, the GA was simplified to use only a generic communication cost function. Once
we have completed making the user interface more friendly, we plan to distribute the full GA as
public domain source code.
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3.2 SIMD Within A Register 3DNow! Optimizations

Over the past five years, the on-chip space available for microprocessor logic has reached the
point where adding SIMD (Single Instruction Stream, Multiple Data Stream) or vector parallelism
can be very cost effective. However, traditional SIMD and vector implementations rely on
high-performance memory interfaces that simply are not compatible with current microprocessor
datapaths. Thus, a new flavor of parallelism has been developed to mate SIMD semantics
with conventional uniprocessor datapaths: something that we generically call SIMD Within A
Register (SWAR) [5]. SWAR differs from SIMD in that SWAR parallelism partitions registers
and datapaths into multiple fields that are processed simultaneously. Thus, SWAR requires much
more constrained data layout, does not directly support disabling of processing elements, and has
parallelism width that is not constant, but a function of the data size (e.g., twice as much parallelism
with 16-bit data as with 32-bit data).

The concept of SWAR long predates the microprocessors with hardware supporting this type
of execution. For example, population count (important because the population count of the XOR
of two values is the Hamming distance) has long been implemented using a SWAR algorithm
using bitmasks, shifts, and adds. However, there were no software tools developed for SWAR
programming. The first SWAR hardware support, in processors like the Hummingbird PA-RISC
and the MMX Pentium and K6, was very tightly focused on speeding a few hand-coded algorithms
– especially MPEG decode for playing DVDs – so high-level programming models were not
a concern. However, we had extensive experience in building optimizing compilers for SIMD
machines, so we saw an immediate need to develop a better model and programming tools.

Thus, about 6 months before Intel began shipping the first Pentium MMX processors, we
built our first high-level language and optimizing compiler technology for SWAR. Our high-
level language, SWARC, is a vector C dialect supporting first-class arrays with arbitrary precision
specified for each variable using the same syntax C uses for specifying precision of bit fields within
a struct: int:2 i; declares i as an integer having not less than two-bit precision. To facilitate rewriting
only a small portion of a C code in SWARC, the language is designed as a true C superset and is
implemented by a module compiler, Scc. The compiler, which is still evolving, has been freely
available from our SWAR WWW site, http://shay.ecn.purdue.edu/swar/, for over two years.

So that Scc’s SWAR output code integrates cleanly with C code, Scc actually generates C code
and invokes GCC on that. Because GCC does not know about any of the new SWAR instructions
(i.e., MMX, 3DNow!, etc.), Scc generates GCC-compatible inline assembly macros for these
instructions. These macros are actually quite high-level in that they allow direct access to the
variables of the ordinary C code with which they are compiled, so they easily can be edited by
hand to further tune performance. In fact, our macros for MMX, 3DNow!, and SSE are all freely
available and often are used for coding from scratch. For example, to multiply corresponding
elements of 2-element float arrays c=a*b, one could use the following 3DNow! macros:
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movq_m2r(*((mmx_t *) &(a[0])), mm0); /* mm0 = (a[0],a[1]) */
pfmul_m2r(*((mmx_t *) &(b[0])), mm0); /* mm0 = (a[0]*b[0],a[1]*b[1]) */
movq_r2m(mm0, *((mmx_t *) &(c[0]))); /* (c[0],c[1]) = mm0 */

Despite the higher-level abstraction, with appropriate care in specifying the access of variables,
each of the macros results in precisely one instruction. Of course, the code also will be faster if
the float arrays start on 64-bit aligned addresses, the tight dependence structure of the sequence is
interleaved with or near other code that the Athlon can use to fill pipeline slots, etc.

Scc uses quite a few very aggressive optimization techniques to ensure that the output code
is fast, including a sophisticated pipeline timing model and use of a modified exhaustive search
combined code scheduler, register allocator, and addressing mode selector. However, often the Scc-
generated code can be improved somewhat by hand editing – for example, by inserting prefetch
instructions or applying information about data values (e.g., integer compares can be used for float
comparisons if the signs of the values are known). In some relatively rare cases, it is just as easy
to write the parallel code directly using the macros as it would be using Scc. To aid in those cases,
we also have developed a code rescheduling tool that can automatically reschedule sequences of
the macros to improve pipelining.

The choice of Athlons for KLAT2 was largely inspired by our long experience with SWAR in
general and with MMX, 3DNow!, and SSE in particular. Although Pentium III SSE theoretically
offers comparable performance to that of 3DNow! on an Athlon, there are a variety of minor
differences that make our compiler technology and benchmarking strongly favor 3DNow! on the
Athlon. Aside from our compiler technology being far better tuned for 3DNow! than SSE, the
AMD processors make pipeline bubbles less likely and less harmful. One reason is the difference
between a single 128-bit SSE pipeline and two 64-bit 3DNow! pipelines; another is the more
aggressive rescheduling done by the K6-2 and especially by the Athlon.

Although we view ScaLAPACK more as a library or benchmark than as a full code, we
have created a 3DNow!-aware version that complies with the rules for the LINPACK benchmark
as specified at http://www.top500.org/, and that code provides a good basis for performance
comparison. Using 32-bit single-precision 3DNow!, KLAT2’s 64 700MHz Athlons achieve
a very impressive 64.459 GFLOPS on ScaLAPACK for N=40,960. (N1/2 was 13,824; see
http://aggregate.org/KLAT2/ScaLAPACK/ for other details.) That translates to just over 1
GFLOPS per processor or 1.44 FLOPs/clock cycle, including all the communication overhead of
ScaLAPACK using our FNN-aware version of LAM MPI. It also is less than $0.64 per MFLOPS.

The way we made ScaLAPACK 3DNow!-aware was very simple [8]. ScaLAPACK uses BLAS
and BLACS, BLAS uses ATLAS[16], and BLACS uses MPI. Most of the runtime is actually inside
a single ATLAS-created routine, SGEMM. ATLAS is a remarkable tool that actually constructs
many different variations on that routine and automatically benchmarks them to select the best
coding. Using our tools, it took us less than three days to modify the ATLAS-optimized SGEMM
to make good use of 3DNow!. The DGEMM/SGEMM performance using a 900x900 element
matrix on a single 700MHz Athlon system is shown in table 1.

In fact, if we could get the same performance for ScaLAPACK that we get for single-node
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Table 1: DGEMM/SGEMM performance on a single 700MHz Athlon
MFLOPS FLOPs/clock

Athlon Legacy IA32 80/64-bit double precision 799.1 1.1416
Athlon Legacy IA32 80/32-bit single precision 926.1 1.3230

Athlon 3DNow! 32-bit single precision 1663.7 2.3767

SGEMM, KLAT2 would be under $0.39 per MFLOPS.
Although cache, TLB, and other effects prevent us from achieving the theoretical 3DNow!

peak, the measured performance of the Athlon 3DNow! is substantially better than one can easily
achieve with SSE. Even the IA32 legacy floating point performance is quite impressive given
IA32’s use of a stack model (rather than general registers) and the Athlon’s GHz-enabling deep
pipelines. The IA32 floating point register stack generally results in serial dependence chains that
the processor must aggressively reschedule in order to fill pipeline slots well enough to achieve
even one FLOP/clock.

Of course, using 3DNow! to speed-up a full-featured CFD code is much more difficult than a
single subroutine of ScaLAPACK because performance depends on many more routines and the
nature of the algorithm is substantially less cache-friendly. With our tools, three days of tuning was
sufficient for SGEMM; it has taken us weeks to restructure the various CFD routines for 3DNow!.

4 Implementation and Optimization

We employed a variety of coding techniques to improve the computational efficiency of the solver.
To guide our tuning, we performed computations on a 60 x 30 x 30 grid for 10 timesteps on a
single processor. Using the gprof tool, we were able to exam the amount of CPU time spent
on each set of routines. An example of the gprof output for the untuned DNSTool is presented
in tables 2 and 3. These gprof usage profiles reveal that 90% of the CPU time is spent in the
high-level routines that solve the viscous flux and perform the AUSM flux-splitting computations.
Further examination revealed that among the lower-level routines that made up viscous_flux and
ausm_plus, the primary subroutines were the fill_uvwT_stencil, gradient, and ausm_plus_flux
routines. These three routines became the focus of our optimization efforts.

As an initial step, all of these routines were aggressively ’cleaned’, focusing on removing
all redundant calculations that reproduced work performed elsewhere. Repeated calculation
of constant terms were removed, and wherever feasible, calculations were shifted outside the
innermost loops. These steps created both a more streamlined and a more readable code, improving
the usability of DNSTool.

A second key optimization came from restructuring the basic data storage of the variables to
better match a cache-based memory system. The solver is employed in a series of sweeps, in the i-,
j-, and k-directions, requiring the remapping of the 3-D data arrays into 1-D arrays corresponding
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Table 2: Call hierarchy profile for initial double-precison DNSTool
index %time self children called name

[1] 99.8 0.00 50.28 main[1]

3.22 34.12 20/20 viscous_flux[2]

2.25 7.76 20/20 ausm_plus[3]

1.33 0.63 20/20 steady_time_int[14]

0.04 0.33 1/1 calc_metrics [17]

0.00 0.29 20/20 apply_boundary_conditions [19]

0.00 0.21 20/20 set_flux_diff [21]

[2] 74.1 3.22 34.12 20 viscous_flux [2]

6.51 0.00 36000/36000 fill_uvwT_stencil2_dir3 [4]

5.54 0.00 34800/34800 fill_uvwT_stencil2_dir2 [5]

5.24 0.00 352800/352800 gradient[6]

4.50 0.00 17400/17400 fill_uvwT_stencil_dir1 [7]

3.95 0.00 36000/36000 fill_metrik_stencil_dir3 [8]

2.93 0.00 34800/34800 fill_metrik_stencil_dir2 [10]

2.48 0.00 17400/17400 fill_metrik_stencil_dir1 [13]

2.04 0.00 441000/882000 add2flux_differences [8]

0.94 0.00 264600/705600 get_1dline_3dfield [12]

[3] 19.9 2.25 7.76 20 ausm_plus [3]

2.92 0.00 88200/88200 ausm_plus_flux [11]

2.04 0.00 441000/882000 add2flux_differences [8]

1.56 0.00 441000/705600 get_1dline_3dfield [12]

0.92 0.00 88200/88200 get_1d_metric [15]

0.32 0.00 88200/88200 normalize_1d [18]

0.00 0.00 60/60 init_start_end_indices [53]

0.00 0.00 60/60 get_normal_metric [52]

0.00 0.00 20/20 get_max_dimension [62]
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Table 3: Profile of initial double-precision DNSTool

% time cum. sec. self sec. calls self ms/call total ms/call name

12.92 6.51 6.51 36000 0.18 0.18 fill_uvwT_stencil2_dir3

11.00 12.05 5.54 34800 0.16 0.16 fill_uvwT_stencil2_dir2

10.40 17.29 5.24 352800 0.01 0.01 gradient

8.93 21.79 4.50 17400 0.26 0.26 fill_uvwT_stencil2_dir1

8.08 25.86 4.07 882000 0.00 0.00 add2flux_differences

7.84 29.81 3.95 36000 0.11 0.11 fill_metrik_stencil_dir3

6.39 33.03 3.22 20 161.00 1867.12 viscous_flux

5.82 35.96 2.93 34800 0.08 0.08 fill_metrik_stencil_dir2

5.80 38.88 2.92 88200 0.03 0.03 ausm_plus_flux

4.96 41.38 2.50 705600 0.00 0.00 get_1dline_3dfield

4.92 43.86 2.48 17400 0.14 0.14 fill_metrik_stencil_dir1

4.47 46.77 2.25 20 112.50 500.38 ausm_plus

2.64 47.44 1.33 20 66.50 98.00 steady_time_int

1.83 48.36 0.92 88200 0.01 0.01 get_1d_metric

1.09 48.91 0.55 5 110. 00 110.00 compute_local_dts

to a single direction. The original data layout consisted of a separate 3-D array for each of the
flow and geometric variables. When remapping from these 3-D arrays, the full set of the variables
at one 3-D index is required to generate the values at one index point in the 1-D arrays. On a
cache-based memory system, this would require fetching a distinct cache-line for each variable
read. In the i-direction, the rest of these fetched cache-lines contain data elements that will be used
in subsequent iterations (i+1, i+2, etc.). Unfortunately, in the other two directions (j and k), the rest
of the data in the fetched cache-lines will not be used, wasting most of the memory bandwidth.

The new data layout is a 3-D array of structures, with each structure holding the relevant
variables for one 3-D index point. Thus, when remapping from the 3-D array of structs, all the
variables needed to calculate the values for one index point in the 1-D array are adjacent in memory.
This results in only one or two cache-lines being fetched from main memory for the entire set of
flow and geometry variables per 3-D index, dramatically reducing the required memory bandwidth.
Additionally, when using single-precision floats, the fields within the structure were ordered so that
pairs of adjacent fields could be loaded into 3DNow! registers with individual load instructions,
see figure 7. The pairs were selected so that the calculations on them also could be performed in
parallel. As shown in the figure, this new data vector has the form [� [ �u; �v [ �w; �e]. Combined
with some effort to align the data storage with the 64-byte cache-lines of the Athlon, this more
efficient use of the memory and cache effected across-the-board improvements whether using
double-precision or single-precision.

The most costly routine in DNSTool was the fill_uvwT_stencil, whose purpose was to extract
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Figure 7: Initial memory layout and improved cache friendly memory layout

the flow variables from 3D arrays into 1D arrays (corresponding to the i-, j-, or k-directions),
calculate the primitive variables (�; u; v; w; T ) from the conservative variables (�; �u; �v; �w; �e),
and compute the intermediate values needed to for the flow gradient calculation on each face as
per equation 33. This routine is used repeatedly, with slightly different forms depending on the
direction of the computational sweep. We aggressively rewrote the computations in terms of
3DNow!, taking particular advantage of the fast reciprocal for the �-division and our new data
structure. Efforts to implement pre-fetching of the variables only yielded minimal improvements-
the Athlon scheduler is apparently good enough that only extremely aggressive pre-fetching will
improve on its performance. Overall, these combined enhancements resulted in a sevenfold
reduction in the single processor CPU time in the long-stride directions (j and k), and a fivefold
reduction in the i-direction.

Improvement to the subroutine gradient was achieved in much the same manner as the
fill_uvwT_stencil routines, through the combination of the improved data structure and converting
the calculation of the finite-volume circulation theorem to 3DNow! macros. Equation 33 illustrates
why the volume was included in the flow variable vector of the new data structure, as the volume
is a component in many of the flow variable computations.
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The final routine that was aggressively optimized with 3DNow! macros was ausm_plus_flux.
In this routine, two important features were the fast reciprocal square root function (particularly
useful for calculating the speed of sound, c =

p

RT ), and replacing if-then structures with bit-

masking techniques (for instance in the choice of Mp and Mm definition in equation 24) .
It should be noted that the 3DNow! coding done in DNSTool was strictly in the form of C-

macros; no assembler code was explicitly included in the code. Neither were the Athlon extensions
to 3DNow! applied to the code; the 3DNow! code we used is compatible with the K6-2 as
well as Athlon processors. Although the SWARC compiler was useful as a reference starting
point for 3DNow! coding of DNSTool routines, as it turned out, we did not directly use any
code generated by it. We did use our code rescheduler to improve some of the 3DNow! code in
DNSTool. Throughout the 3DNow code, care was taken to optimize register usage; 3DNow! has
only 8 register names, but careful use of these 8 allows the Athlon’s register renaming logic to
make better use of its 88 physical registers. The new data structure also improves register use by
reducing the pressure on the IA32 registers that are used for addressing. The vector-array allows a
single base address to be kept in an IA32 register and indexed by short constants instead of forcing
the IA32 registers to juggle six or more apparently independent pointers, one for each individual
variable array.

The results of this effort, including the speed-up due to switching from double-precision to
single-precision floating-point operations and including 3DNow! macros, are show in tables 4 and
5. As can be seen, the fill_uvwT_stencil routines have dropped precipitously to the 9, 10, and 11th
most CPU-costly routines. The gradient subroutine is now the most costly, but its CPU time has
fallen from 5.24 seconds to 1.73 seconds. Numerous routines in which no 3DNow! optimizations
were used saw speed-ups due to the aggressive removal of redundant calculations, the new data
structure, and the improved cache-memory alignment. The overall computational time fell by a
factor of 3, from 50.4 to 17.7 seconds.

For additional comparison, we have included in tables 6 and 7 the double-precision results,
which eliminate the advantages of moving from 64-bit to 32-bit variables, including making the
3DNow! macros useless. As can be seen, there is considerable improvement in the code simply
from ’cleaning’, cache-memory alignment, and the new data structure.
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Table 4: Call hierarchy profile for optimized 3DNow! DNSTool

index %time self children called name

[1] 98.2 0.00 15.82 main [1]

0.06 8.48 20/20 viscous_flux [2]

0.38 3.76 20/20 ausm_plus [3]

1.08 0.31 20/20 steady_time_int [5]

0.76 0.00 176400/176400 add2flux_difference

[2] 53.0 0.06 8.48 20 viscous_flux [2]

1.58 0.00 36000/36000 fill_metrik_stencil_dir3 [4]

1.23 0.00 34800/34800 fill_metrik_stencil_dir2 [7]

1.16 0.00 88200/88200 stress_flux [8]

0.90 0.00 36000/36000 fill_uvwT_stencil_dir3 [10]

0.87 0.00 17400/17400 fill_metrik_stencil_dir1 [11]

0.82 0.00 17400/1740 fill_uvwT_stencil_dir1 [12]

0.81 0.00 34800/34800 fill_uvwT_stencil_dir2 [13]

0.76 0.00 352800/352800 gradient [14]

0.33 0.00 264600/264600 scopy_3dnow [19]

0.02 0.00 264600/264600 get_1dline_3dfield [33]

[3] 25.7 0.38 3.76 20 ausm_plus [3]

1.37 0.00 88200/88200 muscl_extrapolation [6]

1.13 0.00 88200/88200 ausm_plus_flux [9]

0.51 0.00 88200/88200 get_1d_metric [16]

0.46 0.00 88200/88200 get_1dline_3dvars [17]

0.29 0.00 88200/88200 vn_extrapolation [20]

0.00 0.00 60/60 init_start_end_indices [58]

0.00 0.00 20/20 get_max_dimension [65]
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Table 5: Profile of optimized 3DNow! DNSTool

% time cum. sec. self sec. calls self ms/call total ms/call name

9.81 1.58 1.58 36000 43.89 43.89 fill_metrik_stencil_dir3

8.50 2.95 1.37 88200 15.53 15.53 muscl_extrapolation

7.64 4.18 1.23 34800 35.34 35.34 fill_metrik_stencil_dir2

7.20 5.34 1.16 88200 12.81 12.81 stress_flux

7.01 6.47 1.13 88200 12.81 12.81 ausm_plus_flux

6.70 7.55 1.08 20 54000.00 69500.00 steady_time_int

5.59 8.45 0.9 3600 25.00 25.00 fill_uvwT_stencil_dir3

5.40 9.32 0.87 17400 50.00 50.00 fill_metrik_stencil_dir1

5.09 10.14 0.82 17400 47.13 47.13 fill_uvwT_stencil_dir1

5.03 10.95 0.81 34800 23.28 23.28 fill_uvwT_stencil_dir2

4.72 11.71 0.76 352800 2.15 2.15 gradient

4.72 12.47 0.76 176400 4.31 4.31 add2flux_differences

3.17 12.98 0.51 88200 5.78 5.78 get_1d_metric

2.86 13.44 0.46 88200 5.22 5.22 get_1dline_3dvars

2.61 13.86 0.42 88200 4.76 4.76 normalize_1d

2.36 14.24 0.38 20 19000.00 207000.00 ausm_plus

2.05 14.57 0.33 264600 1.25 1.25 scopy_3dnow

1.80 14.86 0.29 88200 3.29 3.29 vn_extrapolation

1.61 15.12 0.26 5 52000.00 52000.00 compute_local_dts

1.30 15.33 0.21 20 10500.00 10500.00 set_flux_diff
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Table 6: Call hierarchy profile for optimized double-precision DNSTool
index %time self children called name

[1] 99.5 0.00 26.23 main [1]

0.07 15.39 20/20 viscous_flux [2]

0.43 7.62 20/20 ausm_plus [3]

1.25 0.47 20/20 steady_time_int [10]

[2] 58.7 0.07 15.39 20 viscous_flux [2]

2.56 0.00 36000/36000 fill_uvwT_stencil_dir3 [5]

2.01 0.00 34800/34800 fill_uvwT_stencil_dir2 [7]

1.95 0.00 36000/36000 fill_metrik_stencil_dir3 [8]

1.86 0.00 352800/352800 gradient [9]

1.61 0.00 17400/17400 fill_uvwT_stencil_dir1 [11]

1.56 0.00 34800/34800 fill_metrik_stencil_dir2 [12]

1.33 0.00 17400/17400 fill_metrik_stencil_dir1 [14]

1.18 0.00 88200/88200 stress_flux [15]

1.01 0.00 88200/176400 add2flux_differences [6]

0.32 0.00 264600/264600 get_1dline_3dfield [21]

[3] 30.6 0.43 7.62 20 ausm_plus [3]

2.83 0.00 88200/88200 ausm_plus_flux [4]

1.40 0.00 88200/88200 muscl_extrapolation [13]

1.01 0.00 88200/176400 add2flux_differences [6]

0.97 0.00 88200/88200 get_1dline_3dvars [16]

0.86 0.00 88200/88200 get_1d_metric [17]

0.33 0.00 88200/88200 normalize_1d [20]

0.22 0.00 88200/88200 vn_extrapolation [23]

0.00 0.00 60/60 init_start_end_indices [59]

0.00 0.00 20/02 get_max_dimension [65]
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Table 7: Profile of optimized double-precision DNSTool

% time cum. sec. self sec. calls self ms/call total ms/call name

10.74 2.83 2.83 88200 32.09 32.09 ausm_plus_flux

9.72 5.39 2.56 36000 71.11 71.11 fill_uvwT_stencil_dir3

7.67 7.41 2.02 176400 11.45 11.45 add2flux_differences

7.63 9.42 2.01 34800 57.76 57.76 fill_uvwT_stencil_dir2

7.40 11.37 1.95 36000 54.17 54.17 fill_metrik_stencil_dir3

7.06 73.23 1.86 352800 5.27 5.27 gradient

6.11 14.84 1.61 17400 92.53 92.53 fill_uvwT_stencil_dir1

5.92 16.40 1.56 34800 44.83 44.83 fill_metrik_stencil_dir2

5.31 17.80 1.40 88200 15.87 15.87 muscl_extrapolation

5.05 19.13 1.33 17400 76.44 76.44 fill_metrik_stencil_dir1

4.74 20.38 1.25 20 62500.00 86000.00 steady_time_int

4.48 21.56 1.18 88200 13.38 13.38 stress_flux

3.68 22.53 0.97 88200 11.00 11.00 get_1dline_3dvars

3.26 23.39 0.86 88200 9.75 9.75 get_1d_metric

1.63 23.82 0.43 20 21500.00 402500.00 ausm_plus

1.37 24.18 0.36 5 72000.00 72000.00 compute_local_dts

1.25 24.51 0.33 88200 3.74 3.74 normalize_1d

1.21 24.83 0.32 264600 1.21 1.21 get_1dline_3dfield

1.02 25.10 0.27 20 13500.00 13500.00 set_flux_diff
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5 Results

The primary objective of this paper is to demonstrate the computational improvements yielded
from the implementation of the various techniques detailed in the previous sections. The simulation
results obtained so far are not sufficient for drawing conclusions about the flow physics in the low-
pressure turbine; however, CFD results presented do indicate the complexity and realism of the
engineering problem involved in this project and potential for performing CFD simulations on
KLAT2-like clusters. The cost of KLAT2 is then itemized. Combining the runtimes obtained with
the cost of building KLAT2 demonstrates the cost effectiveness of our approach.

5.1 Simulation Results

The particular simulation we have focused on for this paper is the direct numerical simulation of
the flow over a single turbine blade. This research is connected to NASA’s Low-Pressure Turbine
Physics program, which aims to improve the efficiency of turbomachinery in aircraft engines. Our
specific concentration is understanding the turbulent cascade, i.e. the process by which the flow
over the blade switches from laminar to turbulent flow conditions. This transition is not well-
understood, but its properties are often critical to the performance of many aerospace systems,
including turbomachinery.

Fundamental understanding of the cascade through numerical simulation requires the use of
computationally-intensive models such as LES and DNS, since the more empirically based, less-
demanding approaches such as RANS cannot properly model laminar-turbulent transition. For the
full turbine cascade, complex geometric effects must be taken into account, requiring dense grids
in certain critical regions. For these reasons, the turbine blade flow is an ideal candidate for testing
on a cluster using DNSTool.

The selected grid configuration for the CFD computation has been used in both two-
dimensional and three-dimensional research at the University of Kentucky on the turbine cascade
[15]. As can be seen in figure 8, the grid is curvilinear, representing an inflow region from the
nozzle into the turbine, through the turbine blades, and then an outflow region. The overall grid
is 400 x 200 x 200, or 16 million grid points. The flow over the blade is considered periodic
in both the j- and k-directions, with the exception of the j-direction between the two solid blade
boundaries. The flow is subsonic throughout, with a transitional region occurring somewhere on
the blade surface depending on the precise flow parameters.

For the purposes of timing, we ran steady-state simulations of the flow. The results of
these simulations are presented in figures 9 and 10 for an inflow Mach number of 0.1. This
solution combined with homogeneous turbulence is an initial condition for unsteady turbulent
simulations. The results for the unsteady simulation are as of yet preliminary; even with the
superior performance of KLAT2, a single unsteady simulation would require eight weeks of
dedicated usage.
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Figure 8: View of the three-dimensional grid

Figure 9: Steady state pressure contours
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Figure 10: Isosurface of velocity disturbance magnitude colored with pressure
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A technical point is that the grid used in these sample calculations is probably not sufficiently
fine for a strict DNS; rather, the presented results are more properly QDNS. Evidence suggests that
our grids are within a factor of 5 of a strict DNS computation–for comparison, the Flow Physics
and Computation Division of Stanford University claims a DNS computation for a similar problem
domain using 86 million grid points (http://www-fpc.stanford.edu/).

5.2 The Cost of KLAT2

KLAT2’s cost is somewhat difficult to specify precisely because the most expensive components,
the Athlon processors, were donated by their manufacturer, AMD (Advanced Micro Devices). In
the interest of fairness, we have quoted the retail price for these processors as found on Multiwave’s
WWW site on May 3, 2000. Similarly, although most applications (including those discussed in
this paper) use only 64 nodes, KLAT2 also has 2 "hot spare" nodes and an additional switch layer
that are used for fault tolerance and system-level I/O; because we consider these components to be
an integral part of KLAT2’s design, we have included their cost. We also included 16 spare NICs
and several spare surge protectors. Due to University of Kentucky purchasing guidelines and part
stocking issues, purchases from the same vendor were sometimes split in odd ways and there were
various inconsistencies about how shipping was charged; although the vendor totals are correct,
we have had to approximate the component cost breakdown in these cases.

In summary, KLAT2’s total value is about $41,200, with the primary costs being roughly
$13,200 in processors, $8,100 in the network, $6,900 in motherboards, and $6,200 in memory.
We believe the cost breakdown in figure 11 to be a conservative upper bound on the full system
cost.

Some people have taken issue with our accounting of the assembly cost of KLAT2 because
of the large number of student volunteers. However, people often forget that, as a university, it
is our job to inspire and train students. In fact, we could have purchased the PCs as assembled
systems without significant extra cost, but buying components allowed us to build precisely
the configuration we wanted and, more importantly, was pedagogically the right thing to do.
Few projects inspire students like being able to contribute to the construction of a new type of
supercomputer, so we encouraged as many people as possible to participate. The construction
of the PCs was easily accomplished within a single day (April 11, 2000) with no more than
six students working at any time and most of the students having their first experience in PC
construction; wiring the cluster took two people only a few hours (thanks to the color-coded
cables). The cost of the soda and pizzas may seem a flippant accounting, but are actually a good
match for what it would have cost for a well-experienced research assistant to assemble everything
without additional help or distractions.
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Figure 11: Cost breakdown for KLAT2
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Figure 12: Distribution of the runtimes over a 15h run for the single precision simulation using
3DNow!
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Table 8: Final double precision results
I/O MFLOP count Walltime Sustained GFLOPS $/MFLOPS

with I/O 338237 23398.8 s 14.46 2.85
without I/O 338237 22560.0 s 14.99 2.75

Table 9: Final single precision results (using 3DNow!)
I/O MFLOP count Walltime Sustained GFLOPS $/MFLOPS

with I/O 338237 16114.9 s 20.9 1.96
without I/O 338237 15273.2 s 22.1 1.86

5.3 Computational Results

The current GFLOPS and $/MFLOPS are given in tables 8 and 9, while figure 12 shows the
distribution of the wall-clock times over 3500 timesteps. The relatively rare very slow timesteps
occur due to an unfortunate resonance between minor load imbalances and TCP/IP network traffic;
it should be possible to eliminate these glitches, but their contribution to total runtime was not
sufficient for us to make that a priority.

The presented computations are for a DNSTool run on a 400 x 200 x 200 turbine blade grid (16
million grid points). This grid point count excludes points outside the physical flow region needed
for boundary conditions or block overlap. The presented results are the average for 1000 timesteps
for a long time integration. The walltime is maximum over the whole cluster for each iteration.
All of the computations are double precision on the 64-processor KLAT2. Results are presented
for both the isolated numerical computation and the overall computation including I/O.

The GFLOP count is measured by first doing the identical computation on a SGI Origin 2000
and using SGI performance tools; specifically, using mpirun -np 64 ssrun -ideal to run the code,
followed by applying prof -archinfo ideal.* to the output, which yields the total FLOP count for
the computation. Dividing this number by the walltime expended in the KLAT2 simulation yields
the given GFLOP/s results.

We do not think that we have yet achieved optimal performance for this cluster-CFD code
combination. In addition to the potential improvements discussed in section 3, we have not done
much work on the optimal grid configurations for this cluster, either in terms of the construction
and load distribution of the subgrid blocks or the overall best grid density. The I/O also remains a
relatively slow part of the code, playing a large role in the difference between the overall and peak
performance. Even without these potential improvements, the overall performance of DNSTool on
KLAT2 is outstanding.
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6 Conclusion

In this paper, we have described the techniques and tools that we created and used to optimize
the performance of the combination of DNSTool and KLAT2. This tuning of system performance
involved both recoding of the application and careful engineering of the cluster design. Beyond
restructuring of the code to improve cache behavior, we used various tools to incorporate 3DNow!
into the single-precision version, and even used a GA to design the cluster network.

Using similar techniques for KLAT2 to execute ScaLAPACK yielded better than $0.64 per
MFLOPS single precision, but ScaLAPACK is a relatively easy code to speed up. Although
ScaLAPACK requires substantial network bandwidth, only a single computational routine
(DGEMM or SGEMM) needed to be optimized to obtain that record performance. In contrast,
achieving $2.75 per MFLOPS double precision and $1.86 per MFLOPS single precision for
DNSTool requires many more optimizations to many more routines and generally taxes the
machine design much more severely.

The high computational complexity of the DNS approach to CFD provides important and
unique abilities: DNS yields high-quality results for problems that faster, more approximate, CFD
techniques cannot yet handle. Thus, the low cost of running DNS on machines like KLAT2 can
make a qualitative difference in the range of CFD problems that can be approached, either to
directly solve them or to design computationally cheaper models that can suffice for practical
engineering applications.

In much the same way, the techniques and tools that we developed and used to engineer
KLAT2, and to tune the performance of DNSTool for KLAT2, also represent qualitative advances
over previous approaches. For example, 3DNow! was originally intended for 3D graphics in
video games, but our tools make it significantly more accessible for scientific and engineering
codes. Even if it is not optimized for the particular communication patterns that will be used, the
GA-designed FNN provides low latency and high bisection bandwidth; the ability to tune for a
specific application’s communication patterns, generating deliberately asymmetric designs when
appropriate, is a unique additional benefit.

Most importantly, the optimized DNSTool and the tools to design and similarly optimize
your own clusters with specific applications either are or will be freely available from
http://aggregate.org/. Our primary direction for future work is to take these tools one giant step
further, creating easily-replicated personalized turnkey superclusters (PeTS) that will provide
scientists and engineers with supercomputer performance for specific applications without
requiring them to become experts in computing.
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