Xlib — C Language X Interface
X Consortium Standard

X Version 11, Release 6.7 DRAFT

James Gettys

Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

with contributions from

Chuck Adams, Tektronix, Inc.
Vania Joloboff, Open Software Foundation
Hideki Hiura, Sun Microsystems, Inc.
Bill McMahon, Hewlett-Packard Company
Ron Newman, Massachusetts Institute of Technology
Al Tabayoyon, Tektronix, Inc.
Glenn Widener, Tektronix, Inc.

Shigeru Yamada, Fujitsu OSSI

The X Window System is a trademark of The Open Group.
TekHVC is a trademark of Tektronix, Inc.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996, 2002 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to pro-

mote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation
Portions Copyright © 1990, 1991 by Tektronix, Inc.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in all copies, and that the names of Digital and Tektronix not be used in in advertising or publicity per-
taining to this documentation without specific, written prior permission. Digital and Tektronix makes no representa-
tions about the suitability of this documentation for any purpose. It is provided ‘“‘as is” without express or implied war-
ranty.

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of three
individuals: Robert Scheifler of the MIT Laboratory for Computer Science and Jim Gettys of Dig-
ital Equipment Corporation and Ron Newman of MIT, both at MIT Project Athena. X version 11,
however, is the result of the efforts of dozens of individuals at almost as many locations and
organizations. At the risk of offending some of the players by exclusion, we would like to
acknowledge some of the people who deserve special credit and recognition for their work on
Xlib. Our apologies to anyone inadvertently overlooked.

Release 1

Our thanks does to Ron Newman (MIT Project Athena), who contributed substantially to the
design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all together for us
during the early releases. He handled literally thousands of requests from people everywhere and
saved the sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also goes to Todd Brunhoff (Tektronix) who was “loaned” to Project Athena at
exactly the right moment to provide very capable and much-needed assistance during the alpha
and beta releases. He was responsible for the successful integration of sources from multiple
sites; we would not have had a release without him.

Our thanks also goes to Al Mento and Al Wojtas of Digital’s ULTRIX Documentation Group.
With good humor and cheer, they took a rough draft and made it an infinitely better and more use-
ful document. The work they have done will help many everywhere. We also would like to thank
Hal Murray (Digital SRC) and Peter George (Digital VMS) who contributed much by proofread-
ing the early drafts of this document.

Our thanks also goes to Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield, and Vince Orgo-
van (Digital VMS) who helped with the library utilities implementation; to Hania Gajewska (Dig-
ital UEG-WSL) who, along with Ellis Cohen (CMU and Siemens), was instrumental in the
semantic design of the window manager properties; and to Dave Rosenthal (Sun Microsystems)
who also contributed to the protocol and provided the sample generic color frame buffer device-
dependent code.

The alpha and beta test participants deserve special recognition and thanks as well. It is signifi-
cant that the bug reports (and many fixes) during alpha and beta test came almost exclusively
from just a few of the alpha testers, mostly hardware vendors working on product implementa-
tions of X. The continued public contribution of vendors and universities is certainly to the bene-
fit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate Research at Digital, who
has remained committed to the widest public availability of X and who made it possible to greatly
supplement MIT’s resources with the Digital staff in order to make version 11 a reality. Many of
the people mentioned here are part of the Western Software Laboratory (Digital UEG-WSL) of
the ULTRIX Engineering group and work for Smokey Wallace, who has been vital to the
project’s success. Others not mentioned here worked on the toolkit and are acknowledged in the
X Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University and now of
Digital UEG-WSL, who wrote W, the predecessor to X, and Brian Reid, formerly of Stanford
University and now of Digital WRL, who had much to do with W’s design.

Finally, our thanks goes to MIT, Digital Equipment Corporation, and IBM for providing the envi-
ronment where it could happen.

Release 4

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the new Xlib
functions for Inter-Client Communication Conventions (ICCCM) support.

We also thank Al Mento of Digital for his continued effort in maintaining this document and Jim
Fulton and Donna Converse (MIT X Consortium) for their much-appreciated efforts in reviewing
the changes.

Release 5

The principal authors of the Input Method facilities are Vania Joloboff (Open Software Founda-
tion) and Bill McMahon (Hewlett-Packard). The principal author of the rest of the international-
ization facilities is Glenn Widener (Tektronix). Our thanks to them for keeping their sense of
humor through a long and sometimes difficult design process. Although the words and much of
the design are due to them, many others have contributed substantially to the design and imple-
mentation. Tom McFarland (HP) and Frank Rojas (IBM) deserve particular recognition for their
contributions. Other contributors were: Tim Anderson (Motorola), Alka Badshah (OSF), Gabe
Beged-Dov (HP), Chih-Chung Ko (I1I), Vera Cheng (III), Michael Collins (Digital), Walt Daniels
(IBM), Noritoshi Demizu (OMRON), Keisuke Fukui (Fujitsu), Hitoshoi Fukumoto (Nihon Sun),
Tim Greenwood (Digital), John Harvey (IBM), Hideki Hiura (Sun), Fred Horman (AT&T),
Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM), Yutaka Kataoka (Waseda University), Ranee
Khubchandani (Sun), Akira Kon (NEC), Hiroshi Kuribayashi (OMRON), Teruhiko Kurosaka
(Sun), Seiji Kuwari (OMRON), Sandra Martin (OSF), Narita Masahiko (Fujitsu), Masato
Morisaki (NTT), Nelson Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM),
Akira Ohsone (Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth
(AT&T), Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji
Tosa (IBM).

We are deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Seiji Kuwari
(OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for producing one of the first
complete sample implementation of the internationalization facilities, and Hiromu Inukai (Nihon
Sun), Takashi Fujiwara (Fujitsu), Hideki Hiura (Sun), Yasuhiro Kawai (Oki Technosystems Labo-
ratory), Kazunori Nishihara (Fuji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba),
Makoto Wakamatsu (Sony Corporation) for producing the another complete sample implementa-
tion of the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management facilities are
Al Tabayoyon (Tektronix) and Chuck Adams (Tektronix). Joann Taylor (Tektronix), Bob Toole
(Tektronix), and Keith Packard (MIT X Consortium) also contributed significantly to the design.
Others who contributed are: Harold Boll (Kodak), Ken Bronstein (HP), Nancy Cam (SGI), Donna
Converse (MIT X Consortium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe),
Ricardo Motta (HP), Chuck Peek (IBM), Wil Plouffe (IBM), Dave Sternlicht (MIT X Consor-
tium), Kumar Talluri (AT&T), and Richard Verberg (IBM).

We also once again thank Al Mento of Digital for his work in formatting and reformatting text for
this manual, and for producing man pages. Thanks also to Clive Feather (IXI) for proof-reading
and finding a number of small errors.

Release 6

Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun) and Greg
Olsen (Sun) contributed substantially by testing the facilities and reporting bugs in a timely fash-
ion.

The principal authors of the internationalization facilities, including Input and Output Methods,
are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI). Although the words and much
of the design are due to them, many others have contributed substantially to the design and imple-
mentation. They are: Takashi Fujiwara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital),
Hiromu Inukai (Nihon SunSoft), Song JaeKyung (KAIST), Franky Ling (Digital), Tom McFar-
land (HP), Hiroyuki Miyamoto (Digital), Masahiko Narita (Fujitsu), Frank Rojas (IBM),
Hidetoshi Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization facilities are:
Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki Hiura (SunSoft), Yoshio
Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon SunSoft), Song JaeKyung
(KAIST), Riki Kawaguchi (Fujitsu), Franky Ling (Digital), Hiroyuki Miyamoto (Digital),
Hidetoshi Tajima (HP), Toshimitsu Terazono (Fujitsu), Makoto Wakamatsu (Sony), Masaki
Wakao (IBM), Shigeru Yamada (Fujitsu OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation of the internation-
alization facilities are Nobuyuki Tanaka (Sony) and Makoto Wakamatsu (Sony).

Others who have contributed to the architectural design or testing of the sample implementation
of the internationalization facilities are: Hector Chan (Digital), Michael Kung (IBM), Joseph
Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng (SunSoft), Frank Rojas (IBM), Yoshiyuki
Segawa (Fujitsu OSSI), Makiko Shimamura (Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI),
Masaki Takeuchi (Sony), Jinsoo Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

Chapter 1

Introduction to Xlib

The X Window System is a network-transparent window system that was designed at MIT. X
display servers run on computers with either monochrome or color bitmap display hardware. The
server distributes user input to and accepts output requests from various client programs located
either on the same machine or elsewhere in the network. Xlib is a C subroutine library that appli-
cation programs (clients) use to interface with the window system by means of a stream connec-
tion. Although a client usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib — C Language X Interface is a reference guide to the low-level C language interface to the X
Window System protocol. It is neither a tutorial nor a user’s guide to programming the X Win-
dow System. Rather, it provides a detailed description of each function in the library as well as a
discussion of the related background information. Xlib — C Language X Interface assumes a
basic understanding of a graphics window system and of the C programming language. Other
higher-level abstractions (for example, those provided by the toolkits for X) are built on top of the
Xlib library. For further information about these higher-level libraries, see the appropriate toolkit
documentation. The X Window System Protocol provides the definitive word on the behavior of
X. Although additional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:

. Overview of the X Window System

. Errors

. Standard header files

. Generic values and types

. Naming and argument conventions within Xlib
. Programming considerations

. Character sets and encodings

. Formatting conventions

1.1. Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to other
window systems have different meanings in X. You may find it helpful to refer to the glossary,
which is located at the end of the book.

The X Window System supports one or more screens containing overlapping windows or subwin-
dows. A screen is a physical monitor and hardware that can be color, grayscale, or monochrome.
There can be multiple screens for each display or workstation. A single X server can provide dis-
play services for any number of screens. A set of screens for a single user with one keyboard and
one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each hierarchy is a
root window, which covers each of the display screens. Each root window is partially or com-
pletely covered by child windows. All windows, except for root windows, have parents. There is
usually at least one window for each application program. Child windows may in turn have their

Xlib — C Library X11, Release 6.7 DRAFT

own children. In this way, an application program can create an arbitrarily deep tree on each
screen. X provides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child window can extend
beyond the boundaries of the parent, but all output to a window is clipped by its parent. If several
children of a window have overlapping locations, one of the children is considered to be on top of
or raised over the others, thus obscuring them. Output to areas covered by other windows is sup-
pressed by the window system unless the window has backing store. If a window is obscured by
a second window, the second window obscures only those ancestors of the second window that
are also ancestors of the first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap) or solid
color you like. A window usually but not always has a background pattern, which will be
repainted by the window system when uncovered. Child windows obscure their parents, and
graphic operations in the parent window usually are clipped by the children.

Each window and pixmap has its own coordinate system. The coordinate system has the X axis
horizontal and the Y axis vertical with the origin [0, 0] at the upper-left corner. Coordinates are
integral, in terms of pixels, and coincide with pixel centers. For a window, the origin is inside the
border at the inside, upper-left corner.

X does not guarantee to preserve the contents of windows. When part or all of a window is hid-
den and then brought back onto the screen, its contents may be lost. The server then sends the
client program an Expose event to notify it that part or all of the window needs to be repainted.
Programs must be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics functions
interchangeably with windows and are used in various graphics operations to define patterns or
tiles. Windows and pixmaps together are referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests later execute
asynchronously on the X server. Functions that return values of information stored in the server
do not return (that is, they block) until an explicit reply is received or an error occurs. You can
provide an error handler, which will be called when the error is reported.

If a client does not want a request to execute asynchronously, it can follow the request with a call
to XSync, which blocks until all previously buffered asynchronous events have been sent and
acted on. As an important side effect, the output buffer in Xlib is always flushed by a call to any
function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource 1D, which allows you to refer to objects
stored on the X server. These can be of type Window, Font, Pixmap, Colormap, Cursor, and
GContext, as defined in the file <X11/X.h>. These resources are created by requests and are
destroyed (or freed) by requests or when connections are closed. Most of these resources are
potentially sharable between applications, and in fact, windows are manipulated explicitly by
window manager programs. Fonts and cursors are shared automatically across multiple screens.
Fonts are loaded and unloaded as needed and are shared by multiple clients. Fonts are often
cached in the server. Xlib provides no support for sharing graphics contexts between applica-
tions.

Client programs are informed of events. Events may either be side effects of a request (for exam-
ple, restacking windows generates Expose events) or completely asynchronous (for example,
from the keyboard). A client program asks to be informed of events. Because other applications
can send events to your application, programs must be prepared to handle (or ignore) events of all

types.

Xlib — C Library X11, Release 6.7 DRAFT

Input events (for example, a key pressed or the pointer moved) arrive asynchronously from the
server and are queued until they are requested by an explicit call (for example, XNextEvent or
XWindowEvent). In addition, some library functions (for example, XRaiseWindow) generate
Expose and ConfigureRequest events. These events also arrive asynchronously, but the client
may wish to explicitly wait for them by calling XSync after calling a function that can cause the
server to generate events.

1.2. Errors

Some functions return Status, an integer error indication. If the function fails, it returns a zero.
If the function returns a status of zero, it has not updated the return arguments. Because C does
not provide multiple return values, many functions must return their results by writing into client-
passed storage. By default, errors are handled either by a standard library function or by one that
you provide. Functions that return pointers to strings return NULL pointers if the string does not
exist.

The X server reports protocol errors at the time that it detects them. If more than one error could
be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later than they actually occur. For debugging purposes, how-
ever, Xlib provides a mechanism for forcing synchronous behavior (see section 11.8.1). When
synchronization is enabled, errors are reported as they are generated.

When Xlib detects an error, it calls an error handler, which your program can provide. If you do
not provide an error handler, the error is printed, and your program terminates.

1.3. Standard Header Files
The following include files are part of the Xlib standard:
. <X11/Xlib.h>

This is the main header file for Xlib. The majority of all Xlib symbols are declared by
including this file. This file also contains the preprocessor symbol XlibSpecificationRe-
lease. This symbol is defined to have the 6 in this release of the standard. (Release 5 of
Xlib was the first release to have this symbol.)

. <X11/X.h>

This file declares types and constants for the X protocol that are to be used by applications.
It is included automatically from <X11/Xlib.h>, so application code should never need to
reference this file directly.

. <X11/Xcms.h>
This file contains symbols for much of the color management facilities described in chapter
6. All functions, types, and symbols with the prefix “Xcms”, plus the Color Conversion

Contexts macros, are declared in this file. <X11/Xlib.h> must be included before including
this file.

. <X11/Xutil.h>

This file declares various functions, types, and symbols used for inter-client communication
and application utility functions, which are described in chapters 14 and 16. <X11/Xlib.h>
must be included before including this file.

. <X11/Xresource.h>

This file declares all functions, types, and symbols for the resource manager facilities,
which are described in chapter 15. <X11/Xlib.h> must be included before including this

Xlib — C Library X11, Release 6.7 DRAFT

file.

<X11/Xatom.h>

This file declares all predefined atoms, which are symbols with the prefix “XA_".
<X11/cursorfont.h>

This file declares the cursor symbols for the standard cursor font, which are listed in appen-
dix B. All cursor symbols have the prefix “XC_".

<X11/keysymdef.h>

This file declares all standard KeySym values, which are symbols with the prefix “XK_".
The KeySyms are arranged in groups, and a preprocessor symbol controls inclusion of each
group. The preprocessor symbol must be defined prior to inclusion of the file to obtain the
associated values. The preprocessor symbols are XK_MISCELLANY, XK_XKB_KEYS,
XK 3270, XK_LATINI1, XK_LATIN2, XK_LATIN3, XK_LATIN4, XK _KATAKANA,
XK_ARABIC, XK_CYRILLIC, XK_GREEK, XK_TECHNICAL, XK_SPECIAL,
XK_PUBLISHING, XK_APL, XK_HEBREW, XK_THAI, and XK_KOREAN.

<X11/keysym.h>

This file defines the preprocessor symbols XK_MISCELLANY, XK_XKB_KEYS,
XK_LATINI1, XK_LATIN2, XK _LATIN3, XK _ILLATIN4, and XK_GREEK and then
includes <X11/keysymdef.h>.

<X11/Xlibint.h>

This file declares all the functions, types, and symbols used for extensions, which are
described in appendix C. This file automatically includes <X11/Xlib.h>.

<X11/Xproto.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. It is included automatically from <X11/Xlibint.h>, so application and exten-
sion code should never need to reference this file directly.

<X11/Xprotostr.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. It is included automatically from <X11/Xproto.h>, so application and exten-
sion code should never need to reference this file directly.

<X11/X10.h>

This file declares all the functions, types, and symbols used for the X10 compatibility func-
tions, which are described in appendix D.

1.4. Generic Values and Types

The following symbols are defined by Xlib and used throughout the manual:

Xlib defines the type Bool and the Boolean values True and False.
None is the universal null resource ID or atom.
The type XID is used for generic resource IDs.

The type XPointer is defined to be char* and is used as a generic opaque pointer to data.

1.5. Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given that you
remember what information the function requires, these conventions are intended to make the
syntax of the functions more predictable.

Xlib — C Library X11, Release 6.7 DRAFT

The major naming conventions are:

To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leaves lowercase for variables and all uppercase for user macros, as
per existing convention.

All Xlib functions begin with a capital X.
The beginnings of all function names and symbols are capitalized.

All user-visible data structures begin with a capital X. More generally, anything that a user
might dereference begins with a capital X.

Macros and other symbols do not begin with a capital X. To distinguish them from all user
symbols, each word in the macro is capitalized.

All elements of or variables in a data structure are in lowercase. Compound words, where
needed, are constructed with underscores (_).

The display argument, where used, is always first in the argument list.

All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

When a graphics context is present together with another type of resource (most com-
monly, a drawable), the graphics context occurs in the argument list after the other
resource. Drawables outrank all other resources.

Source arguments always precede the destination arguments in the argument list.
The x argument always precedes the y argument in the argument list.
The width argument always precedes the height argument in the argument list.

Where the x, y, width, and height arguments are used together, the x and y arguments
always precede the width and height arguments.

Where a mask is accompanied with a structure, the mask always precedes the pointer to the
structure in the argument list.

1.6. Programming Considerations

The major programming considerations are:

Coordinates and sizes in X are actually 16-bit quantities. This decision was made to mini-
mize the bandwidth required for a given level of performance. Coordinates usually are
declared as an int in the interface. Values larger than 16 bits are truncated silently. Sizes
(width and height) are declared as unsigned quantities.

Keyboards are the greatest variable between different manufacturers’ workstations. If you
want your program to be portable, you should be particularly conservative here.

Many display systems have limited amounts of off-screen memory. If you can, you should
minimize use of pixmaps and backing store.

The user should have control of his screen real estate. Therefore, you should write your
applications to react to window management rather than presume control of the entire
screen. What you do inside of your top-level window, however, is up to your application.
For further information, see chapter 14 and the Inter-Client Communication Conventions
Manual.

Xlib — C Library X11, Release 6.7 DRAFT

1.7. Character Sets and Encodings

Some of the Xlib functions make reference to specific character sets and character encodings.
The following are the most common:

. X Portable Character Set

A basic set of 97 characters, which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a.zA.Z 0.9 "#$%&)*+,-./:;<=>?@[\]"_*{l}~ <space>, <tab>, and <newline>

This set is the left/lower half of the graphic character set of ISO8859-1 plus space, tab, and
newline. It is also the set of graphic characters in 7-bit ASCII plus the same three control
characters. The actual encoding of these characters on the host is system dependent.

. Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by Xlib
on the host. If a string is said to be in the Host Portable Character Encoding, then it only
contains characters from the X Portable Character Set, in the host encoding.

. Latin-1
The coded character set defined by the ISO 8859-1 standard.
. Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters. If a string is said to be in the Latin Portable Character Encoding, then it
only contains characters from the X Portable Character Set, not all of Latin-1.

. STRING Encoding

Latin-1, plus tab and newline.
. UTF-8 Encoding

The ASCII compatible character encoding scheme defined by the ISO 10646-1 standard.
. POSIX Portable Filename Character Set

The set of 65 characters, which can be used in naming files on a POSIX-compliant host,
that are correctly processed in all locales. The set is:

a.zA.Z0.9. -

1.8. Formatting Conventions
Xlib — C Language X Interface uses the following conventions:

. Global symbols are printed in this special font. These can be either function names, sym-
bols defined in include files, or structure names. When declared and defined, function argu-
ments are printed in italics. In the explanatory text that follows, they usually are printed in
regular type.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. The function declaration itself follows, and each argument is specifically explained.
Although ANSI C function prototype syntax is not used, Xlib header files normally declare
functions using function prototypes in ANSI C environments. General discussion of the

Xlib — C Library X11, Release 6.7 DRAFT

function, if any is required, follows the arguments. Where applicable, the last paragraph of
the explanation lists the possible Xlib error codes that the function can generate. For a
complete discussion of the Xlib error codes, see section 11.8.2.

. To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifies or, in the case of multiple arguments, the word specify. The explanations for all
arguments that are returned to you start with the word returns or, in the case of multiple
arguments, the word return. The explanations for all arguments that you can pass and are
returned start with the words specifies and returns.

. Any pointer to a structure that is used to return a value is designated as such by the _return
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using the _in_out suffix.

Xlib — C Library X11, Release 6.7 DRAFT

Chapter 2

Display Functions

Before your program can use a display, you must establish a connection to the X server. Once
you have established a connection, you then can use the Xlib macros and functions discussed in
this chapter to return information about the display. This chapter discusses how to:

. Open (connect to) the display

. Obtain information about the display, image formats, or screens
. Generate a NoOperation protocol request

. Free client-created data

. Close (disconnect from) a display

. Use X Server connection close operations

. Use Xlib with threads

. Use internal connections

2.1. Opening the Display

To open a connection to the X server that controls a display, use XOpenDisplay .

Display *XOpenDisplay (display_name)
char *display_name;

display_name Specifies the hardware display name, which determines the display and commu-
nications domain to be used. On a POSIX-conformant system, if the dis-
play_name is NULL, it defaults to the value of the DISPLAY environment vari-
able.

The encoding and interpretation of the display name are implementation-dependent. Strings in
the Host Portable Character Encoding are supported; support for other characters is implementa-
tion-dependent. On POSIX-conformant systems, the display name or DISPLAY environment
variable can be a string in the format:

Xlib — C Library X11, Release 6.7 DRAFT

protocol/ hostname :number . screen_number

protocol Specifies a protocol family or an alias for a protocol family. Supported protocol
families are implementation dependent. The protocol entry is optional. If proto-
col is not specified, the / separating protocol and hostname must also not be spec-

ified.

hostname Specifies the name of the host machine on which the display is physically
attached. You follow the hostname with either a single colon (:) or a double
colon (::).

number Specifies the number of the display server on that host machine. You may

optionally follow this display number with a period (.). A single CPU can have
more than one display. Multiple displays are usually numbered starting with
Zero.

screen_number
Specifies the screen to be used on that server. Multiple screens can be controlled
by a single X server. The screen_number sets an internal variable that can be
accessed by using the DefaultScreen macro or the XDefaultScreen function if
you are using languages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named ‘‘dual-
headed”:

dual-headed:0.1

The XOpenDisplay function returns a Display structure that serves as the connection to the X
server and that contains all the information about that X server. XOpenDisplay connects your
application to the X server through TCP or DECnet communications protocols, or through some
local inter-process communication protocol. If the protocol is specified as "tcp”, "inet", or
"inet6", or if no protocol is specified and the hostname is a host machine name and a single colon
(:) separates the hostname and display number, XOpenDisplay connects using TCP streams. (If
the protocol is specified as "inet", TCP over IPv4 is used. If the protocol is specified as "inet6",
TCP over IPv6 is used. Otherwise, the implementation determines which IP version is used.) If
the hostname and protocol are both not specified, Xlib uses whatever it believes is the fastest
transport. If the hostname is a host machine name and a double colon (::) separates the hostname
and display number, XOpenDisplay connects using DECnet. A single X server can support any
or all of these transport mechanisms simultaneously. A particular Xlib implementation can sup-
port many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, all of the screens in the display can be used by the client. The screen number
specified in the display_name argument is returned by the DefaultScreen macro (or the XDe-
faultScreen function). You can access elements of the Display and Screen structures only by
using the information macros or functions. For information about using macros and functions to
obtain information from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 9.8).

Xlib — C Library X11, Release 6.7 DRAFT

2.2. Obtaining Information about the Display, Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that return data
from the Display structure. The macros are used for C programming, and their corresponding
function equivalents are for other language bindings. This section discusses the:

. Display macros
. Image format functions and macros
. Screen information macros

All other members of the Display structure (that is, those for which no macros are defined) are
private to Xlib and must not be used. Applications must never directly modify or inspect these
private members of the Display structure.

Note

The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplayPlanes, XDis-
playWidthMM, and XDisplayHeightMM functions in the next sections are mis-
named. These functions really should be named Screenwhatever and XScreenwhat-
ever, not Displaywhatever or XDisplaywhatever. Our apologies for the resulting
confusion.

2.2.1. Display Macros

Applications should not directly modify any part of the Display and Screen structures. The
members should be considered read-only, although they may change as the result of other opera-
tions on the display.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data both can return.

AllPlanes

unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome application.
These pixel values are for permanently allocated entries in the default colormap. The actual RGB
(red, green, and blue) values are settable on some screens and, in any case, may not actually be
black or white. The names are intended to convey the expected relative intensity of the colors.

10

Xlib — C Library X11, Release 6.7 DRAFT

BlackPixel (display, screen_number)

unsigned long XBlackPixel (display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel (display, screen_number)

unsigned long XWhitePixel (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

ConnectionNumber (display)

int XConnectionNumber (display)
Display *display;

display Specifies the connection to the X server.

Both return a connection number for the specified display. On a POSIX-conformant system, this
is the file descriptor of the connection.

DefaultColormap (display, screen_number)

Colormap XDefaultColormap(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine

11

Xlib — C Library X11, Release 6.7 DRAFT

allocations of color should be made out of this colormap.

DefaultDepth (display, screen_number)

int XDefaultDepth (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root window for the specified screen.
Other depths may also be supported on this screen (see XMatchVisuallnfo).

To determine the number of depths that are available on a given screen, use XListDepths.

int *XListDepths (display, screen_number, count_return)
Display *display;
int screen_number;
int *count_return;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

count_return Returns the number of depths.

The XListDepths function returns the array of depths that are available on the specified screen.
If the specified screen_number is valid and sufficient memory for the array can be allocated,
XListDepths sets count_return to the number of available depths. Otherwise, it does not set
count_return and returns NULL. To release the memory allocated for the array of depths, use
XFree.

DefaultGC (display, screen_number)

GC XDefaultGC (display, screen_number)
Display *display;
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root window of the specified screen. This GC is
created for the convenience of simple applications and contains the default GC components with
the foreground and background pixel values initialized to the black and white pixels for the

12

Xlib — C Library X11, Release 6.7 DRAFT

screen, respectively. You can modify its contents freely because it is not used in any Xlib func-
tion. This GC should never be freed.

DefaultRootWindow (display)

Window XDefaultRootWindow (display)
Display *display;

display Specifies the connection to the X server.

Both return the root window for the default screen.

DefaultScreenOfDisplay (display)

Screen *XDefaultScreenOfDisplay (display)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplay (display, screen_number)

Screen *XScreenOfDisplay (display, screen_number)
Display *display;
int screen_number:;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

DefaultScreen (display)

int XDefaultScreen (display)
Display *display;

display Specifies the connection to the X server.

Both return the default screen number referenced by the XOpenDisplay function. This macro or
function should be used to retrieve the screen number in applications that will use only a single
screen.

13

Xlib — C Library X11, Release 6.7 DRAFT

DefaultVisual (display, screen_number)

Visual *XDefaultVisual (display, screen_number)
Display *display;
int screen_number,

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified screen. For further information about visual
types, see section 3.1.

DisplayCells (display, screen_number)

int XDisplayCells (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the number of entries in the default colormap.

DisplayPlanes(display, screen_number)

int XDisplayPlanes (display, screen_number)
Display *display;
int screen_number;
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth of the root window of the specified screen. For an explanation of depth, see
the glossary.

14

Xlib — C Library X11, Release 6.7 DRAFT

DisplayString (display)

char *XDisplayString (display)
Display *display;

display Specifies the connection to the X server.

Both return the string that was passed to XOpenDisplay when the current display was opened.
On POSIX-conformant systems, if the passed string was NULL, these return the value of the DIS-
PLAY environment variable when the current display was opened. These are useful to applica-
tions that invoke the fork system call and want to open a new connection to the same display
from the child process as well as for printing error messages.

long XExtendedMaxRequestSize(display)
Display *display;

display Specifies the connection to the X server.

The XExtendedMaxRequestSize function returns zero if the specified display does not support
an extended-length protocol encoding; otherwise, it returns the maximum request size (in 4-byte
units) supported by the server using the extended-length encoding. The Xlib functions XDraw-
Lines, XDrawArcs, XFillPolygon, XChangeProperty, XSetClipRectangles, and XSetRe-
gion will use the extended-length encoding as necessary, if supported by the server. Use of the
extended-length encoding in other Xlib functions (for example, XDrawPoints, XDrawRectan-
gles, XDrawSegments, XFillArcs, XFillRectangles, XPutImage) is permitted but not
required; an Xlib implementation may choose to split the data across multiple smaller requests
instead.

long XMaxRequestSize(display)
Display *display;

display Specifies the connection to the X server.

The XMaxRequestSize function returns the maximum request size (in 4-byte units) supported by
the server without using an extended-length protocol encoding. Single protocol requests to the
server can be no larger than this size unless an extended-length protocol encoding is supported by
the server. The protocol guarantees the size to be no smaller than 4096 units (16384 bytes). Xlib
automatically breaks data up into multiple protocol requests as necessary for the following func-
tions: XDrawPoints, XDrawRectangles, XDrawSegments, XFillArcs, XFillRectangles, and
XPutImage.

15

Xlib — C Library X11, Release 6.7 DRAFT

LastKnownRequestProcessed (display)

unsigned long XLastKnownRequestProcessed (display)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been processed by
the X server. Xlib automatically sets this number when replies, events, and errors are received.

NextRequest(display)

unsigned long XNextRequest(display)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial numbers are
maintained separately for each display connection.

Protocol Version (display)

int XProtocol Version (display)
Display *display;

display Specifies the connection to the X server.
Both return the major version number (11) of the X protocol associated with the connected dis-

play.

ProtocolRevision (display)

int XProtocolRevision(display)
Display *display;

display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

16

Xlib — C Library X11, Release 6.7 DRAFT

QLength (display)
int XQLength (display)
Display *display;
display Specifies the connection to the X server.

Both return the length of the event queue for the connected display. Note that there may be more
events that have not been read into the queue yet (see XEventsQueued).

RootWindow (display, screen_number)

Window XRootWindow (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the root window. These are useful with functions that need a drawable of a particular
screen and for creating top-level windows.

ScreenCount(display)

int XScreenCount(display)
Display *display;

display Specifies the connection to the X server.

Both return the number of available screens.

ServerVendor (display)

char *XServerVendor (display)
Display *display;

display Specifies the connection to the X server.
Both return a pointer to a null-terminated string that provides some identification of the owner of
the X server implementation. If the data returned by the server is in the Latin Portable Character

Encoding, then the string is in the Host Portable Character Encoding. Otherwise, the contents of
the string are implementation-dependent.

17

Xlib — C Library X11, Release 6.7 DRAFT

VendorRelease (display)

int XVendorRelease (display)
Display *display;

display Specifies the connection to the X server.

Both return a number related to a vendor’s release of the X server.

2.2.2. Image Format Functions and Macros

Applications are required to present data to the X server in a format that the server demands. To
help simplify applications, most of the work required to convert the data is provided by Xlib (see
sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format information
that is returned at the time of a connection setup. It contains:

typedef struct {
int depth;
int bits_per_pixel;
int scanline_pad;
} XPixmapFormatValues;

To obtain the pixmap format information for a given display, use XListPixmapFormats.

XPixmapFormatValues *XListPixmapFormats (display, count_return)
Display *display;
int *count_return;

display Specifies the connection to the X server.

count_return Returns the number of pixmap formats that are supported by the display.

The XListPixmapFormats function returns an array of XPixmapFormatValues structures that
describe the types of Z format images supported by the specified display. If insufficient memory
is available, XListPixmapFormats returns NULL. To free the allocated storage for the
XPixmapFormatValues structures, use XFree.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both return for the specified server and screen.
These are often used by toolkits as well as by simple applications.

18

Xlib — C Library X11, Release 6.7 DRAFT

ImageByteOrder (display)

int XImageByteOrder (display)
Display *display;

display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY format (bitmap) or
for each pixel value in Z format. The macro or function can return either LSBFirst or MSB-
First.

BitmapUnit(display)

int XBitmapUnit(display)
Display *display;

display Specifies the connection to the X server.

Both return the size of a bitmap’s scanline unit in bits. The scanline is calculated in multiples of
this value.

BitmapBitOrder (display)

int XBitmapBitOrder (display)
Display *display;

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either the
least significant or most significant bit in the unit. This macro or function can return LSBFirst or
MSBFirst.

BitmapPad (display)

int XBitmapPad (display)
Display *display;

display Specifies the connection to the X server.

Each scanline must be padded to a multiple of bits returned by this macro or function.

19

Xlib — C Library X11, Release 6.7 DRAFT

DisplayHeight(display, screen_number)

int XDisplayHeight(display, screen_number)
Display *display;
int screen_number,

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM (display, screen_number)

int XDisplayHeightMM (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the height of the specified screen in millimeters.

DisplayWidth(display, screen_number)

int XDisplayWidth(display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the screen in pixels.

20

Xlib — C Library X11, Release 6.7 DRAFT

DisplayWidthMM (display, screen_number)

int XDisplayWidthMM (display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

2.2.3. Screen Information Macros

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both can return. These macros or functions all take a
pointer to the appropriate screen structure.

BlackPixelOfScreen(screen)

unsigned long XBlackPixelOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreen (screen)

unsigned long XWhitePixelOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the white pixel value of the specified screen.

CellsOfScreen(screen)

int XCellsOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the number of colormap cells in the default colormap of the specified screen.

21

Xlib - C Library

DefaultColormapOfScreen (screen)

Colormap XDefaultColormapOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the default colormap of the specified screen.

DefaultDepthOfScreen (screen)

int XDefaultDepthOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

DefaultGCOfScreen (screen)

GC XDefaultGCOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

X11, Release 6.7 DRAFT

Both return a default graphics context (GC) of the specified screen, which has the same depth as

the root window of the screen. The GC must never be freed.

DefaultVisualOfScreen (screen)

Visual *XDefaultVisualOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

Both return the default visual of the specified screen. For information on visual types, see section

3.1.

22

Xlib — C Library X11, Release 6.7 DRAFT

DoesBackingStore (screen)

int XDoesBackingStore (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return a value indicating whether the screen supports backing stores. The value returned can
be one of WhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaveUnders (screen)

Bool XDoesSaveUnders (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return a Boolean value indicating whether the screen supports save unders. If True, the
screen supports save unders. If False, the screen does not support save unders (see section 3.2.5).

DisplayOfScreen (screen)

Display *XDisplayOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the display of the specified screen.

int XScreenNumberOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

The XScreenNumberOfScreen function returns the screen index number of the specified screen.

EventMaskOfScreen (screen)

long XEventMaskOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the event mask of the root window for the specified screen at connection setup time.

23

Xlib - C Library

WidthOfScreen (screen)

int XWidthOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in pixels.

HeightOfScreen (screen)

int XHeightOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in pixels.

WidthMMOfScreen (screen)

int XWidthMMOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreen (screen)

int XHeightMMOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen (screen)

int XMaxCmapsOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

X11, Release 6.7 DRAFT

Both return the maximum number of installed colormaps supported by the specified screen (see

24

Xlib — C Library X11, Release 6.7 DRAFT

section 9.3).

MinCmapsOfScreen(screen)

int XMinCmapsOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the minimum number of installed colormaps supported by the specified screen (see
section 9.3).

PlanesOfScreen (screen)

int XPlanesOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

RootWindowOfScreen (screen)

Window XRootWindowOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.
Both return the root window of the specified screen.

2.3. Generating a NoOperation Protocol Request

To execute a NoOperation protocol request, use XNoOp.

XNoOp(display)
Display *display;

display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby exercising
the connection.

2.4. Freeing Client-Created Data

To free in-memory data that was created by an Xlib function, use XFree.

25

Xlib — C Library X11, Release 6.7 DRAFT

XFree(data)
void *data;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data. You must use
it to free any objects that were allocated by Xlib, unless an alternate function is explicitly speci-
fied for the object. A NULL pointer cannot be passed to this function.

2.5. Closing the Display

To close a display or disconnect from the X server, use XCloseDisplay.

XCloseDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display specified in the
Display structure and destroys all windows, resource IDs (Window, Font, Pixmap, Colormap,
Cursor, and GContext), or other resources that the client has created on this display, unless the
close-down mode of the resource has been changed (see XSetCloseDownMode). Therefore,
these windows, resource IDs, and other resources should never be referenced again or an error
will be generated. Before exiting, you should call XCloseDisplay explicitly so that any pending
errors are reported as XCloseDisplay performs a final XSync operation.

XCloseDisplay can generate a BadGC error.

Xlib provides a function to permit the resources owned by a client to survive after the client’s
connection is closed. To change a client’s close-down mode, use XSetCloseDownMode.

XSetCloseDownMode (display, close_mode)
Display *display;
int close_mode;
display Specifies the connection to the X server.

close_mode Specifies the client close-down mode. You can pass DestroyAll, RetainPerma-
nent, or RetainTemporary.

The XSetCloseDownMode defines what will happen to the client’s resources at connection
close. A connection starts in DestroyAll mode. For information on what happens to the client’s
resources when the close_mode argument is RetainPermanent or RetainTemporary, see sec-
tion 2.6.

XSetCloseDownMode can generate a BadValue error.

2.6. Using X Server Connection Close Operations

When the X server’s connection to a client is closed either by an explicit call to XCloseDisplay
or by a process that exits, the X server performs the following automatic operations:

26

Xlib — C Library X11, Release 6.7 DRAFT

. It disowns all selections owned by the client (see XSetSelectionOwner).

. It performs an XUngrabPointer and XUngrabKeyboard if the client has actively
grabbed the pointer or the keyboard.

. It performs an XUngrabServer if the client has grabbed the server.
. It releases all passive grabs made by the client.
. It marks all resources (including colormap entries) allocated by the client either as perma-

nent or temporary, depending on whether the close-down mode is RetainPermanent or
RetainTemporary. However, this does not prevent other client applications from explic-
itly destroying the resources (see XSetCloseDownMode).

When the close-down mode is DestroyAll, the X server destroys all of a client’s resources as fol-
lows:

. It examines each window in the client’s save-set to determine if it is an inferior (subwin-
dow) of a window created by the client. (The save-set is a list of other clients’ windows
that are referred to as save-set windows.) If so, the X server reparents the save-set window
to the closest ancestor so that the save-set window is not an inferior of a window created by
the client. The reparenting leaves unchanged the absolute coordinates (with respect to the
root window) of the upper-left outer corner of the save-set window.

. It performs a MapWindow request on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior of a
window created by the client.

. It destroys all windows created by the client.

. It performs the appropriate free request on each nonwindow resource created by the client
in the server (for example, Font, Pixmap, Cursor, Colormap, and GContext).

. It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server goes
through a cycle of having no connections and having some connections. When the last connec-
tion to the X server closes as a result of a connection closing with the close_mode of DestroyAll,
the X server does the following:

. It resets its state as if it had just been started. The X server begins by destroying all linger-
ing resources from clients that have terminated in RetainPermanent or RetainTempo-
rary mode.

. It deletes all but the predefined atom identifiers.
. It deletes all properties on all root windows (see section 4.3).

. It resets all device maps and attributes (for example, key click, bell volume, and accelera-
tion) as well as the access control list.

. It restores the standard root tiles and cursors.
. It restores the default font path.
. It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode set to
RetainPermanent or RetainTemporary.

2.7. Using Xlib with Threads

On systems that have threads, support may be provided to permit multiple threads to use Xlib
concurrently.

27

Xlib — C Library X11, Release 6.7 DRAFT

To initialize support for concurrent threads, use XInitThreads.

Status XInitThreads();

The XInitThreads function initializes Xlib support for concurrent threads. This function must
be the first Xlib function a multi-threaded program calls, and it must complete before any other
Xlib call is made. This function returns a nonzero status if initialization was successful; other-
wise, it returns zero. On systems that do not support threads, this function always returns zero.

It is only necessary to call this function if multiple threads might use Xlib concurrently. If all
calls to Xlib functions are protected by some other access mechanism (for example, a mutual
exclusion lock in a toolkit or through explicit client programming), Xlib thread initialization is
not required. It is recommended that single-threaded programs not call this function.

To lock a display across several Xlib calls, use XLockDisplay.

void XLockDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XLockDisplay function locks out all other threads from using the specified display. Other
threads attempting to use the display will block until the display is unlocked by this thread.
Nested calls to XLockDisplay work correctly; the display will not actually be unlocked until
XUnlockDisplay has been called the same number of times as XLockDisplay. This function
has no effect unless Xlib was successfully initialized for threads using XInitThreads.

To unlock a display, use XUnlockDisplay .

void XUnlockDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XUnlockDisplay function allows other threads to use the specified display again. Any
threads that have blocked on the display are allowed to continue. Nested locking works correctly;
if XLockDisplay has been called multiple times by a thread, then XUnlockDisplay must be
called an equal number of times before the display is actually unlocked. This function has no
effect unless Xlib was successfully initialized for threads using XInitThreads.

2.8. Using Internal Connections

In addition to the connection to the X server, an Xlib implementation may require connections to
other kinds of servers (for example, to input method servers as described in chapter 13). Toolkits
and clients that use multiple displays, or that use displays in combination with other inputs, need
to obtain these additional connections to correctly block until input is available and need to
process that input when it is available. Simple clients that use a single display and block for input
in an Xlib event function do not need to use these facilities.

28

Xlib — C Library X11, Release 6.7 DRAFT

To track internal connections for a display, use XAddConnectionWatch.

typedef void (*XConnectionWatchProc) (display, client_data, fd, opening, watch_data)
Display *display;
XPointer client_data;
int fd;
Bool opening;
XPointer *watch_data;

Status XAddConnectionWatch (display, procedure, client_data)
Display *display;
XWatchProc procedure;
XPointer client_data;

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XAddConnectionWatch function registers a procedure to be called each time Xlib opens or
closes an internal connection for the specified display. The procedure is passed the display, the
specified client_data, the file descriptor for the connection, a Boolean indicating whether the con-
nection is being opened or closed, and a pointer to a location for private watch data. If opening is
True, the procedure can store a pointer to private data in the location pointed to by watch_data;
when the procedure is later called for this same connection and opening is False, the location
pointed to by watch_data will hold this same private data pointer.

This function can be called at any time after a display is opened. If internal connections already
exist, the registered procedure will immediately be called for each of them, before XAddConnec-
tionWatch returns. XAddConnectionWatch returns a nonzero status if the procedure is suc-
cessfully registered; otherwise, it returns zero.

The registered procedure should not call any Xlib functions. If the procedure directly or indi-
rectly causes the state of internal connections or watch procedures to change, the result is not
defined. If Xlib has been initialized for threads, the procedure is called with the display locked
and the result of a call by the procedure to any Xlib function that locks the display is not defined
unless the executing thread has externally locked the display using XLockDisplay.

To stop tracking internal connections for a display, use XRemoveConnectionWatch.

Status XRemoveConnectionWatch (display, procedure, client_data)
Display *display;
XWatchProc procedure;
XPointer client_data;

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XRemoveConnectionWatch function removes a previously registered connection watch
procedure. The client_data must match the client_data used when the procedure was initially

29

Xlib — C Library X11, Release 6.7 DRAFT

registered.

To process input on an internal connection, use XProcessInternalConnection.

void XProcessInternalConnection (display, fd)
Display *display;
int fd;

display Specifies the connection to the X server.
fd Specifies the file descriptor.

The XProcessInternalConnection function processes input available on an internal connection.
This function should be called for an internal connection only after an operating system facility
(for example, select or poll) has indicated that input is available; otherwise, the effect is not
defined.

To obtain all of the current internal connections for a display, use XInternalConnectionNum-
bers.

Status XInternalConnectionNumbers (display, fd_return, count_return)
Display *display;
int **fd_return;
int *count_return;

display Specifies the connection to the X server.

fd_return Returns the file descriptors.

count_return Returns the number of file descriptors.

The XInternalConnectionNumbers function returns a list of the file descriptors for all internal
connections currently open for the specified display. When the allocated list is no longer needed,
free it by using XFree. This functions returns a nonzero status if the list is successfully allo-
cated; otherwise, it returns zero.

30

Xlib — C Library X11, Release 6.7 DRAFT

Chapter 3

Window Functions

In the X Window System, a window is a rectangular area on the screen that lets you view graphic
output. Client applications can display overlapping and nested windows on one or more screens
that are driven by X servers on one or more machines. Clients who want to create windows must
first connect their program to the X server by calling XOpenDisplay. This chapter begins with a
discussion of visual types and window attributes. The chapter continues with a discussion of the
Xlib functions you can use to:

. Create windows

. Destroy windows

. Map windows

. Unmap windows

. Configure windows

. Change window stacking order
. Change window attributes

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for communicat-
ing with window managers for it to work well with the various window managers in use (see sec-
tion 14.1). Toolkits generally adhere to these conventions for you, relieving you of the burden.
Toolkits also often supersede many functions in this chapter with versions of their own. For more
information, refer to the documentation for the toolkit that you are using.

3.1. Visual Types

On some display hardware, it may be possible to deal with color resources in more than one way.
For example, you may be able to deal with a screen of either 12-bit depth with arbitrary mapping
of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel dedicated to each of red,
green, and blue. These different ways of dealing with the visual aspects of the screen are called
visuals. For each screen of the display, there may be a list of valid visual types supported at dif-
ferent depths of the screen. Because default windows and visual types are defined for each
screen, most simple applications need not deal with this complexity. Xlib provides macros and
functions that return the default root window, the default depth of the default root window, and
the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaque Visual structure that contains information about the possible color mapping.
The visual utility functions (see section 16.7) use an XVisuallnfo structure to return this infor-
mation to an application. The members of this structure pertinent to this discussion are class,
red_mask, green_mask, blue_mask, bits_per_rgb, and colormap_size. The class member speci-
fies one of the possible visual classes of the screen and can be StaticGray, StaticColor, True-
Color, GrayScale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types clearer. The screen
can be color or grayscale, can have a colormap that is writable or read-only, and can also have a
colormap whose indices are decomposed into separate RGB pieces, provided one is not on a

31

Xlib — C Library X11, Release 6.7 DRAFT

grayscale screen. This leads to the following diagram:

Color Gray-scale
R/O R/W R/O R/W
Undecomposed | Static | Pseudo | Static | Gray
Colormap Color | Color Gray | Scale
Decomposed True Direct
Colormap Color Color

Conceptually, as each pixel is read out of video memory for display on the screen, it goes through
a look-up stage by indexing into a colormap. Colormaps can be manipulated arbitrarily on some
hardware, in limited ways on other hardware, and not at all on other hardware. The visual types
affect the colormap and the RGB values in the following ways:

. For PseudoColor, a pixel value indexes a colormap to produce independent RGB values,
and the RGB values can be changed dynamically.

. GrayScale is treated the same way as PseudoColor except that the primary that drives the
screen is undefined. Thus, the client should always store the same value for red, green, and
blue in the colormaps.

. For DirectColor, a pixel value is decomposed into separate RGB subfields, and each sub-
field separately indexes the colormap for the corresponding value. The RGB values can be
changed dynamically.

. TrueColor is treated the same way as DirectColor except that the colormap has prede-

fined, read-only RGB values. These RGB values are server dependent but provide linear or
near-linear ramps in each primary.

. StaticColor is treated the same way as PseudoColor except that the colormap has prede-
fined, read-only, server-dependent RGB values.

. StaticGray is treated the same way as StaticColor except that the RGB values are equal
for any single pixel value, thus resulting in shades of gray. StaticGray with a two-entry
colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defined for DirectColor and
TrueColor. Each has one contiguous set of bits with no intersections. The bits_per_rgb member
specifies the log base 2 of the number of distinct color values (individually) of red, green, and
blue. Actual RGB values are unsigned 16-bit numbers. The colormap_size member defines the
number of available colormap entries in a newly created colormap. For DirectColor and True-
Color, this is the size of an individual pixel subfield.

To obtain the visual ID from a Visual, use XVisualIDFromVisual.

VisuallD XVisuallDFromVisual (visual)
Visual *visual;

visual Specifies the visual type.

The XVisuallDFromVisual function returns the visual ID for the specified visual type.

32

Xlib — C Library X11, Release 6.7 DRAFT

3.2. Window Attributes

All InputOutput windows have a border width of zero or more pixels, an optional background,
an event suppression mask (which suppresses propagation of events from children), and a prop-
erty list (see section 4.3). The window border and background can be a solid color or a pattern,
called a tile. All windows except the root have a parent and are clipped by their parent. If a win-
dow is stacked on top of another window, it obscures that other window for the purpose of input.
If a window has a background (almost all do), it obscures the other window for purposes of out-
put. Attempts to output to the obscured area do nothing, and no input events (for example,
pointer motion) are generated for the obscured area.

Windows also have associated property lists (see section 4.3).

Both InputOutput and InputOnly windows have the following common attributes, which are
the only attributes of an InputOnly window:

. win-gravity

. event-mask

. do-not-propagate-mask
. override-redirect

. cursor

If you specify any other attributes for an InputOnly window, a BadMatch error results.

InputOnly windows are used for controlling input events in situations where InputOutput win-
dows are unnecessary. InputOnly windows are invisible; can only be used to control such things
as cursors, input event generation, and grabbing; and cannot be used in any graphics requests.
Note that InputOnly windows cannot have InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a background pattern or
tile. Pixel values can be used for solid colors. The background and border pixmaps can be
destroyed immediately after creating the window if no further explicit references to them are to be
made. The pattern can either be relative to the parent or absolute. If ParentRelative, the par-
ent’s background is used.

When windows are first created, they are not visible (not mapped) on the screen. Any output to a
window that is not visible on the screen and that does not have backing store will be discarded.
An application may wish to create a window long before it is mapped to the screen. When a win-
dow is eventually mapped to the screen (using XMapWindow), the X server generates an
Expose event for the window if backing store has not been maintained.

A window manager can override your choice of size, border width, and position for a top-level
window. Your program must be prepared to use the actual size and position of the top window. It
is not acceptable for a client application to resize itself unless in direct response to a human com-
mand to do so. Instead, either your program should use the space given to it, or if the space is too
small for any useful work, your program might ask the user to resize the window. The border of
your top-level window is considered fair game for window managers.

To set an attribute of a window, set the appropriate member of the XSetWindowA ttributes struc-
ture and OR in the corresponding value bitmask in your subsequent calls to XCreateWindow
and XChangeWindowA ttributes, or use one of the other convenience functions that set the
appropriate attribute. The symbols for the value mask bits and the XSetWindowAttributes
structure are:

33

Xlib - C Library

/* Window attribute value mask bits */

#define CWBackPixmap
#define CWBackPixel
#define CWBorderPixmap
#define CWBorderPixel
#define CWBitGravity
#define CWWinGravity
#define CWBackingStore
#define CWBackingPlanes
#define CWBackingPixel
#define CWOrverrideRedirect
#define CWSaveUnder
#define CWEventMask
#define CWDontPropagate
#define CWColormap
#define CWCursor

/* Values */

typedef struct {

Pixmap background_pixmap;
unsigned long background_pixel;
Pixmap border_pixmap;
unsigned long border_pixel,
int bit_gravity;

int win_gravity;

int backing_store;

unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;

long event_mask;

long do_not_propagate_mask;
Bool override_redirect;
Colormap colormap;

Cursor cursor;

} XSetWindowAttributes;

X11, Release 6.7 DRAFT

(1L<<0)
(1L<<1)
(1L<<?2)
(1L<<3)
(1L<<4)
(1L<<5)
(1L<<6)
(1L<<7)
(1L<<8)
(1L<<9)
(1L<<10)
(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)

/* background, None, or ParentRelative */
/* background pixel */

/* border of the window or CopyFromParent */
/* border pixel value */

/* one of bit gravity values */

/* one of the window gravity values */

/* NotUseful, WhenMapped, Always */

/* planes to be preserved if possible */

/* value to use in restoring planes */

/* should bits under be saved? (popups) */

/* set of events that should be saved */

/* set of events that should not propagate */
/* boolean value for override_redirect */

/* color map to be associated with window */
/* cursor to be displayed (or None) */

The following lists the defaults for each window attribute and indicates whether the attribute is
applicable to InputOQutput and InputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes

34

Xlib — C Library X11, Release 6.7 DRAFT

Attribute Default InputOutput InputOnly
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel Zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

3.2.1. Background Attribute

Only InputOutput windows can have a background. You can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for a window’s
background. This pixmap can be of any size, although some sizes may be faster than others. The
background-pixel attribute of a window specifies a pixel value used to paint a window’s back-
ground in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRelative. You can
set the background-pixel of a window to any pixel value (no default). If you specify a back-
ground-pixel, it overrides either the default background-pixmap or any value you may have set in
the background-pixmap. A pixmap of an undefined size that is filled with the background-pixel is
used for the background. Range checking is not performed on the background pixel; it simply is
truncated to the appropriate number of bits.

If you set the background-pixmap, it overrides the default. The background-pixmap and the win-
dow must have the same depth, or a BadMatch error results. If you set background-pixmap to
None, the window has no defined background. If you set the background-pixmap to ParentRel-
ative:

. The parent window’s background-pixmap is used. The child window, however, must have
the same depth as its parent, or a BadMatch error results.

. If the parent window has a background-pixmap of None, the window also has a back-
ground-pixmap of None.

. A copy of the parent window’s background-pixmap is not made. The parent’s background-
pixmap is examined each time the child window’s background-pixmap is required.

. The background tile origin always aligns with the parent window’s background tile origin.
If the background-pixmap is not ParentRelative, the background tile origin is the child
window’s origin.

Setting a new background, whether by setting background-pixmap or background-pixel, overrides

any previous background. The background-pixmap can be freed immediately if no further

explicit reference is made to it (the X server will keep a copy to use when needed). If you later
draw into the pixmap used for the background, what happens is undefined because the X imple-
mentation is free to make a copy of the pixmap or to use the same pixmap.

When no valid contents are available for regions of a window and either the regions are visible or
the server is maintaining backing store, the server automatically tiles the regions with the win-
dow’s background unless the window has a background of None. If the background is None, the

35

Xlib — C Library X11, Release 6.7 DRAFT

previous screen contents from other windows of the same depth as the window are simply left in
place as long as the contents come from the parent of the window or an inferior of the parent.
Otherwise, the initial contents of the exposed regions are undefined. Expose events are then gen-
erated for the regions, even if the background-pixmap is None (see section 10.9).

3.2.2. Border Attribute

Only InputOutput windows can have a border. You can set the border of an InputOutput win-
dow by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a window’s border.
The border-pixel attribute of a window specifies a pixmap of undefined size filled with that pixel
be used for a window’s border. Range checking is not performed on the background pixel; it sim-
ply is truncated to the appropriate number of bits. The border tile origin is always the same as the
background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster than others) or to
CopyFromParent (default). You can set the border-pixel to any pixel value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the window must
have the same depth, or a BadMatch error results. If you set the border-pixmap to Copy-
FromParent, the parent window’s border-pixmap is copied. Subsequent changes to the parent
window’s border attribute do not affect the child window. However, the child window must have
the same depth as the parent window, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made to it. If you
later draw into the pixmap used for the border, what happens is undefined because the X imple-
mentation is free either to make a copy of the pixmap or to use the same pixmap. If you specify a
border-pixel, it overrides either the default border-pixmap or any value you may have set in the
border-pixmap. All pixels in the window’s border will be set to the border-pixel. Setting a new
border, whether by setting border-pixel or by setting border-pixmap, overrides any previous bor-
der.

Output to a window is always clipped to the inside of the window. Therefore, graphics operations
never affect the window border.

3.2.3. Gravity Attributes

The bit gravity of a window defines which region of the window should be retained when an
InputOutput window is resized. The default value for the bit-gravity attribute is ForgetGrav-
ity. The window gravity of a window allows you to define how the InputOutput or InputOnly
window should be repositioned if its parent is resized. The default value for the win-gravity
attribute is NorthWestGravity .

If the inside width or height of a window is not changed and if the window is moved or its border
is changed, then the contents of the window are not lost but move with the window. Changing the
inside width or height of the window causes its contents to be moved or lost (depending on the
bit-gravity of the window) and causes children to be reconfigured (depending on their win-grav-
ity). For a change of width and height, the (x, y) pairs are defined:

Gravity Direction Coordinates

NorthWestGravity (0, 0)
NorthGravity (Width/2, 0)

36

Xlib - C Library X11, Release 6.7 DRAFT
NorthEastGravity (Width, 0)

WestGravity (0, Height/2)

CenterGravity (Width/2, Height/2)

EastGravity (Width, Height/2)

SouthWestGravity (0, Height)

SouthGravity (Width/2, Height)

SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding pair defines the
change in position of each pixel in the window. When a window with one of these win-gravities
has its parent window resized, the corresponding pair defines the change in position of the win-
dow within the parent. When a window is so repositioned, a GravityNotify event is generated
(see section 10.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should not move relative to
the origin of the root window. If the change in size of the window is coupled with a change in
position (X, y), then for bit-gravity the change in position of each pixel is (—x, —y), and for win-
gravity the change in position of a child when its parent is so resized is (—x, —y). Note that Stat-
icGravity still only takes effect when the width or height of the window is changed, not when the
window is moved.

A bit-gravity of ForgetGravity indicates that the window’s contents are always discarded after a
size change, even if a backing store or save under has been requested. The window is tiled with
its background and zero or more Expose events are generated. If no background is defined, the
existing screen contents are not altered. Some X servers may also ignore the specified bit-gravity
and always generate Expose events.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A server is
permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not moved), except
the child is also unmapped when the parent is resized, and an UnmapNotify event is generated.

3.2.4. Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of InputQutput
windows. If the X server maintains the contents of a window, the off-screen saved pixels are
known as backing store. The backing store advises the X server on what to do with the contents
of a window. The backing-store attribute can be set to NotUseful (default), WhenMapped, or
Always.

A backing-store attribute of NotUseful advises the X server that maintaining contents is unneces-
sary, although some X implementations may still choose to maintain contents and, therefore, not
generate Expose events. A backing-store attribute of WhenMapped advises the X server that
maintaining contents of obscured regions when the window is mapped would be beneficial. In
this case, the server may generate an Expose event when the window is created. A backing-store
attribute of Always advises the X server that maintaining contents even when the window is
unmapped would be beneficial. Even if the window is larger than its parent, this is a request to
the X server to maintain complete contents, not just the region within the parent window bound-
aries. While the X server maintains the window’s contents, Expose events normally are not gen-
erated, but the X server may stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions obscured by
noninferior windows are included in the destination of graphics requests (and source, when the
window is the source). However, regions obscured by inferior windows are not included.

37

Xlib — C Library X11, Release 6.7 DRAFT

3.2.5. Save Under Flag

Some server implementations may preserve contents of InputOutput windows under other
InputOutput windows. This is not the same as preserving the contents of a window for you.
You may get better visual appeal if transient windows (for example, pop-up menus) request that
the system preserve the screen contents under them, so the temporarily obscured applications do
not have to repaint.

You can set the save-under flag to True or False (default). If save-under is True, the X server is
advised that, when this window is mapped, saving the contents of windows it obscures would be
beneficial.

3.2.6. Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an InputQutput
window hold dynamic data that must be preserved in backing store and during save unders. The
default value for the backing-planes attribute is all bits set to 1. You can set backing pixel to
specify what bits to use in planes not covered by backing planes. The default value for the back-
ing-pixel attribute is all bits set to 0. The X server is free to save only the specified bit planes in
the backing store or the save under and is free to regenerate the remaining planes with the speci-
fied pixel value. Any extraneous bits in these values (that is, those bits beyond the specified depth
of the window) may be simply ignored. If you request backing store or save unders, you should
use these members to minimize the amount of off-screen memory required to store your window.

3.2.7. Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput or Inpu-
tOnly window (or, for some event types, inferiors of this window). The event mask is the bitwise
inclusive OR of zero or more of the valid event mask bits. You can specify that no maskable
events are reported by setting NoEventMask (default).

The do-not-propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in this InputOutput or InputOnly window.
The do-not-propagate-mask is the bitwise inclusive OR of zero or more of the following masks:
KeyPress, KeyRelease, ButtonPress, ButtonRelease, PointerMotion, Button1Motion, But-
ton2Motion, Button3Motion, Button4dMotion, Button5SMotion, and ButtonMotion. You can
specify that all events are propagated by setting NoEventMask (default).

3.2.8. Override Redirect Flag

To control window placement or to add decoration, a window manager often needs to intercept
(redirect) any map or configure request. Pop-up windows, however, often need to be mapped
without a window manager getting in the way. To control whether an InputOutput or Inpu-
tOnly window is to ignore these structure control facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window should
override a SubstructureRedirectMask on the parent. You can set the override-redirect flag to
True or False (default). Window managers use this information to avoid tampering with pop-up
windows (see also chapter 14).

3.2.9. Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the InputOutput
window. The colormap must have the same visual type as the window, or a BadMatch error
results. X servers capable of supporting multiple hardware colormaps can use this information,
and window managers can use it for calls to XInstallColormap. You can set the colormap

38

Xlib — C Library X11, Release 6.7 DRAFT

attribute to a colormap or to CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window’s colormap is copied and used
by its child. However, the child window must have the same visual type as the parent, or a Bad-
Match error results. The parent window must not have a colormap of None, or a BadMatch
error results. The colormap is copied by sharing the colormap object between the child and par-
ent, not by making a complete copy of the colormap contents. Subsequent changes to the parent
window’s colormap attribute do not affect the child window.

3.2.10. Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in the InputOutput
or InputOnly window. You can set the cursor to a cursor or None (default).

If you set the cursor to None, the parent’s cursor is used when the pointer is in the InputOutput
or InputOnly window, and any change in the parent’s cursor will cause an immediate change in
the displayed cursor. By calling XFreeCursor, the cursor can be freed immediately as long as
no further explicit reference to it is made.

3.3. Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-level functions
specifically for creating and placing top-level windows, which are discussed in the appropriate
toolkit documentation. If you do not use a toolkit, however, you must provide some standard
information or hints for the window manager by using the Xlib inter-client communication func-
tions (see chapter 14).

If you use Xlib to create your own top-level windows (direct children of the root window), you
must observe the following rules so that all applications interact reasonably across the different
styles of window management:

. You must never fight with the window manager for the size or placement of your top-level
window.
. You must be able to deal with whatever size window you get, even if this means that your

application just prints a message like ‘‘Please make me bigger” in its window.

. You should only attempt to resize or move top-level windows in direct response to a user
request. If a request to change the size of a top-level window fails, you must be prepared to
live with what you get. You are free to resize or move the children of top-level windows as
necessary. (Toolkits often have facilities for automatic relayout.)

. If you do not use a toolkit that automatically sets standard window properties, you should
set these properties for top-level windows before mapping them.

For further information, see chapter 14 and the Inter-Client Communication Conventions Manual.

XCreateWindow is the more general function that allows you to set specific window attributes
when you create a window. XCreateSimpleWindow creates a window that inherits its attributes
from its parent window.

The X server acts as if InputOnly windows do not exist for the purposes of graphics requests,
exposure processing, and VisibilityNotify events. An InputOnly window cannot be used as a
drawable (that is, as a source or destination for graphics requests). InputOnly and InputQutput
windows act identically in other respects (properties, grabs, input control, and so on). Extension
packages can define other classes of windows.

To create an unmapped window and set its window attributes, use XCreateWindow .

39

Xlib - C Library

X11, Release 6.7 DRAFT

Window XCreateWindow (display, parent, x, y, width, height, border_width, depth,

class, visual, valuemask , attributes)

Display *display;
Window parent;

intx,y;

unsigned int width, height;
unsigned int border_width;

int depth;

unsigned int class;

Visual *visual;

unsigned long valuemask;
XSetWindowAttributes *attributes ;

display
parent

X
y

width
height

border_width
depth

class

visual

valuemask

attributes

Specifies the connection to the X server.

Specifies the parent window.

Specify the x and y coordinates, which are the top-left outside corner of the cre-
ated window’s borders and are relative to the inside of the parent window’s bor-
ders.

Specify the width and height, which are the created window’s inside dimensions
and do not include the created window’s borders. The dimensions must be
nonzero, or a BadValue error results.

Specifies the width of the created window’s border in pixels.

Specifies the window’s depth. A depth of CopyFromParent means the depth is
taken from the parent.

Specifies the created window’s class. You can pass InputOutput, InputOnly,
or CopyFromParent. A class of CopyFromParent means the class is taken
from the parent.

Specifies the visual type. A visual of CopyFromParent means the visual type is
taken from the parent.

Specifies which window attributes are defined in the attributes argument. This
mask is the bitwise inclusive OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced.

Specifies the structure from which the values (as specified by the value mask) are
to be taken. The value mask should have the appropriate bits set to indicate
which attributes have been set in the structure.

The XCreateWindow function creates an unmapped subwindow for a specified parent window,
returns the window ID of the created window, and causes the X server to generate a CreateNo-
tify event. The created window is placed on top in the stacking order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, 0] at
the upper-left corner. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
Each window and pixmap has its own coordinate system. For a window, the origin is inside the
border at the inside, upper-left corner.

The border_width for an InputOnly window must be zero, or a BadMatch error results. For
class InputOutput, the visual type and depth must be a combination supported for the screen, or

40

Xlib — C Library X11, Release 6.7 DRAFT

a BadMatch error results. The depth need not be the same as the parent, but the parent must not
be a window of class InputOnly, or a BadMatch error results. For an InputOnly window, the

depth must be zero, and the visual must be one supported by the screen. If either condition is not
met, a BadMatch error results. The parent window, however, may have any depth and class. If

you specify any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user’s display. To display the window,
call XMapWindow. The new window initially uses the same cursor as its parent. A new cursor
can be defined for the new window by calling XDefineCursor. The window will not be visible
on the screen unless it and all of its ancestors are mapped and it is not obscured by any of its
ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch, BadPixmap,
BadValue, and BadWindow errors.

To create an unmapped InputQutput subwindow of a given parent window, use XCreateSim-
pleWindow.

Window XCreateSimpleWindow (display, parent, x, y, width, height, border_width,
border, background)
Display *display;
Window parent;
intx,y;
unsigned int width, height;
unsigned int border_width;
unsigned long border;
unsigned long background;;

display Specifies the connection to the X server.

parent Specifies the parent window.

X

y Specify the x and y coordinates, which are the top-left outside corner of the new
window’s borders and are relative to the inside of the parent window’s borders.

width

height Specify the width and height, which are the created window’s inside dimensions

and do not include the created window’s borders. The dimensions must be
nonzero, or a BadValue error results.

border_width Specifies the width of the created window’s border in pixels.
border Specifies the border pixel value of the window.

background Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput subwindow for a
specified parent window, returns the window ID of the created window, and causes the X server to
generate a CreateNotify event. The created window is placed on top in the stacking order with
respect to siblings. Any part of the window that extends outside its parent window is clipped.
The border_width for an InputOnly window must be zero, or a BadMatch error results. XCre-
ateSimpleWindow inherits its depth, class, and visual from its parent. All other window
attributes, except background and border, have their default values.

41

Xlib — C Library X11, Release 6.7 DRAFT

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and BadWindow
errors.

3.4. Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all subwindows of a win-
dow.

To destroy a window and all of its subwindows, use XDestroyWindow .

XDestroyWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its subwindows
and causes the X server to generate a DestroyNotify event for each window. The window should
never be referenced again. If the window specified by the w argument is mapped, it is unmapped
automatically. The ordering of the DestroyNotify events is such that for any given window being
destroyed, DestroyNotify is generated on any inferiors of the window before being generated on
the window itself. The ordering among siblings and across subhierarchies is not otherwise con-
strained. If the window you specified is a root window, no windows are destroyed. Destroying a
mapped window will generate Expose events on other windows that were obscured by the win-
dow being destroyed.

XDestroyWindow can generate a BadWindow error.
To destroy all subwindows of a specified window, use XDestroySubwindows.

XDestroySubwindows (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the specified window, in
bottom-to-top stacking order. It causes the X server to generate a DestroyNotify event for each
window. If any mapped subwindows were actually destroyed, XDestroySubwindows causes the
X server to generate Expose events on the specified window. This is much more efficient than
deleting many windows one at a time because much of the work need be performed only once for
all of the windows, rather than for each window. The subwindows should never be referenced
again.

XDestroySubwindows can generate a BadWindow error.

3.5. Mapping Windows

A window is considered mapped if an XMapWindow call has been made on it. It may not be
visible on the screen for one of the following reasons:

42

Xlib — C Library X11, Release 6.7 DRAFT

. It is obscured by another opaque window.
. One of its ancestors is not mapped.
. It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible on the screen.
A client receives the Expose events only if it has asked for them. Windows retain their position
in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If SubstructureRedi-
rectMask has been selected by a window manager on a parent window (usually a root window),
a map request initiated by other clients on a child window is not performed, and the window man-
ager is sent a MapRequest event. However, if the override-redirect flag on the child had been set
to True (usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients’ windows and then
decide to map the window to its final location. A window manager that wants to provide decora-
tion might reparent the child into a frame first. For further information, see sections 3.2.8 and
10.10. Only a single client at a time can select for SubstructureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window. Then, any
attempt to resize the window by another client is suppressed, and the client receives a Resiz-
eRequest event.

To map a given window, use XMapWindow.

XMapWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XMapWindow function maps the window and all of its subwindows that have had map
requests. Mapping a window that has an unmapped ancestor does not display the window but
marks it as eligible for display when the ancestor becomes mapped. Such a window is called
unviewable. When all its ancestors are mapped, the window becomes viewable and will be visi-
ble on the screen if it is not obscured by another window. This function has no effect if the win-
dow is already mapped.

If the override-redirect of the window is False and if some other client has selected Substructur-
eRedirectMask on the parent window, then the X server generates a MapRequest event, and the
XMapWindow function does not map the window. Otherwise, the window is mapped, and the X
server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X server tiles
the window with its background. If the window’s background is undefined, the existing screen
contents are not altered, and the X server generates zero or more Expose events. If backing-store
was maintained while the window was unmapped, no Expose events are generated. If backing-
store will now be maintained, a full-window exposure is always generated. Otherwise, only visi-
ble regions may be reported. Similar tiling and exposure take place for any newly viewable infe-
riors.

If the window is an InputOutput window, XMapWindow generates Expose events on each
InputOutput window that it causes to be displayed. If the client maps and paints the window

43

Xlib — C Library X11, Release 6.7 DRAFT

and if the client begins processing events, the window is painted twice. To avoid this, first ask for
Expose events and then map the window, so the client processes input events as usual. The event
list will include Expose for each window that has appeared on the screen. The client’s normal
response to an Expose event should be to repaint the window. This method usually leads to sim-
pler programs and to proper interaction with window managers.

XMapWindow can generate a BadWindow error.
To map and raise a window, use XMapRaised.

XMapRaised (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it maps the window
and all of its subwindows that have had map requests. However, it also raises the specified win-
dow to the top of the stack. For additional information, see XMapWindow.

XMapRaised can generate multiple BadWindow errors.
To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows (display, w)
Display *display;
Window w;
display Specifies the connection to the X server.

w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-to-bottom
stacking order. The X server generates Expose events on each newly displayed window. This
may be much more efficient than mapping many windows one at a time because the server needs
to perform much of the work only once, for all of the windows, rather than for each window.

XMapSubwindows can generate a BadWindow error.

3.6. Unmapping Windows

Xlib provides functions that you can use to unmap a window or all subwindows.

To unmap a window, use XUnmapWindow.

44

Xlib — C Library X11, Release 6.7 DRAFT

XUnmapWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the X server to gener-
ate an UnmapNotify event. If the specified window is already unmapped, XUnmapWindow
has no effect. Normal exposure processing on formerly obscured windows is performed. Any
child window will no longer be visible until another map call is made on the parent. In other
words, the subwindows are still mapped but are not visible until the parent is mapped. Unmap-
ping a window will generate Expose events on windows that were formerly obscured by it.

XUnmapWindow can generate a BadWindow error.
To unmap all subwindows for a specified window, use XUnmapSubwindows.

XUnmapSubwindows (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified window in bottom-
to-top stacking order. It causes the X server to generate an UnmapNotify event on each subwin-
dow and Expose events on formerly obscured windows. Using this function is much more effi-
cient than unmapping multiple windows one at a time because the server needs to perform much
of the work only once, for all of the windows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

3.7. Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move and resize a
window, or change a window’s border width. To change one of these parameters, set the appro-
priate member of the XWindowChanges structure and OR in the corresponding value mask in
subsequent calls to XConfigureWindow. The symbols for the value mask bits and the XWin-
dowChanges structure are:

45

Xlib — C Library X11, Release 6.7 DRAFT

/* Configure window value mask bits */

#define CwWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

/* Values */

typedef struct {
int x, y;
int width, height;
int border_width;
Window sibling;
int stack_mode;

} XWindowChanges;

The x and y members are used to set the window’s x and y coordinates, which are relative to the
parent’s origin and indicate the position of the upper-left outer corner of the window. The width
and height members are used to set the inside size of the window, not including the border, and
must be nonzero, or a BadValue error results. Attempts to configure a root window have no
effect.

The border_width member is used to set the width of the border in pixels. Note that setting just
the border width leaves the outer-left corner of the window in a fixed position but moves the abso-
lute position of the window’s origin. If you attempt to set the border-width attribute of an Inpu-
tOnly window nonzero, a BadMatch error results.

The sibling member is used to set the sibling window for stacking operations. The stack_mode
member is used to set how the window is to be restacked and can be set to Above, Below, Toplf,
Bottomlf, or Opposite.

If the override-redirect flag of the window is False and if some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest event, and
no further processing is performed. Otherwise, if some other client has selected ResizeRedirect-
Mask on the window and the inside width or height of the window is being changed, a Resiz-
eRequest event is generated, and the current inside width and height are used instead. Note that
the override-redirect flag of the window has no effect on ResizeRedirectMask and that Sub-
structureRedirectMask on the parent has precedence over ResizeRedirectMask on the win-
dow.

When the geometry of the window is changed as specified, the window is restacked among sib-
lings, and a ConfigureNotify event is generated if the state of the window actually changes.
GravityNotify events are generated after ConfigureNotify events. If the inside width or height
of the window has actually changed, children of the window are affected as specified.

If a window’s size actually changes, the window’s subwindows move according to their window
gravity. Depending on the window’s bit gravity, the contents of the window also may be moved
(see section 3.2.3).

46

Xlib — C Library X11, Release 6.7 DRAFT

If regions of the window were obscured but now are not, exposure processing is performed on
these formerly obscured windows, including the window itself and its inferiors. As a result of
increasing the width or height, exposure processing is also performed on any new regions of the
window and any regions where window contents are lost.

The restack check (specifically, the computation for BottomlIf, Toplf, and Opposite) is per-
formed with respect to the window’s final size and position (as controlled by the other arguments
of the request), not its initial position. If a sibling is specified without a stack_mode, a Bad-
Match error results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

Toplf If the sibling occludes the window, the window is placed at the top of the stack.

BottomIf If the window occludes the sibling, the window is placed at the bottom of the
stack.

Opposite If the sibling occludes the window, the window is placed at the top of the stack.
If the window occludes the sibling, the window is placed at the bottom of the
stack.

If a stack_mode is specified but no sibling is specified, the window is restacked as follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, the window is placed at the top of the stack.

BottomIf If the window occludes any sibling, the window is placed at the bottom of the
stack.

Opposite If any sibling occludes the window, the window is placed at the top of the stack.
If the window occludes any sibling, the window is placed at the bottom of the
stack.

Attempts to configure a root window have no effect.

To configure a window’s size, location, stacking, or border, use XConfigureWindow.

47

Xlib — C Library X11, Release 6.7 DRAFT

XConfigureWindow (display, w, value_mask, values)
Display *display;
Window w;
unsigned int value_mask;
XWindowChanges *values;

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

value_mask Specifies which values are to be set using information in the values structure.
This mask is the bitwise inclusive OR of the valid configure window values bits.

values Specifies the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWindowChanges structure
to reconfigure a window’s size, position, border, and stacking order. Values not specified are
taken from the existing geometry of the window.

If a sibling is specified without a stack_mode or if the window is not actually a sibling, a Bad-
Match error results. Note that the computations for BottomlIf, TopIf, and Opposite are per-
formed with respect to the window’s final geometry (as controlled by the other arguments passed
to XConfigureWindow), not its initial geometry. Any backing store contents of the window, its
inferiors, and other newly visible windows are either discarded or changed to reflect the current
screen contents (depending on the implementation).

XConfigureWindow can generate BadMatch, BadValue, and BadWindow errors.

To move a window without changing its size, use XMoveWindow.

XMoveWindow (display, w, x, y)
Display *display;

Window w;
intx,y;
display Specifies the connection to the X server.
w Specifies the window to be moved.
X
y Specify the x and y coordinates, which define the new location of the top-left

pixel of the window’s border or the window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x and y coordinates,
but it does not change the window’s size, raise the window, or change the mapping state of the
window. Moving a mapped window may or may not lose the window’s contents depending on if
the window is obscured by nonchildren and if no backing store exists. If the contents of the win-
dow are lost, the X server generates Expose events. Moving a mapped window generates
Expose events on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client has selected Substruc-
tureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no fur-
ther processing is performed. Otherwise, the window is moved.

XMoveWindow can generate a BadWindow error.

438

Xlib — C Library X11, Release 6.7 DRAFT

To change a window’s size without changing the upper-left coordinate, use XResizeWindow.

XResizeWindow (display, w, width, height)
Display *display;
Window w;
unsigned int width, height;

display Specifies the connection to the X server.

w Specifies the window.

width

height Specify the width and height, which are the interior dimensions of the window

after the call completes.

The XResizeWindow function changes the inside dimensions of the specified window, not
including its borders. This function does not change the window’s upper-left coordinate or the
origin and does not restack the window. Changing the size of a mapped window may lose its con-
tents and generate Expose events. If a mapped window is made smaller, changing its size gener-
ates Expose events on windows that the mapped window formerly obscured.

If the override-redirect flag of the window is False and some other client has selected Substruc-
tureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no fur-
ther processing is performed. If either width or height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.
To change the size and location of a window, use XMoveResizeWindow.

XMoveResizeWindow (display, w, x, y, width, height)
Display *display;
Window w;
intx,y;
unsigned int width, height;

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

X

y Specify the x and y coordinates, which define the new position of the window rel-
ative to its parent.

width

height Specify the width and height, which define the interior size of the window.

The XMoveResizeWindow function changes the size and location of the specified window with-
out raising it. Moving and resizing a mapped window may generate an Expose event on the win-
dow. Depending on the new size and location parameters, moving and resizing a window may
generate Expose events on windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client has selected Substruc-
tureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no fur-
ther processing is performed. Otherwise, the window size and location are changed.

49

Xlib — C Library X11, Release 6.7 DRAFT

XMoveResizeWindow can generate BadValue and BadWindow errors.
To change the border width of a given window, use XSetWindowBorderWidth.

XSetWindowBorderWidth (display, w, width)
Display *display;
Window w;
unsigned int width;

display Specifies the connection to the X server.
w Specifies the window.
width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’s border width to the speci-
fied width.

XSetWindowBorderWidth can generate a BadWindow error.

3.8. Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack windows.
To raise a window so that no sibling window obscures it, use XRaiseWindow.

XRaiseWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so that no sib-
ling window obscures it. If the windows are regarded as overlapping sheets of paper stacked on a
desk, then raising a window is analogous to moving the sheet to the top of the stack but leaving its
x and y location on the desk constant. Raising a mapped window may generate Expose events
for the window and any mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest event, and
no processing is performed. Otherwise, the window is raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use XLowerWindow.

50

Xlib — C Library X11, Release 6.7 DRAFT

XLowerWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack so that it
does not obscure any sibling windows. If the windows are regarded as overlapping sheets of
paper stacked on a desk, then lowering a window is analogous to moving the sheet to the bottom
of the stack but leaving its x and y location on the desk constant. Lowering a mapped window
will generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest event, and
no processing is performed. Otherwise, the window is lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.
To circulate a subwindow up or down, use XCirculateSubwindows.

XCirculateSubwindows (display, w, direction)
Display *display;
Window w;
int direction;;

display Specifies the connection to the X server.
w Specifies the window.
direction Specifies the direction (up or down) that you want to circulate the window. You

can pass RaiseL.owest or LowerHighest.

The XCirculateSubwindows function circulates children of the specified window in the speci-
fied direction. If you specify RaiseLowest, XCirculateSubwindows raises the lowest mapped
child (if any) that is occluded by another child to the top of the stack. If you specify LowerHigh-
est, XCirculateSubwindows lowers the highest mapped child (if any) that occludes another
child to the bottom of the stack. Exposure processing is then performed on formerly obscured
windows. If some other client has selected SubstructureRedirectMask on the window, the X
server generates a CirculateRequest event, and no further processing is performed. If a child is
actually restacked, the X server generates a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded by another
child, use XCirculateSubwindowsUp.

51

Xlib — C Library X11, Release 6.7 DRAFT

XCirculateSubwindowsUp (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the specified window
that is partially or completely occluded by another child. Completely unobscured children are not
affected. This is a convenience function equivalent to XCirculateSubwindows with RaiseLow-
est specified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes another
child, use XCirculateSubwindowsDown.

XCirculateSubwindowsDown (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of the specified
window that partially or completely occludes another child. Completely unobscured children are
not affected. This is a convenience function equivalent to XCirculateSubwindows with Lower-
Highest specified.

XCirculateSubwindowsDown can generate a BadWindow error.
To restack a set of windows from top to bottom, use XRestackWindows.

XRestackWindows (display, windows, nwindows);
Display *display;
Window windows|];
int nwindows

display Specifies the connection to the X server.
windows Specifies an array containing the windows to be restacked.
nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top to bot-
tom. The stacking order of the first window in the windows array is unaffected, but the other win-
dows in the array are stacked underneath the first window, in the order of the array. The stacking
order of the other windows is not affected. For each window in the window array that is not a
child of the specified window, a BadMatch error results.

If the override-redirect attribute of a window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates ConfigureRequest events for

52

Xlib — C Library X11, Release 6.7 DRAFT

each window whose override-redirect flag is not set, and no further processing is performed. Oth-
erwise, the windows will be restacked in top-to-bottom order.

XRestackWindows can generate a BadWindow error.

3.9. Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeWindowAttributes
is the more general function that allows you to set one or more window attributes provided by the
XSetWindowAttributes structure. The other functions described in this section allow you to set
one specific window attribute, such as a window’s background.

To change one or more attributes for a given window, use XChangeWindowAttributes.

XChangeWindowAttributes (display, w, valuemask, attributes)
Display *display;
Window w;
unsigned long valuemask;
XSetWindowAttributes *attributes

display Specifies the connection to the X server.
w Specifies the window.
valuemask Specifies which window attributes are defined in the attributes argument. This

mask is the bitwise inclusive OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced. The values and restric-
tions are the same as for XCreateWindow.

attributes Specifies the structure from which the values (as specified by the value mask) are
to be taken. The value mask should have the appropriate bits set to indicate
which attributes have been set in the structure (see section 3.2).

Depending on the valuemask, the XChangeWindowAttributes function uses the window
attributes in the XSetWindowAfttributes structure to change the specified window attributes.
Changing the background does not cause the window contents to be changed. To repaint the win-
dow and its background, use XClearWindow. Setting the border or changing the background
such that the border tile origin changes causes the border to be repainted. Changing the back-
ground of a root window to None or ParentRelative restores the default background pixmap.
Changing the border of a root window to CopyFromParent restores the default border pixmap.
Changing the win-gravity does not affect the current position of the window. Changing the back-
ing-store of an obscured window to WhenMapped or Always, or changing the backing-planes,
backing-pixel, or save-under of a mapped window may have no immediate effect. Changing the
colormap of a window (that is, defining a new map, not changing the contents of the existing
map) generates a ColormapNotify event. Changing the colormap of a visible window may have
no immediate effect on the screen because the map may not be installed (see XInstallCol-
ormap). Changing the cursor of a root window to None restores the default cursor. Whenever
possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are maintained sepa-
rately. When an event is generated, it is reported to all interested clients. However, only one
client at a time can select for SubstructureRedirectMask, ResizeRedirectMask, and Button-
PressMask. If a client attempts to select any of these event masks and some other client has

53

Xlib — C Library X11, Release 6.7 DRAFT

already selected one, a BadAccess error results. There is only one do-not-propagate-mask for a
window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor, BadMatch,
BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBackground.

XSetWindowBackground (display, w, background_pixel)
Display *display;
Window w;
unsigned long background_pixel,

display Specifies the connection to the X server.
w Specifies the window.
background_pixel

Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the specified pixel
value. Changing the background does not cause the window contents to be changed. XSetWin-
dowBackground uses a pixmap of undefined size filled with the pixel value you passed. If you
try to change the background of an InputOnly window, a BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of a window to a given pixmap, use XSetWindowBackgroundPixmap.

XSetWindowBackgroundPixmap (display, w, background_pixmap)
Display *display;
Window w;
Pixmap background_pixmap;

display Specifies the connection to the X server.
w Specifies the window.
background_pixmap

Specifies the background pixmap, ParentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the window to
the specified pixmap. The background pixmap can immediately be freed if no further explicit ref-
erences to it are to be made. If ParentRelative is specified, the background pixmap of the win-
dow’s parent is used, or on the root window, the default background is restored. If you try to
change the background of an InputOnly window, a BadMatch error results. If the background
is set to None, the window has no defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and BadWindow
errors.

54

Xlib — C Library X11, Release 6.7 DRAFT

Note

XSetWindowBackground and XSetWindowBackgroundPixmap do not change
the current contents of the window.

To change and repaint a window’s border to a given pixel, use XSetWindowBorder .

XSetWindowBorder (display, w, border_pixel)

Display *display;

Window w;

unsigned long border_pixel;
display Specifies the connection to the X server.
w Specifies the window.

border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value you specify.
If you attempt to perform this on an InputOnly window, a BadMatch error results.

XSetWindowBorder can generate BadMatch and BadWindow errors.
To change and repaint the border tile of a given window, use XSetWindowBorderPixmap.

XSetWindowBorderPixmap (display, w, border_pixmap)
Display *display;
Window w;
Pixmap border_pixmap;

display Specifies the connection to the X server.
w Specifies the window.
border_pixmap

Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to the pixmap
you specify. The border pixmap can be freed immediately if no further explicit references to it
are to be made. If you specify CopyFromParent, a copy of the parent window’s border pixmap
is used. If you attempt to perform this on an InputOnly window, a BadMatch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadWindow errors.

To set the colormap of a given window, use XSetWindowColormap.

55

Xlib — C Library X11, Release 6.7 DRAFT

XSetWindowColormap (display, w, colormap)
Display *display;
Window w;
Colormap colormap;

display Specifies the connection to the X server.
w Specifies the window.
colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified window. The
colormap must have the same visual type as the window, or a BadMatch error results.

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow errors.
To define which cursor will be used in a window, use XDefineCursor.

XDefineCursor(display, w, cursor)
Display *display;
Window w;
Cursor cursor;

display Specifies the connection to the X server.
w Specifies the window.
cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is None, it is
equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.
To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor (display, w)
Display *display;
Window w;
display Specifies the connection to the X server.

w Specifies the window.

The XUndefineCursor function undoes the effect of a previous XDefineCursor for this win-
dow. When the pointer is in the window, the parent’s cursor will now be used. On the root win-
dow, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

56

Xlib — C Library X11, Release 6.7 DRAFT

Chapter 4

Window Information Functions

After you connect the display to the X server and create a window, you can use the Xlib window
information functions to:

. Obtain information about a window

. Translate screen coordinates

. Manipulate property lists

. Obtain and change window properties

. Manipulate selections

4.1. Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window tree, the win-
dow’s current attributes, the window’s current geometry, or the current pointer coordinates.
Because they are most frequently used by window managers, these functions all return a status to
indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window, use XQuery-
Tree.

Status XQueryTree(display, w, root_return, parent_return, children_return, nchildren_return)
Display *display;
Window w;
Window *root_return;
Window *parent_return;
Window **children_return;
unsigned int *nchildren_return;

display Specifies the connection to the X server.

w Specifies the window whose list of children, root, parent, and number of children
you want to obtain.

root_return Returns the root window.
parent_return Returns the parent window.

children_return
Returns the list of children.

nchildren_return
Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer to the list of chil-
dren windows (NULL when there are no children), and the number of children in the list for the
specified window. The children are listed in current stacking order, from bottom-most (first) to
top-most (last). XQueryTree returns zero if it fails and nonzero if it succeeds. To free a non-

57

Xlib - C Library X11, Release 6.7 DRAFT
NULL children list when it is no longer needed, use XFree.

XQueryTree can generate a BadWindow error.
To obtain the current attributes of a given window, use XGetWindowAttributes.

Status XGetWindowAttributes (display, w, window_attributes_return)
Display *display;
Window w;
XWindowAttributes *window_attributes_return;
display Specifies the connection to the X server.
w Specifies the window whose current attributes you want to obtain.

window_attributes_return
Returns the specified window’s attributes in the XWindowAttributes structure.

The XGetWindowAttributes function returns the current attributes for the specified window to
an XWindowA ttributes structure.

typedef struct {

intx, y;

int width, height;

int border_width;

int depth;

Visual *visual;

Window root;

int class;

int bit_gravity;

int win_gravity;

int backing_store;

unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;

Colormap colormap;

Bool map_installed;

int map_state;

long all_event_masks;

long your_event_mask;

long do_not_propagate_mask;
Bool override_redirect;
Screen *screen;

/* location of window */

/* width and height of window */

/* border width of window */

/* depth of window */

/* the associated visual structure */

/* root of screen containing window */

/* InputOutput, InputOnly*/

/* one of the bit gravity values */

/* one of the window gravity values */

/* NotUseful, WhenMapped, Always */

/* planes to be preserved if possible */

/* value to be used when restoring planes */
/* boolean, should bits under be saved? */

/* color map to be associated with window */
/* boolean, is color map currently installed*/
/* IsUnmapped, IsUnviewable, IsViewable */
/* set of events all people have interest in*/
/* my event mask */

/* set of events that should not propagate */
/* boolean value for override-redirect */

/* back pointer to correct screen */

} XWindowAttributes;

The x and y members are set to the upper-left outer corner relative to the parent window’s origin.
The width and height members are set to the inside size of the window, not including the border.
The border_width member is set to the window’s border width in pixels. The depth member is set
to the depth of the window (that is, bits per pixel for the object). The visual member is a pointer
to the screen’s associated Visual structure. The root member is set to the root window of the

58

Xlib — C Library X11, Release 6.7 DRAFT

screen containing the window. The class member is set to the window’s class and can be either
InputOutput or InputOnly.

The bit_gravity member is set to the window’s bit gravity and can be one of the following:

ForgetGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

The win_gravity member is set to the window’s window gravity and can be one of the following:

UnmapGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

For additional information on gravity, see section 3.2.3.

The backing_store member is set to indicate how the X server should maintain the contents of a
window and can be WhenMapped, Always, or NotUseful. The backing_planes member is set
to indicate (with bits set to 1) which bit planes of the window hold dynamic data that must be pre-
served in backing_stores and during save_unders. The backing_pixel member is set to indicate
what values to use for planes not set in backing_planes.

The save_under member is set to True or False. The colormap member is set to the colormap
for the specified window and can be a colormap ID or None. The map_installed member is set to
indicate whether the colormap is currently installed and can be True or False. The map_state
member is set to indicate the state of the window and can be IsUnmapped, IsUnviewable, or
IsViewable. IsUnviewable is used if the window is mapped but some ancestor is unmapped.

The all_event_masks member is set to the bitwise inclusive OR of all event masks selected on the
window by all clients. The your_event_mask member is set to the bitwise inclusive OR of all
event masks selected by the querying client. The do_not_propagate_mask member is set to the
bitwise inclusive OR of the set of events that should not propagate.

The override_redirect member is set to indicate whether this window overrides structure control
facilities and can be True or False. Window manager clients should ignore the window if this
member is True.

The screen member is set to a screen pointer that gives you a back pointer to the correct screen.
This makes it easier to obtain the screen information without having to loop over the root window
fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.

To obtain the current geometry of a given drawable, use XGetGeometry.

59

Xlib — C Library X11, Release 6.7 DRAFT

Status XGetGeometry (display, d, root_return, x_return, y_return, width_return,
height_return, border_width_return, depth_return)
Display *display;
Drawable d;
Window *root_return;
int *x_return, *y_return;
unsigned int *width_return, *height_return;
unsigned int *border_width_return;
unsigned int *depth_return;

display Specifies the connection to the X server.

d Specifies the drawable, which can be a window or a pixmap.

root_return Returns the root window.

X_return

y_return Return the x and y coordinates that define the location of the drawable. For a

window, these coordinates specify the upper-left outer corner relative to its par-
ent’s origin. For pixmaps, these coordinates are always zero.

width_return
height_return Return the drawable’s dimensions (width and height). For a window, these
dimensions specify the inside size, not including the border.

border_width_return
Returns the border width in pixels. If the drawable is a pixmap, it returns zero.

depth_return Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry of the drawable.
The geometry of the drawable includes the x and y coordinates, width and height, border width,
and depth. These are described in the argument list. It is legal to pass to this function a window
whose class is InputOnly.

XGetGeometry can generate a BadDrawable error.

4.2. Translating Screen Coordinates

Applications sometimes need to perform a coordinate transformation from the coordinate space of
one window to another window or need to determine which window the pointing device is in.
XTranslateCoordinates and XQueryPointer fulfill these needs (and avoid any race conditions)
by asking the X server to perform these operations.

To translate a coordinate in one window to the coordinate space of another window, use XTrans-
lateCoordinates.

60

Xlib — C Library X11, Release 6.7 DRAFT

Bool XTranslateCoordinates (display, src_w, dest_w, src_x, src_y, dest_x_return,
dest_y_return, child_return)
Display *display;
Window src_w, dest_w;
int src_x, src_y;
int *dest_x_return, *dest_y_return;
Window *child_return;

display Specifies the connection to the X server.

src_w Specifies the source window.

dest_w Specifies the destination window.

src_x

src_y Specify the x and y coordinates within the source window.

dest_x_return
dest_y_return Return the x and y coordinates within the destination window.

child_return ~ Returns the child if the coordinates are contained in a mapped child of the desti-
nation window.

If XTranslateCoordinates returns True, it takes the src_x and src_y coordinates relative to the
source window’s origin and returns these coordinates to dest_x_return and dest_y_return relative
to the destination window’s origin. If XTranslateCoordinates returns False, src_w and dest_w
are on different screens, and dest_x_return and dest_y_return are zero. If the coordinates are con-
tained in a mapped child of dest_w, that child is returned to child_return. Otherwise, child_return
is set to None.

XTranslateCoordinates can generate a BadWindow error.

To obtain the screen coordinates of the pointer or to determine the pointer coordinates relative to a
specified window, use XQueryPointer.

61

Xlib — C Library X11, Release 6.7 DRAFT

Bool XQueryPointer (display, w, root_return, child_return, root_x_return, root_y_return,
win_x_return, win_y_return, mask_return)
Display *display;
Window w;
Window *root_return, *child_return;
int *root_x_return, *root_y_return;
int *win_x_return, *win_y_return;
unsigned int *mask_return;

display Specifies the connection to the X server.
w Specifies the window.
root_return Returns the root window that the pointer is in.

child_return Returns the child window that the pointer is located in, if any.

root_x_return
root_y_return Return the pointer coordinates relative to the root window’s origin.

wWIin_x_return
win_y_return Return the pointer coordinates relative to the specified window.

mask_return Returns the current state of the modifier keys and pointer buttons.

The XQueryPointer function returns the root window the pointer is logically on and the pointer
coordinates relative to the root window’s origin. If XQueryPointer returns False, the pointer is
not on the same screen as the specified window, and XQueryPointer returns None to
child_return and zero to win_x_return and win_y_return. If XQueryPointer returns True, the
pointer coordinates returned to win_x_return and win_y_return are relative to the origin of the
specified window. In this case, XQueryPointer returns the child that contains the pointer, if any,
or else None to child_return.

XQueryPointer returns the current logical state of the keyboard buttons and the modifier keys in
mask_return. It sets mask_return to the bitwise inclusive OR of one or more of the button or
modifier key bitmasks to match the current state of the mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physical state if device
event processing is frozen (see section 12.1).

XQueryPointer can generate a BadWindow error.

4.3. Properties and Atoms

A property is a collection of named, typed data. The window system has a set of predefined prop-
erties (for example, the name of a window, size hints, and so on), and users can define any other
arbitrary information and associate it with windows. Each property has a name, which is an ISO
Latin-1 string. For each named property, a unique identifier (atom) is associated with it. A prop-
erty also has a type, for example, string or integer. These types are also indicated using atoms, so
arbitrary new types can be defined. Data of only one type may be associated with a single prop-
erty name. Clients can store and retrieve properties associated with windows. For efficiency rea-
sons, an atom is used rather than a character string. XInternAtom can be used to obtain the
atom for property names.

A property is also stored in one of several possible formats. The X server can store the informa-
tion as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This permits the X server to present
the data in the byte order that the client expects.

62

Xlib — C Library X11, Release 6.7 DRAFT

Note

If you define further properties of complex type, you must encode and decode them
yourself. These functions must be carefully written if they are to be portable. For
further information about how to write a library extension, see appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in this type
scheme.

Certain property names are predefined in the server for commonly used functions. The atoms for
these properties are defined in <X11/Xatom.h>. To avoid name clashes with user symbols, the
#define name for each atom has the XA_ prefix. For an explanation of the functions that let you
get and set much of the information stored in these predefined properties, see chapter 14.

The core protocol imposes no semantics on these property names, but semantics are specified in
other X Consortium standards, such as the Inter-Client Communication Conventions Manual and
the X Logical Font Description Conventions.

You can use properties to communicate other information between applications. The functions
described in this section let you define new properties and get the unique atom IDs in your appli-
cations.

Although any particular atom can have some client interpretation within each of the name spaces,
atoms occur in five distinct name spaces within the protocol:

. Selections

. Property names
. Property types
. Font properties

. Type of a ClientMessage event (none are built into the X server)

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

CUT_BUFFERO RESOURCE_MANAGER
CUT_BUFFER1 WM_CLASS
CUT_BUFFER2 WM_CLIENT_MACHINE
CUT_BUFFER3 WM_COLORMAP_WINDOWS
CUT_BUFFER4 WM_COMMAND
CUT_BUFFERS WM_HINTS
CUT_BUFFER6 WM_ICON_NAME
CUT_BUFFER7 WM_ICON_SIZE
RGB_BEST_MAP WM_NAME
RGB_BLUE_MAP WM_NORMAL_HINTS
RGB_DEFAULT_MAP WM_PROTOCOLS
RGB_GRAY_MAP WM_STATE
RGB_GREEN_MAP WM_TRANSIENT_FOR
RGB_RED_MAP WM_ZOOM_HINTS

63

Xlib — C Library X11, Release 6.7 DRAFT

The built-in property types are:

ARC POINT

ATOM RGB_COLOR_MAP
BITMAP RECTANGLE
CARDINAL STRING
COLORMAP VISUALID
CURSOR WINDOW
DRAWABLE WM_HINTS

FONT WM_SIZE_HINTS
INTEGER

PIXMAP

The built-in font property names are:

MIN_SPACE STRIKEOUT_DESCENT
NORM_SPACE STRIKEOUT_ASCENT
MAX_SPACE ITALIC_ANGLE
END_SPACE X_HEIGHT
SUPERSCRIPT_X QUAD_WIDTH
SUPERSCRIPT_Y WEIGHT
SUBSCRIPT_X POINT_SIZE
SUBSCRIPT_Y RESOLUTION
UNDERLINE_POSITION COPYRIGHT
UNDERLINE_THICKNESS NOTICE

FONT_NAME FAMILY_NAME
FULL_NAME CAP_HEIGHT

For further information about font properties, see section 8.5.
To return an atom for a given name, use XInternAtom.

Atom XlnternAtom (display, atom_name, only_if _exists)
Display *display;
char *atom_name;
Bool only_if exists;

display Specifies the connection to the X server.
atom_name Specifies the name associated with the atom you want returned.

only_if exists Specifies a Boolean value that indicates whether the atom must be created.

The XInternAtom function returns the atom identifier associated with the specified atom_name
string. If only_if_exists is False, the atom is created if it does not exist. Therefore, XInter-
nAtom can return None. If the atom name is not in the Host Portable Character Encoding, the
result is implementation-dependent. Uppercase and lowercase matter; the strings “‘thing”,
“Thing”, and “thinG™ all designate different atoms. The atom will remain defined even after the
client’s connection closes. It will become undefined only when the last connection to the X
server closes.

64

Xlib — C Library X11, Release 6.7 DRAFT

XInternAtom can generate BadAlloc and BadValue errors.
To return atoms for an array of names, use XInternAtoms.

Status XInternAtoms(display, names, count, only_if _exists, atoms_return)
Display *display;
char **names;
int count;
Bool only_if exists;
Atom *atoms_return;

display Specifies the connection to the X server.
names Specifies the array of atom names.
count Specifies the number of atom names in the array.

only_if exists Specifies a Boolean value that indicates whether the atom must be created.

atoms_return Returns the atoms.

The XInternAtoms function returns the atom identifiers associated with the specified names.
The atoms are stored in the atoms_return array supplied by the caller. Calling this function is
equivalent to calling XInternAtom for each of the names in turn with the specified value of
only_if_exists, but this function minimizes the number of round-trip protocol exchanges between
the client and the X server.

This function returns a nonzero status if atoms are returned for all of the names; otherwise, it
returns zero.

XInternAtoms can generate BadAlloc and BadValue errors.

To return a name for a given atom identifier, use XGetAtomName.

char *XGetAtomName (display, atom)
Display *display;

Atom atom;
display Specifies the connection to the X server.
atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified atom. If the data
returned by the server is in the Latin Portable Character Encoding, then the returned string is in
the Host Portable Character Encoding. Otherwise, the result is implementation-dependent. To
free the resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

To return the names for an array of atom identifiers, use XGetAtomNames.

65

Xlib — C Library X11, Release 6.7 DRAFT

Status XGetAtomNames (display, atoms, count, names_return)
Display *display;
Atom *atoms;
int count;
char **names_return,

display Specifies the connection to the X server.
atoms Specifies the array of atoms.
count Specifies the number of atoms in the array.

names_return Returns the atom names.

The XGetAtomNames function returns the names associated with the specified atoms. The
names are stored in the names_return array supplied by the caller. Calling this function is equiv-
alent to calling XGetAtomName for each of the atoms in turn, but this function minimizes the
number of round-trip protocol exchanges between the client and the X server.

This function returns a nonzero status if names are returned for all of the atoms; otherwise, it
returns zero.

XGetAtomNames can generate a BadAtom error.

4.4. Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a type, and a value
(see section 4.3). The value is an array of 8-bit, 16-bit, or 32-bit quantities, whose interpretation
is left to the clients. The type char is used to represent 8-bit quantities, the type short is used to
represent 16-bit quantities, and the type long is used to represent 32-bit quantities.

Xlib provides functions that you can use to obtain, change, update, or interchange window prop-
erties. In addition, Xlib provides other utility functions for inter-client communication (see chap-
ter 14).

To obtain the type, format, and value of a property of a given window, use XGetWindowProp-
erty.

66

Xlib — C Library X11, Release 6.7 DRAFT

int XGetWindowProperty (display, w, property, long_offset, long_length, delete, req_type,

actual_type_return, actual_format_return, nitems_return, bytes_after_return,
prop_return)

Display *display;

Window w;

Atom property;

long long_offset, long_length;

Bool delete;

Atom req_type;

Atom *actual_type_return;

int *actual_format_return;

unsigned long *nitems_return;

unsigned long *bytes_after_return;

unsigned char **prop_return;

display Specifies the connection to the X server.
w Specifies the window whose property you want to obtain.
property Specifies the property name.

long_offset Specifies the offset in the specified property (in 32-bit quantities) where the data
is to be retrieved.

long_length Specifies the length in 32-bit multiples of the data to be retrieved.

delete Specifies a Boolean value that determines whether the property is deleted.
req_type Specifies the atom identifier associated with the property type or AnyProperty-
Type.

actual_type_return
Returns the atom identifier that defines the actual type of the property.

actual_format_return
Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items stored in the
prop_return data.

bytes_after_return
Returns the number of bytes remaining to be read in the property if a partial read
was performed.

prop_return Returns the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the actual format of
the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the number of bytes remain-
ing to be read in the property; and a pointer to the data actually returned. XGetWindowProp-
erty sets the return arguments as follows:

. If the specified property does not exist for the specified window, XGetWindowProperty
returns None to actual_type_return and the value zero to actual_format_return and
bytes_after_return. The nitems_return argument is empty. In this case, the delete argument
is ignored.

. If the specified property exists but its type does not match the specified type, XGetWin-
dowProperty returns the actual property type to actual_type_return, the actual property
format (never zero) to actual_format_return, and the property length in bytes (even if the

67

Xlib — C Library X11, Release 6.7 DRAFT

actual_format_return is 16 or 32) to bytes_after_return. It also ignores the delete argument.
The nitems_return argument is empty.

. If the specified property exists and either you assign AnyPropertyType to the req_type
argument or the specified type matches the actual property type, XGetWindowProperty
returns the actual property type to actual_type_return and the actual property format (never
zero) to actual_format_return. It also returns a value to bytes_after_return and
nitems_return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)
I=4 * long_offset

T=N-1I
L = MINIMUM(T, 4 * long_length)
A=N-(I+L)

The returned value starts at byte index I in the property (indexing from zero), and its length
in bytes is L. If the value for long_offset causes L to be negative, a BadValue error results.
The value of bytes_after_return is A, giving the number of trailing unread bytes in the
stored property.

If the returned format is 8, the returned data is represented as a char array. If the returned format
is 16, the returned data is represented as a short array and should be cast to that type to obtain the
elements. If the returned format is 32, the returned data is represented as a long array and should
be cast to that type to obtain the elements.

XGetWindowProperty always allocates one extra byte in prop_return (even if the property is
zero length) and sets it to zero so that simple properties consisting of characters do not have to be
copied into yet another string before use.

If delete is True and bytes_after_return is zero, XGetWindowProperty deletes the property
from the window and generates a PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data, use XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadWindow errors.
To obtain a given window’s property list, use XListProperties.

Atom *XListProperties (display, w, num_prop_return)
Display *display;
Window w;
int *num_prop_return;
display Specifies the connection to the X server.
w Specifies the window whose property list you want to obtain.

num_prop_return
Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that are defined for
the specified window or returns NULL if no properties were found. To free the memory allocated
by this function, use XFree.

XListProperties can generate a BadWindow error.

68

Xlib — C Library X11, Release 6.7 DRAFT

To change a property of a given window, use XChangeProperty.

XChangeProperty (display, w, property, type, format, mode, data, nelements)
Display *display;
Window w;
Atom property, type;
int format;
int mode
unsigned char *data;
int nelements;

display Specifies the connection to the X server.

w Specifies the window whose property you want to change.

property Specifies the property name.

type Specifies the type of the property. The X server does not interpret the type but
simply passes it back to an application that later calls XGetWindowProperty .

format Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit

quantities. Possible values are 8, 16, and 32. This information allows the X
server to correctly perform byte-swap operations as necessary. If the format is
16-bit or 32-bit, you must explicitly cast your data pointer to an (unsigned char *)
in the call to XChangeProperty.

mode Specifies the mode of the operation. You can pass PropModeReplace, Prop-
ModePrepend, or PropModeAppend.

data Specifies the property data.

nelements Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified window and causes the X
server to generate a PropertyNotify event on that window. XChangeProperty performs the fol-
lowing:

. If mode is PropModeReplace, XChangeProperty discards the previous property value
and stores the new data.

. If mode is PropModePrepend or PropModeAppend, XChangeProperty inserts the
specified data before the beginning of the existing data or onto the end of the existing data,
respectively. The type and format must match the existing property value, or a BadMatch
error results. If the property is undefined, it is treated as defined with the correct type and
format with zero-length data.

If the specified format is 8, the property data must be a char array. If the specified format is 16,
the property data must be a short array. If the specified format is 32, the property data must be a
long array.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until the server resets. For a discussion of what hap-
pens when the connection to the X server is closed, see section 2.6. The maximum size of a prop-
erty is server dependent and can vary dynamically depending on the amount of memory the server
has available. (If there is insufficient space, a BadAlloc error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue, and BadWin-
dow errors.

69

Xlib — C Library X11, Release 6.7 DRAFT

To rotate a window’s property list, use XRotateWindowProperties.

XRotateWindowProperties (display, w, properties, num_prop, npositions)
Display *display;
Window w;
Atom properties|[];
int num_prop;
int npositions;

display Specifies the connection to the X server.

w Specifies the window.

properties Specifies the array of properties that are to be rotated.
num_prop Specifies the length of the properties array.
npositions Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a window and
causes the X server to generate PropertyNotify events. If the property names in the properties
array are viewed as being numbered starting from zero and if there are num_prop property names
in the list, then the value associated with property name I becomes the value associated with prop-
erty name (I + npositions) mod N for all I from zero to N — 1. The effect is to rotate the states by
npositions places around the virtual ring of property names (right for positive npositions, left for
negative npositions). If npositions mod N is nonzero, the X server generates a PropertyNotify
event for each property in the order that they are listed in the array. If an atom occurs more than
once in the list or no property with that name is defined for the window, a BadMatch error
results. If a BadAtom or BadMatch error results, no properties are changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and BadWindow errors.
To delete a property on a given window, use XDeleteProperty.

XDeleteProperty (display, w, property)
Display *display;
Window w;
Atom property;
display Specifies the connection to the X server.
w Specifies the window whose property you want to delete.

property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was defined on
the specified window and causes the X server to generate a PropertyNotify event on the window
unless the property does not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

4.5. Selections

Selections are one method used by applications to exchange data. By using the property mecha-
nism, applications can exchange data of arbitrary types and can negotiate the type of the data. A
selection can be thought of as an indirect property with a dynamic type. That is, rather than

70

Xlib — C Library X11, Release 6.7 DRAFT

having the property stored in the X server, the property is maintained by some client (the owner).
A selection is global in nature (considered to belong to the user but be maintained by clients)
rather than being private to a particular window subhierarchy or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selections. This
allows applications to implement the notion of current selection, which requires that notification
be sent to applications when they no longer own the selection. Applications that support selection
often highlight the current selection and so must be informed when another application has
acquired the selection so that they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target type. This target
type can be used to control the transmitted representation of the contents. For example, if the
selection is “‘the last thing the user clicked on” and that is currently an image, then the target type
might specify whether the contents of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for example, asking
for the “looks”™ (fonts, line spacing, indentation, and so forth) of a paragraph selection, not the
text of the paragraph. The target type can also be used for other purposes. The protocol does not
constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner (display, selection, owner, time)
Display *display;
Atom selection;
Window owner;

Time time;
display Specifies the connection to the X server.
selection Specifies the selection atom.
owner Specifies the owner of the specified selection atom. You can pass a window or
None.
time Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetSelectionOwner function changes the owner and last-change time for the specified
selection and has no effect if the specified time is earlier than the current last-change time of the
specified selection or is later than the current X server time. Otherwise, the last-change time is
set to the specified time, with CurrentTime replaced by the current server time. If the owner
window is specified as None, then the owner of the selection becomes None (that is, no owner).
Otherwise, the owner of the selection becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner of the selection
and the current owner is not None, the current owner is sent a SelectionClear event. If the client
that is the owner of a selection is later terminated (that is, its connection is closed) or if the owner
window it has specified in the request is later destroyed, the owner of the selection automatically
reverts to None, but the last-change time is not affected. The selection atom is uninterpreted by
the X server. XGetSelectionOwner returns the owner window, which is reported in Selection-
Request and SelectionClear events. Selections are global to the X server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.

To return the selection owner, use XGetSelectionOwner.

71

Xlib — C Library X11, Release 6.7 DRAFT

Window XGetSelectionOwner (display, selection)
Display *display;
Atom selection;;

display Specifies the connection to the X server.

selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the window ID associated with the window that cur-
rently owns the specified selection. If no selection was specified, the function returns the constant
None. If None is returned, there is no owner for the selection.

XGetSelectionOwner can generate a BadAtom error.
To request conversion of a selection, use XConvertSelection.

XConvertSelection(display, selection, target, property, requestor, time)
Display *display;
Atom selection, target;

Atom property;
Window requestor;
Time time;
display Specifies the connection to the X server.
selection Specifies the selection atom.
target Specifies the target atom.
property Specifies the property name. You also can pass None.
requestor Specifies the requestor.
time Specifies the time. You can pass either a timestamp or CurrentTime.

XConvertSelection requests that the specified selection be converted to the specified target type:

. If the specified selection has an owner, the X server sends a SelectionRequest event to that
owner.
. If no owner for the specified selection exists, the X server generates a SelectionNotify

event to the requestor with property None.

The arguments are passed on unchanged in either of the events. There are two predefined selec-
tion atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

72

Xlib — C Library X11, Release 6.7 DRAFT

Chapter 5

Pixmap and Cursor Functions

Once you have connected to an X server, you can use the Xlib functions to:
. Create and free pixmaps

. Create, recolor, and free cursors

5.1. Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are off-screen
resources that are used for various operations, such as defining cursors as tiling patterns or as the
source for certain raster operations. Most graphics requests can operate either on a window or on
a pixmap. A bitmap is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pixmap XCreatePixmap (display, d, width, height, depth)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int depth;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width

height Specify the width and height, which define the dimensions of the pixmap.
depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you specified and
returns a pixmap ID that identifies it. It is valid to pass an InputOnly window to the drawable
argument. The width and height arguments must be nonzero, or a BadValue error results. The
depth argument must be one of the depths supported by the screen of the specified drawable, or a
BadValue error results.

The server uses the specified drawable to determine on which screen to create the pixmap. The
pixmap can be used only on this screen and only with other drawables of the same depth (see
XCopyPlane for an exception to this rule). The initial contents of the pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, use XFreePixmap.

73

Xlib — C Library X11, Release 6.7 DRAFT

XFreePixmap (display, pixmap)
Display *display;

Pixmap pixmap;
display Specifies the connection to the X server.
pixmap Specifies the pixmap.

The XFreePixmap function first deletes the association between the pixmap ID and the pixmap.
Then, the X server frees the pixmap storage when there are no references to it. The pixmap
should never be referenced again.

XFreePixmap can generate a BadPixmap error.

5.2. Creating, Recoloring, and Freeing Cursors

Each window can have a different cursor defined for it. Whenever the pointer is in a visible win-
dow, it is set to the cursor defined for that window. If no cursor was defined for that window, the
cursor is the one defined for the parent window.

From X’s perspective, a cursor consists of a cursor source, mask, colors, and a hotspot. The mask
pixmap determines the shape of the cursor and must be a depth of one. The source pixmap must
have a depth of one, and the colors determine the colors of the source. The hotspot defines the
point on the cursor that is reported when a pointer event occurs. There may be limitations
imposed by the hardware on cursors as to size and whether a mask is implemented.
XQueryBestCursor can be used to find out what sizes are possible. There is a standard font for
creating cursors, but Xlib provides functions that you can use to create cursors from an arbitrary
font or from bitmaps.

To create a cursor from the standard cursor font, use XCreateFontCursor.

#include <X11/cursorfont.h>

Cursor XCreateFontCursor (display, shape)
Display *display;
unsigned int shape;
display Specifies the connection to the X server.

shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applications are
encouraged to use this interface for their cursors because the font can be customized for the indi-
vidual display type. The shape argument specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors of a cursor
are a black foreground and a white background (see XRecolorCursor). For further information
about cursor shapes, see appendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.

To create a cursor from font glyphs, use XCreateGlyphCursor.

74

Xlib — C Library X11, Release 6.7 DRAFT

Cursor XCreateGlyphCursor (display, source_font, mask_font, source_char, mask_char,
foreground_color, background_color)
Display *display;
Font source_font, mask_font;
unsigned int source_char, mask_char;
XColor *foreground_color;
XColor *background_color;

display Specifies the connection to the X server.
source_font Specifies the font for the source glyph.
mask_font Specifies the font for the mask glyph or None.
source_char Specifies the character glyph for the source.
mask_char Specifies the glyph character for the mask.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except that the source
and mask bitmaps are obtained from the specified font glyphs. The source_char must be a
defined glyph in source_font, or a BadValue error results. If mask_font is given, mask_char
must be a defined glyph in mask_font, or a BadValue error results. The mask_font and character
are optional. The origins of the source_char and mask_char (if defined) glyphs are positioned
coincidently and define the hotspot. The source_char and mask_char need not have the same
bounding box metrics, and there is no restriction on the placement of the hotspot relative to the
bounding boxes. If no mask_char is given, all pixels of the source are displayed. You can free
the fonts immediately by calling XFreeFont if no further explicit references to them are to be
made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel member in the most sig-
nificant byte and the byte2 member in the least significant byte.
XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

To create a cursor from two bitmaps, use XCreatePixmapCursor.

75

Xlib — C Library X11, Release 6.7 DRAFT

Cursor XCreatePixmapCursor (display, source, mask, foreground_color, background_color, x, y)
Display *display;
Pixmap source;
Pixmap mask;
XColor *foreground_color;
XColor *background_color;
unsigned int x, y;

display Specifies the connection to the X server.
source Specifies the shape of the source cursor.
mask Specifies the cursor’s source bits to be displayed or None.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

y Specify the x and y coordinates, which indicate the hotspot relative to the
source’s origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID associated with
it. The foreground and background RGB values must be specified using foreground_color and
background_color, even if the X server only has a StaticGray or GrayScale screen. The fore-
ground color is used for the pixels set to 1 in the source, and the background color is used for the
pixels set to 0. Both source and mask, if specified, must have depth one (or a BadMatch error
results) but can have any root. The mask argument defines the shape of the cursor. The pixels set
to 1 in the mask define which source pixels are displayed, and the pixels set to O define which pix-
els are ignored. If no mask is given, all pixels of the source are displayed. The mask, if present,
must be the same size as the pixmap defined by the source argument, or a BadMatch error
results. The hotspot must be a point within the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limitations. The
pixmaps can be freed immediately if no further explicit references to them are to be made. Sub-
sequent drawing in the source or mask pixmap has an undefined effect on the cursor. The X
server might or might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.

To determine useful cursor sizes, use XQueryBestCursor.

76

Xlib — C Library X11, Release 6.7 DRAFT

Status XQueryBestCursor (display, d, width, height, width_return, height_return)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

d Specifies the drawable, which indicates the screen.

width

height Specify the width and height of the cursor that you want the size information for.

width_return
height_return Return the best width and height that is closest to the specified width and height.

Some displays allow larger cursors than other displays. The XQueryBestCursor function pro-
vides a way to find out what size cursors are actually possible on the display. It returns the largest
size that can be displayed. Applications should be prepared to use smaller cursors on displays
that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.
To change the color of a given cursor, use XRecolorCursor.

XRecolorCursor (display, cursor, foreground_color, background_color)
Display *display;
Cursor cursor;
XColor *foreground_color, *background_color;

display Specifies the connection to the X server.

cursor Specifies the cursor.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor, and if the cursor is
being displayed on a screen, the change is visible immediately. The pixel members of the
XColor structures are ignored; only the RGB values are used.

XRecolorCursor can generate a BadCursor error.

To free (destroy) a given cursor, use XFreeCursor.

77

Xlib — C Library X11, Release 6.7 DRAFT

XFreeCursor(display, cursor)
Display *display;
Cursor cursor:;

display Specifies the connection to the X server.

cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource ID and the speci-
fied cursor. The cursor storage is freed when no other resource references it. The specified cursor
ID should not be referred to again.

XFreeCursor can generate a BadCursor error.

78

Xlib — C Library X11, Release 6.7 DRAFT

Chapter 6

Color Management Functions

Each X window always has an associated colormap that provides a level of indirection between
pixel values and colors displayed on the screen. Xlib provides functions that you can use to
manipulate a colormap. The X protocol defines colors using values in the RGB color space. The
RGB color space is device dependent; rendering an RGB value on differing output devices typi-
cally results in different colors. Xlib also provides a means for clients to specify color using
device-independent color spaces for consistent results across devices. Xlib supports device-inde-
pendent color spaces derivable from the CIE XYZ color space. This includes the CIE XYZ, xyY,
L*u*v*, and L*a*b* color spaces as well as the TekHVC color space.

This chapter discusses how to:

. Create, copy, and destroy a colormap
. Specify colors by name or value

. Allocate, modify, and free color cells
. Read entries in a colormap

. Convert between color spaces

. Control aspects of color conversion

. Query the color gamut of a screen

. Add new color spaces

All functions, types, and symbols in this chapter with the prefix “Xcms” are defined in
<X11/Xcms.h>. The remaining functions and types are defined in <X11/Xlib.h>.

Functions in this chapter manipulate the representation of color on the screen. For each possible
value that a pixel can take in a window, there is a color cell in the colormap. For example, if a
window is 4 bits deep, pixel values O through 15 are defined. A colormap is a collection of color
cells. A color cell consists of a triple of red, green, and blue (RGB) values. The hardware
imposes limits on the number of significant bits in these values. As each pixel is read out of dis-
play memory, the pixel is looked up in a colormap. The RGB value of the cell determines what
color is displayed on the screen. On a grayscale display with a black-and-white monitor, the val-
ues are combined to determine the brightness on the screen.

Typically, an application allocates color cells or sets of color cells to obtain the desired colors.
The client can allocate read-only cells. In which case, the pixel values for these colors can be
shared among multiple applications, and the RGB value of the cell cannot be changed. If the
client allocates read/write cells, they are exclusively owned by the client, and the color associated
with the pixel value can be changed at will. Cells must be allocated (and, if read/write, initialized
with an RGB value) by a client to obtain desired colors. The use of pixel value for an unallocated
cell results in an undefined color.

Because colormaps are associated with windows, X supports displays with multiple colormaps
and, indeed, different types of colormaps. If there are insufficient colormap resources in the dis-
play, some windows will display in their true colors, and others will display with incorrect colors.
A window manager usually controls which windows are displayed in their true colors if more
than one colormap is required for the color resources the applications are using. At any time,

79

Xlib — C Library X11, Release 6.7 DRAFT

there is a set of installed colormaps for a screen. Windows using one of the installed colormaps
display with true colors, and windows using other colormaps generally display with incorrect col-
ors. You can control the set of installed colormaps by using XInstallColormap and XUninstall-
Colormap.

Colormaps are local to a particular screen. Screens always have a default colormap, and pro-
grams typically allocate cells out of this colormap. Generally, you should not write applications
that monopolize color resources. Although some hardware supports multiple colormaps installed
at one time, many of the hardware displays built today support only a single installed colormap,
so the primitives are written to encourage sharing of colormap entries between applications.

The DefaultColormap macro returns the default colormap. The DefaultVisual macro returns
the default visual type for the specified screen. Possible visual types are StaticGray,
GrayScale, StaticColor, PseudoColor, TrueColor, or DirectColor (see section 3.1).

6.1. Color Structures

Functions that operate only on RGB color space values use an XColor structure, which contains:

typedef struct {

unsigned long pixel; /* pixel value */
unsigned short red, green, blue; /* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;
} XColor;

The red, green, and blue values are always in the range 0 to 65535 inclusive, independent of the
number of bits actually used in the display hardware. The server scales these values down to the
range used by the hardware. Black is represented by (0,0,0), and white is represented by
(65535,65535,65535). In some functions, the flags member controls which of the red, green, and
blue members is used and can be the inclusive OR of zero or more of DoRed, DoGreen, and
DoBlue.

Functions that operate on all color space values use an XemsColor structure. This structure con-
tains a union of substructures, each supporting color specification encoding for a particular color
space. Like the XColor structure, the XemsColor structure contains pixel and color specifica-
tion information (the spec member in the XcmsColor structure).

80

Xlib — C Library X11, Release 6.7 DRAFT

typedef unsigned long XcmsColorFormat;/* Color Specification Format */

typedef struct {
union {
XcmsRGB RGB;
XcmsRGBi RGBi;
XemsCIEXYZ CIEXYZ;
XcmsCIEuvY CIEuvY;
XemsCIExyY CIExyY;
XcmsCIELab CIELab;
XcmsCIELuv CIELuv;
XcmsTekHVC TekHVC;
XcmsPad Pad;
} spec;
unsigned long pixel;
XcmsColorFormat format;
} XcmsColor; /* Xcms Color Structure */

Because the color specification can be encoded for the various color spaces, encoding for the spec
member is identified by the format member, which is of type XemsColorFormat. The following
macros define standard formats.

#define XcmsUndefinedFormat 0x00000000

#define XcmsCIEXYZFormat 0x00000001 /* CIE XYZ */
#define XcmsCIEuvYFormat 0x00000002 /*CIEu V'Y */
#define XcmsCIExyYFormat 0x00000003 /* CIE xyY */
#define XcmsCIELabFormat 0x00000004 /* CIE L*a*b* */
#define XcmsCIELuvFormat 0x00000005 /* CIE L*u*v* */
#define XcmsTekHV CFormat 0x00000006 /* TekHVC */
#define XcmsRGBFormat 0x80000000 /* RGB Device */
#define XcmsRGBiFormat 0x80000001 /* RGB Intensity */

Formats for device-independent color spaces are distinguishable from those for device-dependent
spaces by the 32nd bit. If this bit is set, it indicates that the color specification is in a device-
dependent form; otherwise, it is in a device-independent form. If the 31st bit is set, this indicates
that the color space has been added to Xlib at run time (see section 6.12.4). The format value for
a color space added at run time may be different each time the program is executed. If references
to such a color space must be made outside the client (for example, storing a color specification in
a file), then reference should be made by color space string prefix (see XcmsFormatOfPrefix
and XcmsPrefixOfFormat).

Data types that describe the color specification encoding for the various color spaces are defined
as follows:

81

Xlib - C Library

typedef double XcmsFloat;

typedef struct {
unsigned short red;

unsigned short green;

unsigned short blue;
} XcmsRGB;

typedef struct {
XcmsFloat red;
XcmsFloat green;
XcmsFloat blue;
} XcmsRGB4;

typedef struct {
XcmsFloat X;
XcmsFloat Y;
XcmsFloat Z;
} XcmsCIEXYZ;

typedef struct {
XcmsFloat u_prime;
XcmsFloat v_prime;
XcmsFloat Y;

} XemsCIEuvY;

typedef struct {
XcmsFloat x;
XcmsFloat y;
XcmsFloat Y;
} XemsCIExyY;

typedef struct {
XcmsFloat L_star;
XcmsFloat a_star;
XcmsFloat b_star;
} XcmsCIELab;

typedef struct {
XcmsFloat L_star;
XcmsFloat u_star;
XcmsFloat v_star;
} XcmsCIELuv;

typedef struct {
XcmsFloat H;
XcmsFloat V;

/* 0x0000 to Oxffff */
/* 0x0000 to Oxffff */
/* 0x0000 to Oxffff */
/* RGB Device */

/#0.0 to 1.0 */
/#0.0 to 1.0 */
/#0.0 to 1.0 */
/* RGB Intensity */

/0.0to 1.0 */

/* CIE XYZ */

/%0.0t0 70.6 */
/*%0.0 to 70.6 */
/%0.0to 1.0 */

/*CIEuwv’'Y */

/%0.0to .75 */
/%0.0to ~.85 */
/%0.0to 1.0 */
/* CIE xyY */

/*#0.0 to 100.0 */

/* CIE L*a*b* */

/%0.0 to 100.0 */

/* CIE L*u*v* */

/%0.0 to 360.0 */
/% 0.0 to 100.0 */

82

X11, Release 6.7 DRAFT

Xlib — C Library X11, Release 6.7 DRAFT

XcmsFloat C; /0.0 to 100.0 */
} XemsTekHVC; /* TekHVC */

typedef struct {
XcmsFloat padO;
XcmsFloat padl;
XcmsFloat pad2;
XcmsFloat pad3;
} XcmsPad; /* four doubles */

The device-dependent formats provided allow color specification in:
. RGB Intensity (XemsRGBi)

Red, green, and blue linear intensity values, floating-point values from 0.0 to 1.0, where 1.0
indicates full intensity, 0.5 half intensity, and so on.

. RGB Device (XemsRGB)

Red, green, and blue values appropriate for the specified output device. XecmsRGB values
are of type unsigned short, scaled from 0 to 65535 inclusive, and are interchangeable with