A Tour of Jumpshot-3

Anthony Chan, William Gropp, Ewing Lusk

4/27/2000

Abstract

Jumpshot-3 is a display program for trace data in scalable log format, [SLOG-1],
which is designed to store a large number of drawable objects[SLOG-2| gen-
erated from the backend of a parallel program, for example AIX’s UTE slog-
merge or MPICH’s MPE profiling library. Basically, Jumpshot-3 is a GUI
to display rectangles that represent the various MPI and user-defined states
and arrows indicating messages exchanged between those states. This arti-
cle illustrates the basic functionalities of Jumpshot-3 through a step-by-step
guide of how one would usually use Jumpshot-3 to view a big logfile.

File Display System Help 3

Logfile | /horne/chan/s i‘?’E’.‘J'U_"_”PS_h‘?t?*’J'F‘_m pshot—-3/logfiles/sppm_ic2aslog |
= Read
et |

Figure 1: The Main Control Window of Jumpshot-3

Background

Assume you are trying to view a slog file called sppm _ic2a.slog!, which is
generated from a run of the MPI program sppm on IBM’s SP with shared-
memory nodes. The logfile is located in the directory ~ /jumpshot-3/logfiles/ .
Also assume that Jumpshot-3 has been successfully installed?. Typing the
full pathname to the Jumpshot script which is located at ~/jumsphot-3/bin/
will bring up Jumpshot-3.

Main Control Window

The first window Jumpshot-3 pops up is the Main Control window, which
is shown in Figure 1. The File menu tab brings up the file selection menu.
Here, doubly click to the right directory where sppm.slog is located, and
highlight sppm.slog as the logfile to be processed. Then the path of the
logfile relative to the current working directory will be printed in the logfile
box, in the middle of the main control window. As soon as the pathname
of the logfile appears, the Read button will be enabled. Click on the Read
button to display the “Preview” of the logfile.

The System menu tab allows you to choose the specific “Look & Feel” for
the whole GUI system of Jumpshot-32. The Help menu tab provides elec-
tronic documentations to Jumpshot-3, including three submenus: Manual,
Tour, and About. Manual provides a brief explanation of all the buttons in

L The logfile is provided by Dave Wootton at IBM.

2For details on how to install and start running Jumpshot-3, see README.slog and
UserGuide.txt in ~/jumpshot-3.

3For Unix system, only Metal and Motif Look & Feel are allowed because of the license
issue(from Sun’s documentation).

File Graph DataSets ZFoom Legend

Event Count vs Time Time: [2.7334120

|€

=
v
=
e
a1
El
3
i
{)
il
L1
aq
G

15207 30410 45612 BO.815 FEOI17 91,220 10642 12162 13B.82
146,86
time { seconds)

Connectivity Options Yiew Options
’70 Disconnected States @ Connected States ’7 > MPI-Process @ Thread () Processor
Frame Information Frame Dperations
Number of Frames = 3 ‘ a &

Current Frame = 4]

Previous Display Next

Z

Figure 2: The Preview: View & Frame Selector Window.

Jumpshot-3. Tour is the HTML version of this document. About provides
the version and contact information for the copy of Jumpshot-3 being used.

Statistical Preview

The goal of the Statistical Preview is to help users select a frame for view-
ing. It consists of two windows. The major window shown in Figure 2, is
titled “View & Frame Selector”, but is usually called “Preview”. It contains
a graphical representation of all the activities going on during the run of
the program sppm. Activities in “Preview” are computed in the following
way. The whole duration of the job sppm is divided into 512 time bins.
For each time bin, there are counters for each state and arrow that occur

File Graph DataSets ZFoom Legend

Event Count vs Time Time: [0, 292042

I

I‘F |‘ \! l | W[l

l N Vb

o] 15.207 30410 45612 E0.B1S 7EO17 91220 10642 12162 13682 |
146.86

l

58]
L

B S L

time { seconds)

Connectivity Options Yiew Options
’70 Disconnected States @ Connected States ’7 » MPI-Process @ Thread () Processor
Frame Information Frame Dperations
Number of Frames = 3 & 3 &

Current Frame = 4]

Previous Display Next

Z

Figure 3: Preview in non-accumulative curve mode.

in the time bin. The counter of each state/arrow will be incremented by a
statistical weight that equals the ratio of the duration of state/arrow to the
width of time bin that the state/arrow is in. Because of this definition of the
statistical weight for each state/arrow, very short duration states or arrows
become statistically insignificant and will not contribute much to the accu-
mulative activities of all the states and arrows. The visual consequence is
that states/arrows with very short duration are not noticeable in “Preview”.
The graphical representation of the activities of the logfiles is, by default, in
accumulative histogram mode, which can be turned on/off through the but-
ton selection sequence Graph->Type->Bar. The other mode is the noncu-
mulative curve mode which can be enabled by the button selection sequence
Graph->Type->Line. It is shown in Figure 3. Since it is noncumulative, as
in histogram mode, it distinguishes the relative importance of various states.
In the lower left-hand corner of “Preview”, there is a “Frame Information”

panel, which lists the number of frames in the logfile, N. In this case, there
are only 3 frames in the file. The frame size is determined by the program
that generates the slog files*. In general, the smaller the frame, the better
the performance of Jumpshot-3 will be in refreshing the screen. But if an
overly small frame size is used, it will be increasingly difficult to navigate to
the frame that is being selected. And each frame will contain too little data
for the user to form a coherent overall picture of the code. Next to the la-
bel Current Frame, there is a dialog box that shows the current frame index,
which proceeds from 0 to the last frame of the file, N-1, and is initialized to 0
when the GUI starts. The user can change the frame index by typing in the
dialog box or through buttons in the “Frame Operations”, where Previous
and Next buttons decrement and increment the frame index, respectively.
But the user is also allowed to click on the graphical display to select a frame
of interest. A red line will then show up in the graph to highlight the frame
selected. Currently the red line is located in the middle of the frame, so the
red line is moved nonuniformly along the x-axis. The redundancy in frame
selection operations allows the end user to fine tune which frame to view
when the logfile contains a lot of frames. For an MPI program running in a
multithreaded environment as in the AIX SMP box, the logfile may contain
information about threads. In that case, the “Connectivity Options” and
“View Options” panels become very useful. The user can choose different
combinations of these options to see how threads are dispatched and used in
an MPI Program. More details will be in the next section.

Next to the “Preview” there is a smaller window titled “Legend”, which
contains a set of radio buttons with different colors. They are tagged with
the names of the MPI and user-defined calls made in the code sppm. An
illustration of “Legend” is shown in Figure 4. Below the list of radio buttons
there are Select/Deselect, All, None, and Change Color buttons.

“Preview” and its corresponding “Legend” windows meant to be used side
by side to help you select frames that are of interest. If some of the states dis-
played in the “Preview” seem useless or confusing, it can be easily removed.
First highlight the state through click on the name in the “Legend”; then click
on Select/Deselect button to remove them from “Preview”. In Figure 5, all
MPI and system-related states are deselected in “Preview” to highlight the

4In AIX’s UTE environment, a program called slogmerge allows user to define the size
of the frame. In MPICH’s MPE environment, direct logging mechanism implicitly assume
a frame size. However, end user can change the frame size through the use of program
clog2slog.

MPI_Irecy W
MPI_Isend
MPI_Allreduce
MPI_Comm_rank
MPI_Comm_size

Oe@@@0@®@Cc00@®C0

MPI_Finalize |
MPI_Wait
Running [g'
layout a
B
setup
hdrys
glbl
Forward Arrow
Select/Deselect A
all ” None L;
lh\; : Change Color |. .

Figure 4: The Legends of Preview

user-defined states “layout”, “setup”, “bdrys” and “glbl”. It becomes apparent
that all the communications between the user MPI processes are done in regu-
lar interval. Also, all communications(i.e. arrows) are within the user-defined
state “bdrys”. Assume you are interested in the behavior of the program be-
tween the last two instances of MPI _Allreduce. Then you can simply click
on None to deselect all the states and arrows, highlight MPI _Allreduce, then
click Select/Deselect to display only MPI_ Allreduce in the “Preview”. Now
click on any region between the last two MPI _Allreduce’s in the “Preview”.
Then the frame index is changed from 0 to 2, and a red line is positioned
in the middle of the frame 2 and is also between the last two instances of
MPI _Allreduce. Now select the properties of the frame to be viewed. Most
end users who are interested in the performance of the code sppm should
select the Connected States option with either MPI-Process or Thread view.
If you are interested in how the operating system dispatches threads among
CPUs allocated for the job, you may want to select the Disconnected States
option in the Processor view.

File Graph DataSets ZFoom Legend

Event Count vs Time Time:[1750242 |
=0
oL} LR R LR \

15.207 30410 45612 E0.B15 7EO17 91220 10642 12162 136.82
146.86

time { seconds)

’rl::unnel:tivit!,-r Options ’rview Options

) Disconnected States @ Connected States i MPI-Process @ Thread () Processor

Frame Information Frame Dperations

Mumber of Frames = 3 v% a &
o N N
Currant frame = Previous Display MNext

Z

MPI_lrecy
MPI_Isend
MPI_Allreduce
MPI_Comm_r..
MPI_Comm_s... ||
MPI_Finalize
MPI_Wait
Running
layout
setup
bdrys
glbl
.
Select/Deselect
all Mone

0e®®O000000000

Change Color

Figure 5: All MPI and OS-related stafes are deselected in the “Preview” and
“Legend” to highlight the user-defined states and the communication among
the processes.

| P ———Ci T T

File Graph DataSets Legend

typesnode/sumiduration) |
o
Running

User_Marker_Intarval
MPI_Finalize
MPI_Comm_size

MPI_Comm_rank

MPI_Allreduce
MPI_Wwait
MPI_lsend
MPI_Irecy
50 100 150 4
time { seconds) 4

AT

@
@
@]
@

Select/Deselect
all " None

Change Color
gﬁﬂ‘i

Figure 6: The Statistics Viewer and its “Legend” windows.

Statistics Viewer

The Statistics Viewer can be invoked from the “Preview” through the button
sequence File->View Statistics. Once the viewer is up, click on File to select a
statistics file® for processing. As shown in Figure 6, the statistics file of sppm,
sppm.stats.0301, is displayed in the Statistics Viewer and its corresponding
“Legend” window. The “Legend” window works like that of “Preview”. The
title in the Statistics Viewer provides crucial information regarding the label
of the y-axis in the viewer and that of the “Legend window”. Usually the title
has the form, Viewer_Yazis_ Label / Legend_ Label / Name_ Of _Statistics.
In Figure 6, the viewer’s y-axis label is “type”(i.e. MPI and user-defined
states) and the label for entities in the “Legend” window is “node” ID. The
name of the statistics is called “sum(duration)”. The statistics indicate that
the state MPI _Wait takes the most time in the run and consumes an equal
amount of time in each node. The second most time-consuming state is User
Marker Interval, and again each node uses similar amount of time in the User
Marker Interval.

The statistics file usually contains more than one set of statistics. Another
set of statistics can be selected through the Graph menu tab. Clicking on
the menu tab will pull down a menu with all available statistics data in the
file. As soon as a different set of statistics is selected, both the viewer and
the “Legend” windows will be updated. When you want to view another
statistics file, be sure to close the current opened file before opening another
file. Otherwise, all newly opened statistics will be added to the existing ones
under the Graph menu tab.

Time Lines Window

Let’s assume that you select Connected States in Thread view in “Preview”,
when you click on the Display buttons in the “View & Frame Selector” win-
dow. A Time Lines window as shown in Figure 7 will pop up. The Time
Lines window provides a detailed display of the sppm trace data as a GANTT
chart with the x-axis as time and the y-axis as thread ID. The control but-
tons in the top panel provide zoom IN and OUT operations around the zoom

5In AIX’s UTE environment, a program like “utestat” is used to generate the statistics
file. In MPICH’s MPE profiling environment, there is no tool which can generate a separate
statistics file yet.

Zoom Operations Miscellaneous Operations

2?‘1:'::.““'“ 13122%25 I In " out " Respt | I nOptinns " Print " Clnse |
04
0s
13
15
1d
22
24
240

0 A
i ||[|||||||ﬂ|| Y ||[|]ﬂ|||||||| HtHiK |||ﬂ|||| HIHH |||||]||ﬂ||l|||||1|||ﬂDIIIIIIIIIIIIIIIHHIIH ORI A| =7
a1
I e e s PR R R R e e W B
17,5583 121.1185 1245800 1280408 131.5072 134.9617 ~384223 1418828 145.343
- EoomLack]
4] D
7l | mpi_irecy v [l mviisend| B [mpialiveduce |4 || MPI_Hnalize | ’E B mpi_wait
= -Running [. bdrys = .glbl = All States
I Torward Arrow |
I

Figure 7: Timeline window in Thread view

focus, which could be set by putting the cursor at the point of interest on
the GANNT chart and pressing the key “z”. In Figure 7, the zoom focus is
marked by a white line drawn from the top to the botton of the diagram and
is labeled as ZoOM LOCK in red.

After being zoomed in several times, the Time Lines window looks like
Figure 8. At this resolution, many more details are exposed. For instance,
the MPI _Isend states that are in navy blue in the figure become noticeable.
Clicking on any rectangle in the Time Lines canvas will pop up a “Rectan-
gle Info” box which contains various information regarding the subroutine
call(e.g. start and end time of the call), and various call arguments and in-
struction address(es) if there are any. Clicking on the “Rectangle Info” box
again will remove the box from the screen. Also, clicking on the red circle at
the end of the arrow will pop up a “Arrow Info” box, which provides a func-
tion similar to that of “Rectangle Info”. In Figure 8, MPI Isend, MPI Irecv,
and MPI_Wait are all nested within the user-defined state “bdrys”. This sug-
gests that “bdrys”, which is a user-defined subroutine call, makes all these
MPI calls. Also, the regularity of the pattern of arrows can provide insight
about how data are exchanged.

Several tricks and hidden operations are worth mentioning. First, it is the
trick in locating small rectangles: since all the rectangles have a white border
surrounding them, when many small rectangles are next to each other in
very low resolution, they form a completely white rectangle. A totally white
rectangle usually means a lot more details are hidden inside. Second, a trick
about scrolling: you can drag on the scroll tab to advance to later time, but
scrolling becomes slow when there are many threads with a lot of objects. In
this case, click on the white space between the scroll tab and the end arrow
tab in the direction that you want to advance to. The operation will allow
the next time frame in the canvas to be redrawn immediately. Third, the
label of the y-axis in Thread view is (MPI-rank, local thread ID), but it is
different in different views. Because of the limited space on the canvas, the
label of the y-axis is actually written in the tooltip of the two vertical y-axis
label. The tooltip can be activated by simply putting the cursor over any
y-axis integer doublet for few seconds. Fourth, doubly clicking on any integer
doublet label will invoke the “Time Lines Manipulation” window as shown in
Figure 9. This window provides various operations on the selected time line,
for instance, the adjustment of time line by changing the offset of the time
line for alignment of rectangles, or the swapping of different time lines for
organizational purposes. Fifth, there is a trick about the Definitions window,

10

Pointer 13113

Elapsed Time

(]

04

02

12008523

1303605

Zoom Operations

B satE s I ATEad MiEw o e e

Miscellaneous Operations

print |

I In

" out " Respt | 2

I Optinns "

1Z1.0588

13- 1767 131.2849 1215012

TENIT 131710

[4]

[

[»

¥l [|mPi_irecy |

v rl"IPI_IsenI:II

v [MPI_alirecuce | vl [MPI_FInaIIZB| v [l MPI_wart

vl -Runningl

vl . bdrys

v Wbl @ allStates

'E Forward Arvow

Figure 8: A zoomed in view of the Time Lines window.

11

rSelected Time Line—————————
Time Line ID#| 1:3 |

| B

Visible Time Lines—
|Available :|00 -

DeletedTlme Linee e e
Deleted :‘ v|

h- &

Figure 9: The Time Lines Manipulation window.

which is located at the bottom of the Time Lines window. The Definitions
windows consists of a collection of definition panels, each has a checkbox
and a definition button corresponding to each state/arrow in the Time Lines
canvas. The Definitions window can be torn out of the Time Lines window as
a standalone window, or it can be re-attached to any one of the four sides of
the Time Lines window. This allows the user to change the arrangement of
the state and arrow definitions to optimize the use of the Time Lines canvas.
All states and arrows definitions are checked by default. Unchecking any of
definitions will make the corresponding states or arrows invisible. The goal is
to help users highlight what they are interesed in by hiding the uninteresting
ones. Clicking on any of the definition buttons will bring up the histogram
window of the corresponding state/arrow. For example, the forward arrow
button will invoke a window as shown in Figure 10. The Histogram window
provides basic statistics and statistical distribution of the duration of the
selected state. The “Blink States” button enables the selected state/arrow
in the Time Lines window to flash. Again the goal is to help highlight the
objects. Finally, we note that the memory demand for Time Lines window
is very high, especially on Linux box with JDK-1.1(running green thread).
Our experience indicates that the amount of X server memory needed to have
one instance of Time Lines window running is proportional to the size of the
Time Lines window and the color depth of the X server. If one plans to run
multiple instances of Time Lines windows at the same time, be sure to have
enough physical memory for the X server and Java Virtual Machine.

12

L

sec [States in Yiew

sec [start state length
sec |End state length

cursor CE153T83
Total number ot instances SE
Duratlon of shortest Instance |C.054063
Duration of longest instance |C.573073
State: Forward Arrow

Zoom Factor 2.0

| In Out | Resat |

Viax Number ul bins (200

Vumher af hins

100

Regions {Top X %) assuming normal distribution

1%

5%

10%

2%

3

5%

Regions (Bottom

X %) assuming normal distribution

95

Percent ot total states 12300
UTHIES sec
DE7I0YS sec

o
Y

il |

134 5% 1n%
20% 30 50%
0.1472 02345 0.5391
a [»]
| Resize to Hit || Blink states | Selected Regions | Print | Close

4

Figure 10: The histogram for the forward arrow in the frame.

13

Bibliography

[SLOG-1] Anthony Chan, William Gropp, Ewing Lusk, Anthony Bomarcich,
Thedore Hoover, Yarsun Hsu, Marc Snir, and Eric Wu, Scalable
Log File Format Specification: Concepts, DRAFT on 1/25/1999.

[SLOG-2| Anthony Chan, William Gropp, and Ewing Lusk, Scalable Log
Files for Parallel Program Trace Data, DRAFT on 3/20/2000.

14

