N

_-

516-45
ADH, CC k
12/30/70 . - -

A}

516/316 Assemtler and Binder

A DDP-516 segmented program (assembler) has been written

to assemble relocatable (unsegmented or "system") programs

for the DDP-516 and the DDP-316. A companion program (binder)
has been written to bind several such relocatable prcgrams
into an absolute binary program, including the linking of
symbolic locations in separate programs and the desectoring
of addresses which cross sector boundaries. Hence, these
programs provide approximately the same facility as the

GE assembler and post-processor described in 516-16. However,
the GE assembler provides some special MACRO's for simplifyirg
assembling of the 516 multi- programming system, but the 516
assembler does not contain such MACRO's

This assembler was derived from the segment assembler descrlbed
in 516-41, 1In particular, the free-field symbolic input format
is compatible with the segment assembler, but not with GMAP.
However, CVGEAF (516-41-6) may be used to effect a partial
conversion from GMAP format into the appropriate GE format.

Calling Sequence

The assembler is called from the Executive by the line

H16ASM, file

where "file" is the name of the symbolicinput file. Similarly,

- the binder is called by the line

H16BND, file

where "file" 1s the name of a symbolic control file. The
assembler and binder each produce a binary file, named "rile*B",
and a listing file, named "file*L". Previous data in these files
is overwriltten; a missing output file is automatically created.
The binder binary output file is compatible with the absoclute

- loader. Thus, this file may be sent to the GE, punched crn cards,

and the cards loaded thrcugh the card reader. -One simple way
to send the cards to the GE for punching is to call

GE*L*B,file

where "file" is the binder symbolic control file. This procedure
will also list file*L for the convenience of the user.

.o

CA

516-45 - 2 .

Assembler Symbolic Format

The source program is assumed to begin at the start of the
source file and end with an END card (card=1line). Each
symbolic line has the following format:

labellz...labeln: op. varlable field\\comments

where blanks may be placed wherever desired. The label field
may be omitted or may contain any number of labtels; each label
is followed by a colon. The operation code is normally
terminated by a blank, but this is optional if the next
character is a break (e.g., comma, left parenthesis, left
slant). The blank operation code is null; hence, blank
cards are acceptable, as are cards with only a comment
gpreceded by left slant). The variable field is terminated
except for ASCII) by a left slant or an end-of-line. Comments
may be placed between a left slant and an end-of-1line.

‘Symbols

Symbols are composed of 1-6 contiguous characters which may
be alphabetic (lower case = upper case), the ten digits and
period. Two special symbols are null (absolute value O) and
* (relocatable value = current program counter).

A defined symbol has a 16-bit value; hence, it is possible to
imbed indirect and/or index bits in an address symbol. When a
symbol value 1s required, the evaluator first attempts to
evaluate the symbol as an integer in the appropriate mode
(decimal, octal, or hexadecimal, depending on context). If
this falls, the symbol is looked up in the symbol table.

There are three symbol types (other than undefined): absolute,
relocatable, and external (external symbols are implicitly
relocatable). The type is implicit in the definition, as
described later. . . ,

Expressions

An expression is a string of symbols separated by the operators
+ or ~-. If an expression begins or ends with an operator, there

is assumed to be a leading or trailing null symbol, respectively.

Symbols in an expression must be absolute or relocatable (not
external); the value of an expression must be absolute or
relocatable. :

C

" have been defined in the assembler.

516-45 - 3

Labels

The use of a symbol as a label causes the symbol to be defined

as relocatable, with value equal to the current location cocunter
contents. Labels may not be redefined; moreover, the definitions
on the two passes must agree. .

Machine Operations

The operation symbols are the same as for the other assemtlers;
the DAP symbols are used for all except input/output instructiorns.
The DAP instructions OCP, INA, OTA, SNK, and SKS have not been
implemented; each I/0 instruction has been given its own symbol
in the manner of the generic instructions. The Honeywell I/0
instructions defined in this assembler are given below, for the
mask register, clock, and ASR-33. :

Mnemonic Octal Mnemonic Octal
WTMR . 170020 NBTT 070104
- CKON 030020 NITT o7o404
CKOF 030220 RATT 131004
NSCK 070020 RBTT 131204
ERTT 030004 : WATT 170004
EWTT 030104 WBTT 170204
SRTT 070004 - NSTT 070504

The special I/0 instructions for Dept. 1383 hardware are
described in 516-2 and 316-5, and the corresponding symbols

The variable field (if any) of a machine instruction is cf the
form given below: s .

op address,modifier

The address field may contain an expression. The address may be
absolute, relocatable, or external for a memory-reference instructicn
or just absolute for a shift/rotate instruction. The modifier

field may be used with a memory-reference instruction; 1if used, it
must contain 1 (index), * (indirect), or 1* (index then indirect),
except for LDX/STX in which case indexing is illegal.

The pseudo-instruction ADDR has been defined to permit assemblirng
indirect (full-word) addresses. The variable field 1is the same
as for a memory-reference instructlon.

3\

o

516-45 - 4

External Symbols

The binder permits symbolic inter-program linkage. The
pseudo-operations SYMDEF and SYMREF have been borrowed from
GMAP to direct such linkage. The variable field of either
operation may contain a list of symbols, separated by commas.
SYMDEF symbols are relocatable symbols defined within the
current program; their names and definitions are made available
for use by other programs., SYMREF symbols are used in the
current program but defined in some other program. As noted
above, SYMREF symbols may not be elements of expressions.

Symbol Definition

In addition to their use as labels, symbols may be defined or
redefined by means of the pseudo-operations SET, BOOL, and SETX.

- The symbol to be (re)defined is given as the first argument,

followed by a comma; the second field 1s a symbol or an expressicn
to which the first argument 1is equated. Any symbols in the seccnd
argument must have been previously defined.. All types are legal:
absolute, relocatable, or external. The particular operation
governs the interpretation of integers in the expression: SET-
decimal, BOOL-octal, SETX-hexadecimal. As implied above,
redefinition of SET symbols is legal, unlike the rule for labels.

Operation Definition

. A new operation symbol (mnemonic) may be equated to an existing

one by means of the OPSYN pseudo-operaticn. - The first argument
(followed by comma) is the new symbol; the second argument is the
existing operation symbol. As with SET, operation redefinition
is legal. :

A brand new operation symbol may be defined by means of OPDO or
OPDX. The variable field has three arguments, separated by commas
The first argument is the operation symbol (mnemonic). The second
argument is the operation value. The third argument 1s the cperat:
type. The value and type may be expressions in which all symbcls
have been previously defined; integers are interpreted in octal
for OPDO or hexadecimal for OPDX. Without going into details,

the recipe for constructing new generic instructions (including
I/0 instructions) is to give the operation definition as the .value
and set the type to one %l). If a consecutive list 1s given, the
type need only be specified on the first definition.

Data Generation

The pseudo-operations DEC, OCT, and HEX may be used to generate
integer data words coded in decimal, octal, or hexadecimal,
respectively. One data word is generated per argument; arguments

(:”\

-

516-45 - 5

are separated by commas. The integers may be signed; negative
is interpreted as two's complement in all cases. (In the current
implementation, each argument may actually be an expression.)

The ASCII pseudo-operation 1is used for generating text. The
argument begins with a left parenthesis- and ends with a right
parenthesis. Blanks within the argument are taken as they stand.

The odd (first, third, ete.) characters go into the most significant

half -of sequential words, the even. (second, fourth, etec.) charac-
ters go into the least significant half of these words If the
number of characters 1s odd, the least significant half of the
last word contains rubout (3778) The left slant "\" is converted
to a null (0). A multi-line argument is legal; each line ends
with carriage return and line feed.

The DCHAR and OCHAR pseudo-operations may be used to generate
characters which ASCII carnot handle, such as \\ and). The
variable fleld has two arguments, separated by a comma. The
first argument goes into the most significant half of the word;
the second argument goes into the least significant half of the
word. Either argument may bte an expression in which all symbols
have been defined; the expression value must be absolute.
Integers are interpreted as decimal in DCHAR or as octal in
OCHAR.

Storage Allocation

One storage allocation pseudo-operation, BSS, 1is available for
reserving blocks of storage. The location counter is advanced
by the value of the argument. The argument may be an expression;
1ts value must be absolute and non-negative. All symbcls. in the
expression must have been previously defined. Integers are
interpreted as decimal.

Errors

Errors detected during pass 2 are typed to the user as a one-
character flag followed by the number (decimal) of the line in
which the error occurred. The approximate meanings of the flags
are as follows: - '

F End of file (no END card)

U Undefined symbol or operator

A Address error, 1including relocation error or modifier
field error

M Multiple symbol definition - the new definition replaces
the old one

0 . Operation code .undefired - treated as null

C

-

516-45 - 6

Assembler List File

The listing (*L) fille is a copy of the source file in which
the value of the program counter is inserted in front of each
line before the linre 1s processed. The listing may be printed
at the GE-635 by use of GELIST (give the name of the list file
as an argument). . :

Assenmbler Binary Fiie

The binary (*B) file contains the relocatable data which is
ready for the binder. The user need not be concerned with the
format of thils file; however, he may obtain a deck as back-up
by using GEBKUP.

For the record, the birary file format is as follows. The first
character of the file is 21g, which is used by the binder as a
check that the file contains legitimate data. The remainder of
the file consists of triples of characters (2& bits) which are
arranged as follows:

| 15 | © | = |
Address Subtype Type

If type #0, the Address field is treated as :

Type Address
1 ' Absolute -
2 Relocatable)
3 External (index into SYMREF list)

If the data represents a memory-reference instruction, for which
desectoring is required, then the subtype contains the upper 6 bits
(operation field) cf the instructicn. The index-and indirect bits
are always assembled into the top two bits of the address field
(except for LDX/STX, where the index bit is part of the op code),
even in the case of external addresses (just the lower 14 bits

form the index in this case). If subtype = O, then the address is
the data, and no desectoring 'is performed. :

Cf\

516-45 - 7

If type = 0, then the

Subtype
0

1
2
3

For SYMDEF and SYMREF
associated ASCII symb
It is assumed that th
set by the assembler,
address in effect at

establish the size of

subtype 1s interpreted as follows:

Address

Unused (illegal)

(Relocatable) loading address
SYMDEF definition
SYMREF index

,» the following six characters glve the
ol, left-adjusted, with trailing blanks.
e first loading address will be explicity
even 1f it is 0. Also, the loading

the end of the file will be assumed to
the program. ’

516-45 - 8

Binder Control File

The binder control file is a symbolic file which tells the
binder which programs to lcad where. Its format is rigid;

each line consists of a ccntrol character followed by a single
blank and an argument., If the argument is followed by a blank,
a comment may conclude the line. There are three legal control
characters: : . '

L file 1load file
0 origin set origin.

S8 " 'sa ’‘starting address

The file name on the L (1lcad) card is the exact name of the
(relocatable birnary) file to be loaded at the next available
location; in general, this name will end with *B. The origin
and starting address arguments are unsigned octal integers; the
initial (default) value in both cases is 1000g.

The control file simply ends at the end-of-file.

Desectoring

When a sector-0 address must be generated to desector a memory-
reference-instruction address, it 1s inserted in a pool which
grows downward (toward lower addresses) from location 777g8. The
pool is scanned so that two identilcal desectoring addresses will
always use the same word. However, management of the desectoring
pool 1s independent of data lcaded into sector O by the user.

In fact, the binder will nct detect an overlap between user data
and the desector pool. Mcre generally, the binder will not
detect any data overlaps, as might occur if the user loads two

programs into the same space.

Binder Erforé

Binder errors are typed tc the user as a flag character followed
by a decimal line number and (when appropriate) a symbol. The
1ine number is the line cf the control file being processed at

the time the error was ercourtered. The approximate flag meanlngs

.are as follows:

(f?.'

7

516-45 - 9

M Multiple definition - two SYMDEF's for the same symbol
U Undefined symbol - SYMREF with no matching SYMDEFR
0 Overflow - too many SYMREF's in one program

E Error in control file

A few other error comments are possible that are self-explanatory,
such as FILE? for an unavailabtle control file, or a comment in
case the desector pool overflows. :

oo o 7 Binder List File

The 1ist (*L) file contains a list of all SYMDEF symtols and
their definitions. It also 1lists the UB or upper break, that
is, the address at which a new program would be loaded in the
absence of a new O (origin) setting, the DB or desectcr break,
that 1s, the location into which the next desector address would
be inserted, and the SA, or starting address which is put on the
binary transfer card. The UB, DB, and SA are also autcmatically
typed to the user at the conclusion of binding,.

Binder Object File

The objJect (*B) file of absolute btinary card images prcduced

by the binder is ccmpatikle with the binary decks accepted by

the DDP-516 and -316 lcaders (see Binary and Patch lcaders,
516-20). Columns 73-78 contain-the name of the binder control
file, and columns 79-80 contain Sequence numbers. The deck is '
always concluded with a binary transfer card.

