
An Efficient Format for Nearly Constant-Time

Access to Arbitrary Time Intervals in Large Trace

Files∗

Anthony Chan, William Gropp†, and Ewing Lusk
Mathematics and Computer Science Division

Argonne National Laboratory

July 22, 2008

Abstract

A powerful method to aid in understanding the performance of parallel applications
uses log or trace files containing time-stamped events and states (pairs of events). These
trace files can be very large, often hundreds or even thousands of megabytes. Because
of the cost of accessing and displaying such files, other methods are often used that
reduce the size of the tracefiles at the cost of sacrificing detail or other information.

This paper describes a hierarchical trace file format that provides for display of an
arbitrary time window in a time independent of the total size of the file and roughly
proportional to the number of events within the time window. This format eliminates
the need to sacrifice data to achieve a smaller trace file size (since storage is inexpensive,
it is necessary only to make efficient use of bandwidth to that storage). The format can
be used to organize a trace file or to create a separate file of annotations that may be
used with conventional trace files. We present an analysis of the time to access all of
the events relevant to an interval of time and we describe experiments demonstrating
the performance of this file format.

Keywords: Trace file, Message Passing Interface, Performance visualization

1 Introduction

A powerful technique for understanding the behavior and performance of parallel programs
is the visualization of trace files (also called log files) collected during the execution of
the program. A trace file contains several basic elements. Typically, these are generated
during the execution of a program by very short code sequences (so as to minimize the
perturbation of the execution caused by the tracing [16]) and are written either to disk

∗This work was supported in part by the U.S. Department of Energy Contract #B523820 to the
ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago and in part
by the Mathemeatical, Information, and Computational Sciences Division subprogram of the Office of Ad-
vanced Scientific Computing Research, Office of Science, U.S. Departent of Energy, under Contract DE-
AC02-06CH11357.

†Corresponding author. Current address: Department of Computer Science, University of Illinois at
Urbana-Champaign

1



(buffered, of course) or to memory as they are generated. Trace files typically contain
sequences of events; an event has a timestamp and some data. Pairs of events may be used
to define a state or duration; these often represent the entry to and exit from a routine or a
block of code. A collection of events for a single process, thread, or processor is sometimes
called a timeline.

Such post mortem analysis based on trace files has been an important tool [20, 14, 10,
13, 19, 11, 9, 8, 15, 4, 18, 22, 3, 2] for performance analysis. Many of these tools display
a trace file as a GANTT chart, with the x-axis representing time and the y-axis process
or thread number. However, as parallel programs use increasing numbers of processes or
threads and run for longer times, the amount of data collected into a trace file can become
extremely large, exceeding hundreds or even thousands of megabytes.

One reaction to the problem of displaying this amount of data has been to summarize
the data, for example, displaying total event counts and distributions of times within each
state. Unfortunately, sometimes one must examine the detailed behavior of a program to
understand it. Indeed, over the years, we have continued to find most useful the ability
to examine small time intervals in considerable detail. One approach that has proved
effective is the GANNT chart, in which the “state” of a process is represented by a colored
bar extending over a time interval and can be compared visually with the states of other
processes at the same time. Many tools (see [22], for example) augment this view with
further detail, such as arrows to show messages and popup windows to display detail data
on process states or messages. Even when the simplest form of GANNT chart is being
displayed, however, the basic problem of scalability arises, and the issues discussed in this
paper can be thought of in this context.

Therefore, we state the general problem as follows. We assume that a parallel program
produces as it runs a large volume of data on program behavior, including (possibly nested)
states of processes varying over time. We make no assumptions about the maximum lengths
(in time) of those states, though we do assume that most states are short in time. We wish
to design a file format that will support the graphical display of this data in a scalable way.
Scalable display means that the CPU time and memory requirements for display of some
time interval about a particular point in time depend on the number of graphical objects to
be displayed there and not on the total amount of program data nor on the particular time
chosen. A rough approximation of its appearance (minus the colors) is shown in Fig. 1.

Visible Window

Figure 1: Example of a trace file display. Only the data within the dashed box is displayed;
the visualization program must render all data as if the entire data is displayed, clipped
to the dashed box. This includes the rectangles that enter and exit the dashed box and
the lines connecting the rectangles. Note that in practice, the time interval shown by the
visible window may be only 1% or less of the entire trace file.

2



Section 2 describes the software context of our work, explains the problem in a little
more detail, and identifies some related research. Section 3 describes the design of the
SLOG2 File format, including a one-pass algorithm for creating the SLOG2 File from data
presented in timestamp order. A one-pass algorithm is essential because we assume that
the size of the trace files is extremely large. Section 4 shows the results of some experiments
with our implementation of SLOG. Section 5 analyzes the amount of data that must be read
to correctly render an arbitrary interval of time, under reasonable assumptions about the
distribution of data in the trace file. Section 6 describes some enhancements that further
improve the SLOG2 file, along with an analysis of the design choices. Section 7 gives a
summary of the paper.

2 Background

In this section we provide some context that motivated this work, describe the nub of the
problem, and discuss related efforts in the area of scalable interpretation of trace files.

2.1 Motivation

Our motivation comes from our attempts over the years to improve the usability and scal-
ability of our trace file visualization tool called, in its current incarnation, Jumpshot [22].
Jumpshot is the display component of a standard pipeline for trace file visualization as
shown in Fig. 2.

displaytracefilelogging

Figure 2: Standard pipeline for trace file generation and display.

In the tools that accompany the MPICH2 implementation of MPI, the elements of this
pipeline were originally as follows:

logging The MPE library provides functions that allow the efficient buffering in memory
(with spill to disk if necessary) of timestamped events. These typically record the
beginning and ending of program states. This library is accessible to both applications
and an MPI profiling library for recording all MPI calls as states. Message events
record sizes and tags for messages between processes or threads. Clock differences are
corrected, and the event streams from various processes are merged into a single file.

tracefile The file written by MPE logging is in a format we call CLOG. It is a more or less
standard file of timestamped events and message information.

display Jumpshot is a full-featured trace visualization program. It can show a high-level,
summary view (see Section 3.4) of the entire trace and zoom in by factors of thousands
to scroll through details of program behavior. Jumpshot screenshots are shown in
Fig. 3. The one on the right is the Jumpshot version of Fig. 1.

3



Figure 3: On the left, Jumpshot summary view. Each line represents thousands of messages,
and each block represents the states in that time interval, proportionally represented. On
the right, zoomed-in view of the same trace file, by a factor of roughly 1000.

Our desire to have Jumpshot provide constant, quick, interactive response has motivated
the work reported here. An important step was to realize that the same file structure could
not be optimal for both the logging process and the display process, particularly for large
trace files. Hence we introduced a separate file format (SLOG) to provide for scalable
operation of a display program, leading to a system like that shown in Fig. 4.

Logging
MPE

Jumpshotclog2slog
File

SLOG
CLOG

Figure 4: Longer pipeline with conversion of trace file to SLOG file.

The SLOG file contains drawable objects such as rectangles representing states and
arrows representing messages as well as individual events, along with an index to allow
direct access to internal places in the file. SLOG2 is the second generation of this approach.
While the MPE logging mechanism and the Jumpshot display program are of some interest
in their own right, this paper is about the SLOG2 file format. SLOG2 files are accessed by
a CLOG-to-SLOG2 convertor and Jumpshot through a well-defined interface, so the format
can be used in other contexts.

2.2 The Tricky Part of the Problem

What makes zooming into files (either events or states) challenging is that the obvious
division of the file into timestamp-delimited “frames” does not work, even if an index
is provided for direct access, since an accurate representation of a time interval requires
knowledge of events that lie in other frames.

In this simple representation, it is easy to see that the accurate portrayal of the central
frame cannot be done without knowledge of the contents of other frames. Given that states
may be nested, the beginning and end of a state that must be shown in a given frame
might be many frames away. The straightforward, nonscalable approach, used in our early

4



Figure 5: Three adjacent frames, showing necessity of knowing content of adjacent (and
further away) frames.

visualization systems [22, 10], was to read the entire file, so that all necessary information
was available to the display program. Such files took a long time to load, strained memory
limits, and made interactive zooming and scrolling unacceptably sluggish. The key to any
scalable approach must be to allow display of a section of the file without reading the whole
file.

2.3 Related Work

Our first approach (SLOG1 [21]) used frames corresponding to time intervals, with a frame
index for scalability. Included in each frame were events from other frames that were
“relevant” to the display of this frame. This approach had two problems: first, the two
passes (forward and backward) through the CLOG file needed to produce the SLOG1 file
was suboptimal, and second, the “shadow” events in a frame sometimes crowded out the
frame’s proper events. When overcrowding happened, the trace file conversion process took
an unacceptably long time.

A recent Dagstuhl seminar provided several other approaches to scalability. The Scala-
trace project [17] focuses on mechanisms for compressing the size of the trace files so that
assorted analysis tools (such as statistical analysis and replay mechanisms) can still be ac-
curate. The Barcelona group [5] has demonstrated that one apparently obvious scalability
problem for large numbers of processes—the limitation on the number of horizontal lines
on the display—can be partially overcome for some traces by using a JPEG-like graphical
compression on the (virtual) large display needed. Most similar in motivation to our own
approach is the Open Trace File format OTF [12], which approaches the “tricky” problem
by periodically writing “snapshot” records into the trace file so that the trace can be exam-
ined starting at any one of these points. This approach is similar to the one we originally
took in SLOG1.

3 The SLOG2 File Structure

In this section we describe the SLOG2 file format, how it is created, and how it is used.

3.1 The Main Idea

The goal in SLOG2 is to enable the display of graphical objects described by one or more
trace files. One way to look at this is that we wish to display a small region of a much
larger picture, as shown in Fig. 1.

5



A common way to organize data of this kind for graphical display is to define bounding
boxes. This approach provides a simple and efficient way to access only the data necessary
to draw the region that overlaps the bounding boxes. This approach is shown schematically
in Fig. 6. It is related to the R-tree approach described in [6, 1].

Level 3

Level 2

Level 1

Level 0

Figure 6: Bounding boxes for the trace file in Fig. 1. The figure shows the intervals defined
as bounding boxes as horizontal brackets, along with the hierarchy of bounding boxes.
Colors indicate the assignement of graphical objects to bounding box levels.

Perhaps the best way to describe the SLOG2 format for the trace data is to describe
the algorithm for computing the tree shown in Fig. 6. For simplicity, we will assume that
the trace records cover a time interval [0, T ] and that the data in the original trace file
consists of states (represented as rectangles in the display) sorted by end time. That is,
each rectangle is described by a thread number (y coordinate in the visualization) and a
time interval [ts, te) (x coordinate in the visualization). Here we use the half-open interval.
The rectangles are sorted by end time, te. All events (points in time) are simply placed in
the containing leaf node in the tree.

The SLOG file format describes a binary tree, defined recursively as follows. The root
node represents the time interval [0, T ]. For any node, representing the time interval [t1, t2),
there are two children representing the time intervals [t1, 1

2(t1 + t2)) and [12(t1 + t2), t2). A
node is a leaf of the tree if the length of the time interval is less than or equal to ∆Tmin.
This value is chosen to work well with the tools that will make use of the SLOG file. Below
we describe one way in which ∆Tmin can be computed. In Section 6, we describe a number
of generalizations to this definition. States (rectangles) are placed into the smallest (in time
interval) containing node.

In order to display any graphical objects around any chosen time, only a subset of the
nodes of the tree must be read. Specifically, in order to display a time t, only the nodes
of the tree whose time intervals intersect with this time must be read and displayed. To
further reduce the responce time seen by users when scrolling forward or backward in time,

6



if t is near either end of an interval, we may choose to read the adjacent interval. In this
case, “near in time” could be defined in terms of the expected scrolling behavior.

In this simplest form, the tree is completely balanced. To determine the size of the tree,
we need to know the minimum length of time for a leaf node in the tree, ∆Tmin. Under the
assumption that records are uniformly distributed throughout the trace file, the value of
∆Tmin can be computed as follows. Assume that, for efficient display, the data read should
be limited to nmax. Further, assume that the size of the file is nf and that the display will
show only a single time interval at any time. Then

∆Tmin = 1
2T2−

⌊
log2

nf
nmax

⌋
≥ 1

2T
nmax

nf
.

(The extra factor of two allows the display program to read two leaf nodes, since any time
interval of duration ∆Tmin will intersect with at most two leaf nodes.)

If the tree is not perfectly balanced, then ∆Tmin can be computed in terms of the depth
L of the unbalanced tree, as

∆Tmin = 1
2T2−L.

Note that in the pathological case of all events within an infinitesimal interval of time, our
approach provides no benefit. However, in our experience, events in trace files, while not
uniformly distributed, are usually distributed smoothly throughout most of the trace file.

3.2 SLOG2 File Format

The bounding-box idea for a trace file and the algorithm to compute the bounding boxes
can be applied to many trace file formats. In this section, we briefly describe the SLOG2
file format. This file exploits the post mortem nature of trace files. This allows us to
collect data into logical groups, rather than forming it as a stream of records. It also briefly
mentions additional data that may be included within the SLOG file to aid in analysis or
display of performance data.

In the following, we assume that the tree has levels 0 through L. For reference to the
algorithm presented below in Fig. 8, we provide a correspondance with the notation used
in that algorithm, specifically we use R` as the objects within the relevant time range that
are placed at level ` in the tree.

leaf leaf non−leaf leaf leaf non−leaf non−leaf

Tree
Directory Postamble

Header
Slog File
Structure

...

Figure 7: A simplified block diagram of a complete SLOG2 file. Note that SLOG2 does not
define a file format; this block diagram shows one possible organization to illustrate both
the contents of the file and a structure that allows the creation of an SLOG2 file in a single
pass.

header The file header, containing information on the version of SLOG, name of the pro-
gram and the user, and other data about the file.

7



leaf Block of data corresponding to the lists of objects RL, that is, the leaves of the tree.

nonleaf Block of data corresponding to R` for ` < L, that is, the interior nodes in the tree.

tree directory Block of offsets to the beginning of each treenode (both leaf and nonleaf
nodes), along with the start and end times of each tree node. The offsets are 8-byte
integers, in bytes, relative to the beginning of the file.

postamble Contains a 4-byte integer indicating the location, relative to the end of the file,
of the beginning of the tree directory. Also contains additional offsets to other data
blocks that are part of SLOG2 but are not described in this paper.

The ordering of the blocks is chosen to make it easy to write an SLOG file with a single
pass. With the exception of the tree nodes, each of these blocks is relatively small.

3.3 Single-Pass Creation of SLOG2 File

Assume that we have a trace file containing states, sorted by endtime. The trace file may
also contain events; these are easily handled, and thus we do not include them in the
description of this algorithm. In this section we show how to create the SLOG file in a
single pass.

Recall that a state represents a single drawable object with a known start and end time
and is often drawn as a rectangle. We wish to create an SLOG file from the original trace
file in a single pass. We assume that most states will fit in the leaves (i.e., their duration
is less than ∆Tmin). Our algorithm creates a postorder representation of the tree; that
is, when moving sequentially through the SLOG annotation, the tree nodes are visited in
postorder (children before parents).

Let the root of the tree have level 0 and define the level of the children of a node a one
greater than the level of that node. The tree has levels 0 through L. For each level `, let
there be a list of states R`, initially empty. In addition, for each level `, there is a time
interval ∆T` that specifies the time interval for the current tree node on level `. We keep
track of the location of the data in each node of the tree within the file in a directory ; this
directory has 2L − 1 entries and is relatively small. The directory should be in preorder to
simplify searches. In order to simplify the description, each node on level ` covers a time
interval of length 2−`T .

The algorithm to write an SLOG file is shown in Fig. 8.

We could also write the directory at the beginning of the file, since we know how long
it is, but for reasons discussed below, we put it at the end. Normally, the lists R` can be
maintained in memory, with the execption of RL. Note, however, that elements added to
RL can instead be written directly to the output file. Since the number of elements added
to the other lists is likely to be small, those lists can be maintained in memory. If for some
reason the lists R` cannot be maintained in memory, separate temporary files may be used
for them. In this case, some elements may need to be written to disk twice.

The description of the algorithm considers time intervals and calls them states. In fact,
a display program may need to draw a number of different objects, including states (such as
the duration of a routine along a timeline), messages (arrows from an event in one timeline
to an event in a different timeline), and even polygons (e.g., containing all of the states in a

8



for ` = 0, 1, . . . , L do {
Set R` to empty
Set ∆T` to [0, 2−`T )

}
Open trace file
while not done {

read the next state r.
accumulate any statistics or coordinate mapping data on r

for ` = L,L− 1, . . . , 0 do {
if the end time of r exceeds the end time of ∆T`, then {

Write R` out. Record the location of R` in the file in directory D. Set R` to
empty.
Set ∆T` to the next time interval (add 2−`T to the interval).

}
if the time extent of r is contained within ∆T`, then {

Add r to R`

break from for loop
}

}
}
for ` = L,L− 1, . . . , 0 do {

Write out list R`. Record the location of R` in the file in directory D.
}
Write out the directory D.
Write 2L − 1 (the number of directory entries) as an integer

Figure 8: One-pass algorithm to create an SLOG file from a trace file.

collection of timelines associated with a collective communication operation). All of these
can be handled by the SLOG2 file format; to emphasize this, some of the text refers to
“drawables” rather than the simpler case of “states”.

3.4 Using the SLOG2 File for Timeline Display

Reading all of the tree nodes for a given interval in an SLOG file consists of these steps:

1. Position at the end of the file.

2. Read the value of L.

3. Move backwards 2L − 1 (fixed-sized) records, and read the directory.

4. For each node whose time interval intersects with the desired time interval, read the
corresponding node.

Here we finally see how the SLOG2 format supports responsive interactive zooming and
scrolling, while solving the “tricky” part of the problem. The directory at the end of the file
allows the display program to seek to and read a set of nodes, containing all the intervals

9



relevant to a time interval about a given point in time selected with the mouse. As one
scrolls forward or backward at a given zoom level, many—if not most—of the events needed
for the display will already be in memory, and only new leaf nodes will need to be read. A
limited amount of speculative read-ahead (in both directions) makes scrolling smooth.

After implementing the basic approach described here, we found an additional use for
the hierarchical structure of the SLOG2 file. By storing summary data accumulated during
the CLOG-to-SLOG2 conversion process in the lower (closer to the root) nodes of the tree,
we could present an initial view of this summary data by reading only these nodes and
none of the leaf nodes at all. Thus, this view comes up quickly when Jumpshot is started,
and presents a summary view of the entire run. It shows “message arrows” representing
perhaps thousands of individual messages each and colored blocks representing proportional
amounts of time spent in each state (see the left side of Fig. 3). Such a summary view,
while lacking in detail, does show overall time distribution to various dominant states as
well as the overall communication pattern as it varies over the course of the run. Its primary
purpose is to guide the user to where to zoom in. When the user zooms in, which is done
by sweeping out an arbitrary extent of time with the mouse), he may encounter a number
of levels of summary view before getting down to the individual states and messages in the
leaf nodes. Because of the SLOG2 file structure, each zoom operation needs to read only a
limited number of nodes of the tree.

The above algorithm subdivides the data along the single dimension of time. Subdi-
visions in more dimensions are possible. For example, a 2-D (quad tree) decomposition
that uses the vertical axis (process or thread) as the second dimension simplifies vertical
scrolling and scalability in the number of separate threads. A 3-D (oct-tree) decomposition
could use thread in process as the third coordinate (with process the second), or it could
use state category as the third coordinate.

The preceeding discussion has assumed that the trace file already contains the necessary
states describing rectangles and other graphical objects. In practice, a trace file contains
only events, along with enough information to generate the states, periods, and associations
that we wish to display. We note that the process to convert events into displayable objects
can be merged with the code to access the next state (exploiting the sequential access to
the trace file needed by the algorithm in Fig. 8), preserving the one-pass nature of this
algorithm.

4 Experiments

Performance of an interactive program like Jumpshot is primarily a subjective issue. Ver-
sions of Jumpshot that read CLOG files were unacceptably slow; the current version, which
exploits the features of SLOG2 files, is satisfyingly responsive. Nonetheless, we decided to
carry out some experiments in order to quantify the benefits of the file format. We focus
on just the time it takes to read those sections of the file requested by a user zoom or
scroll operation. This includes, for the SLOG2 case, the time to read the directory and the
various nodes of the SLOG2 tree necessary for displaying the relevant time interval.

We compare the time to read a section of trace file stored in the conventional way
(ordered strictly by event time), CLOG2 format, with one stored in the SLOG2 format.
We profiled FLASH2’s sedov3d problem on 16 processes and 700 timesteps to generate a
19 GB CLOG2 trace file, which is then converted to generate a 10 GB SLOG2 file.

10



In traditional trace display program, the trace events are first assembled into drawable
objects that are then fed into the display program in increasing end-time order. The in-
creasing end-time ordering of drawables forces the visualization program to parse the whole
trace file whenever the viewport’s time range is changed. For example, a long running state
starting at the very beginning and ending at the very end of the program won’t be seen
by the visualization program till the whole trace file is completely parsed. Essentially the
response time of the traditional display program is characterized by the time necessary to
parse all the trace events into drawable objects. For our 19 GB CLOG2 trace file, the time
is 314.5 seconds, which is too slow for any real-time visualization program.

Figure 9: Plots of time taken for zoom and scroll operations: (Left) Zoom to the center
of the trace file, and then scroll forward till the end of the trace file. (Right) Zoom to the
center of the trace file, and then scroll backward till the end of the trace file.

For the 10GB SLOG2 file, the first experiment is performed by first zooming to the
center of the file (in time) till we see all the real drawables with a viewport size typical of
Jumpshot operations. Then we scroll forward in time with the same viewport size till we
reach the end of the trace file. The second experiment is similar to the first except we scroll
backward in time after the zoom. Plots of the time taken for each zoom or scroll operation
vs the start time of the viewport for these experiements are shown in Fig. 9. The most
expensive operation in these two experiments is the initial zoom step which takes 140 to
180 milliseconds. The majority of scroll operations take less than 100 milliseconds. This is
over 3000 times faster than with the older CLOG format.

The last experiment we performed aims to show the zooming performance of the SLOG2
format. We first zoom to the center of the trace file just like the previous experiment. Then
we jump to the left and then to the right of the center of the trace file with nonoverlapping
viewports. The range of jumps increases till it reaches the total duration of the trace file;
that is, the last jump of the experiment is from the beginning to the end of the trace file,
hence the most expensive operation, about 150 millseconds. The data is shown in Fig. 10.
Most operations take less than 100 milliseconds. The data shows the time that it took to
move to the time location indicated on the x-axis from the previous location in time.

Figures 9 and 10 show that the SLOG2 file format allows almost constant access time
of drawables of interest by the visualization program, about 100 milliseconds for our 10
GB SLOG2 file. The fast accessing time allows the display program to be responsive in a

11



Figure 10: Zoom to the center of the trace file, and then jump to the left and then right
of the center of the trace file with nonoverlapping viewports of same size. The range of the
jumps increases till it reaches the total duration of the trace file.

typical desktop environment.

5 Quantifying Data Motion

tδ∆ T

Level L

Level L-1

Level L-2

Figure 11: Any record whose time center falls within the grey area is assigned to the
corresponding node. Note that most of the records are assigned to leaf nodes.

One feature of the simple approach described in Section 3.1 is that some objects, even
though they have very short duration, will be forced into lower (closer to the root) levels
of the tree because they have the bad luck to cross the joint between two leaf boxes. For
example, any drawable object that starts before T/2 and ends after T/2 will be forced into
the root node, no matter how short its duration. In principle, this situation could create
problems for the SLOG2 format by moving too many drawable objects out of the leaf nodes
of the tree. Fortunately, we can show that in many cases this is not a problem; further, a
small change to the format allows SLOG2 to handle all but very pathilogical cases.

Note that if there is a limit on the number of objects (boxes, arrows, etc.) that can cross
any point in time, then the number of objects in the lower-level (nonleaf) bounding boxes
can be bounded. If only states are included, the number of object can be often be effectively
bounded. However, if drawable objects include connections between send and receive events

12



or nonblocking I/O operations, the number of objects that can cross a particular timeline
can be very large.

We can estimate the number of records in each node for some simple situations. Con-
sider the case where all records have the same duration δt and are uniformly distributed
throughout the trace file. Consider first the algorithm in Fig. 8, where the time intervals
for each node on a level are disjoint (nonoverlapping). Let the levels be 0, . . . , L, so that
there are 2L leaves. For each leaf interval of width ∆Tmin, any record whose center starts
1
2δt past the beginning of the leaf’s time interval and before 1

2δt before the end of the leaf’s
time interval will be placed within that interval. Thus, if there are N records, all but
Nδt/∆Tmin will be placed in the leaf nodes. Of the remaining records, Nδt/2∆Tmin will
be placed in the nodes at the next level, Nδt/4∆Tmin in the next, down to level 0. This
approach is illustrated in Fig. 11, where level 0 is at the top of the figure (to maintain the
usual convention of trees growing down in computer science).

The number of records read to display any time interval can be calculated as follows,
under the assumption that the intervals are all of the same length in time δt. Since the
display of any time interval requires reading all time intervals that intersect that time
interval, one interval on each level is read. The amount of data (not counting the leaf node)
is simply

L−1∑

k=0

Nδt

2L∆Tmin
= L

Nδt

2L∆Tmin
= L

N

T
δt.

However, many of these records are unneeded. Consider the time t = 0. Only the first
leaf must be read to provide all of the necessary data; these additional records are required
only because they crossed the artificial boundaries that were defined between leaves. In the
worst case, only

2
Nδt

2L∆Tmin
= 2

N

T
δt

records must be read; these correspond to the intervals at the left and right end of a leaf
node. Thus, the number of unnecessary records that must be read is

(L− 2)
N

T
δt.

In many cases, this will be a small number. For example, consider the case where the
drawable objects do not overlap. Then Nδt ≤ T , and this expression is bounded by L− 2.
Since L = log2(T/∆Tmin), this number will rarely be large. If the degree of overlap is p,
for example, there are p processes or threads; the number scales linearly with the degree
of overlap. Further, the number of drawable objects at any time must be smaller than the
number of available pixels (in the vertical dimension) for the graphical representation to be
meaningful. This requirement also provides a bound on the number of overlapping objects
in a useful SLOG2 file.

If too many drawable objects of short duration cross the boundaries between tree nodes,
however, the amount of unnecessary data that must be read could become large. To han-
dle this case, we can generalize the bounding box notion to include overlapping bounding
boxes. For example, if the bounding boxes at the leaves of the tree overlap by δt, then
any drawable object of duration no more than δt can be placed in some leaf node. More
complex distributions of duration can be analyzed and used to guide the amount of overlap
at each level. This strategy handles the pathalogical case mentioned above.

13



6 Extensions and Refinements

Here we describe some more detailed variations and alternative uses of the main SLOG2
idea.

6.1 Real-Time File Generation

Instead of creating an SLOG file from an existing trace file (as in Fig. 4), we can create
the SLOG file directly from the program that is creating the logfile. If the trace file is
created at one time when the program is exiting, then there is no problem. However, trace
file tools commonly bound the amount of memory used to store trace file data; the trace
file is appended to as the internal buffer fills up. Hence, the total time interval T for the
entire run is not known in advance. In this case, the algorithm in Fig. 8 can still be used
with a few changes. Specifically, the total number of levels is not set in advance; instead,
as a “leaf” node list RL fills up (reaches a maximum memory limit), a new time interval
is created, possibly incrementing the number of levels. In other words, one starts with a
single level (L = 0) and adds levels as needed. The resulting tree will not necessarily be
full. This is the reason for placing the directory at the end of the file, since in this case the
number of levels is not known a priori.

6.2 Variable Leaf Sizes

We can accumulate records until we reach a limit based on memory size. We then end that
leaf and begin a new leaf. Note that the duration of a leaf in this model is not constant. In
this case, instead of preselecting a value of ∆Tmin, the length of time for each leaf interval
is determined as the records are read.

6.3 File Compression

Trace file formats, particularly for large amounts of data, often choose to define each data
field with as few bits as possible in order to reduce file size. Because the SLOG file is (often)
generated after the run of a program, we can use a different approach based on applying
data compression to each tree node as a block. The tree node header indicates which type
of compression has been used on the rest of the tree node. Among the possibilities are
no compression, predefined static compression (in other words, the conventional trace-file
approach based on defining the number of bits for each field), and dynamic compression
using, for example, the algorithms used in the gzip program (see, for example, [7, Section
9.1.2] for a description of the gzip algorithm). Dynamic compression allows us to eliminate
the compromises of field lengths that static compression schemes must make. An additional
advantage of dynamic compression, particularly when the file is accessed over a slow net-
work, is that it can reduce the time to read the data, even when the time to decompress
the file is included.

6.4 Annotating Existing Files

An alternative to writing an SLOG2 file from trace data is to simply annotate an existing
trace file with the additional information required to define the nonleaf nodes in the tree of

14



bounding boxes. The same one-pass algorithm can be used to create this annotation file,
with the difference that instead of writing out the leaf nodes of the tree, a record is written
that points to the range of bytes in the original trace file containing the events for that
leaf node. A display or analysis program that is using an annotation file must then filter
the data from the original trace file, since that block of data will contain events that may
belong to other (nonleaf) nodes in the tree. In this way, an SLOG2 annotation may be
combined with any other trace file.

7 Summary

We have described a hierarchical file format, SLOG2, that enables a full-featured trace
file display program to remain interactively responsive in the face of large trace files. We
have provided the algorithm for creating the file and presented some analysis to support
the decisions that we made. Our measurements show that interactive visualization of a
multigigabyte trace file is possible with the SLOG2 format. We have also described a
number of options and extensions to the implementation described here.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”).

Argonne, a U.S. Department of Energy Of-
fice of Science laboratory, is operated under Con-
tract No. DE-AC02-06CH11357. The U.S. Gov-
ernment retains for itself, and others acting on
its behalf, a paid-up non-exclusive, irrevocable
worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the
public, and perform publicly and display pub-
licly, by or on behalf of the Government.

References

[1] R tree. http://en.wikipedia.org/wiki/R-tree.

[2] J. Chassin de Kergommeaux and B. Stein. Pajé, an extensible environment for visu-
alizing multi-threaded programs executions. In A. Bode et al., editor, Proceedings of
Euro-Par 2000, number 1900 in LNCS, pages 133–140. Springer-Verlag, 2000.

[3] J. Chassin de Kergommeaux, B. Stein, and P. E. Bernard. Pajé, an interactive vi-
sualization tool for tuning multi-threaded parallel applications. Parallel Computing,
26:1253–1274, 2000.

[4] TimeScan Multiprocess Event Analyzer. http://www.etnus.com/products/timescan.

[5] Judit Gemenez. Are you sure that tracing is not scalable? Presentation at
Dagstuhl seminar, “Code Instrumentation and Modeling for Performance Analysis,”
http://kathrin.dagstuhl.de/07341, August 2007.

15



[6] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In SIG-
MOD ’84: Proceedings of the 1984 ACM SIGMOD international conference on Man-
agement of data, pages 47–57, New York, NY, USA, 1984. ACM Press.

[7] Darrel Hankerson, Greg A. Harris, and Peter D. Johnson, Jr. Introduction to Informa-
tion Theory and Data Compression. CRC Press, 1998.

[8] M. T. Heath. Recent developments and case studies in performance visualization us-
ing ParaGraph. In G. Haring and G. Kotsis, editors, Performance Measurement and
Visualization of Parallel Systems, pages 175–200. Elsevier Science Publishers, 1993.

[9] Michael T. Heath and Jennifer Etheridge Finger. Paragraph: A performance visual-
ization tool for MPI. http://www.csar.uiuc.edu/software/paragraph.

[10] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with upshot.
Technical Report ANL–91/15, Argonne National Laboratory, 1991.

[11] IBM. IBM Parallel Environment for AIX, volume 2, chap-
ter 3. IBM, 1998. http://www.s390.ibm.com/bookmgr-
cgi/bookmgr.cmd/books/PEOP2240/CONTENTS.

[12] Heike Jagode. Random access to event traces with OTF.
http://kathrin.dagstuhl.de/07341/Materials2, August 2007.

[13] Edward Karrels and Ewing Lusk. Performance analysis of MPI programs. In Jack
Dongarra and Bernard Tourancheau, editors, Proceedings of the Workshop on Environ-
ments and Tools for Parallel Scientific Computing, pages 195–200. SIAM Publications,
1994.

[14] Ewing Lusk. Performance visualization for parallel programs. Theoretica Chimica Acta,
84:377–384, 1993.

[15] A. Malony, D. Hammerslag, and D. Jablonowski. TraceView: A trace visualization
tool. IEEE-Software, 8(5):19–28, September 1991.

[16] Allen D. Malony, Daniel A. Reed, and Harry A. G. Wijshoff. Performance measurement
intrusion and perturbation analysis. IEEE Transactions on Parallel and Distributed
Systems, 3(4):433–450, July 1992.

[17] Frank Mueller, Mike Noeth, Prasun Ratn, Martin Schulz, and Bronis R.
de Supinski. Scalable compression and replay of communication traces.
http://kathrin.dagstuhl.de/07341/Materials2, August 2007.

[18] Vampir 2.0 – Visualization and Analysis of MPI Programs.
http://www.pallas.de/pages/vampir.htm.

[19] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Phillip C. Roth, Keith A. Shields,
Bradley Schwartz, and Luis F. Tavera. Scalable Performance Analysis: The Pablo
Performance Analysis Environment. In Anthony Skjellum, editor, Proceedings of the
Scalable Parallel Libraries Conference. IEEE Computer Society, 1993.

[20] Gerald Tomas and Christoph W. Ueberhuber. Visualization of Scientific Parallel Pro-
grams, volume 771 of Lecture Notes in Computer Science. Springer, 1994.

16



[21] C. Eric Wu, Anthony Bolmarcich, Marc Snir, David Wootton, Farid Parpia, Anthony
Chan, Ewing L. Lusk, and William Gropp. From trace generation to visualization:
A performance framework for distributed parallel systems. In Proceedings of SC2000,
2000.

[22] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward scalable per-
formance visualization with Jumpshot. High Performance Computing Applications,
13(2):277–288, Fall 1999.

17


