
This is the JavaMail 0.4 API specification.

It describes features and architecture for the JavaMail API.

Please send feedback tojavamail@sun.com

Sun Microsystems, Inc

JavaMail API Specification

Version 0.4

Oct 20, 1997

Java Mail 0.4

JavaMail

JavaSoft ii 10/16/97

Copyright © 1997 by Sun Microsystems Inc.

2550 Garcia Avenue, Mountain View, CA 94043.

All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of Sun Micro-
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.,
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Table Of Contents

1. Introduction 1

2. Goals and Design Principles 3

3. Architectural Overview 5

4. The Message Class 9

5. The Mail Session 17

6. Message Storage And Retrieval 21

7. Message Composition 29

8. Transport Protocols and Mechanisms 33

9. The Data Typing Framework 37

10. Internet Mail 41

A. Environment Properties 47

B. Examples Using the Mail API 49

B.1 Example: The Basic Store Access Operation 49

B.2 Example : Listing Folders 52

B.3 Example: Copy or Move a Message Between Folders 53

B.4 Example: Folder Search 54

B.5 Example: Creating and Sending an RFC822 Message 55

B.6 Example: Creating and Sending a MIME Multipart Message 56

iv Book Title • Month 1996

C. Message Security 59

C.1 Overview 59

C.1.1 Displaying an Encryted/Signed Message 59

C.1.2 MultiPartEncrypted/Signed Classes 59

C.1.3 Reading the Contents 60

C.1.4 Verifying Signatures 60

C.1.5 Creating a Message 61

C.1.5.1 Encrypted/Signed 61

D. Part and Multipart Class Diagram 63

E. MimeMessage Object Hierarchy 65

Chapter 1 Introduction 1-1

1

Introduction

In early 1995, the prerelease version of the Java programming language took the computer world by
storm. A platform-independent language with syntax similar to C and C++ and including an extensive class
library, interested developers widely downloaded the JDK from the Sun web site and applied it to thousands
of programming tasks, large and small. Java worked.

In the two years since Java’s first release, Java has matured to become a complete platform. Java now can
provide a complete operating system, a distributed computing with RMI and the CORBA bridge, and a
component architecture including JavaBeans, the server toolkit, and the WebTop environment. Having
proven successful, many Java-based applications have matured with the language, and now require a Java-
based mail and messaging framework. The Java Mail API described in this specification answers that
requirement.

The Java Mail API provides a set of abstract classes defining objects which comprise a mail system. The
API defines classes like Message, Store and Transport. The API is designed to be extended and can be
subclassed to provide new protocols and functions, when necessary. In addition, the API provides subclasses
of the abstract objects that can be considered a part of the Java Mail package. These subclasses (including
MimeMessage and MimeBodyPart) implement widely-used Internet mail protocols and specifications
(RFC822, RFC2045) and are ready to be used in application development.

1.1 Target Audience
The JavaMail API is designed to serve several audiences:

• Developers interested in building Java-based mail and messaging applications,
whether client, server or middleware.

• Application developers who want to “mail-enable” their applications.
• Service Providers who want to implement specific protocol implementations. For

example; a telecommunications company can use the Java Mail API to implement a
PAGERTransport protocol, which sends mail messages to alphanumeric pagers.

1-2 Book Title • Month 1997

1.2 Acknowledgments
The authors of this specification are John Mani, Bill Shannon, Max Spivak, Kapono Carter and Chris Cotton.

We would like to acknowledge the following people for their comments and feedback on the initial drafts of
this document:

Terry Cline and Bill Yeager, Sun Microsystems.
Arn Perkins and John Ragan, Novell, Inc.
Nick Shelness, Lotus Developement Corporation.
Juerg von Kanel, IBM Corporation.
Prasad Yendluri, Jamie Zawinski, Terry Weissman and Gena Cunanan, Netscape Communications
Corporation.

Chapter 2 Goals and Design Principles 2-3

2

Goals and Design Principles

The Java Mail API must satisfy a wide range of needs - from allowing simple applications to be "mail
enabled" easily, to enabling the creation of sophisticated mail user interfaces. The API must be easy to learn
and begin to use. The API must include appropriate convenience classes, which encapsulate common mail
functions and protocols. Integration with other parts of the Java platform also makes it easier to use the Java
Mail API in combination with other Java APIs.

The Java Mail API is therefore designed to satisfy the following development and runtime requirements:

• Simple, straightforward class design is easy for a developer to learn and implement.

• Use of familiar concepts and mechanisms support code development that interfaces well with other
Java APIs.

• Lightweight classes and interfaces make it easy to enable any application to handle basic mail-
handling tasks.

• Also supports the development of robust, transport-intensive networking applications which can
handle a variety of complex mail message formats.

The Java Mail API strikes the right balance between simplicity and sophistication. It draws heavily from
IMAP, MAPI, CMC, c-client and other messaging system APIs - many of the concepts present in these
other systems are also present in the Java Mail API. The Java Mail API is familiar to users of these other
systems. The Java Mail API is simpler to use, however; because it uses Java language features not available
to these other APIs, and because it uses the Java object model to shelter applications from implementation
complexity.

Java Mail API design is driven by the needs of the applications it supports - but it is also important to
consider the needs of API implementors. It is critically important to enable the implementation of Java-
based messaging systems that interoperate with existing messaging systems-- especially Internet mail. It is
also important to anticipate the development of new messaging systems. The Java Mail API needs to
conform to current standards while not being so constrained by current standards that it stifles future
innovation.

The Java Mail API supports many different messaging system implementations - different message stores,
different message formats, different message transports. The Java Mail API provides a set of base classes

2-4 JavaMail API Specification • October 1997

and interfaces that define the API for client applications. Many simple applications will only need to interact
with the messaging system through these base classes and interfaces.

Java Mail subclasses can expose additional messaging system features. For instance, the InternetMessage
subclass exposes and implements common characteristics of an Internet mail message, as defined by
RFC822 and MIME and other Internet standards. JavaMail base classes can be further subclassed to provide
the implementations of particular messaging systems, such as IMAP4, POP3, and SMTP.

The base Java Mail classes include many of the convenience APIs that simplify their use. The
implementation subclasses of the Java Mail API is therefore not required to provide implementations for all
of the Java Mail API, and is left to concentrate on the core classes that provide the required functionality for
that implementation.

Alternately, a messaging system can choose to implement all of the Java Mail API directly, allowing it to
take advantage of performance optimizations possible, perhaps through use of "batched" protocol requests.
The IMAP4 protocol implementation takes advantage of this approach.

The Java Mail API uses the Java language to good effect to strike a balance between simplicity and
sophistication. Simple tasks are easy, and sophisticated functionality is possible.

Chapter 3 Architectural Overview 3-5

3

Architectural Overview

This Section describes the JavaMail architecture.

This Specification defines an interface to a messaging system, including system components and interfaces.
It does not define any implementation. However; the JavaMail API includes a package that implements
RFC822 and MIME Internet messaging standards and protocols, and can be considered part of the JavaMail
class package.

The JavaMail architectural components are layered as shown below:

Clients use the Mail API and Service Providers implement the API. The layered design architecture allows
clients to use the same JavaMail API calls to send, receive and store a variety of messages using different
data-types, from different message stores, and using different message transport protocols.

3.1 The JavaMail Framework
This figure illustrates the JavaMail Architecture framework.

Mail Abstract API layer

Mail GUI Beans

Client Applications

Internet Mail

IMAP / POP3 / NNTP implementations

3-6 JavaMail API Specification • October 1997

The framework supports all the key operations of a typical messaging system:

• Storing and retrieving messages

• Composing and sending messages

• Transporting messages

Note: This framework does not support a message delivery function.

The JavaMail framework also does not define Security, Disconnected operation, Directory services or Filter
functionality. Security, Disconnected operation and Filtering support will be added in future releases.

3.2 Major JavaMail API Components
This Section reviews the major components comprising the JavaMail architecture.

3.2.1 The Message Class
Message is an abstract class implementing the Part interface. Message defines a set of standard attributes used as
message headers, and a content block. Defined attributes include the sender and recipient addresses, structural
information about the Message, and the content-type of the Message body. The JavaMail API also provides
Message subclasses which support specific messaging implementations.

MESSAGE

STORE

FOLDER

MESSAGE

TRANSPORT

Network Infrastructure

Message
delivery

Contains
Folders

Contains
MessagesMessage

Sending

Message
delivery

Chapter 3 Architectural Overview 3-7

interacts with its content though an intermediate layer -the DataTyping framework. Separating content
from its formatting information allows a Message object to handle any arbitrary content and to transmit it
using any appropriate transmission protocol, by using calls to the same API methods. The Message recipient
usually knows the content data type and format, and knows how to handle that content.

The JavaMail API also supports multipart Message objects, where each Message part defines its own set of
attributes and content.

3.2.2 Message Storage and Retrieval
Messages are stored in Folder objects. A Folder can contain subfolders in addition to messages, thus
providing a tree-like folder hierarchy. The Folder class declares methods which fetch, append, copy and
delete Messages. Folder can also fire events to components registered as event listeners.

The Store class defines a database that holds a folder hierarchy together with its messages. The Store also
specifies theaccess protocol which accesses folders and retrieves messages stored in folders. Store also
provides methods to establish a connection to the database, to fetch Folders and to destroy a transport
connection. Service providers implementing Message Access protocols (IMAP4, POP3 etc.) start off by
subclassing Store. A user typically starts a session with the Mail system by connecting to a particular Store
implementation.

3.2.3 Message Composition and Transport
A client creates new Message by instantiating an appropriate Message subclass. It sets attributes like the
recipient addresses and Subject, and then inserts content into the Message object. Finally, it sends the
Message by invoking it’ssend() method.

The Transport class models the transport agent that routes a message to its destination addresses. This class
provides methods to send a Message to a list of recipients. Typically, a mail client does not have to know
about transports, invoking thesend() method on a Message object identifies the appropriate transport
based on its destination address.

3.2.4 The Session Class
The Session class defines global and per-user Mail-related properties which define the interface between a
mail-enabled client and the network. JavaMail system components use the Session object to set and get
specific properties. The Session class also provides a default authenticated session object which desktop
applications can share. Session is a final concrete class. It cannot be subclassed.

The Session also acts as a factory for Store and Transport objects which implement specific access and
transport protocols. By calling the correct factory method from a Session object, the client can obtain Store
and Transport objects that support specific protocols.

3.3 The JavaMail Event Model
The JavaMail event model conforms to the Java JDK 1.1 Event model specification, as described in the
JavaBeans Specification. The JavaMail API follows the design patterns defined in the Beans Specification

3-8 JavaMail API Specification • October 1997

for naming events, event methods and event listener registration.

All events are subclassed from MailEvent. Clients listen for specific events by registering themselves as
listeners for those events. Events notify listeners of state changes as a session progresses. During a session, a
JavaMail API component fires a specific event-type to notify objects registered as listeners for that event-
type. The JavaMail Session, Message, Store, and Transport classes are event sources. This Specification
describes a specific event in the Section which describes the class which fires that event.

3.4 Using the JavaMail API
This Section defines syntax and lists the order in which a client application calls JavaMail methods, in order
to use the JavaMail API to perform several basic Mail operations.

A JavaMail API client typically begins a mail handling task by obtaining the default JavaMail Session
object.

Session session = Session.getDefaultInstance(props);

The client uses the Session objectgetStore() method to connect to the default Store. The
getStore() method returns a Store object subclass that supports the access protocol defined in the user
preferences file.

Store store = Session.getStore();
store.connect();

If the connection is successful, the client can list available folders in the Store, and then fetch and view
specific Message objects.

Folder inbox = store.getFolder("INBOX");// get the INBOX
folder
inbox.open(Folder.READ_WRITE); // open the INBOX
folder
Message m = inbox.getMessage(1); // get Message # 1
String subject = m.getSubject(); // get Subject
Object content = m.getContent(); // get content
..
..

Finally, the client closes all open Folders, and then closes the Store.
inbox.close(); // Close the INBOX
store.close(); // Close the Store

See “Examples Using the Mail API” for a more complete example.

Chapter 4 The Message Class 4-9

4

The Message Class

The Message class is an abstract class that implements the Part interface. The Message class defines the
protocol which handles electronic messages exchanged between JavaMail API components and mail system
consumers.

Message Subclasses can implement several standard message formats. For example; the MimeMessage class
extends Message in order to implement the RFC822 and the MIME standard for Internet messages.
Implementations typically can construct themselves from bytestreams and generate bytestreams for
transmission.

A Message subclass instantiates a container object which holds message content, together with attributes
which specify addresses for the sender and reipients, structural information about the message, and the
content type of the message body. Messages placed into a Folder also have a set of flags that describe the
state of the message within the folder.

The structure of a Message object does not vary with its content type. The Message object has no direct
knowledge of the nature or semantics of its content. This separation of structure from content allows the
message object to contain any arbitrary content.

Message objects are obtained either from a Folder or by constructing a new Message object of the
appropriate subclass. Messages stored within a Folder are sequentially numbered, starting at one. An
assigned message number can change when the folder is expunged, since the expunge operation removes
deleted messages from the folder and also renumbers the remaining messages.

A Message object can contain multiple parts, where each part contains its own set of attributes and content.
The content of a multipart message is a Multipart object that contains BodyPart objects representing each
individual part. The Part interface defines the structural and semantic similarity between the Message object
and the BodyPart class.

The figure below illustrates a Message instance hierarchy, where the Message contains attributes, a set of
flags and content. See “MimeMessage Object Hierarchy” for an illustration of the MimeMessage object
hierarchy.

4-10 JavaMail API Specification • October 1997

The Message class provides methods to perform the following tasks:

• Get, Set and Create its attributes and content:

public String getSubject() throws MessagingException;
public void setSubject(String subject) throws
MessagingException;
public String[] getHeader(String name) throws
MessagingException;
public void setHeader(String name, String value)

throws MessagingException;
public Object getContent() throws MessagingException;
public void setContent(Object content, String type)

throws MessagingException

• Send itself to its recipients:

public void send() throws MessagingException;

MessageFlags Attributes

Legend

Contains

Implements

Part

Content

Interface

Class

References

Chapter 4 The Message Class 4-11

• Save changes to its containing folder.

public void saveChanges() throws MessagingException;

This process also ensures that the Message header fields are updated
to be consistent with the changed message contents.

• Generate a bytestream for the Message object.

public void putByteStream(OutputStream os) throws Exception;

This bytestream can save the message or send it to a transport object.

4.1 The Part Interface
The Part interface defines a set of standard headers common to most mail systems and a content block, and
defines set and get methods for each of these members. It is the basic data component in the JavaMail API
and provides a common interface for both the Message and the BodyPart classes. See the JavaMail API
documentation for details.

• Message implements the Part interface, and adds From:, To:, and Subj: header attribute definitions
with their corresponding set and get methods. Clients can create, send, receive and store individual
messages.

• BodyPart implements the Part interface without headers defined by the Message class, and is
intended to define a single message element included within a message object that includes a
multipart type ContentType: header. Clients must embed BodyPart objects into multipart Message
objects in order to create, send, receive or store them.

4.1.1 Message Attributes
The Message class adds its own set of standard attributes to those it inherits from the Part interface. These
attributes include the sender and recipient addresses, and the Subject. The Message class also supports non-
standard attributes in the form of Headers. See the JavaMail API Documentation for the list of standard
attributes defined in the Message class.

Mail systems can also support other Part attributes. Custom attributes are represented as Header objects.
Each object is a name-value pair where both the name and value are Strings. These are typically added to
Message subclasses.

4.1.2 The ContentType Attribute
The ContentType attribute specifies the content data type, following the MIME typing specification (RFC
2045). A MIME type is composed of a primary type which declares the general type of the content, and a

4-12 JavaMail API Specification • October 1997

subtype which specifies a specific format for the content.

JavaMail API components can access a content block via these mechanisms:

ThesetDataHandler(DataHandler) method specifies content for a new Part object (as a step
towards the construction of a new Message). Part also provides some convenience methods to setup most
common content types.

Part provides theputByteStream() method that streams its bytestream in mail-safe form suitable for
transmission. This bytestream is typically an aggregation of the Part attributes and the bytestream for its
content.

4.2 The Address Class
The Address class formats addresses. Address is an abstract class. Subclasses provide implementation-
specific semantics.

Address selects the addressing protocol identified by the String returned by itsgetType() method. For
example, passing an InternetAddress object togetType() returns ’RFC822.’ Similarly, an
NNTPAddress object returns ’nntp.’ TheSession class uses this return value to identify theTransport
subclass supporting the addressing protocol required by the Message to be sent.

As an input stream The Part interface declares thegetInputStream() method,
which returns an input stream to the content. Note that Part imple-
mentations must decode any mail-specific transfer encoding before
providing the input stream.

As a DataHandler object The Part interface declares theThegetDataHandler() method,
which returns ajavax.activation.DataHandler object that
wraps around the content. The DataHandler object allows clients to
discover the operations available to perform on the content, and to
instantiate the appropriate component to perform those operations.
See “The Data Typing Framework” for details describing the
DataTyping framework

As a java object The Part interface declares thegetContent() method, which
returns the content as a Java object. The type of the returned object is
dependent on the content datatype. If the content is of type multipart,
the returned object will be a Multipart object, or a Multipart subclass
object. The JavaMail API returns an input stream for unknown con-
tent-types. Note thatgetContent() uses the DataHandler inter-
nally to obtain the native form.

Chapter 4 The Message Class 4-13

4.3 The BodyPart Class
BodyPart is an abstract class that implements the Part interface, in order to implement the attribute and
content body definitions which Part declares. It does not declare attributes which set From:, To:, Subj:,
Reply-To:, or other address header fields, as a Message object does.

A BodyPart object is intended to be inserted into a Multipart container, later accessed via a multipart
message.

4.4 The Multipart Class
The Multipart class implements multipart messages. It is an abstract class defining a container intended to
hold bodypart objects. It is not itself related to the Part interface. It is intended to be called via a Message
object, where the ContentType header of the Message object was set to "Multipart." Subclasses provide
implementations.

Typically, the client callsgetContentType() to return the ContentType of a message. If
getContentType() returns "multipart," then the client callsgetContent() to return the Multipart
container object.

Multipart supports several methods which which get, create, and remove individual BodyPart objects.

public int getCount() throws MessagingException;
public Body getBodyPart(int index) throws MessagingException;

public void addBodyPart(BodyPart part) throws
MessagingException;
public void removeBodyPart(BodyPart body)

throws MessagingException;
public void removeBodyPart(int index) throws
MessagingException;

Note that Multipart containers can be nested to any reasonable depth. Therefore, it is important to check the
ContentType header for each BodyPart element stored within a Multipart container.

Multipart implements thejavax.beans.DataSource interface. It can act as the DataSource object for
javax.beans.DataHandler s andjavax.beans.DataContentHandlers . This allows
message-aware content handlers to handle Multipart data sources more efficiently, since the data has already
been parsed into individual parts.

This diagram illustrates the structure of a multipart Message.

4-14 JavaMail API Specification • October 1997

In this figure, the ContentType attribute of a Message object indicates that it holds a multipart content. Use
thegetContent() method to obtain the Multipart object.

This code sample shows the retrieval of a Multipart object. See “Examples Using the Mail API” for
examples which traverse a multipart message and create new multipart messages.

Multipart mp = (Multipart)message.getContent();
int count = mp.getCount();
BodyPart body_part;
for (int i = 1; i <= count; i++)

body_part = mp.getBodyPart(i);

4.5 The Flags Class
Flags describe the state of a Message within its containing folder. The Flags class defines flag settings for a
Message. ThegetFlags () method in a Message returns a Flags object that holds all the flags currently set
for that message. ThesetFlags(Flags f) method sets the specified set of flags for that Message.

Message

Multipart

BodyPart

0 ... n-1

getContent()

getBodyPart(index)

Legend

extends

contains

getContentType()
multipart/mixed

Text

getContent()

text/plain
getContentType()

Chapter 4 The Message Class 4-15

The Flags class defines a group of flags. Each flag is represented as a String. The set(String s)
method on a Flags object sets the specified flag; theisSet(String s) method returns whether the
specified flag is set.

Note that a Folder is not guaranteed to support either standard system flags or arbitrary user flags. The
getPermanentFlags () method in a Folder returns a Flags object that contains all the system flags
supported by that Folder implementation. The presence of the special USER flag indicates that the client can
set arbitrary user-definable flags on any Message belonging to this folder.

4.6 Message Creation And Transmission
Message is an abstract class, so an appropriate subclass has to be instantiated to create a new Message
object. A client creates a message by instantiating an appopriate Message subclass.

For example, the MimeMessage subclass handles conventional email messages. Typically, the client
application creates an email message by instantiating a MimeMessage object, and passing required attribute
values to that object. In an email message, the client defines Subject, From, and To attributes. The client
then passes message content into the MimeMessage object by calling a suitably configured DataHandler
object. See “Message Composition” for details.

After the Message object is constructed, the client calls the MimeMessage send() method to route it to
its specified recipients. See “Transport Protocols and Mechanisms” for a discussion of the Transport
process.

ANSWERED Clients set this flag to indicate that this Message has been answered

DRAFT Indicates that this Message is a draft.

FLAGGED No defined semantics. Clients can use this flag to mark a message in
some user-defined manner.

RECENT This Message is newly arrived in this Folder. This flag is set when
the message is first delivered into the folder and cleared when the
containing folder is closed. Clients cannot set this flag.

SEEN Marks a message that has been opened. A Client sets this flag implic-
itly when the message contents are retrieved.

DELETED Allows undoable message deletion. Setting this flag for a message
marks it 'deleted' but does not physically remove the message from
its folder. The client callsexpunge() on a folder to remove all
deleted messages in that folder.

4-16 JavaMail API Specification • October 1997

Chapter 5 The Mail Session 5-17

5

The Mail Session

A mail session object manages the configuration options and authentication information used to interact
with messaging systems. The JavaMail API supports simultaneous multiple sessions. Each session can
access multiple message stores and transports.

Any desktop application that needs to access the current primary message store can share the default
session. Typically the mail-enabled application establishes the default session, which initializes the
authentication information necessary to access the user Inbox folder. Other desktop applications then use
the default session when sending mail on behalf of the user.

For example:

A Session object is created using a static factory method:
Session session = Session.getInstance(props, authenticator);

to create an unshared session, or
Session defaultSession = Session.getDefaultInstance(props,
authenticator);

to access the default session.

The Properties object which initializes the session contains default values and other configuration
information. See “Environment Properties" for a list of properties used by the JavaMail API.

The Authenticator object controls security aspects for the session object. The messaging system uses it as a
callback mechanism to interact with the user when a password is required to login to a messaging system. It
also indirectly controls access to the default session, as described below.

Messaging system implementations can register PasswordAuthentication objects with the Session object for
use later in the session, or for use by other users of the same session. Because PasswordAuthentication
objects contain passwords, acess to this information must be carefully controlled. Applications that create
Session objects must restrict access to those objects appropriately. In addition, the Session class shares some
responsibility for controlling access to the default session object.

The first call togetDefaultInstance() creates a new Session object and associates it with the

5-18 JavaMail API Specification • October 1997

Authenticator object. Subsequent calls togetDefaultInstance() compare the Authenticator object
passed in with the Authenticator object saved in the default session. Access to the default session is allowed
if both objects have been loaded by the same class loader. Typically, this is the case when both the default
session creator and the program requesting default session access are in the same "security domain." Also;
if both objects are null, access is allowed. Using null to gain access is discouraged, because this allows
access to the default session from any security domain.

Some messaging system implementations may use additional properties. Typically the properties object
contains user-defined customizations in addition to system-wide defaults. Mail-enabled application logic
determines the appropriate set of properties. Lacking a specific requirement, the application can use the
system properties object retrieved fromSystem.getProperties() .

A mail-enabled client can use the Session object to retrieve a Store or Transport object to read or send mail.
Typically, the application retrieves the default Store object, based on properties loaded for that session:

Store store = session.getStore();
The client can override the session defaults and access a message store supporting a different type:

Store store = session.getStore("imap");
Implementers of Store and Transport objects will be told which session to which they have been assigned.
They can then make the Session object available to other objects contained within this Store or Transport
using application-dependent logic.

The Session class provides a factory mechanism for obtaining appropriate Store and Transport
implementation objects, based on their protocol names.

TBD: A registry based mechanism that implements the Factory.

The Session class allows messaging system implementations to use the Authenticator object that was
registered when the session was created. The Authenticator object is created by the application and allows
interaction with the user to obtain a user name and password. The user name and password is returned in a
PasswordAuthentication object. The messaging system implementation can ask the session to associate a
user name and password with a particular message store using the setPasswordAuthentication method. This
information is retrieved using the getPasswordAuthentication method. This avoids the need to ask the user
for a password when reconnecting to a Store that has disconnected, or when a secon application sharing the
same session needs to create its own connection to the same Store.

Messaging system implementations can register PasswordAuthentication objects with the Session object for
use later in the session, or for use by other users of the same session. Because PasswordAuthentication
objects contain passwords, access to this information must be carefully controlled. Applications that create
Session objects must restrict access to those objects appropriately. In addition, the Session class shares some
responsibility for controlling access to the default session object.

The first call to getDefaultInstance() creates a new Session object and associates the Authenticator object
with the Session object. Subsequent calls to getDefaultInstance compare the Authenticator object passed in,
to the Authenticator object saved in the default session. If both objects have been loaded by the same class
loader, access to the default session will be allowed. Typically, this is the case when both the creator of the

Chapter 5 The Mail Session 5-19

default session and the code requesting access to the default session are in the same "security domain."
Also, if both objects are null, access is allowed. This last case is discouraged because setting objects to
’null’ allows access to the default session from any security domain.

In the future, JDK 1.2 security Permissions could control access to the default session. Note that the
Authenticator and PasswordAuthentication classes and their use in JavaMail is similar to the classes with the
same names provided in the java.net package in JDK 1.2. As new authentication mechanisms are added to
the system, new methods can be added to the Authenticator class to request the needed information. The
default implementations of these new methods will fail, but new clients that understand these new
authentication mechanisms can provide implementations of these methods. New classes other than
PasswordAuthentication could be needed to contain the new authentication information, and new methods
could be needed in the Session class to store such information. JavaMail design evolution will be patterned
after the corresponding JDK classes.

To simplify message folder naming and to minimize the need to manage Store and Transport objects, folders
can be named using URLs. The Session class provides methods to retrieve a Folder object given a URL for
the folder:

Folder f = session.getFolder(url);

Not all messaging systems are required to support URL naming of folders. For a system that does support
URLs, the URL format is specific to that messaging system.

5-20 JavaMail API Specification • October 1997

Chapter 6 Message Storage And Retrieval 6-21

6

Message Storage And Retrieval

Messages are contained in Folders. New messages are usually delivered to folders by a transport protocol or
a delivery agent. Clients retrieve messages from folders using an access protocol.

6.1 The Store Class
The Store class defines a database that holds a Folder hierarchy and the messages within. The Store also
models the access protocol used to access folders and retrieve messages from folders. Store is an abstract
class. Subclasses implement specific message databases and access protocols.

Clients gain access to a database of messages (a message store) by obtaining a Store object that implements
the database access protocol. Most message stores require the user to be authenticated before they allow
access.connect() performs that authentication.

For many message stores, a host name, user name, and password are sufficient to authenticate a user. The
JavaMail API provides aconnect() override that takes this information as input parameters. Store also
provides a defaultconnect() method. In either case, the client can obtain missing information from the
session object’s properties, or by interacting with the user by accessing the session’s Authenticator object.

The default implementation of the connect method in the Store class uses these techniques to retrieve all
needed information and then calls the protocolConnect method. The messaging system implementation
must provide an appropriate implementation of this method. The messaging system can also choose to
directly override the connect method.

By default, Store queries the following properties for the user name and host name:

mail.user, or user.name if not set
mail.host

These global defaults can be overridden on a per-protocol basis by the properties:

mail.<protocol>.user
mail.<protocol>.host

6-22 JavaMail API Specification • October 1997

Note that Passwords can not be specified using properties.

Clients initiate a session with a message database by obtaining a Store object that implements the database
access protocol. Theconnect() method connects a client to that database. Some Store implementations
may require user authentication; in those cases, theconnect() method can display a dialog window to
conduct the authentication process. Invokingconnect() on an already connected Store is an error.

The Store presents a default namespace to clients. Typically, this namespace is located in the connected
user’s default folder. Store implementations can also present other namespaces. The
getDefaultFolder() method on Store returns the root folder for the default namespace.

Clients terminate a session by calling theclose() method on the Store object. Once a Store is closed
(either explicitly using theclose () method; or externally, if the Mail server dies), all Messaging
components belonging to that Store become invalid. Typically, clients will try to recover from an
unexpected termination by callingconnect() to reconnect to the Store object, and then fetching new
Folder objects and new Message objects.

6.1.1 Store Events
Store sends the following events to interested listeners:

6.2 The Folder Class
The Folder class represents a folder containing messages. Folders can contain subfolders as well as
messages, thus providing a hierarchical structure. ThegetType() method returns whether a Folder can
hold subfolders, messages, or both. Folder is an abstract class. Subclasses implement protocol-specific
Message Folders.

ThegetDefaultFolder() method for the corresponding Store object returns the root folder of a user’s
default folder hierarchy. Thelist () method for a Folder returns all the subfolders under that folder. The
getFolder (String name) method for a Folder returns the named subfolder. Note that this subfolder

ConnectionEvent Generated when a connection is successfully made to the
Store, or when an existing connection is terminated or dis-
connected.

StoreEvent Communicates alerts and notification messages from the
Store to the end user. ThegetMessageType() method
returns the event type, which can be one of:ALERT or
NOTICE . The client must displayALERT events in some
fashion that calls the user’s attention to the message.

FolderEvent Communicates changes to any folder contained within the
Store. These changes include creation of a new Folder, dele-
tion of an existing Folder, and renaming of an existing
Folder.

Chapter 6 Message Storage And Retrieval 6-23

need not exist physically in the Store. Theexists () method in a folder indicates whether this folder exists.
A folder is created in the Store by invoking itscreate () method.

A Folder instantiates in the closed state. A closed folder allows certain operations; they include deleting the
folder, renaming the folder, listing subfolders, creating subfolders and monitoring for new messages. The
open() method opens a Folder. All Folder methods exceptopen() , delete(), andrenameTo() are
valid on an open Folder. Note that theopen() method is applicable only on Folders that can contain
messages.

The messages within a Folder are sequentially numbered, from one through the total number of messages.
This ordering is referred to as the "mailbox order" and is usually based on the arrival time of the messages
in the folder. As each new message arrives into a folder, it is assigned a sequence number that is one higher
than the previous number of messages in that folder. ThegetMessageNumber() method on a Message
returns its sequence number.

The sequence number assigned to a Message is valid within a session, but only as long as it retains its
relative position within the Folder. Any change in message ordering can change the Message object's
sequence number. Currently this occurs when the client callsexpunge() to remove deleted messages and
renumber messages remaining in the folder.

A client can reference a message stored within a Folder either by its sequence number, or by the
corresponding Message object itself. Since a sequence number can change within a session, it is preferable
to use Message objects rather than sequence numbers as cached references to messages. Clients using the
JavaMail API are expected to provide light-weight Message objects that get filled ’on-demand’, so that
callinggetMessages() on a Folder object is an inexpensive operation - both in terms of CPU cycles and
memory. For instance, an IMAP implementation could return Message objects that contain only the
corresponding IMAP UIDs.

6.2.1 The FetchProfile Method
The Message objects returned by a Folder are expected to be light-weight objects. Invoking get methods on
a Message cause the corresponding data items to be loaded into the object, on demand. Certain Store
implementations support batch fetching of data items for a range of Messages. Clients can use such
optimizations, for example; when filling the header-list window for a range of messages. The
FetchProfile() method allows a client to list the items it will fetch in a batch, for a certain message
range.

The following code illustrates the use of a FetchProfile when fetching Messages from a Folder. The client
fills its header-list window with the Subject, From, and X-mailer headers for all messages in the folder.

Message[] msgs = folder.getMessages();
FetchProfile fp = new FetchProfile();
fp.set(FetchProfile.ENVELOPE);
fp.add("X-mailer");
folder.fetch(msgs, fp);

6-24 JavaMail API Specification • October 1997

for (int i = 0; i < folder.getMessageCount(); i++) {
display(msg[i].getFrom());
display(msg[i].getSubject());
display(msg[i].getHeader("X-mailer"));

}

6.2.2 Folder Events
Folders generate events to notify listeners of any change in either the folder or in its Messages list. The
client can register listeners to a closed Folder, but the notification event fires only after that folder is opened.

Folder supports the following events:

ConnectionEvent This event fires when a Folder is opened or closed.

When a Folder closes (either because the client has calledclose ()
or from some external cause), all Messaging components belonging
to that Folder become invalid. Typically, clients will attempt to
recover by reopening that Folder, and then fetching Message
objects.

FolderEvent This event fires when the client creates, deletes or renames this
folder. Note that the Store object containing this folder can also fire
this event.

Chapter 6 Message Storage And Retrieval 6-25

6.2.3 The Expunge Process
Deleting messages from a Folder is a two-phase operation. Setting theDELETED flag on messages marks
them as deleted, but it does not remove them from the Folder. The deleted messages are removed only when
the client invokes theexpunge() method on that Folder. The Folder then notifies listeners by firing an
appropriate MessageEvent. The MessageEvent contains the expunged Message objects. Note that the
expunge() method also returns the expunged Message objects. The Folder also renumbers the messages
falling after the expunged messages in the message list. Thus, when theexpunge() method returns, the
sequence number of those Message objects will change. Note, however, that the expunged messages still
retain their original sequence numbers.

Since expunging a folder can remove some messages from the folder and renumber others, it is important
that the client synchronize itself with the expunged folder as early as possible. The next Sections describe a
set of recommendations for clients wanting to expunge a Folder:

• Expunge the folder; close it; and then reopen and refetch messages from that Folder. This ensures
that the client was notified of the updated folder state. In fact, the client can just issue theclose ()
method with the "expunge " parameter set to true to force an expunge of the Folder during the
close operation, thus even avoiding the explicit call toexpunge ().

• The previous solution might prove to be too simple or too drastic in some circumstances. This
paragraph describes the scenario of a more complex client expunging a single access folder; for
example, a folder that allows only one read-write connection at a time. The recommended steps for
such a client after it issues theexpunge () command on the folder are:

MessageCountEvent This event notifies listeners that the message count has changed. The
following actions can cause this change:

• Addition of new Messages into the Folder, either by a
delivery agent or because of anappend () operation. The
new Message objects are included in the event.

• Removal of existing messages from this Folder. Removed
messages are referred to as expunged messages. The
isExpunged () method on removed Messages returns true
and thegetMessageNumber () method returns the original
sequence number assigned to that messge. All other
Message methods throw a
MessageRemovedException . See “The Folder Class”
for a discussion of removal of deleted messages in shared
folders. The expunged Message objects are included in the
event. An expunged message is invalid and should be pruned
from the client's view as early as possible. See “The Expunge
Process” for details on theexpunge() method.

6-26 JavaMail API Specification • October 1997

• Update its message count, either by decrementing it by the number of expunged messages, or
by invoking thegetMessageCount() method on the Folder.

• If the client uses sequence numbers to reference Messages, it must account for the
renumbering of Messages subsequent to the expunged messages. Thus if a Folder has 5
messages as shown below, (sequence numbers are within parenthesis), and if the client is
notified that Messages A and C are removed, it should account for the renumbering of the
remaining Messages as shown in the second figure.

.

• The client should prune expunged messages from its internal storage as early as possible.

• The Expunge process becomes compex when dealing with a shared folder that can be edited.
Consider the case where two clients are operating on the same folder. Each client posesses its own
Folder object, but each Folder object actually represents the same physical folder.

If one client expunges the shared folder, any deleted messages are physically removed from the folder. The
primary client can probably deal with this appropriately since it initiated this process and is ready to handle
the consequences. However, secondary clients are not guaranteed to be in a state where they can handle an
unexpected Message removed event-- especially if the client is heavily multithreaded or if it uses sequence
numbers.

To allow clients to handle such situations gracefully, the the JavaMail API applies following restrictions to
Folder implementations:

• A Folder can remove and renumber its Messages only when it is explicitly expunged using the
expunge() method. When the folder is implicitly expunged, it marks any expunged messages as
expunged, but it still maintains access to those Message objects. This means that the following state
is maintained when the Folder is implicitly expunged:

• getMessages() returns expunged Message objects together with valid message objects.
However; an expunged message can throw the MessageExpungedException if direct access is
attempted.

• The messages in the Folder should not be renumbered.

• The implicit expunge operation can not change the total Folder message count.

• The group get methods on Folder (getFlags()) can return null objects for expunged
messages. They can not abort the operation by throwing the MessageExpungedException.

A (1) B (2) C (3) D (4) E (5)

D (2) E (3)B (1)

Chapter 6 Message Storage And Retrieval 6-27

• A Folder can notify listeners of 'implicit' expunges by generating appropriate MessageEvents.
However, the removed field in the event must be set to false to indicate that the message is still in
the folder. When this Folder is explicitly expunged, then the Folder must remove all expunged
messages, renumber it's internal Message cache, and generate MessageEvents for all the expunged
messages, with each removed flag set to true.

The recommended set of actions for a client under the above situation is as follows:

• Multithreaded clients that expect to handle shared folders are advised not to use sequence numbers.

• If a client receives a MessageEvent indicating message removal, it should check the removed flag.
If the flag is false, it can issue anexpunge() request on the Folder object to synchronize it with
the physical folder. It may also mark the expunged messages in order to notify the end-user.

• If the removed flag was set to true, the client should follow earlier recommendations on dealing
with explicit expunges.

6.3 The Search Process
Search criteria are expressed as a tree of search-terms, forming a parse tree for the search expression. The
Term class represents search terms. This is an abstract class with a single method:

boolean match(Object o);

Subclasses implement specific match algorithms by implementing the match() method. Thus new search
terms and algorithms can be easily introduced into the search framework by writing the required Java code.

The search package provides a set of standard search terms that implement specific match criteria on
Message objects. For example, SubjectTerm pattern-matches the given String with the subject header of
the given message.

final class SubjectTerm extends Term {
public SubjectTerm(String pattern);
public boolean match(Message m);

}

The search package also provides a set of standard logical operator terms that can be used to compose more
complex search terms. These include AndTerm, OrTerm and NotTerm.

final class AndTerm extends Term {
public AndTerm(Term t1, Term t2);
public boolean match(Object o) {
 // The AND operator
 for (int i=0; i < terms.length; i++)

if (!terms[i].match(o))
return false;

6-28 JavaMail API Specification • October 1997

 return true;
}

}

The Folder class supports searches on messages through thesesearch() method versions:

public Message[] search(Term term)
public Message[] search(Term term, Message[] msgs)

These methods return the Message objects matching the specified search Term. The default implementation
applies the search term on each Message object in the specified range. Other implementations may optimize
this; for example, the IMAP Folder implementation maps the search Term into an IMAP SEARCH
command which the server executes. Note that the IMAP implementation works only if the search Term
includes only predefined standard search terms.

Chapter 7 Message Composition 7-29

7

Message Composition

This Section describes the message creation process.

The JavaMail API allows a client program to create a message of arbitrary complexity. This message can
then be manipulated in the same was as if it had been retrieved from a store.

7.1 Message Components
A message object contains two main components - attributes and a content. The attributes specify the
address and message structure, and the content is represented by the DataHandler object. A client program
creates a message by setting appropriate attributes and inserting the content.

7.2 Message Creation
javax.mail.Message is an abstract class which implements the Part interface. Therefore; to create a
message object, we select a message subclass that implements the appropriate format and transport protocol
for the message.

For example; to create a Mime message, a client uses thejavax.mail.internet.MimeMessage
class:

Message msg = new MimeMessage();

This creates an empty message that is ready to be filled in with data. Next, we will set the attributes and the
content.

7.3 Setting Message Attributes
The Message class provides a set of methods that specify standard attributes. The MimeMessage class
provides additional methods that set MIME-specific attributes. Also note that non-standard attributes
(custom headers) can be set as name-value pairs.

The methods for setting standard attributes are:

public class Message {

7-30 Book Title • Month 1997

public void setFrom(Address addr);
public void setFrom(); // figures out from system
public void setRecipients(int type, Address[] addrs);
public void setReplyTo(Address[] addrs);
public void setSentDate(Date date);
public void setSubject(String subject);
...

}

The following method specified by the Part interface allows setting of custom headers:

public void setHeader(String name, String value)

ThesetRecipients() method takes an integer argument as its first parameter, which specifies which
recipient field to use. Currently,setRecipients() acceptsMessage.TO , Message.CC , and
Message.BCC . as parameters.

There are two versions of the of thesetFrom() method: The first version allows the end-user to specify
the sender explicitly. The second version retrieves the username from the system.

Here is an code sample which sets attributes for the MimeMessage just created:

Address toAddrs[] = new InternetAddress[1];
toAddrs[0] = new InternetAddress("luke@rebellion.gov");
Address fromAddr = new
InternetAddress("han.solo@smuggler.com");

msg.setFrom(fromAddr);
msg.setRecipients(Message.TO, addrs);
msg.setSubject("Takeoff time.");
msg.setSentDate(new Date());

7.4 Setting Message Content
The JavaMail API supports two techniques which set message content. The first technique uses the
setDataHandler() method. The second technique uses thesetContent() method.

Typically, clients set message content is by usingsetDataHandler(DataHandler) on a Part object
(a Message class implements the Part interface). The DataHandler is an object that encapsulates data. The
data is passed to the DataHandler's constructor as either a DataSource or an Object. The InputStream object
creates the DataSource. (See “The Data Typing Framework” for additional datatyping information.)

public class DataHandler {
DataHandler(DataSource dataSource);

Chapter 7 Message Composition 7-31

DataHandler(Object data, String mimeType);
}

The code sample below shows how to place text content into an InternetMessage. First create the text as a
string object, and pass the string into a DataHandler object, together with its MIME type. Then add the
DataHandler object to the message object:

String content = "Leave at 300."; // the text of the message
DataHandler data = new DataHandler(content, "text/plain");
msg.setDataHandler(data);

Alternatively,setContent() implements a simpler technique, which takes the data object and its MIME
type:

String content = "Leave at 300."; // the text of the message
msg.setContent(content, "text/plain");

If the client sends this message by callingmsg.send() , the recipient will receive the message below:

Date: Wed, 23 Apr 1997 22:38:07 -0700 (PDT)
From: han.solo@smuggler.com
Subject: Takeoff time
To: luke@rebellion.gov

Leave at 300.

7.5 Creating a MIME Multipart Message
Let us now consider the case of creating a MIME multipart message. The first step is to instantiate a new
MimeMultipart (or subclass thereof) object. Then MimeBodyParts for the specific message parts are created
and their content is set as described in the previous section (Note that both Message and BodyPart share the
Part interface). If required, the subType attribute should also be set. (The default subtype for MimeMultipart
is "mixed"; subclasses of MimeMultipart might already have their subtype set appropriately.)

Once the Multipart object is created, it needs to be inserted into the Message as its content. The simplest
technique to use is to usesetContent(Multipart) method on a newly-constructed Message object.
The example below creates a Multipart object and then adds two message parts to it. The first message part
is a text string “Spaceport Map,” and the second contains a document of type “application/postscript.”

MimeMultipart mp = new MimeMultipart();// create Multipart
MimeBodyPart b1 = new MimeBodyPart(); // first bodypart
b1.setContent("Spaceport Map"); // textual content
mp.addBodyPart(b1);

7-32 Book Title • Month 1997

MimeBodyPart b2 = new MimeBodyPart(); // second bodypart
b2.setContent(agenda,"application/postscript");

// postscript data
mp.addBodyPart(b2);

Message msg = new MimeMessage(); // create the message

// set the message attributes as described above
msg.setContent(mp); // add Multipart
msg.saveChanges(); // save changes

After all message parts are created and inserted, callsaveChanges() to ensure that the client writes
appropriate message headers. This is identical to the process followed with a single part message. Note that
the JavaMail API callssaveChanges() implicitly during thesend() process, so invoking it is
unnecessary and expensive if the message is to be sent immediately.

Chapter 8 Transport Protocols and Mechanisms 8-33

8

Transport Protocols and
Mechanisms

The Transport abstract class defines the message submission and message transport protocol. Transport
subclasses implement SMTP and other transport protocols.

8.1 Obtaining the Transport Object
The Transport object is never explicitly created.getTransport() obtains a transport object from the
Session factory. The JavaMail API provides two versions ofgetTransport() :

public class Session {
public Transport getTransport(Address address);
public Transport getTransport(String protocol);

}

The client can also call getTransport("SMTP") to request SMTP, or another transport implementation
protocol. getTransport(Address address) returns the implementation of the transport class
based on the address type. A user-extensible map defines which transport type to use for a particular
address. For example, if the address is an InternetAddress, and InternetAddress is mapped to a protocol that
supports SMTP, then SMTPTransport can be returned.

See “The Mail Session” for details.
■ Transport Methods

The Transport class providesconnect() andprotocolConnect() methods that operate similarly to
those on the Store class. See “The Store Class” for details. Note also, that some Transports, such as
SMTP, do not require authentication information.

Transport fires a ConnectionEvent to notify its listeners of a successful or a failed connection. Transport can
throw an IOException if the connection fails. (See “Transport Events” for details.) Once Transport
establishes a successful connection to the host, the client invokes thesend() method to initiate the
transport process.

At this point, Transport implementations can ensure that the message specified is of a known type. If the

8-34 JavaMail API Specification • October 1997

type is known, then the transport object sends the message to its specified destinations. If the type is not
known, then the Transport object can attempt to reformat the Message into a suitable version using
gatewaying techniques, or it can throw a MessagingException, indicating failure. For example; the SMTP
transport implementation recognizes MimeMessages. It invokes theputByteStream() method on
MimeMessage to generate a RFC822 format bytestream which is sent to the SMTP host.

Note that theAddress[] argument passed to thesend() method does not need to match the addresses
provided in the message headers. Although these arguments usually will match, the end-user actually
determines where the messages are actually sent. This is useful for implementing the Bcc: header, and other
similar functions.

8.2 Transport Events
The TransportEvent is fired when thesend() method is invoked. If the message was sent successfully, the
delivered event’sgetType() method returnsMESSAGE_DELIVERED. getValidAddresses () returns all
the addresses to which the message was sent using this transport andgetInvalidAddresses() returns
null.

If message sending failed, TransportEvent has itsMESSAGE_NOT_DELIVERED flag set,
getInvaludValidAddresses() returns the addresses that were not accepted by the host, and
getValidAddresses() returns any addresses that would have been accepted. Note that a successful send
operation does not imply message delivery - only that the message submission was accepted by the relay host.

8.3 Using The Transport Class
The code segment below demonstrates use of a Transport class which uses the SMTP protocol, to send an
InternetMessage. The client creates two InternetAddresses that specify the recipients, and retrieves transport
object from the default Session that supports sending messages to InternetAddresses. Then the transport
object sends the message.

Message msg = new MimeMessage();
// create the parts of the message
// create the destination addresses
Address[] addrs = Address[2];
addrs[0] = new
InternetAddress("mickey.mouse@disneyland.com");
addrs[1] = new InternetAddress("goofy@disneyland.com");
// get the transport and send the message
Session session = Session.getDefaultInstance();
Transport transport = session.getTransport(addrs[0]);
transport.connect(); // connect method determines the host
to use
transport.send(msg, addrs);

Chapter 8 Transport Protocols and Mechanisms 8-35

8.4 Transport Usage in Message.send()
Thesend() method in the Message class encapsulates the Transport class. Once a client creates a message
is created and sets its attributes, invoking thesend() method on the message object invokes the transport
mechanism to send it to its destination addresses. See “Message Composition” for details.
Message.send() performs a slightly more complicated series of steps than shown in “Using The
Transport Class," yet the idea is the same.

8-36 JavaMail API Specification • October 1997

Chapter 9 The Data Typing Framework 9-37

9

The Data Typing Framework

The Data Typing Framework maps data (or "content") to commands (or "behavior"). The Data Typing
Framework makes it easy for a mail message to handle data of any arbitrary type by encapsulating it in an
intelligent object, called a DataHandler. The DataHandler carries type information describing the data it
carries, supports a varying list of appropriate commands acting on that data, and returns a list of valid
commands to its parent message object.

The Messaging Framework relies heavily on the JavaBeans Activation Framework (JAF) to determine the
MIME data type, to determine the commands available on that data, and to provide a software component
corresponding to a particular behavior. The JAF specification is part of the "Glasgow" JavaBeans
specification. More details can be obtained from the URL: http://java.sun.com/beans/glasgow/. (The JAF
specification is the link entitled:A data typing and object registry mechanism/activation framework). A
brief summary of the JAF is included below.

9.1 JAF Summary
The JAF is divided into a number of distinct Sections, which when tied together map content to behavior. It
provides a MIME type Specifier for data, and provides access to that data in the form of Input and Output
Streams where appropriate.

9.1.1 The DataSource Interface
DataSource provides an abstraction of some arbitrary collection of data. It is responsible for providing a
type (MIME type) for that data as well as access to it in the form of Input and Output streams where
appropriate.

9.1.2 The DataHandler Class
DataHandler implements the JAF interface. It encapsulates the data source object and the command object
binding infrastructure. The client uses a DataHandler to retrieve a list of behaviors available on a given
data source, as well as the JavaBean which provides that behavior. This class uses the existing
ContentHandler mechanism as well as the Transferable interface to retrieve alternate representations of the
underlying data.

9-38 JavaMail API Specification • October 1997

9.1.3 The CommandObject Interface
CommandObject is implemented by JavaBeans that are JAF-aware. JavaBeans written specifically for the
framework (beans that do not implement this interface can in most cases still be used with the framework).
This interface allows the bean to find out about the DataHandler through thesetDataHandler()
method. This method is normally called by the DataHandler when a new bean is created using the
getBean() method

9.1.4 The CommandMap Interface
The CommandMap interface accesses the registry of viewer/editors/print objects available in the system. It
binds MIME types to JavaBeans. The CommandMap interface is usually invisible to JAF clients, since the
DataHandler object should provide all access to the data.

9.1.5 The DataContentHandler Interface
The DataHandler object uses the DataContentHandler interface to convert InputStreams into objects. The
DataHandler uses the DataContentHandler interface to implement the Transferable interface.
DataContentHander objects are named to reflect the MIME type of the data from a DataSource's
InputStream. DataFlavors are used to represent the types accessible from a DataContentHandler.

9.2 Data Typing in JavaMail
For a client implementing the JavaMail API, arbitrary data is introduced to the system in the form of mail
messages. The JavaMail Part interface allows the client to access content. A typical mail message has one or
more body parts, each of a particular MIME type. The JavaMail API supports several operations on mail
objects, including viewing, editing, and printing.

Message and BodyPart both implement the Part interface, which consists of a set of attributes and a Content.
Parts have no semantic knowledge about their content. The content of a Part is available as a DataHander, an
InputStream, or as an Object.

The client obtains an InputStream object by calling thegetInputStream() method. The client decodes
mail-specific encoding before this stream is returned.

The client usesgetContent() to obtain the object representing the content.getContent() returns the
content as a subclass of that object. The type of the returned object depends upon the content itself. In
particular; invokinggetContent() on an object implementing the Part interface with its MIME type set
to ’multipart (together with a MIME subtype) always returns a Multipart object or a subclass of a Multipart
object.

The client obtains a DataHandler object by calling thegetDataHandler() method. The DataHandler
object allows clients to discover the operations available on the content, and to instantiate the appropriate
component to perform those operations. The DataHandler provides the list of commands available for the
data. The DataHandler uses the data's MIME type to query the CommandMap for operations that are
available on that type. The commands are returned as an array of BeanInfo objects.

Chapter 9 The Data Typing Framework 9-39

BeanInfo[] data_handler.getAllCommands();

Once a command is selected, the client creates an instance of the JavaBean by calling thegetBean()
method. This instantiates the JavaBean. If it implements the CommandObject interface, it will set the
DataHandler.

Object data_handler.getBean(BeanInfo ci);

A small number of JavaBeans are included as part of the data typing system, in order to provide default
behavior for specific MIME types.

9.3 Examples
The following examples demonstrate one way to use the data typing mechanism.

Example 1:

Consider a Message "Viewer" Bean, which presents a user interface that displays a mail message. This
example shows how a viewer bean can display the first body part in a main window and any remaining body
parts as attachments. The example assumes that the message is a Multipart message, but normally the
program must check the message ContentType attribute before casting the Content to a Multipart object.

Message msg = // message passed in as parameter
Multipart mp = (Multipart) msg.getContent();

// assume the first part is what we want to display
DataHandler dh = mp.getBodyPart(0).getDataHandler();
BeanInfo binfo = dh.getCommand("view");
Component comp = dh.getBean(binfo);
this.setMainViewer(comp);

// Remaining body parts are attachments
int count = mp.getCount();
for(int i=1; i<count; i++) {

// Assumes the 'message_view'
// displays a container of icons
// representing attachments.

message_view.addAttachment(mp.getBodyPart(i));
}

Example 2:

In this example, the user has selected one of the attachments added to the "message_view." The client
retrieves and displays the viewer object as follows.

//Retrieve the BodyPart (stored when we called
// addAttachment() above)

9-40 JavaMail API Specification • October 1997

BodyPart bp =
message_view.getSelectedAttachment().getBodyPart();

DataHandler dh = bp.getDataHandler();
BeanInfo binfo = dh.getCommand("view");
Component comp = dh.getBean(binfo);

// Add viewer to dialog Panel
myDialog.add(viewer);

// display dialog on screen
myDialog.show();

See “Setting Message Content” for examples which construct a message for a ’send’ operation.

Chapter 10 Internet Mail 10-41

10

Internet Mail

The JavaMail specification does not define any implementation. However, the API does include a set of
classes that describe and implement Internet Mail standards. Although not part of the specification, these
classes can be considered part of the JavaMail package. They show how to adapt an existing messaging
architecture to the JavaMail framework.

The following RFCs specify the Internet Mail Standards implemented by these classes:

• RFC822 (Standard for the Format of Internet Text Messages)

• RFC2045, RFC2046, RFC2047 (MIME)

RFC822 describes the structure of messages exchanged across the Internet. Messages are viewed as having a
header and contents. The header is composed of a set of standard and optional header fields. The header and
its contents are separated by a blank line. The RFC specifies the syntax for all header fields and the
semantics of the standard header fields. It does not however, impose any structure on the message contents.

The MIME RFCs 2045, 2046 and 2047 define message content structure by defining structured body parts,
defining a typing mechanism for identifying different media types, and defining a set of encoding schemes
to encode data into mail-safe characters.

The Internet Mail package allows clients to create, to use and to send messages conforming to the standards
listed above. It gives service providers a set of base classes and utilities they can use to implement Stores
and Transports that use the Internet mail protocols. See “” for a Mime class and interface hierarchy diagram.

The JavaMail MimePart interface implements the Entity defined in RFC2045, Section 2.4. MimePart
extends the JavaMail Part interface to add MIME-specific methods and semantics. The MimeMessage and
MimeBodyPart classes implement the MimePart interface. The following figure shows the class hierarchy of
these classes.

10-42 JavaMail API Specification • October 1997

10.1 The MimeMessage Class
The MimeMessage class extends Message and implements MimePart. This class implements an email
message that conforms to the RFC822 and MIME standards.

MimeMessage provides a default constructor that creates an empty MimeMessage object. The client can fill
the message later by invoking theparse() method on an RFC822 input stream. Note thatparse() is
protected, so that only this class and its subclasses are expected to use this method. Service providers
implementing ’light-weight’ Message objects that are filled on demand, can generate the appropriate byte
stream and invokeparse() when a component is requested from a message. Service providers that can
provide a separate byte stream for the message body (distinct from the message header) can override the
getContentStream() method.

The client can also use the default constructor to create new MimeMessage objects for sending. The client
sets appropriate attributes and headers, inserts content into the message object, and finally calls thesend()
method for that MimeMessage object.

The following code sample shows how to create a new MimeMessage object for sending. See “Message
Composition” and “Transport Protocols and Mechanisms” for details.

MimeMessage m = new MimeMessage();

MimePartMessage

MimeMessage

MimePartBodyPart

MimeBodyPart

Legend

Extends

Implements

Chapter 10 Internet Mail 10-43

// Set FROM:
m.setFrom(new InternetAddress("jmk@Sun.COM"));
// Set TO:
InternetAddress a[] = new InternetAddress[1];
a[0] = new InternetAddress("javamail@Sun.COM");
m.setRecipients(Message.TO, a);
// Set content
m.setContent(data, "text/plain");
// Send message
m.send();

MimeMessage also provides a constructor that uses an input stream to instantiate itself. The constructor
internally invokesparse() to fill the message. The InputStream object is left positioned at the end of the
message body.

InputStream in = getMailSource(); // a stream of mail
messages
MimeMessage m = null;
for (; ;) {
 try {

m = new MimeMessage(in);
 } catch (EOFException eof) {

// reached end of message stream
break;

 }
}

MimeMessage implements the putByteStream() method by writing an RFC822-formatted byte stream
of its headers and body. This is accomplished in two steps: First, the MimeMessage object writes out its
headers; then it delegates the rest to the DataHandler object representing the content.

10.2 The MimeBodyPart Class
The MimeBodyPart class extends BodyPart and implements the MimePart interface. This class represents a
Part inside a Multipart. MimeBodyPart implements a Body Part as defined by RFC2045, Section 2.5.

getBodyPart(int index) returns the MimeBodyPart object at the given index. MimeMultipart also
allows the client to fetch MimeBodyPart objects based on their Content-IDs.

addBodyPart() adds a new MimeBodyPart object to a MimeMultipart as a step towards constructing a
new multipart MimeMessage.

10.3 The MimeMultipart Class
The MimeMultipart class extends Multipart and models a MIME multipart content within a message or a
body part.

10-44 JavaMail API Specification • October 1997

A MimeMultipart is obtained from a MimePart containing a ContentType attribute set to "multipart," by
invoking that part'sgetContent() method.

The client creates a new MimeMultipart object by invoking its default constructor. To create a new
multipart MimeMessage, create a MimeMultipart object (or its subclass); use set methods to fill the
appropriate MimeBodyParts; and finally, usesetContent(Multipart) to insert it into the
MimeMessage.

MimeMultipart also provides a constructor that takes an input stream positioned at the beginning of a MIME
multipart stream. This class parses the input stream and creates the child body parts.

ThegetSubType() method returns the multipart message MIME subtype. The subtype defines the
relationship among the individual body parts of a multipart message. More semantically complex multipart
subtypes are implemented as subclasses of MimeMultipart, providing additional methods that expose
specific functionality.

Note that a multipart content object is treated like any other content. When parsing a MIME Multipart
stream, the JavaMail implementation uses the JAF framework to locate a suitable DataContentHandler for
the specific subtype and uses that handler to create the appropriate Multipart instance. Similarly, when
generating the output stream for a Multipart object, the appropriate DataContentHandler is used to generate
the stream. See “” for details.

10.4 The MimeUtility Class
MimeUtility is a Utility class that provides MIME-related functions. All methods in this class are static
methods. These methods currently perform the functions listed below:

10.4.1 Content Encoding and Decoding
Data sent over RFC 821/822-based mail systems are restricted to seven bit US-ASCII bytes. Therefore, any
non-US-ASCII content needs to be encoded into the seven-bit US-ASCII (mail-safe) format. MIME (RFC
2045) specifies the "base64" and "quoted-printable" encoding schemes to perform this encoding. The
following methods support content encoding:

• ThegetEncoding() method takes a DataSource object and returns the Content-Transfer-
Encoding that should be applied to the data in that Datasource object to make it mail-safe.

• Theencode() method wraps an encoder around the given output stream based on the specified
Content-Transfer-Encoding. Thedecode() method decodes the given input stream, based on
the specified Content-Transfer-Encoding.

10.4.2 Header Encoding and Decoding
RFC 822 restricts the data in message headers to 7bit US-ASCII characters. MIME (RFC 2047) specifies a
mechanism to encode non 7bit US-ASCII characters so that they are suitable for inclusion in message
headers. This section describes the methods that enable this functionality.

Chapter 10 Internet Mail 10-45

The header-related methods (getHeader, setHeader) in Part and Message operate on Strings. String objects
contain (16 bit) Unicode characters.

Since RFC 822 prohibits non US-ASCII characters in headers, clients invoking thesetHeader()
methods must ensure that the header values are appropriately encoded if they contain non US-ASCII
characters.

The encoding process (based on RFC 2047) consists of two steps:

1. Convert the Unicode String into an array of bytes in another charset. This step is required because
Unicode is not yet a widely used charset, and hence one typically needs to convert the Unicode
characters into a charset that is more palatable to the recipient.

2. Apply a suitable encoding format which ensures that the bytes obtained in the previous step are mail-
safe.

TheencodeText() method combines the two steps listed above to create an encoded header. Note that as
RFC 2047 specifies, only "unstructured" headers and user-defined extension headers can be encoded. It is
advised that you always run such header values through the encoder to be safe. Also note that
encodeText() encodes header values only if they contain non US-ASCII characters.

The reverse of this process (decoding) needs to be performed when handling header values obtained from a
MimeMessage or MimeBodyPart using thegetHeader() set of methods, since those headers might be
encoded as per RFC 2047. ThedecodeText() method takes a header value, applies RFC 2047 decoding
and returns the decoded value as a Unicode String. Note that this method should be invoked only on
"unstructured" or user-defined headers. Also note thatdecodeText() attempts decoding only if the
header value is encoded in RFC 2047 style. It is advised that you always run header values through the
decoder to be safe.

10.5 The ContentType Class
The ContentType class is a utility class which parses and generates MIME content-type headers.

To parse a MIME content-Type value, create a ContentType object and invoke thetoString() method.

The ContentType class also provides methods which match Content-Type values.

The following code fragment illustrates the use of this class to extract a MIME parameter.

String type = part.getContentType();
ContentType cType = new ContentType(type);

if (cType.match("application/x-foobar"))
iString color = "cType.getParameter(color");

The following code fragment illustrates the use of this class to construct a MIME Content-Type value:

10-46 JavaMail API Specification • October 1997

ContentType cType = new ContentType();
cType.setPrimaryType("application");
cType.setSubType("x-foobar");
cType.setParameter("color", "red");

String contentType = cType.toString();

Appendix A Environment Properties A-47

A

Environment Properties

This section lists the environment properties that are used by the JavaMail APIs.

Property Description

mail.store.protocol Specifies the default Message Access Protocol.
TheSession.getStore() method returns a
Store object that implements this protocol. The
protocol can be explicitly specified by using
Session.getStore(String protocol) .

mail.transport.
protocol

Specifies the default Transport Protocol. The
Session.getTransport() method returns a
Transport object that implements this protocol.
The client can explicitly specify the protocol by
usingSession.getTransport(String
protocol) .

mail.host Specifies the default Mail server. The Store and
Transport connect() methods use this property
(if the protocol-specific host property is absent) to
locate the target host.

mail.user Specifies the username provided when connecting
to a Mail server. The Store and Transport con-
nect() methods use this property (if the proto-
col-specific username property is absent) to obtain
the username.

mail.<protocol>.host Specifies the protocol-specific default Mail server.
This overrides the mail.host property.

A-48 Book Title • Month 1997

mail.<protocol>.user Specifies the protocol-specific default username
for connecting to the Mail server. This overrides
the mail.user property.

Property Description

Appendix B Examples Using the Mail API B-49

B

Examples Using the Mail API

Following are some example programs that illustrate the use of the Java Mail APIs.

B.1 Example: The Basic Store Access
Operation
import java.util.*;
import java.io.InputStream;
import java.io.IOException;
import javax.mail.*;
import javax.mail.internet.*;

public class msgshow {
 // Usage: msgshow <host> <user> <passwd> <mbox> <msgnum>
 public static void main(String argv[]) throws Exception

String host = argv[0];
String user = argv[1];
String password = argv[2];
String mbox = argv[3];
int msgnum = Integer.parseInt(argv[4]);
// Get the default Session object
Session session =

Session.getDefaultInstance(
System.getProperties(), null);

 // Get a Store object that implements the IMAP protocol
Store store = session.getStore("imap");
// Connect to 'host' as 'user'.

B-50 Book Title • Month 1997

store.connect(host, user, password);
// Open the specified Folder.
Folder folder = store.getFolder(mbox);
folder.open(Folder.READ_WRITE);

int totalMessages = folder.getMessageCount();

// Total messages
System.out.println("Total = " + totalMessages);

// Fetch Envelope for all the messages ..
Message[] msgs = folder.getMessages();
FetchProfile fp = new FetchProfile();
fp.set(FetchProfile.ENVELOPE);
fp.add("X-mailer");
folder.fetch(msgs, fp); // prefetch ENVELOPE

// Print out headers ...
for (int i = 0; i < msgs.length; i++) {
 int j;
 Address[] addr;
 // "To" attribute:
 if ((addr = msgs[i].getRecipients(

Message.TO)!= null) {
for (j = 0; j < addr.length; j++)
 System.out.println("TO: "

+ addr[j].getAddress());
 }
 // "Subject" field :
 System.out.println("SUBJECT: "

+ msgs[i].getSubject());
 // Sent date
 Date d = msgs[i].getSentDate();
 if (d != null)

System.out.println("SendDate: "
+ d.toLocaleString());

}
// Display a Message ...
 // The simplest way to do this would be to use the
 // Activation Framework to get the list of valid
 // commands for a Message, and apply the "view"
 // command to this Message object.

Appendix B Examples Using the Mail API B-51

 //
 // We do this the hard way here to illustrate
 // how to obtain & display the different
 // components of a Message

 //

dumpPart(msgs[msgnum]);
// Close folder
folder.close(false); // Don't expunge deleted messages
System.exit(0);

 }

 /** Dump out the contents of this Message object. Print
 * out the headers and the content of this message
 */
 static void dumpPart(Part p) throws Exception {

Enumeration e = p.getAllHeaders();
while (e.hasMoreElements()){

Header h = (Header)e.nextElement();
System.out.println(h.getName());
System.out.println(h.getValue());

}
// Print out the body & content
dumpContent(m.getDataHandler());

 }

Object o = p.getContent();

if(o instanceof String) {
System.out.println("This is a string");
System.out.println((String)o);
}

else if (o instanceof Multipart) {

System.out.println("This is a Multipart");

Multipart mp = (Multipart)o;

int count = mp.getCount();

for (int i = 0; i < count; i++){

System.out.println("Body#" + (i + 1))));

dumpPart(mp.getBodyPart(i)));

B-52 Book Title • Month 1997

}
else

System.out.println("unknown content-type");

 }

B.2 Example : Listing Folders

import javax.mail.*;

public class folderlist {
 // folderlist <host> <user> <passwd> <root > <pattern>
 public static void main(String argv[]) throws Exception {

String host = argv[0];
String user = argv[1];
String password = argv[2];
String root = argv[3];
String pattern = argv[4];
// Get the default Session object
Session session =

Session.getDefaultInstance(
System.getProperties(), null);

// Get a Store object for the IMAP protocol.
Store store = session.getStore("imap");
store.connect(host, user, password);
// Get this user’s Default Folder
Folder root_folder = null;
if (root == null)
 root_folder = store.getDefaultFolder();
else
 root_folder = store.getFolder(root);
Folder[] f = root_folder.list(pattern);
for (int i = 0; i < f.length; i++)
 dumpFolder(f[i]);

 }

 // Dump out info about this Folder
 static void dumpFolder(Folder folder) throws Exception {

Appendix B Examples Using the Mail API B-53

System.out.println("Name: " + folder.getName());
System.out.println("Full Name: "

+ folder.getFullName());
if (folder.isSubscribed())
 System.out.println("Is Subscribed");
if ((folder.getType() & Folder.HOLDS_MESSAGES) != 0)
 System.out.println("Is Mail folder");
if ((folder.getType() & Folder.HOLDS_FOLDERS) != 0) {
 System.out.println("Is Directory");
 // Now recurse ..
 Folder[] f = folder.list();
 for (int i=0; i < f.length; i++)

dumpFolder(f[i]);
}

 }
}

B.3 Example: Copy or Move a Message
Between Folders

import java.util.*
import javax.mail.*;
import javax.mail.internet.*;

public class copier {
 public static void main(String argv[]) throws Exception {

String host = argv[0];
String user = argv[1];
String password = argv[2];
String src = argv[3];
String dest = argv[4];
int start = Integer.parseInt(argv[5]);
int end = Integer.parseInt(argv[6]);
// Get the default Session object
Session session =

Session.getDefaultInstance(
System.getProperties(), null);

B-54 Book Title • Month 1997

// Get a Store object that implements
// the IMAP protocol.

Store store = session.getStore("imap");

// Connect to 'host' as 'user'
store.connect(host, user, password);
// Open Source Folder
Folder folder = store.getFolder(src);
folder.open(Folder.READ_WRITE);

// Open destination folder, create if reqd

Folder dfolder = store.getFolder(dest);
if (!dfolder.exists()) // create
 dfolder.create(Folder.HOLDS_MESSAGES);

Message[] msgs = folder.getMessages(start, end);

// Copy messages into destination,
// then delete them from the source

if (folder.copyMessages(msgs, dfolder))
 folder.setFlags(msgs, Message.DeletedFlag, true);
// Close folder, expunge it too.
folder.close(true);

 }
}

B.4 Example: Folder Search
import java.util.*;
import java.io.InputStream;
import java.io.IOException;
import javax.mail.*;
import javax.mail.internet.*;
import javax.mail.search.*;

Appendix B Examples Using the Mail API B-55

public class search {
 public static void main(String argv[]) throws Exception {

String host = argv[0];
String user = argv[1];
String password = argv[2];
String mbox = argv[3];
String pattern = argv[4];
// Get the default Session object
Session session =

Session.getDefaultInstance(
System.getProperties(), null);

// Get a Store object that implements the IMAP
protocol.

Store store = session.getStore("imap");
// Connect to 'host' as 'user'
store.connect(host, user, password);
// Open the specified Folder.
Folder folder = store.getFolder(mbox);
folder.open(Folder.READ_WRITE);
/* Search for the specified pattern in the From, To,
 * CC & Subject headers
 */
Term t = new OrTerm(

new OrTerm(new HeaderTerm("From", pattern),
 new HeaderTerm("To", pattern)),

new OrTerm(new HeaderTerm("Cc", pattern),
 new SubjectTerm(pattern)));

Message[] matches = folder.search(t);
int num_matches = matches != null ? matches.length: 0;
System.out.println(num_matches + " Matches found!");
for (int i=0; i < num_matches; i++) {
 Message m = matches[i];
 // Dump out this message ...
 m.putByteStream(System.out);
 }

// Close folder
folder.close(false); // Don't expunge deleted messages
System.exit(1);

 }
}

B-56 Book Title • Month 1997

B.5 Example: Creating and Sending an
RFC822 Message
import java.util.Date;
import javax.mail.*;
import javax.mail.internet.*;

public class MsgSinglepart {
 // Usage: MsgSinglepart <toaddr> <fromaddr>
 // Ex: MsgSinglepart javamail@Sun.COM max.spivak@Sun.COM

 // text used in msg body
 String text = "message text\nline 2\n";

 public static void main(String[] argv) {
// create an empty message
Message msg = new MimeMessage();
try {
 // create and fill the envelope
 Address toAddrs[] = new InternetAddress[1];
 toAddrs[0] = new InternetAddress(argv[0]);
 Address fromAddr = new InternetAddress(argv[1]);
 msg.setFrom(fromAddr);
 msg.setRecipients(Envelope.TO, addrs);
 msg.setSubject("Java Mail APIs are great!");
 msg.setSentDate(new Date());
 msg.setHeader("X-Mailer", "JavaMail APIs");

 // create and fill the text body
 msg.setContent(text, "text/plain");

 // send the message
 msg.send();

} catch (MessagingException mex) {
 mex.printStackTrace();
}

 }
}

Appendix B Examples Using the Mail API B-57

B.6 Example: Creating and Sending a MIME
Multipart Message

import java.util.Date;
import javax.mail.*;
import javax.mail.internet.*;

public class MsgMultipart {
 // Usage: MsgMultipart <toaddr> <fromaddr>
 // Ex: MsgMultipart javamail@Sun.COM max.spivak@Sun.COM

 // text used in msg body
String text = "message text\nline 2";

 Appointment appt = new Appointment(new Date(),
"Java Mail Mtg");

 public static void main(String[] argv) {
 // create an empty message

Message msg = new MimeMessage();
try {
 // create and fill the envelope
 Address toAddrs[] = new InternetAddress[1];
 toAddrs[0] = new InternetAddress(argv[0]);
 Address fromAddr = new InternetAddress(argv[1]);
 msg.setFrom(fromAddr);
 msg.setRecipients(Envelope.TO, addrs);
 msg.setSubject("Java Mail APIs are great!");
 msg.setSentDate(new Date());
 msg.setHeader("X-Mailer", "JavaMail APIs");

 // create the main body and the multipart object
 MimeMultipart multi = new MimeMultipart();

 // create the main text body
 MimeBodyPart b1 = new MimeBodyPart();
 b1.setContent(text, "text/plain");

B-58 Book Title • Month 1997

 multi.addPart(b1);

 // create the appointment body and fill it in
 MimeBodyPart b2 = new MimeBodyPart();
 b2.setContent(appt, "application/cal");
 multi.addPart(b2);

 // send the message
 msg.setContent(multi);
 msg.send();
} catch (Exception ex) {
 ex.printStackTrace();
}

 }
}

Appendix C Message Security C-59

C

Message Security

C.1 Overview
This is not a full specification of how Message Security will be integrated into the JavaMail system. This is
a description of one way it could be implemented. The purpose of this section is to determine that it will be
possible to integrate message security; not to show how it will be integrated. The final design for Message
Security will change based on feedback and finalization of the S/MIME IETF specification.

This section will discuss encrypting/decrypting messages, and signing/verifying signatures. It will not
discuss how Security Restrictions on untrusted or signed applets will work, nor will it discuss a general
authentication model for Stores (e.g. a GSS API in Java).

C.1.1 Displaying an Encryted/Signed Message
Displaying an encrypted or signed message is the same as displaying any other message. The client uses the
Datahandler for that encrypted message together with the "view" command. This returns a bean which
displays the data. There will be both a multipart/signed and multipart/encrypted viewer bean (can be the
same bean). The beans will need to be aware of the MultiPartSigned/MultiPartEncrypted classes.

C.1.2 MultiPartEncrypted/Signed Classes
The JavaMail API will probably add two new content classes: MultiPartEncrypted and MultiPartSigned.
They subclass the MultiPart class and handle the MIME types multipart/encrypted and multipart/signed.
There are many possible "protocols" which specify how the message has been encrypted and/or signed. The
MPE/MPS classes will find all the installed protocols. The ContentType’s protocol parameter determines
which the protocol class to use. There needs to be a standard registration of protocol objects, or a way to
search for valid packages and instantiate a particular class. The MultiPart classes will hand off the control

C-60 Book Title • Month 1997

information, other parameters, and the data to be manipulated (either the signed/encrypted block) through
some defined Protocol interface.

C.1.3 Reading the Contents
There will be times when an applet/application needs to retrieve the content of the message without
displaying its content. The code sample below shows one possible technique, with a message containing
encrypted content:

Message msg = // message gotten from some folder, or somehow
if (msg.getContentType().equals("multipart/encrypted")) {

Object o = msg.getContent();
if (o instanceof MultiPartEncrypted) {

MultiPartEncrypted mpe = (MultiPartEncrypted) o;
mpe.decrypt();

// use the default keys/certs from the user
// also, should be able to determine
// whether or not to interact with the user

// should then be able to use the multipart methods to
// get any contained blocks }
}

}

getContent() returns a MultiPartEncrypted object. There will be methods on this class to decrypt the
content. The decryption could either determine which keys needed to be used, or use the defaults (maybe
the current user’s keys) or could pass in explicitly which keys/certificates to use.

C.1.4 Verifying Signatures
Applications/applets will need to verify the validity of a signature. The code sample below shows how this
might be done:

Message msg = // message gotten from some folder
if (msg.getContent().equals("multipart/signed")) {

Object o = msg.getContent();
if (o instanceof MultiPartSigned) {

MultiPartSigned mps = (MultiPartSigned) o;
boolean validsig = mps.verifySignature();

// could already get the other blocks
// even if it wasn't a valid signature

Appendix C Message Security C-61

}
}

If the signature is invalid, the application can still access the data. There will also be other methods on
MultiPartSigned which allow setting of which keys/certificates to use when verifying the signature.

C.1.5 Creating a Message
There are two methods for creating an Encrypted/Signed message. Users will probably see an editor bean
for the content types multipart/signed and multipart/encrypted. These beans would handle the UI
components of allow the user to select how they wanted to encrypt/sign the message. The beans could be
integrated into an application’s Message Composition window.

C.1.5.1 Encrypted/Signed
The non-GUI method of creating the messages involves using the MultiPartEncrypted/Signed classes. The
classes can be created and used as the content for a message. The following code shows how might work:

MultiPartEncrypted mpe = new MultiPartEncrypted();
// can setup parameters for how you want to encrypt the
// message otherwise it will use the user's preferences
// set the content you wish to encrypt (to encrypt multiple
// contents a multipart/mixed block should be used)
String ourContent = "Please encrypt me!";
mpe.setContent(ourContent);

MimeMessage m = new MimeMessage();
m.setContent(mpe);

The message will be encrypted when the message is sent. There will be other methods which would allow
the setting which encryption scheme is used and the keys involved.

The version of very similar to the Encrypted Message version, except that a MultiPartSigned object is
created instead.

C-62 Book Title • Month 1997

Appendix D Part and Multipart Class Diagram D-63

D

Part and Multipart Class Diagram

This Appendix illustrates relationships between Part interfaces and Message classes.

D-64 Book Title • Month 1997

Appendix E MimeMessage Object Hierarchy E-65

E

MimeMessage Object Hierarchy

This Appendix illustrates the MimeMessage object hierarchy.

E-66 Book Title • Month 1997

Chapter -67

Issues

This section lists issues involving the JavaMail API that have not been resolved. Later updates to this
Specification will address these issues. We welcome your comments and suggestions:

• Service Provider’s Appendix.
We will release a Service Providers’ Appendix shortly.

• Registry for Store and Transport.
A registry for configuring and discovering the appropriate provider classes for Store and Transport.
We will release a proposal shortly

• Unique IDs
• Should we export Unique IDs for Messages ? How unique should this be?
• Can implementations really support this uniqueness?
• Are folder-specific Unique IDs (similar to IMAP UIDs) enough ? We’ll need a UIDValidity
mechanism as well.
• How do we expose this in the API ? Do we want to expose an IMAP-specific concept through the
APIs ?

The main motivation for exposing Unique IDs seems to be for implementing disconnected use. This
shifts the responsiblity for properly implementing disconnected support to the client.

An alternative is to design new APIs (perhaps a Disconnectable Interface), that are rich enough to
support the various modes of disconnected usage. Clients that want to provide disconnected use can
use these APIs. Providers wanting to support disconnected use can implement these APIs. An IMAP
provider will probably implement these using IMAP UIDs. Therefore, we don’t need to expose UIDs
in the API.

We encourage you to provide your input on these choices.

• Convenience APIs
• We need convenience APIs to create simple messages and messages with simple attachments. We
are working on this. Suggestions are welcome.
• We might also need convenience APIs to traverse simple multipart messages. Suggestions are
welcome.

• Authentication
We need an extensible authentication mechanism for implementing different authentication styles to
Stores and Transports. This mechanism should allow providers to call back to clients in order to obtain
required protocol-specific information. JDK 1.2 includes mechanisms to accomplish this. We are
determining whether it is feasable to incorporate these mechanisms into the JavaMail APIs.

• The Activation Framework

-68 Book Title • Month 1997

We will release an updated Activation Framework Specification soon, including some minor fixes.
This document refers some APIs described in the updated specification.

