MPICH2 User’s Guide*
Version 1.0.6
Mathematics and Computer Science Division
Argonne National Laboratory

William Gropp
Ewing Lusk
David Ashton
Pavan Balaji
Darius Buntinas
Ralph Butler
Anthony Chan
Jayesh Krishna
Guillaume Mercier
Rob Ross
Rajeev Thakur
Brian Toonen

September 14, 2007

*This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Sci-
DAC Program, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

Contents

1 Introduction|
2 igrating to 2 from 1
2.1 Default Runtime Environmentf

[2.2 Starting Parallel Jobs|o o000

2.3 Command-Line Arguments in Fortran|

(3

Quick Start|

Compiling and Linking]

4.1 Specitying Compilers|

4.3 Special Issues for C+—+.

4.4 Special Issues for Fortran|00,

5

Running Programs with mpiexec|

[p.1 Standard mpiexec| oL

5.2 Extensions for All Process Management Environments|

[5.3 Extensions for the MPD Process Management Environment| .

[5.3.1 Basic mpiexec arguments for MPD|.

[5.3.2 Other Command-Line Arguments to mpiexec for MPD|

[5.3.3 Environment Variables Affecting mpiexec for MPD]|. .

[5.4 Extensions for SMPD Process Management Environment|

[5.4.1 mpiexec arguments tor SMPD|

[5.5 Extensions for the gforker Process Management Environment|

[5.5.1 mpiexec arguments for gforker|

[5.6 Restrictions of the remshell Process Management Environment| 17

|6 Managing the Process Management Environment|

6.1 MPDI.o

7 Debugging]

[(.1 gdb viampiexec| L.

8 MPE

8.1 MPI Loggingl

8.2 User-defined logging|

B3 MPTCRocking. .« « o o o oot e e

8.4 MPEoptions] 0.

9 Other Tools Provided with MPICH?2

10 MPICH2 under Windows|

1.1 : at 1s 20 ..

[A.1.2 Q: What does MPICH stand for?

|A.1.3 Q: Can MPI be used to program multicore systems?| .

A2 Building MPICHD] o . o

ii

17
17

18
18
22

23
23
24
25
26

27

27
27
27
28

29
29
29
29
29

[A.2.1 Q: What is the difference between the MPD and SMPD)|
[process managers?| 30

[A.2.2 Q: Do I have to configure/make/install MPICH2 eachl
[time for each compiler [use?| 30

|A.2.3 Q: How do I configure to use the Absoft Fortran com-|

........................... 31
[A.2.4 Q: When I configure MPICH?2, I get a message about|

[FDZERO and the configure aborts| 32
[A.2.5 Q: When I use the g95 Fortran compiler on a 64-bit|

[platform, some of the tests fail| 32

[A.2.6 Q: When I run make, it fails immediately with many|
lerrors beginning with “sock.c:8:24: mpidu_sock.h: No|
lsuch file or directory In file included from sock.c:9:

../../../../include/mpiimpl.h:91:21: mpidpre.h: No such|

file or directory In file included from sock.c:9: ../../../../in-

clude/mpiimpl.h:1150: error: syntax error before ” MPID_VCRT”

../../../../include/mpiimpl.h:1150: warning: no semi-|

icolon at end of struct or union™. 33

[A.2.7 Q: When building the ssm or sshm channel, I get the|
lerror “mpidu_process_locks.h:234:2: error: #error ***|
INo atomic memory operation specified to implement|
[busy locks ***”| L 33

[A.2.8 Q: When using the Intel Fortran 90 compiler (version
[9), the make fails with errors in compiling statement,

[that reference MPT_ADDRESS KIND.. 33

[A.2.9 Q: The build fails when I use parallel make| 34

[A.3 Windows version of MPTCH2l 34
|A.3.1 T am having trouble installing and using the Windows|

tversion of MPICH2. 34

[A.4 Compiling MPI Programs| 34

[Ad41l CH+4 and SEEK.SET| 34

[A.4.2 C++ and Errors in Nullcomm::Clond 35

iii

[A.5 Running MPI Programs| 36
[A.5.1 Q: How do I pass environment variables to the pro-|
|cesses of my parallel program| 36
IA.5.2 Q: How do I pass environment variables to the pro-|
|cesses of my parallel program when using the mpd)
[process manager?|. 36
IA.5.3 Q: What determines the hosts on which my MPI pro-|
lcessesTun? 36
[A.5.4 Q: On Windows, I get an error when I attempt to calll
MPT_Comm_spawn. 38

IA.5.5 Q: My output does not appear until the program exits| 38

|A.5.6 Q: Fortran programs using stdio fail when using g95[. 39

IA.5.7 Q: How do I run MPI programs in the background|
[when using the default MPD process manager?] 39

iv

1 INTRODUCTION 1

1 Introduction

This manual assumes that MPICH2 has already been installed. For instruc-
tions on how to install MPICH2, see the MPICH2 Installer’s Guide, or the
README in the top-level MPICH2 directory. This manual explains how to
compile, link, and run MPI applications, and use certain tools that come
with MPICH2. This is a preliminary version and some sections are not
complete yet. However, there should be enough here to get you started with
MPICH2.

2 Migrating to MPICH2 from MPICH1

If you have been using MPICH 1.2.x (1.2.7pl is the latest version), you will
find a number of things about MPICH2 that are different (and hopefully
better in every case.) Your MPI application programs need not change, of
course, but a number of things about how you run them will be different.

MPICH2 is an all-new implementation of the MPI Standard, designed to
implement all of the MPI-2 additions to MPI (dynamic process management,
one-sided operations, parallel I/O, and other extensions) and to apply the
lessons learned in implementing MPICH1 to make MPICH2 more robust,
efficient, and convenient to use. The MPICH2 Installer’s Guide provides
some information on changes between MPICH1 and MPICH2 to the process
of configuring and installing MPICH. Changes to compiling, linking, and
running MPI programs between MPICH1 and MPICH2 are described below.

2.1 Default Runtime Environment

In MPICH1, the default configuration used the now-old p4 portable pro-
gramming environment. Processes were started via remote shell commands
(rsh or ssh) and the information necessary for processes to find and con-
nect with one another over sockets was collected and then distributed at
startup time in a non-scalable fashion. Furthermore, the entanglement of
process managment functionality with the communication mechanism led to
confusing behavior of the system when things went wrong.

MPICH2 provides a separation of process management and communica-
tion. The default runtime environment consists of a set of daemons, called

3 QUICK START P

mpd’s, that establish communication among the machines to be used be-
fore application process startup, thus providing a clearer picture of what is
wrong when communication cannot be established and providing a fast and
scalable startup mechanism when parallel jobs are started. Section de-
scribes the MPD process management system in more detail. Other process
managers are also available.

2.2 Starting Parallel Jobs

MPICHI1 provided the mpirun command to start MPICH1 jobs. The MPI-2
Forum recommended a standard, portable command, called mpiexec, for
this purpose. MPICH2 implements mpiexec and all of its standard argu-
ments, together with some extensions. See Section [B.I] for standard ar-
guments to mpiexec and various subsections of Section [for extensions
particular to various process management systems.

MPICH2 also provides an mpirun command for simple backward com-
patibility, but MPICH2’s mpirun does not provide all the options of mpiexec
or all of the options of MPICH1’s mpirun.

2.3 Command-Line Arguments in Fortran

MPICH1 (more precisely MPICH1’s mpirun) required access to command
line arguments in all application programs, including Fortran ones, and
MPICH1’s configure devoted some effort to finding the libraries that con-
tained the right versions of iargc and getarg and including those libraries
with which the mpif77 script linked MPI programs. Since MPICH2 does not
require access to command line arguments to applications, these functions
are optional, and configure does nothing special with them. If you need
them in your applications, you will have to ensure that they are available in
the Fortran environment you are using.

3 Quick Start

To use MPICH2, you will have to know the directory where MPICH2 has
been installed. (Either you installed it there yourself, or your systems admin-
istrator has installed it. One place to look in this case might be /usr/local.

4 COMPILING AND LINKING 3

If MPICH2 has not yet been installed, see the MPICH2 Installer’s Guide.)
We suggest that you put the bin subdirectory of that directory into your
path. This will give you access to assorted MPICH2 commands to compile,
link, and run your programs conveniently. Other commands in this directory
manage parts of the run-time environment and execute tools.

One of the first commands you might run is mpich2version to find out
the exact version and configuration of MPICH2 you are working with. Some
of the material in this manual depends on just what version of MPICH2 you
are using and how it was configured at installation time.

You should now be able to run an MPI program. Let us assume that the
directory where MPICH2 has been installed is /home/you/mpich2-installed,
and that you have added that directory to your path, using

setenv PATH /home/you/mpich2-installed/bin:$PATH
for tcsh and csh, or
export PATH=/home/you/mpich2-installed/bin:$PATH

for bash or sh. Then to run an MPI program, albeit only on one machine,
you can do:

mpd &

cd /home/you/mpich2-installed/examples
mpiexec -n 3 cpi

mpdallexit

Details for these commands are provided below, but if you can successfully
execute them here, then you have a correctly installed MPICH2 and have
run an MPI program.

4 Compiling and Linking

A convenient way to compile and link your program is by using scripts that
use the same compiler that MPICH2 was built with. These are mpicc,
mpicxx, mpif77, and mpif90, for C, C++, Fortran 77, and Fortran 90 pro-
grams, respectively. If any of these commands are missing, it means that
MPICH2 was configured without support for that particular language.

4 COMPILING AND LINKING 4

4.1 Specifying Compilers

You need not use the same compiler that MPICH2 was built with, but not
all compilers are compatible. You can also specify the compiler for building
MPICH?2 itself, as reported by mpich2version, just by using the compiling
and linking commands from the previous section. The environment variables
MPICH_CC, MPICH CXX, MPICH F77, and MPICH F90 may be used to specify
alternate C, C++, Fortran 77, and Fortran 90 compilers, respectively.

4.2 Shared Libraries

Currently shared libraries are only tested on Linux and Mac OS X, and there
are restrictions. See the Installer’s Guide for how to build MPICH2 as a
shared library. If shared libraries have been built, you will get them auto-
matically when you link your program with any of the MPICH2 compilation
scripts.

4.3 Special Issues for C++

Some users may get error messages such as

SEEK_SET is #defined but must not be for the C++ binding of MPI

The problem is that both stdio.h and the MPI C++ interface use SEEK_SET,
SEEK_CUR, and SEEK_END. This is really a bug in the MPI-2 standard. You
can try adding

#undef SEEK_SET
#undef SEEK_END
#undef SEEK_CUR

before mpi.h is included, or add the definition
-DMPICH_IGNORE_CXX_SEEK

to the command line (this will cause the MPI versions of SEEK_SET etc. to
be skipped).

5 RUNNING PROGRAMS WITH MPIEXEC 5

4.4 Special Issues for Fortran

MPICH?2 provides two kinds of support for Fortran programs. For Fortran 77
programmers, the file mpif.h provides the definitions of the MPI constants
such as MPI_COMM_WORLD. Fortran 90 programmers should use the MPI module
instead; this provides all of the definitions as well as interface definitions for
many of the MPI functions. However, this MPI module does not provide
full Fortran 90 support; in particular, interfaces for the routines, such as
MPI_Send, that take “choice” arguments are not provided.

5 Running Programs with mpiexec

If you have been using the original MPICH, or any of a number of other
MPI implementations, then you have probably been using mpirun as a way
to start your MPI programs. The MPI-2 Standard describes mpiexec as
a suggested way to run MPI programs. MPICH2 implements the mpiexec
standard, and also provides some extensions. MPICH2 provides mpirun for
backward compatibility with existing scripts, but it does not support the
same or as many options as mpiexec or all of the options of MPICH1’s
mpirun.

5.1 Standard mpiexec

Here we describe the standard mpiexec arguments from the MPI-2 Stan-
dard [I]. The simplest form of a command to start an MPI job is

mpiexec -n 32 a.out

to start the executable a. out with 32 processes (providing an MPI_COMM_WORLD
of size 32 inside the MPT application). Other options are supported, for spec-
ifying hosts to run on, search paths for executables, working directories, and
even a more general way of specifying a number of processes. Multiple sets
of processes can be run with different exectuables and different values for
their arguments, with “:” separating the sets of processes, as in:

mpiexec -n 1 -host loginnode master : -n 32 -host smp slave

5 RUNNING PROGRAMS WITH MPIEXEC 6

The -configfile argument allows one to specify a file containing the spec-
ifications for process sets on separate lines in the file. This makes it unnec-
essary to have long command lines for mpiexec. (See pg. 353 of [2].)

It is also possible to start a one process MPI job (with a MPT_COMM_WORLD
whose size is equal to 1), without using mpiexec. This process will become
an MPI process when it calls MPI_Init, and it may then call other MPI
functions. Currently, MPICH2 does not fully support calling the dynamic
process routines from MPI-2 (e.g., MPI_Comm_spawn or MPI_Comm_accept)
from processes that are not started with mpiexec.

5.2 Extensions for All Process Management Environments

Some mpiexec arguments are specific to particular communication sub-
systems (“devices”) or process management environments (“process man-
agers”). Our intention is to make all arguments as uniform as possible
across devices and process managers. For the time being we will document
these separately.

5.3 Extensions for the MPD Process Management Environ-
ment

MPICH?2 provides a number of process management systems. The default
is called MPD. MPD provides a number of extensions to the standard form
of mpiexec.

5.3.1 Basic mpiexec arguments for MPD

The default configuration of MPICH2 chooses the MPD process manager
and the “simple” implementation of the Process Management Interface.
MPD provides a version of mpiexec that supports both the standard ar-
guments described in Section [B.1] and other arguments described in this
section. MPD also provides a number of commands for querying the MPD
process management environment and interacting with jobs it has started.

Before running mpiexec, the runtime environment must be established.
In the case of MPD, the daemons must be running. See Section for how
to run and manage the MPD daemons.

5 RUNNING PROGRAMS WITH MPIEXEC 7

We assume that the MPD ring is up and the installation’s bin directory
is in your path; that is, you can do:

mpdtrace

and it will output a list of nodes on which you can run MPI programs. Now
you are ready to run a program with mpiexec. Let us assume that you
have compiled and linked the program cpi (in the installdir/examples
directory and that this directory is in your PATH. Or that is your current
working directory and ‘.’ (“dot”) is in your PATH. The simplest thing to
do is

mpiexec -n 5 cpi

to run cpi on five nodes. The process management system (such as MPD)
will choose machines to run them on, and cpi will tell you where each is
running.

You can use mpiexec to run non-MPI programs as well. This is some-
times useful in making sure all the machines are up and ready for use. Useful
examples include

mpiexec -n 10 hostname
and

mpiexec -n 10 printenv

5.3.2 Other Command-Line Arguments to mpiexec for MPD

The MPI-2 standard specifies the syntax and semantics of the arguments -n,
-path,~wdir, ~host, -file, ~configfile, and -soft. All of these are cur-
rently implemented for MPD’s mpiexec. Each of these is what we call a “lo-
cal” option, since its scope is the processes in the set of processes described
between colons, or on separate lines of the file specified by -configfile. We
add some extensions that are local in this way and some that are “global” in
the sense that they apply to all the processes being started by the invocation
of mpiexec.

5 RUNNING PROGRAMS WITH MPIEXEC 8

The MPI-2 Standard provides a way to pass different arguments to dif-
ferent application processes, but does not provide a way to pass environment
variables. MPICH2 provides an extension that supports environment vari-
ables. The local parameter -env does this for one set of processes. That
is,

mpiexec -n 1 -env FOO BAR a.out : -n 2 -env BAZZ FAZZ b.out

makes BAR the value of environment variable FOO on the first process, running
the executable a.out, and gives the environment variable BAZZ the value
FAZZ on the second two processes, running the executable b.out. To set an
environment variable without giving it a value, use >’ as the value in the
above command line.

The global parameter ~genv can be used to pass the same environment
variables to all processes. That is,

mpiexec —-genv FOO BAR -n 2 a.out : -n 4 b.out

makes BAR the value of the environment variable FOO on all six processes. If
-genv appears, it must appear in the first group. If both -genv and -env
are used, the —env’s add to the environment specified or added to by the

-genv variables. If there is only one set of processes (no “:”), the -genv
and -env are equivalent.

The local parameter -envall is an abbreviation for passing the en-
tire environment in which mpiexec is executed. The global version of it
is -genvall. This global version is implicitly present. To pass no envi-
ronment variables, use -envnone and -genvnone. So, for example, to set
only the environment variable FOO and no others, regardless of the current
environment, you would use

mpiexec —-genvnone -env FOO BAR -n 50 a.out

In the case of MPD, we currently make an exception for the PATH environ-
ment variable, which is always passed through. This exception was added
to make it unnecessary to explicitly pass this variable in the default case.

A list of environment variable names whose values are to be copied
from the current environment can be given with the —envlist (respectively,
-genvlist) parameter; for example,

5 RUNNING PROGRAMS WITH MPIEXEC 9

mpiexec —genvnone -envlist HOME,LD_LIBRARY_PATH -n 50 a.out

sets the HOME and LD_LIBRARY PATH in the environment of the a.out pro-
cesses to their values in the environment where mpiexec is being run. In
this situation you can’t have commas in the environment variable names,
although of course they are permitted in values.

Some extension parameters have only global versions. They are

-1 provides rank labels for lines of stdout and stderr. These are a bit
obscure for processes that have been explicitly spawned, but are still
useful.

-usize sets the “universe size” that is retrieved by the MPI attribute
MPI UNIVERSE_SIZE on MPI_COMM_WORLD.

-bnr is used when one wants to run executables that have been compiled
and linked using the ch_p4mpd or myrinet device in MPICH1. The
MPD process manager provides backward compatibility in this case.

-machinefile can be used to specify information about each of a set of
machines. This information may include the number of processes to
run on each host when executing user programs. For example, assume
that a machinefile named mf contains:

comment line

hosta

hostb:2

hostc ifhn=hostc-gige
hostd:4 ifhn=hostd-gige

In addition to specifying hosts and number of processes to run on
each, this machinefile indicates that processes running on hostc and
hostd should use the gige interface on hostc and hostd respectively
for MPI communications. (ifhn stands for “interface host name” and
should be set to an alternate host name for the machine that is used
to designate an alternate communication interface.) This interface
information causes the MPI implementation to choose the alternate
host name when making connections. When the alternate hostname
specifies a particular interface, MPICH communication will then travel
over that interface.

You might use this machinefile in the following way:

5 RUNNING PROGRAMS WITH MPIEXEC 10

mpiexec —machinefile mf -n 7 pO

Process rank 0 is to run on hosta, ranks 1 and 2 on hostb, rank 3 on
hostc, and ranks 4-6 on hostd. Note that the file specifies information
for up to 8 ranks and we only used 7. That is OK. But, if we had used
“-n 9”7, an error would be raised. The file is not used as a pool of
machines that are cycled through; the processes are mapped to the
hosts in the order specified in the file.

A more complex command-line example might be:
mpiexec -1 -machinefile mf -n 3 pl : -n 2 p2 : -n 2 p3

Here, ranks 0-2 all run program pl and are executed placing rank 0
on hosta and ranks 1-2 on hostb. Similarly, ranks 3-4 run p2 and are
executed on hostc and hostd, respectively. Ranks 5-6 run on hostd
and execute p3.

-s can be used to direct the stdin of mpiexec to specific processes in a
parallel job. For example:

mpiexec -s all -n 5 a.out

directs the stdin of mpiexec to all five processes.
mpiexec -s 4 -n 5 a.out

directs it to just the process with rank 4, and
mpiexec -s 1,3 -n 5 a.out

sends it to processes 1 and 3, while
mpiexec -s 0-3 -n 5 a.out

sends stdin to processes 0, 1, 2, and 3.

The default, if -s is not specified, is to send mpiexec’s stdin to process
0 only.

The redirection of -stdin through mpiexec to various MPI processes
is intended primarily for interactive use. Because of the complexity
of buffering large amounts of data at various processes that may not
have read it yet, the redirection of large amounts of data to mpiexec’s
stdin is discouraged, and may cause unexpected results. That is,

5 RUNNING PROGRAMS WITH MPIEXEC 11

mpiexec -s all -n 5 a.out < bigfile

should not be used if bigfile is more than a few lines long. Have
one of the processes open the file and read it instead. The functions
in MPI-IO may be useful for this purpose.

A “:7 can optionally be used between global args and normal argument
sets, e.g.:

mpiexec -1 -n 1 -host hostl pgml : -n 4 -host host2 pgm2
is equivalent to:
mpiexec -1 : -n 1 -host hostl pgml : —n 4 -host host2 pgm2

This option implies that the global arguments can occur on a separate line in
the file specified by —configfile when it is used to replace a long command
line.

5.3.3 Environment Variables Affecting mpiexec for MPD

A small number of environment variables affect the behavior of mpiexec.

MPIEXEC_TIMEOUT The value of this environment variable is the maximum
number of seconds this job will be permitted to run. When time is up,
the job is aborted.

MPIEXEC_PORT_RANGE If this environment variable is defined then the MPD
system will restrict its usage of ports for connecting its various pro-
cesses to ports in this range. If this variable is not assigned, but
MPICH_PORT_RANGE is assigned, then it will use the range specified by
MPICH_PORT_RANGE for its ports. Otherwise, it will use whatever paorts
are assigned to it by the system. Port ranges are given as a pair of
integers separated by a colon.

MPIEXEC_BNR If this environment variable is defined (its value, if any, is
currently insignificant), then MPD will act in backward-compatibility
mode, supporting the BNR interface from the original MPICH (e.g.
versions 1.2.0 — 1.2.7p1) instead of its native PMI interface, as a way for
application processes to interact with the process management system.

5 RUNNING PROGRAMS WITH MPIEXEC 12

MPD_CON_EXT Adds a string to the default Unix socket name used by mpiexec
to find the local mpd. This allows one to run multiple mpd rings at
the same time.

5.4 Extensions for SMPD Process Management Environment
SMPD is an alternate process manager that runs on both Unix and Win-

dows. It can launch jobs across both platforms if the binary formats match
(big/little endianness and size of C types— int, long, voidx, etc).

5.4.1 mpiexec arguments for SMPD

mpiexec for smpd accepts the standard MPI-2 mpiexec options. Execute
mpiexec

or
mpiexec -help2

to print the usage options. Typical usage:
mpiexec -n 10 myapp.exe

All options to mpiexec:

-n X

-np x
launch x processes

—-localonly x

-np x —localonly
launch x processes on the local machine

-machinefile filename
use a file to list the names of machines to launch on

5 RUNNING PROGRAMS WITH MPIEXEC 13

-host hostname
launch on the specified host.

-hosts n hostl host2 ... hostn

-hosts n hostl ml host2 m2 ... hostn mn
launch on the specified hosts. In the second version the number of
processes = ml + m2 + ... + mn

-dir drive:\my\working\directory

-wdir /my/working/directory
launch processes with the specified working directory. (-dir and -wdir
are equivalent)

-env var val
set environment variable before launching the processes

-exitcodes
print the process exit codes when each process exits.

—noprompt
prevent mpiexec from prompting for user credentials. Instead errors
will be printed and mpiexec will exit.

-localroot
launch the root process directly from mpiexec if the host is local. (This
allows the root process to create windows and be debugged.)

-port port

-p port
specify the port that smpd is listening on.

-phrase passphrase
specify the passphrase to authenticate connections to smpd with.

-smpdfile filename
specify the file where the smpd options are stored including the passphrase.
(unix only option)

-path search path
search path for executable, ; separated

5 RUNNING PROGRAMS WITH MPIEXEC 14

—-timeout seconds
timeout for the job.

Windows specific options:

-map drive:\\host\share
map a drive on all the nodes this mapping will be removed when the
processes exit

-logon
prompt for user account and password

-pwdfile filename
read the account and password from the file specified.

put the account on the first line and the password on the second

-nopopup-debug
disable the system popup dialog if the process crashes

-priority class[:level]
set the process startup priority class and optionally level.
class = 0,1,2,3,4 = idle, below, normal, above, high
level = 0,1,2,3,4,5 = idle, lowest, below, normal, above, highest
the default is -priority 2:3

-register
encrypt a user name and password to the Windows registry.

-remove
delete the encrypted credentials from the Windows registry.

-validate [-host hostname]
validate the encrypted credentials for the current or specified host.

—-delegate
use passwordless delegation to launch processes.

-impersonate
use passwordless authentication to launch processes.

-plaintext
don’t encrypt the data on the wire.

5 RUNNING PROGRAMS WITH MPIEXEC 15

5.5 Extensions for the gforker Process Management Envi-
ronment

gforker is a process management system for starting processes on a sin-
gle machine, so called because the MPI processes are simply forked from
the mpiexec process. This process manager supports programs that use
MPI_Comm_spawn and the other dynamic process routines, but does not sup-
port the use of the dynamic process routines from programs that are not
started with mpiexec. The gforker process manager is primiarily intended
as a debugging aid as it simplifies development and testing of MPI programs
on a single node or processor.

5.5.1 mpiexec arguments for gforker

In addition to the standard mpiexec command-line arguments, the gforker
mpiexec supports the following options:
-np <num> A synonym for the standard -n argument

-env <name> <value> Set the environment variable <name> to <value> for
the processes being run by mpiexec.

-envnone Pass no environment variables (other than ones specified with
other —env or —~genv arguments) to the processes being run by mpiexec.
By default, all environment variables are provided to each MPI process
(rationale: principle of least surprise for the user)

-envlist <list> Pass the listed environment variables (names separated
by commas), with their current values, to the processes being run by
mpiexec.

-genv <name> <value> The

-genv options have the same meaning as their corresponding -env version,
except they apply to all executables, not just the current executable (in
the case that the colon syntax is used to specify multiple execuables).

-genvnone Like —envnone, but for all executables
-genvlist <list> Like -envlist, but for all executables

-usize <n> Specify the value returned for the value of the attribute MPI_UNIVERSE_SIZE.

5 RUNNING PROGRAMS WITH MPIEXEC 16

-1 Label standard out and standard error (stdout and stderr) with the
rank of the process

-maxtime <n> Set a timelimit of <n> seconds.

-exitinfo Provide more information on the reason each process exited if
there is an abnormal exit

In addition to the commandline argments, the gforker mpiexec provides
a number of environment variables that can be used to control the behavior
of mpiexec:

MPIEXEC_TIMEQOUT Maximum running time in seconds. mpiexec will ter-
minate MPI programs that take longer than the value specified by
MPIEXEC_TIMEQUT.

MPIEXEC_UNIVERSE SIZE Set the universe size

MPIEXEC_PORT_RANGE Set the range of ports that mpiexec will use in com-
municating with the processes that it starts. The format of this is
<low>:<high>. For example, to specify any port between 10000 and
10100, use 10000:10100.

MPICH_PORT_RANGE Has the same meaning as MPIEXEC PORT_RANGE and is
used if MPTEXEC_PORT_RANGE is not set.

MPIEXEC_PREFIX_DEFAULT If this environment variable is set, output to stan-
dard output is prefixed by the rank in MPI_COMM_WORLD of the process
and output to standard error is prefixed by the rank and the text
(err); both are followed by an angle bracket (>). If this variable is
not set, there is no prefix.

MPIEXEC_PREFIX_STDOUT Set the prefix used for lines sent to standard out-
put. A %d is replaced with the rank in MPI_COMM_WORLD; a %w is re-
placed with an indication of which MPI_COMM_WORLD in MPI jobs that
involve multiple MPI_COMM_WORLDs (e.g., ones that use MPI_Comm_spawn
or MPI_Comm_connect).

MPIEXEC_PREFIX_STDERR Like MPIEXEC_PREFIX_STDOUT, but for standard er-
ror.

6 MANAGING THE PROCESS MANAGEMENT ENVIRONMENT 17

MPIEXEC_STDOUTBUF Sets the buffering mode for standard output. Valid
values are NONE (no buffering), LINE (buffering by lines), and BLOCK
(buffering by blocks of characters; the size of the block is implemen-
tation defined). The default is NONE.

MPIEXEC_STDERRBUF Like MPIEXEC_STDOUTBUF, but for standard error.

5.6 Restrictions of the remshell Process Management Envi-
ronment

The remshell “process manager” provides a very simple version of mpiexec
that makes use of the secure shell command (ssh) to start processes on a
collection of machines. As this is intended primarily as an illustration of
how to build a version of mpiexec that works with other process managers,
it does not implement all of the features of the other mpiexec programs
described in this document. In particular, it ignores the command line
options that control the environment variables given to the MPI programs.
It does support the same output labeling features provided by the gforker
version of mpiexec. However, this version of mpiexec can be used much like
the mpirun for the ch_p4 device in MPICH-1 to run programs on a collection
of machines that allow remote shells. A file by the name of machines should
contain the names of machines on which processes can be run, one machine
name per line. There must be enough machines listed to satisfy the requested
number of processes; you can list the same machine name multiple times if
necessary.

For more complex needs or for faster startup, we recommend the use of
the mpd process manager.

6 Managing the Process Management Environment

Some of the process managers supply user commands that can be used to
interact with the process manager and to control jobs. In this section we
describe user commands that may be useful.

6.1 MPD

mpd starts an mpd daemon.

7 DEBUGGING 18

mpdboot starts a set of mpd’s on a list of machines.

mpdtrace lists all the MPD daemons that are running. The -1 option lists
full hostnames and the port where the mpd is listening.

mpdlistjobs lists the jobs that the mpd’s are running. Jobs are identified
by the name of the mpd where they were submitted and a number.

mpdkilljob kills a job specified by the name returned by mpdlistjobs

mpdsigjob delivers a signal to the named job. Signals are specified by name
or number.

You can use keystrokes to provide signals in the usual way, where mpiexec
stands in for the entire parallel application. That is, if mpiexec is being
run in a Unix shell in the foreground, you can use ~C (control-C) to send
a SIGINT to the processes, or “Z (control-Z) to suspend all of them. A
suspended job can be continued in the usual way.

Precise argument formats can be obtained by passing any MPD com-
mand the --help or -h argument. More details can be found in the README
in the mpich2 top-level directory or the README file in the MPD directory
mpich2/src/pm/mpd.

7 Debugging

Debugging parallel programs is notoriously difficult. Here we describe a
number of approaches, some of which depend on the exact version of MPICH2
you are using.

7.1 gdb via mpiexec

If you are using the MPD process manager, you can use the -gdb argument to
mpiexec to execute a program with each process running under the control
of the gdb sequential debugger. The -gdb option helps control the multiple
instances of gdb by sending stdin either to all processes or to a selected
process and by labeling and merging output. The current implementation
has some minor limitations. For example, we do not support setting your
own prompt. This is because we capture the gdb output and examine it

7 DEBUGGING

19

before processing it, e.g. merging identical lines. Also, we set a breakpoint
at the beginning of main to get all processes synchronized at the beginning.
Thus, the user will have a duplicate, unusable breakpoint if he sets one at
the very first executable line of main. Otherwise, to the extent possible,
we try to simply pass user input through to gdb and lets things progress
normally.

The following script of a -gdb session gives an idea of how this works.

Input keystrokes are sent to all processes unless specifially directed by the

i}
z

command.

ks12), mpiexec -gdb -n 10 cpi

0-9:

OOOOOOOOOOOOOOOCIDOOOOOOOOOOOOOOO
© © © © O O © © O © © O O© O O O© © OV O© O OV O© © OV O O OV O O OV O

(gdb) 1

5 double f(double);

6

7 double f(double a)

8 {
9
10
11
12
13
14
(gdb)
15
16
17
18
19
20
21
22
23
24
(gdb)
25
26
27
28
29
30
31
32
33

}

return (4.0 / (1.0 + ax*a));

int main(int argc,char *argv([])

{

int done = 0, n, myid, numprocs, ij;

double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;

double startwtime = 0.0, endwtime;

int namelen;

char processor_name[MPI_MAX_PROCESSOR_NAME] ;

MPI_Init (&argc,&argv) ;

MPI_Comm_size (MPI_COMM_WORLD,&numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD,&myid) ;
MPI_Get_processor_name(processor_name,&namelen) ;

fprintf (stdout,"Process %d of %d is on %s\n",
myid, numprocs, processor_name);
fflush(stdout) ;

n = 10000; /* default # of rectangles */
if (myid == 0)
startwtime = MPI_Wtime();

7 DEBUGGING 20

0-9 34 MPI_Bcast(&n, 1, MPI_INT, O, MPI_COMM_WORLD);
0-9 (gdb) b 30
0-9: Breakpoint 2 at 0x4000000000002541:

file /home/lusk/mpich2/examples/cpi.c, line 30.

(gdb) r
Continuing.
Process 0 of 10 is on ksl2

© ©

0

0

0:

1: Process 1 of 10 is on ksl2

2: Process 2 of 10 is on ksl2

3: Process 3 of 10 is on ksl2

4: Process 4 of 10 is on ksl2

5: Process 5 of 10 is on ksl2

6: Process 6 of 10 is on ksl2

7: Process 7 of 10 is on ksl2

8: Process 8 of 10 is on ksl2

9: Process 9 of 10 is on ksl2

0-9:

0-9: Breakpoint 2, main (argc=1, argv=0x60000fffffffb4b8)
0-9: at /home/lusk/mpich2/examples/cpi.c:30

0-9: 30 n = 10000; * default # of rectangles */
0-9: (gdb) n

0-9: 31 if (myid == 0)

0-9: (gdb) n

0: 32 startwtime = MPI_Wtime();

1-9: 34 MPI_Bcast(&n, 1, MPI_INT, O, MPI_COMM_WORLD);
0-9: (gdb) z 0

0: (gdb) n

0: 34 MPI_Bcast(&n, 1, MPI_INT, O, MPI_COMM_WORLD) ;
0: (gdb) =z

0-9: (gdb) where

0-9: #0 main (argc=1, argv=0x60000fffffffb4b8)

0-9: at /home/lusk/mpich2/examples/cpi.c:34

0-9: (gdb) n

0-9: 36 h =1.0/ (double) n;

0-9: (gdb)

0-9: 37 sum = 0.0;

0-9: (gdb)

0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)

0-9: 41 x = h * ((double)i - 0.5);

0-9: (gdb)

0-9: 42 sum += f(x);

0-9: (gdb)

0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)

7 DEBUGGING

OHHI—\OOOQOOO\IO)CJ'In-l>(AJI\)HOOOOOOO(IDOOOOOOOOOOOOOOOOOOOOO

|
©O© © © © © O © O O O O O OV O OV O OV OV OV OV O OV W OV W O O o

©O ©

|
© © ©

$1
$1
$1
$1
$1
$1
$1
$1
$1
$1

pi is approximately 3.1415926544231256, Error is 0.0000000008333325

41 x = h * ((double)i - O.
(gdb)

42 sum += f(x);

(gdb)

39 for (i = myid + 1; i <= n;
(gdb)

41 x = h * ((double)i - O.
(gdb)

42 sum += f(x);

(gdb)

39 for (i = myid + 1; i <= n;
(gdb)

41 x = h * ((double)i - O.
(gdb)

42 sum += f(x);

(gdb)

39 for (i = myid + 1; i <= n;
(gdb)

41 x = h * ((double)i - O.
(gdb)

42 sum += f(x);

(gdb)

39 for (i = myid + 1; i <= n;
(gdb)

41 x = h * ((double)i - O.
(gdb)

42 sum += f(x);

(gdb) p sum

= 19.999875951497799

= 19.999867551672725

= 19.999858751863549

= 19.999849552071328

= 19.999839952297158

= 19.999829952542203

= 19.999819552807658

= 19.999808753094769

= 19.999797553404832

= 19.999785953739192

(gdb) ¢

Continuing.

Program exited normally.

(gdb)

0: wall clock time = 44.909412

5);

i+=

5);

i +=

5);

i+=

5);

i+=

5);

numprocs)

numprocs)

numprocs)

numprocs)

21

7 DEBUGGING 22

0: Program exited normally.
0: (gdb) q

0-9: MPIGDB ENDING

ks12Y%

You can attach to a running job with
mpiexec -gdba <jobid>

where <jobid> comes from mpdlistjobs.

7.2 TotalView

MPICH?2 supports use of the TotalView debugger from Etnus, through the
MPD process manager only. If MPICH2 has been configured to enable
debugging with TotalView (See the section on configuration of the MPD
process manager in the Installer’s Guide) then one can debug an MPI pro-
gram started with MPD by adding -tv to the global mpiexec arguments,
as in

mpiexec -tv -n 3 cpi

You will get a popup window from TotalView asking whether you want to
start the job in a stopped state. If so, when the TotalView window appears,
you may see assembly code in the source window. Click on main in the stack
window (upper left) to see the source of the main function. TotalView will
show that the program (all processes) are stopped in the call to MPI_Init.

When debugging with TotalView using the above startup sequence, MPICH2
jobs cannot be restarted without exiting TotalView. In MPICH2 version
1.0.6 or later, TotalView can be invoked on an MPICH2 job as follows:

totalview python -a ‘which mpiexec‘ -tvsu \
<mpiexec args> <program> <program args>

and the MPICH2 job will be fully restartable within TotalView.

If you have MPICH2 version 1.0.6 or later and TotalView 8.1.0 or later,
you can use a TotalView feature called indirect launch with MPICH2. Invoke
TotalView as:

8§ MPE 23

totalview <program> -a <program args>

Then select the Process/Startup Parameters command. Choose the Parallel
tab in the resulting dialog box and choose MPICH2 as the parallel system.
Then set the number of tasks using the Tasks field and enter other needed
mpiexec arguments into the Additional Starter Arguments field.

If you want to be able to attach to a running MPICH2 job using To-
talView, you must use the —tvsu option to mpiexec when starting the job.
Using this option will add a barrier inside MPI_Init and hence may affect
startup performance slightly. It will have no effect on the running of the
job once all tasks have returned from MPI_Init. In order to debug a run-
ning MPICH2 job, you must attach TotalView to the instance of Python
that is running the mpiexec script. If you have just one task running on
the node where you invoked mpiexec, and no other Python scripts running,
there will be three instances of Python running on the node. One of these
is the parent of the MPICH2 task on that node, and one is the parent of
that Python process. Neither of those is the instance of Python you want
to attach to—they are both running the MPD script. The third instance of
Python has no children and is not the child of a Python process. That is
the one that is running mpiexec and is the one you want to attach to.

8 MPE

MPICH2 comes with the same MPE (Multi-Processing Environment) tools
that are included with MPICH1. These include several trace libraries for
recording the execution of MPI programs and the Jumpshot and SLOG tools
for performance visualization, and a MPI collective and datatype checking
library. The MPE tools are built and installed by default and should be
available without requiring any additional steps. The easiest way to use
MPE profiling libraries is through the -mpe= switch provided by MPICH2’s
compiler wrappers, mpicc, mpicxx, mpif77, and mpif90.

8.1 MPI Logging

MPE provides automatic MPI logging. For instance, to view MPI commu-
nication pattern of a program, fpilog.f, one can simply link the source file
as follows:

8§ MPE 24

mpif90 -mpe=mpilog -o fpilog fpilog.f

The -mpe=mpilog option will link with appropriate MPE profiling libraries.
Then running the program through mpiexec will result a logfile, Unknown . clog?2,
in the working directory. The final step is to convert and view the logfile
through Jumpshot:

jumpshot Unknown.clog?2

8.2 User-defined logging

In addition to using the predefined MPE logging to log MPI calls, MPE
logging calls can be inserted into user’s MPI program to define and log
states. These states are called User-Defined states. States may be nested,
allowing one to define a state describing a user routine that contains several
MPI calls, and display both the user-defined state and the MPI operations
contained within it.

The typical way to insert user-defined states is as follows:

e Get handles from MPE logging library: MPE_Log_get_state_eventIDs ()
has to be used to get unique event IDs (MPE logging handles). @ This
is important if you are writing a library that uses the MPE logging
routines from the MPE system. Hardwiring the eventIDs is considered
a bad idea since it may cause eventID confict and so the practice isn’t
supported.

e Set the logged state’s characteristics: MPE_Describe_state () sets the
name and color of the states.

e Log the events of the logged states: MPE_Log_event () are called twice
to log the user-defined states.

!0lder MPE libraries provide MPE_Log.get_event number() which is still be-
ing supported but has been deprecated. Users are strongly urged to use
MPE Log_get_state_eventIDs() instead.

8§ MPE 25

Below is a simple example that uses the 3 steps outlined above.

int eventID_begin, eventID_end;
MPE_Log_get_state_eventIDs(&eventID_begin, &eventID_end);

MPE_Describe_state(eventID_begin, eventID_end,
"Multiplication", "red");

MyAmult(Matrix m, Vector v)

{
/* Log the start event of the red "Multiplication" state */
MPE_Log_event (eventID_begin, O, NULL);
. Amult code, including MPI calls ...
/* Log the end event of the red "Multiplication" state */
MPE_Log_event(eventID_end, O, NULL);
}

The logfile generated by this code will have the MPI routines nested within
the routine MyAmult().

Besides user-defined states, MPE2 also provides support for user-defined
events which can be defined through use of MPE Log _get_solo_eventID()
and MPE Describe_event (). For more details, e.g. see cpilog.c.

8.3 MPI Checking

To validate all the MPI collective calls in a program by linking the source
file as follows:

mpif90 -mpe=mpicheck -o wrong_reals wrong_reals.f
Running the program will result with the following output:

> mpiexec -n 4 wrong_reals
Starting MPI Collective and Datatype Checking!
Process 3 of 4 is alive
Backtrace of the callstack at rank 3:
At [0]: wrong_reals(CollChk_err_han+0xb9) [0x8055a09]

8§ MPE

At
At
At
At
At
At
At
At

[1]:
[2]:
[3]:
[4]:
[5]:
[6]:
[7]:
[8]:
[cli_3]: abortin

wrong_
wrong_
wrong_
wrong_
wrong_
wrong_

26

reals(CollChk_dtype_scatter+0xbf) [0x8057bff]
reals(CollChk_dtype_bcast+0x3d) [0x8057ccd]
reals (MPI_Bcast+0x6c) [0x80554bc]
reals(mpi_bcast_+0x35) [0x80529b5]

reals (MAIN__+0x17b) [0x805264f]
reals(main+0x27) [0x80dd187]

/1ib/libc.so.6(__libc_start_main+0Oxdc) [0x9a34e4]

wrong_

g job:

reals[0x8052451]

Fatal error in MPI_Comm_call_errhandler:

Collective Checking: BCAST (Rank 3) --> Inconsistent datatype signatures

detected between rank 3 and rank O.

The error message here shows that the MPI Bcast has been used with in-
consistent datatype in the program wrong_reals.f.

8.4 MPE options

Other MPE profiling options that are available through MPICH2 compiler

wrappers are

-mpe=mpilog

-mpe=mpitrace

-mpe=mpianim

-mpe=mpicheck

-mpe=graphics

-mpe=log

: Automatic MPI and MPE user-defined states logging.

This links against -llmpe -lmpe.

: Trace MPI program with printf.

This links against -ltmpe.

: Animate MPI program in real-time.

This links against -lampe -lmpe.

: Check MPI Program with the Collective & Datatype

Checking library. This links against -lmpe_collchk.

: Use MPE graphics routines with X11 library.

This links against -lmpe <X11 libraries>.

: MPE user-defined states logging.

This links against -lmpe.

9 OTHER TOOLS PROVIDED WITH MPICH?2 27

-mpe=nolog : Nullify MPE user-defined states logging.
This links against -lmpe_null.

-mpe=help : Print the help page.

For more details of how to use MPE profiling tools, see mpich2/src/mpe2/README.

9 Other Tools Provided with MPICH2

MPICH?2 also includes a test suite for MPI-1 and MPI-2 functionality; this
suite may be found in the mpich2/test/mpi source directory and can be
run with the command make testing. This test suite should work with
any MPI implementation, not just MPICH2.

10 MPICH2 under Windows

10.1 Directories

The default installation of MPICH2 is in C:\Program Files\MPICH2. Un-
der the installation directory are three sub-directories: include, bin, and
lib. The include and 1lib directories contain the header files and libraries
necessary to compile MPI applications. The bin directory contains the pro-
cess manager, smpd.exe, and the MPI job launcher, mpiexec.exe. The dlls
that implement MPICH2 are copied to the Windows system32 directory.

10.2 Compiling

The libraries in the 1ib directory were compiled with MS Visual C++ .NET
2003 and Intel Fortran 8.1. These compilers and any others that can link
with the MS .1ib files can be used to create user applications. gcc and g77
for cygwin can be used with the libmpich*.a libraries.

For MS Developer Studio users: Create a project and add

C:\Program Files\MPICH2\include

10 MPICH2 UNDER WINDOWS 28

to the include path and
C:\Program Files\MPICH2\1lib

to the library path. Add mpi.lib and cxx.lib to the link command. Add
cxxd.1lib to the Debug target link instead of cxx.lib.
Intel Fortran 8 users should add fmpich2.1ib to the link command.

Cygwin users should use 1ibmpich2.a 1ibfmpich2g.a.

10.3 Running

MPI jobs are run from a command prompt using mpiexec.exe. See Sec-
tion [5.4] on mpiexec for smpd for a description of the options to mpiexec.

A FREQUENTLY ASKED QUESTIONS 29

A Frequently Asked Questions

This is the content of the online FAQ), as of June 23, 2006.

A.1 General Information
A.1.1 Q: What is MPICH2?

MPICH2 is a freely available, portable implementation of MPI, the Standard
for message-passing libraries. It implements both MPI-1 and MPI-2.

A.1.2 Q: What does MPICH stand for?

A: MPI stands for Message Passing Interface. The CH comes from Chameleon,
the portability layer used in the original MPICH to provide portability to
the existing message-passing systems.

A.1.3 Q: Can MPI be used to program multicore systems?

A: There are two common ways to use MPI with multicore processors or
multiprocessor nodes:

Use one MPI process per core (here, a core is defined as a program
counter and some set of arithmetic, logic, and load/store units).

Use one MPI process per node (here, a node is defined as a collection of
cores that share a single address space). Use threads or compiler-provided
parallelism to exploit the multiple cores. OpenMP may be used with MPI;
the loop-level parallelism of OpenMP may be used with any implementation
of MPI (you do not need an MPI that supports MPI_THREAD MULTIPLE when
threads are used only for computational tasks). This is sometimes called
the hybrid programming model.

http://www.mpi-forum.org

A FREQUENTLY ASKED QUESTIONS 30

A.2 Building MPICH2

A.2.1 Q: What is the difference between the MPD and SMPD
process managers?

MPD is the default process manager for MPICH2 on Unix platforms. It
is written in Python. SMPD is the primary process manager for MPICH2
on Windows. It is also used for running on a combination of Windows and
Linux machines. It is written in C.

A.2.2 Q:DolIhave to configure/make/install MPICHZ2 each time
for each compiler I use?

No, in many cases you can build MPICH2 using one set of compilers and then
use the libraries (and compilation scripts) with other compilers. However,
this depends on the compilers producing compatible object files. Specifically,
the compilers must

e Support the same basic datatypes with the same sizes. For example,
the C compilers should use the same sizes for long long and long
double.

e Map the names of routines in the source code to names in the object
files in the object file in the same way. This can be a problem for For-
tran and C++ compilers, though you can often force the Fortran com-
pilers to use the same name mapping. More specifically, most Fortran
compilers map names in the source code into all lower-case with one or
two underscores appended to the name. To use the same MPICH2 li-
brary with all Fortran compilers, those compilers must make the same
name mapping. There is one exception to this that is described below.

e Perform the same layout for C structures. The C langauge does not
specify how structures are layed out in memory. For 100% compatibil-
ity, all compilers must follow the same rules. However, if you do not
use any of the MPT_MIN_LOC or MPI_MAX_LOC datatypes, and you do not
rely on the MPICH2 library to set the extent of a type created with
MPI_Type_struct or MPI_Type_create_struct, you can often ignore
this requirement.

A FREQUENTLY ASKED QUESTIONS 31

e Require the same additional runtime libraries. Not all compilers will
implement the same version of Unix, and some routines that MPICH2
uses may be present in only some of the run time libraries associated
with specific compilers.

The above may seem like a stringent set of requirements, but in practice,
many systems and compiler sets meet these needs, if for no other reason
than that any software built with multiple libraries will have requirements
similar to those of MPICH2 for compatibility.

If your compilers are completely compatible, down to the runtime li-
braries, you may use the compilation scripts (mpicc etc.) by either specify-
ing the compiler on the command line, e.g.

mpicc -cc=icc -c foo.c

or with the environment variables MPICH CC etc. (this example assume a
c-shell syntax):

setenv MPICH_CC icc
mpicc -c foo.c

If the compiler is compatible except for the runtime libraries, then this same
format works as long as a configuration file that describes the necessary
runtime libraries is created and placed into the appropriate directory (the
“sysconfdir” directory in configure terms). See the installation manual for
more details.

In some cases, MPICH2 is able to build the Fortran interfaces in a way
that supports multiple mappings of names from the Fortran source code to
the object file. This is done by using the “multiple weak symbol” support
in some environments. For example, when using gcc under Linux, this is
the default.

A.2.3 Q: How do I configure to use the Absoft Fortran compilers?

A: You have several options. One is to use the Fortran 90 compiler for
both F77 and F90. Another (if you do not need Fortran 90) is to use
--disable-f90 when configuring. The options with which we test MPICH2
and the Absoft compilers are the following:

A FREQUENTLY ASKED QUESTIONS 32

setenv FFLAGS "-f -B108"

setenv FOOFLAGS "-YALL_NAMES=LCS -B108"
setenv F77 £77

setenf F90 £90

A.2.4 Q: When I configure MPICH2, I get a message about
FDZERO and the configure aborts

A: FD_ZERO is part of the support for the select calls (see “man select” or
“man 2 select” on Linux and many other Unix systems) . What this means
is that your system (probably a Mac) has a broken version of the select call
and related data types. This is an OS bug; the only repair is to update the
OS to get past this bug. This test was added specifically to detect this error;
if there was an easy way to work around it, we would have included it (we
don’t just implement FD_ZERQ ourselves because we don’t know what else is
broken in this implementation of select).

If this configure works with gcc but not with xlc, then the problem is
with the include files that xlc is using; since this is an OS call (even if
emulated), all compilers should be using consistent if not identical include
files. In this case, you may need to update xlc.

A.2.5 Q: When I use the g95 Fortran compiler on a 64-bit plat-
form, some of the tests fail

A: The g95 compiler incorrectly defines the default Fortran integer as a 64-
bit integer while defining Fortran reals as 32-bit values (the Fortran standard
requires that INTEGER and REAL be the same size). This was apparently
done to allow a Fortran INTEGER to hold the value of a pointer, rather
than requiring the programmer to select an INTEGER of a suitable KIND.
To force the g95 compiler to correctly implement the Fortran standard, use
the -i4 flag. For example, set the environment variable FOOFLAGS before
configuring MPICH2:

setenv FOOFLAGS "-i4"
G95 users should note that there (at this writing) are two distributions of

g95 for 64-bit Linux platforms. One uses 32-bit integers and reals (and
conforms to the Fortran standard) and one uses 32-bit integers and 64-bit

A FREQUENTLY ASKED QUESTIONS 33

reals. We recommend using the one that conforms to the standard (note
that the standard specifies the ratio of sizes, not the absolute sizes, so a
Fortran 95 compiler that used 64 bits for both INTEGER and REAL would
also conform to the Fortran standard. However, such a compiler would need
to use 128 bits for DOUBLE PRECISION quantities).

A.2.6 Q: When I run make, it fails immediately with many er-
rors beginning with “sock.c:8:24: mpidu_sock.h: No such
file or directory In file included from sock.c:9: ../../../../in-
clude/mpiimpl.h:91:21: mpidpre.h: No such file or direc-
tory In file included from sock.c:9: ../../../../include/mpiimpl.h:1150:
error: syntax error before "MPID_VCRT” ../../../../in-
clude/mpiimpl.h:1150: warning: no semicolon at end of
struct or union”

Check if you have set the envirnoment variable CPPFLAGS. If so, unset it
and use CXXFLAGS instead. Then rerun configure and make.

A.2.7 Q: When building the ssm or sshm channel, I get the er-
ror “mpidu_process_locks.h:234:2: error: #error *** No

atomic memory operation specified to implement busy locks
skk k9o

The ssm and sshm channels do not work on all platforms because they use
special interprocess locks (often assembly) that may not work with some
compilers or machine architectures. They work on Linux with gcc, Intel,
and Pathscale compilers on various Intel architectures. They also work in
Windows and Solaris environments.

A.2.8 Q: When using the Intel Fortran 90 compiler (version 9),
the make fails with errors in compiling statement that ref-
erence MPI_ADDRESS_KIND.

Check the output of the configure step. If configure claims that ifort is a
cross compiler, the likely problem is that programs compiled and linked with
ifort cannot be run because of a missing shared library. Try to compile and
run the following program (named conftest.f90):

A FREQUENTLY ASKED QUESTIONS 34

program conftest
integer, dimension(10) :: n
end

If this program fails to run, then the problem is that your installation of
ifort either has an error or you need to add additional values to your envi-
ronment variables (such as LD_LIBRARY_PATH). Check your installation docu-
mentation for the ifort compiler. See http://softwareforums.intel.com/
ISN/Community/en-US/search/SearchResults.aspx?q=1ibimf.so for an
example of problems of this kind that users are having with version 9 of
ifort.

If you do not need Fortran 90, you can configure with --disable-£90.
A.2.9 Q: The build fails when I use parallel make
Parallel make (often invoked with make -j4) will cause several job steps in
the build process to update the same library file (1ibmpich.a) concurrently.
Unfortunately, neither the ar nor the ranlib programs correctly handle this

case, and the result is a corrupted library. For now, the solution is to not
use a parallel make when building MPICH2.

A.3 Windows version of MPICH?2

A.3.1 T am having trouble installing and using the Windows ver-
sion of MPICH?2

See the tips for installing and running MPICH2 on Windows| provided by a
user, Brent Paul. Or see the MPICH2 Windows Development Guide.

A.4 Compiling MPI Programs

A.4.1 C+H+4 and SEEK_SET

Some users may get error messages such as

SEEK_SET is #defined but must not be for the C++ binding of MPI

http://softwareforums.intel.com/ISN/Community/en-US/search/SearchResults.aspx?q=libimf.so
http://softwareforums.intel.com/ISN/Community/en-US/search/SearchResults.aspx?q=libimf.so
http://www.mcs.anl.gov/mpi/mpich/downloads/windows-mpich2-tips.doc
http://www.mcs.anl.gov/mpi/mpich/downloads/mpich2-doc-windev.pdf

A FREQUENTLY ASKED QUESTIONS 35

The problem is that both stdio.h and the MPI C++ interface use SEEK_SET,
SEEK_CUR, and SEEK_END. This is really a bug in the MPI-2 standard. You
can try adding

#undef SEEK_SET
#undef SEEK_END
#undef SEEK_CUR

before mpi.h is included, or add the definition
-DMPICH_IGNORE_CXX_SEEK

to the command line (this will cause the MPI versions of SEEK_SET etc. to
be skipped).

A.4.2 C++ and Errors in Nullcomm::Clone

Some users, particularly with older C++ compilers, may see error messages
of the form

"error C2555: ’MPI::Nullcomm::Clone’ : overriding virtual function differs from
’MPI::Comm: :Clone’ only by return type or calling convention".

This is caused by the compiler not implementing part of the C++ standard.
To work around this problem, add the definition

-DHAVE_NO_VARIABLE_RETURN_TYPE_SUPPORT
to the CXXFLAGS variable or add a
#define HAVE_NO_VARIABLE_RETURN_TYPE_SUPPORT 1

before including mpi.h.

A FREQUENTLY ASKED QUESTIONS 36

A.5 Running MPI Programs

A.5.1 Q: How do I pass environment variables to the processes
of my parallel program

A: The specific method depends on the process manager and version of
mpiexec that you are using. See the appropriate specific section.

A.5.2 Q: How do I pass environment variables to the processes
of my parallel program when using the mpd process man-
ager?

A: By default, all the environment variables in the shell where mpiexec is run
are passed to all processes of the application program. (The one exception
is LD_LIBRARY_PATH when the mpd’s are being run as root.) This default
can be overridden in many ways, and individual environment variables can
be passed to specific processes using arguments to mpiexec. A synopsis of
the possible arguments can be listed by typing

mpiexec -help

and further details are available in the |[Users Guide.

A.5.3 Q: What determines the hosts on which my MPI processes
run?

A: Where processes run, whether by default or by specifying them yourself,
depends on the process manager being used.

If you are using the gforker process manager, then all MPI processes
run on the same host where you are running mpiexec.

If you are using the mpd process manager, which is the default, then many
options are available. If you are using mpd, then before you run mpiexec,
you will have started, or will have had started for you, a ring of processes
called mpd’s (multi-purpose daemons), each running on its own host. It is
likely, but not necessary, that each mpd will be running on a separate host.
You can find out what this ring of hosts consists of by running the program
mpdtrace. One of the mpd’s will be running on the “local” machine, the one

http://www-unix.mcs.anl.gov/mpi/mpich2/downloads/mpich2-doc-user.pdf

A FREQUENTLY ASKED QUESTIONS 37

where you will run mpiexec. The default placement of MPI processes, if one
runs

mpiexec -n 10 a.out

is to start the first MPI process (rank 0) on the local machine and then to
distribute the rest around the mpd ring one at a time. If there are more
processes than mpd’s, then wraparound occurs. If there are more mpd’s than
MPI processes, then some mpd’s will not run MPI processes. Thus any
number of processes can be run on a ring of any size. While one is doing
development, it is handy to run only one mpd, on the local machine. Then
all the MPI processes will run locally as well.

The first modification to this default behavior is the -1 option to mpiexec
(not a great argument name). If -1 is specified, as in

mpiexec -1 -n 10 a.out

then the first application process will be started by the first mpd in the ring
after the local host. (If there is only one mpd in the ring, then this will be on
the local host.) This option is for use when a cluster of compute nodes has
a “head node” where commands like mpiexec are run but not application
processes.

If an mpd is started with the -—ncpus option, then when it is its turn to
start a process, it will start several application processes rather than just
one before handing off the task of starting more processes to the next mpd
in the ring. For example, if the mpd is started with

mpd --ncpus=4

then it will start as many as four application processes, with consecutive
ranks, when it is its turn to start processes. This option is for use in clusters
of SMP’s, when the user would like consecutive ranks to appear on the same
machine. (In the default case, the same number of processes might well run
on the machine, but their ranks would be different.)

(A feature of the —-ncpus=[n] argument is that it has the above effect
only until all of the mpd’s have started n processes at a time once; afterwards
each mpd starts one process at a time. This is in order to balance the number
of processes per machine to the extent possible.)

A FREQUENTLY ASKED QUESTIONS 38

Other ways to control the placement of processes are by direct use of
arguments to mpiexec. See the [Users Guidel

A.5.4 Q: On Windows, I get an error when I attempt to call
MPI_Comm_spawn.

A: On Windows, you need to start the program with mpiexec for any of the
MPI-2 dynamic process functions to work.

A.5.5 Q: My output does not appear until the program exits

A: Output to stdout and stderr may not be written from your process
immediately after a printf or fprintf (or PRINT in Fortran) because, under
Unix, such output is buffered unless the program believes that the output
is to a terminal. When the program is run by mpiexec, the C standard I/O
library (and normally the Fortran runtime library) will buffer the output.
For C programmers, you can either use a call £flush(stdout) to force the
output to be written or you can set no buffering by calling

#include <stdio.h>

setvbuf (stdout, NULL, _IONBF, O);

on each file descriptor (stdout in this example) which you want to send the
output immedately to your terminal or file.

There is no standard way to either change the buffering mode or to flush
the output in Fortran. However, many Fortrans include an extension to
provide this function. For example, in g77,

call flush(Q)
can be used. The x1f compiler supports
call flush_(6)

where the argument is the Fortran logical unit number (here 6, which is
often the unit number associated with PRINT). With the G95 Fortran 95
compiler, set the environment variable G95_UNBUFFERED_6 to cause output
to unit 6 to be unbuffered.

http://www-unix.mcs.anl.gov/mpi/mpich2/downloads/mpich2-doc-user.pdf

REFERENCES 39

A.5.6 Q: Fortran programs using stdio fail when using g95

A: By default, g95 does not flush output to stdout. This also appears to
cause problems for standard input. If you are using the Fortran logical units
5 and 6 (or the * unit) for standard input and output, set the environment
variable G95_UNBUFFERED_6 to yes.

A.5.7 Q: How do I run MPI programs in the background when
using the default MPD process manager?

A: To run MPI programs in the background when using MPD, you need to
redirect stdin from /dev/null. For example,

mpiexec -n 4 a.out < /dev/null &

References

[1] Message Passing Interface Forum. MPI2: A Message Passing Interface
standard. International Journal of High Performance Computing Appli-
cations, 12(1-2):1-299, 1998.

[2] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker,
and Jack Dongarra. MPI—The Complete Reference: Volume 1, The
MPI Core, 2nd edition. MIT Press, Cambridge, MA, 1998.

	Introduction
	Migrating to MPICH2 from MPICH1
	Default Runtime Environment
	Starting Parallel Jobs
	Command-Line Arguments in Fortran

	Quick Start
	Compiling and Linking
	Specifying Compilers
	Shared Libraries
	Special Issues for C++
	Special Issues for Fortran

	Running Programs with mpiexec
	Standard mpiexec
	Extensions for All Process Management Environments
	Extensions for the MPD Process Management Environment
	Basic mpiexec arguments for MPD
	Other Command-Line Arguments to mpiexec for MPD
	Environment Variables Affecting mpiexec for MPD

	Extensions for SMPD Process Management Environment
	mpiexec arguments for SMPD

	Extensions for the gforker Process Management Environment
	mpiexec arguments for gforker

	Restrictions of the remshell Process Management Environment

	Managing the Process Management Environment
	MPD

	Debugging
	gdb via mpiexec
	TotalView

	MPE
	MPI Logging
	User-defined logging
	MPI Checking
	MPE options

	Other Tools Provided with MPICH2
	MPICH2 under Windows
	Directories
	Compiling
	Running

	Frequently Asked Questions
	General Information
	Q: What is MPICH2?
	Q: What does MPICH stand for?
	Q: Can MPI be used to program multicore systems?

	Building MPICH2
	Q: What is the difference between the MPD and SMPD process managers?
	Q: Do I have to configure/make/install MPICH2 each time for each compiler I use?
	Q: How do I configure to use the Absoft Fortran compilers?
	Q: When I configure MPICH2, I get a message about FDZERO and the configure aborts
	Q: When I use the g95 Fortran compiler on a 64-bit platform, some of the tests fail
	Q: When I run make, it fails immediately with many errors beginning with ``sock.c:8:24: mpidu_sock.h: No such file or directory In file included from sock.c:9: ../../../../include/mpiimpl.h:91:21: mpidpre.h: No such file or directory In file included from sock.c:9: ../../../../include/mpiimpl.h:1150: error: syntax error before "MPID_VCRT" ../../../../include/mpiimpl.h:1150: warning: no semicolon at end of struct or union''
	Q: When building the ssm or sshm channel, I get the error ``mpidu_process_locks.h:234:2: error: #error *** No atomic memory operation specified to implement busy locks ***''
	Q: When using the Intel Fortran 90 compiler (version 9), the make fails with errors in compiling statement that reference MPI_ADDRESS_KIND.
	Q: The build fails when I use parallel make

	Windows version of MPICH2
	I am having trouble installing and using the Windows version of MPICH2

	Compiling MPI Programs
	C++ and SEEK_SET
	C++ and Errors in Nullcomm::Clone

	Running MPI Programs
	Q: How do I pass environment variables to the processes of my parallel program
	Q: How do I pass environment variables to the processes of my parallel program when using the mpd process manager?
	Q: What determines the hosts on which my MPI processes run?
	Q: On Windows, I get an error when I attempt to call MPI_Comm_spawn.
	Q: My output does not appear until the program exits
	Q: Fortran programs using stdio fail when using g95
	Q: How do I run MPI programs in the background when using the default MPD process manager?

