
n

Please send feedback tojavamail@sun.com

Sun Microsystems, Inc

JavaMail API Design Specificatio
version 1.0b

Version 1.0b

March 27, 1998

Java Mail 1.0b

JavaMail

et forth
52.227-

un Micro-

,
-

Copyright © 1998 by Sun Microsystems Inc.

2550 Garcia Avenue, Mountain View, CA 94043.

All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as s
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 2
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of S
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.
JavaSoft ii 3/20/98

Table Of Contents

1. Introduction 1-1

2. Goals and Design Principles 2-1

3. Architectural Overview 3-1

4. The Message Class 4-1

5. The Mail Session 5-1

6. Message Storage And Retrieval 6-1

7. The JavaBeans Activation Framework 7-1

8. Message Composition 8-1

9. Transport Protocols and Mechanisms 9-1

10. Internet Mail 10-1

A. Environment Properties A-1

B. Examples Using the Mail API B-1

B.1 Example: Showing a Message B-1

B.2 Example : Listing Folders B-4

B.3 Example: Search a Folder for a Message B-6

B.4 Example: Monitoring a Mailbox B-9

B.5 Example: Sending a Message B-11

C. Message Security C-1
iii

C.1.1 Displaying an Encryted/Signed Message C-1

C.1.5.1 Encrypted/Signed C-3

D. Part and Multipart Class Diagram D-1

E. MimeMessage Object Hierarchy E-1
iv Book Title • Month 1996

he
RBA

atured

 API
 to

l that

otton.

ts of
1

Introduction

In the two years since it’s first release, the JavaTM language has matured to become a complete platform. T
Java platform now provides a complete operating system, distributed computing with RMI and the CO
bridge, a component architecture(JavaBeansTM), a middleware layer (Enterprise JavaBeansTM), a server
toolkit, and a WebTop environment. Having proven successful, many Java-based applications have m
with the language and now need a Java-based mail and messaging framework. The JavaMailTM API
described in this specification satisfies that need.

The JavaMail API provides a set of abstract classes defining objects that comprise a mail system. The
defines classes like Message, Store and Transport. The API can be extended and can be subclassed
provide new protocols and to functionality when necessary.

In addition, the API provides concrete subclasses of the abstract classes. These subclasses, including
MimeMessage and MimeBodyPart, implement widely used Internet mail protocols and conform to
specifications RFC822 and RFC2045. They are ready to be used in application development.

1.1 Target Audience
The JavaMail API is designed to serve several audiences:

• Client, server, or middleware developers interested in building Java-based mail and messaging
applications.

• Application developers who need to “mail-enable” their applications.

• Service Providers who need to implement specific access and transfer protocols. For example; a
telecommunications company can use the JavaMail API to implement a PAGER Transport protoco
sends mail messages to alphanumeric pagers.

1.2 Acknowledgments
The authors of this specification are John Mani, Bill Shannon, Max Spivak, Kapono Carter and Chris C

We would like to acknowledge the following people for their comments and feedback on the initial draf
this document:

• Terry Cline, John Russo, Bill Yeager, Monica Gaines and John Togasaki: Sun Microsystems.
Chapter 1 Introduction 1-1

s

• Arn Perkins and John Ragan: Novell, Inc.

• Nick Shelness: Lotus Development Corporation.

• Juerg von Kaenel: IBM Corporation.

• Prasad Yendluri, Jamie Zawinski, Terry Weissman and Gena Cunanan: Netscape Communication
Corporation.
1-2 JavaMail API Design Specification • March 1998

g the
te
 use

:

ith

ed on

.

 mail

r to use
va

 to
-
il. It is
to

res,
2

Goals and Design Principles

The JavaMail API is designed to make mail-enabling of simple applications easy, while also supportin
creation of sophisticated user interfaces. It includes appropriate convenience classes which encapsula
common mail functions and protocols. It fits with other Java language packages in order to facilitate its
with other Java language APIs, and it uses familiar Java language programming models.

The JavaMail API is therefore designed to satisfy the following development and runtime requirements

• Simple, straightforward class design is easy for a developer to learn and implement.

• Use of familiar concepts and programming models support code development that interfaces well w
other Java language APIs.

■ Uses familiar exception-handling and JDK 1.1 event-handling programming models.

■ Uses features from the JavaBeans Activation Framework (JAF) to handle access to data bas
data-type and to facilitate the addition of data types and commands on those data types. The
JavaMail API provides convenience functions to simplify these coding tasks.

• Lightweight classes and interfaces make it easy to add basic mail-handling tasks to any application

• Supports the development of robust mail-enabled applications, that can handle a variety of complex
message formats, data types, and access and transport protocols.

The JavaMail API draws heavily from IMAP, MAPI, CMC, c-client and other messaging system APIs -
many of the concepts present in these other systems are also present in the JavaMail API. It is simple
because it uses Java language features not available to these other APIs, and because it uses the Ja
language object model to shelter applications from implementation complexity.

The JavaMail API design is driven by the needs of the applications it supports - but it is also important
consider the needs of API implementors. It is critically important to enable the implementation of Java
based messaging systems that interoperate with existing messaging systems-- especially Internet ma
also important to anticipate the development of new messaging systems. The JavaMail API conforms
current standards while not being so constrained by current standards that it stifles future innovation.

The JavaMail API supports many different messaging system implementations - different message sto
different message formats, and different message transports. The JavaMail API provides a set of base
Chapter 2 Goals and Design Principles 2-1

ed to

ge

ions of

 any
ds. The
lity

o
 IMAP4
classes and interfaces that define the API for client applications. Many simple applications will only ne
interact with the messaging system through these base classes and interfaces.

JavaMail subclasses can expose additional messaging system features. For instance, the MimeMessa
subclass exposes and implements common characteristics of an Internet mail message, as defined by
RFC822 and MIME standards. Developers can subclass JavaMail classes to provide the implementat
particular messaging systems, such as IMAP4, POP3, and SMTP.

The base JavaMail classes include many convenience APIs that simplify use of the API, but don’t add
functionality. The implementation subclasses are not required to implement those convenience metho
implementation subclasses must implement only the core classes and methods that provide functiona
required for the implementation.

Alternately, a messaging system can choose to implement all of the JavaMail API directly, allowing it t
take advantage of performance optimizations, perhaps through use of batched protocol requests. The
protocol implementation takes advantage of this approach.

The JavaMail API uses the Java language to good effect to strike a balance between simplicity and
sophistication. Simple tasks are easy, and sophisticated functionality is possible.
2-2 JavaMail API Design Specification • March 1998

t

ystem
Mail
 classes

ndling
 be
th

nd to
ce via

d
ety of
port
3

Architectural Overview

This Section describes the JavaMail architecture, defines major classes and interfaces comprising tha
architecture, and lists major functions that the architecture implements.

JavaMail provides elements that are used to construct an interface to a messaging system, including s
components and interfaces. While this Specification does not define any specific implementation, Java
does include several classes that implement RFC822 and MIME Internet messaging standards. These
are delivered as part of the JavaMail class package.

3.1 JavaMail Layered Architecture
The JavaMail architectural components are layered as shown below:

• The Abstract Layer declares Classes, Interfaces and abstract methods intended to support mail ha
functions that all mail systems support. API elements comprising the Abstract Layer are intended to
subclassed and extended as necessary in order to support standard data types, and to interface wi
message access and message transport protocols as necessary.

• The internet implementation layer implements part of the abstract layer using internet standards -
RFC822 and MIME.

• JavaMail uses the JavaBeans Activation Framework (JAF) in order to encapsulate message data, a
handle commands intended to interact with that data. Interaction with message data should take pla
JAF-aware JavaBeans, which are not provided by the JavaMail API.

JavaMail clients use the JavaMail API and Service Providers implement the JavaMail API. The layere
design architecture allows clients to use the same JavaMail API calls to send, receive and store a vari
messages using different data-types from different message stores and using different message trans
protocols.
Chapter 3 Architectural Overview 3-1

Mail-enabled Application

Java Bean - used to interact and
display message content

JavaMail
Abstract Class Layer

IMAP / POP3 / NNTP implementation Layer

Internet Mail
Implementation Class Layer

JavaMail
API
3-2 JavaMail API Design Specification • March 1998

ail
3.2 JavaMail Class Hierarchy
The figure below shows major classes and interfaces comprising the JavaMail API. See “Major JavaM
API Components” for brief descriptions of all components shown on this diagram.

Part

Message

Multipart
Container
Class

MimePart

Bodypart

MimePart

MimeMessage

MimeBodyPart

MimeMultipart
container
Class

JavaMail Implementation Layer

LEGEND

Extends

ImplementsInterface

Class

Container Class
Chapter 3 Architectural Overview 3-3

nown

ta

nd

rity,
nd
3.3 The JavaMail Framework
The JavaMail API is intended to perform the following functions, which comprise the standard Mail
handling process for a typical client application:

• Create a Mail Message consisting of a collection of header attributes and a block of data of some k
data type as specified in theContent-Type header field. JavaMail uses the Part interface and the
Message class to define a mail message. It uses the JAF-defined DataHandler object to contain da
placed in the message.

• Create a session object, which authenticates the user, and controls access to the message store a
transport.

• Send the message to its recipient list.

• Retrieve a message from a message store.

• Execute a high-level command on a retrieved message. High-level commands likeview andprint are
intended to be implemented via JAF-Aware JavaBeans.

Note – The JavaMail framework does not define mechanisms that support message delivery, secu
disconnected operation, directory services or filter functionality. Security, disconnected operation a
filtering support will be added in future releases.

This figure illustrates the JavaMail message-handling process.
3-4 JavaMail API Design Specification • March 1998

ge
 type.

nd

 via a
d with

 within
essage

 any
ally
3.4 Major JavaMail API Components
This Section reviews major components comprising the JavaMail architecture.

3.4.1 The Message Class
Message is an abstract class that defines a set of attributes and a content for a mail message. Messa
attributes specify addressing information and define the structure of the content, including the content
The content is represented as a DataHandler object that wraps around the actual data.

The Message class implements the Part interface. Part defines attributes that are required to define a
format data content carried by a Message object, and to interface successfully to a mail system. The
Message class adds From, To, Subject, Reply-To, and other attributes necessary for message routing
message transport system. When contained in a Folder, a Message object has a set of flags associate
it. JavaMail provides Message subclasses that support specific messaging implementations.

The content of a Message is a collection of bytes, or a reference to a collection of bytes, encapsulated
a Message object. JavaMail has no knowledge of the data type or format of the message content. A M
object interacts with its content through an intermediate layer -the JavaBeans Activation Framework
(JAF). This separation allows a Message object to handle any arbitrary content and to transmit it using
appropriate transmission protocol by using calls to the same API methods. The Message recipient usu
knows the content data type and format and knows how to handle that content.

FOLDERS

MESSAGE

FOLDERSTRANSPORT

Receive a
Message

Send a
Message

Submit a
Message

STORE

MESSAGE

Contains
Messages

Network
Infrastructure
Chapter 3 Architectural Overview 3-5

of

viding a
sages.

e also

n.
g

e the
the

his class

n a
et
p

n

e
tion

s
ession, a

vent-
The JavaMail API also supports multipart Message objects, where each Bodypart defines its own set
attributes and content.

3.4.2 Message Storage and Retrieval
Messages are stored in Folder objects. A Folder can contain subfolders as well as messages, thus pro
tree-like folder hierarchy. The Folder class declares methods that fetch, append, copy and delete Mes
Folder can also send events to components registered as event listeners.

The Store class defines a database that holds a folder hierarchy together with its messages. The Stor
specifies theaccess protocol that accesses folders and retrieves messages stored in folders. Store also
provides methods to establish a connection to the database, to fetch Folders and to close a connectio
Service providers implementing Message Access protocols (IMAP4, POP3 etc.) start off by subclassin
Store. A user typically starts a session with the Mail system by connecting to a particular Store
implementation.

3.4.3 Message Composition and Transport
A client creates a new message by instantiating an appropriate Message subclass. It sets attributes lik
recipient addresses and the subject, and inserts the content into the Message object. Finally, it sends
Message by invoking theTransport.send() method.

The Transport class models the transport agent that routes a message to its destination addresses. T
provides methods that send a Message to a list of recipients. Invoking theTransport.send() method
with a Message object identifies the appropriate transport based on its destination addresses.

3.4.4 The Session Class
The Session class defines global and per-user Mail-related properties that define the interface betwee
mail-enabled client and the network. JavaMail system components use the Session object to set and g
specific properties. The Session class also provides a default authenticated session object that deskto
applications can share. Session is a final concrete class. It cannot be subclassed.

The Session also acts as a factory for Store and Transport objects that implement specific access and
transport protocols. By calling the appropriate factory method on a Session object, the client can obtai
Store and Transport objects that support specific protocols.

3.5 The JavaMail Event Model
The JavaMail event model conforms to the Java JDK 1.1 Event model specification, as described in th
JavaBeans Specification. The JavaMail API follows the design patterns defined in the Beans Specifica
for naming events, event methods and event listener registration.

All events are subclassed from MailEvent. Clients listen for specific events by registering themselves a
listeners for those events. Events notify listeners of state changes as a session progresses. During a s
JavaMail component generates a specific event-type to notify objects registered as listeners for that e
3-6 JavaMail API Design Specification • March 1998

es a

ethods

t.

 user
type. The JavaMail Store, Folder, and Transport classes are event sources. This Specification describ
specific event in the Section that describes the class that generates that event.

3.6 Using the JavaMail API
This Section defines the syntax and lists the order in which a client application calls some JavaMail m
in order to access and open a Message located in a folder:

A JavaMail client typically begins a mail handling task by obtaining the default JavaMail Session objec
Session session = Session.getDefaultInstance(
 props, authenticator);

The client uses the Session object’sgetStore() method to connect to the default Store. The
getStore() method returns a Store object subclass that supports the access protocol defined in the
properties object, which will typically contain per-user preferences.

Store store = session.getStore();
store.connect();

If the connection is successful, the client can list available folders in the Store, and then fetch and view
specific Message objects.

// get the INBOX folder
Folder inbox = store.getFolder("INBOX");

// open the INBOX folder
inbox.open(Folder.READ_WRITE);

Message m = inbox.getMessage(1); // get Message # 1
String subject = m.getSubject(); // get Subject
Object content = m.getContent(); // get content
..
..

Finally, the client closes all open Folders, and then closes the Store.
inbox.close(); // Close the INBOX
store.close(); // Close the Store

See “Examples Using the JavaMail API” for a more complete example.
Chapter 3 Architectural Overview 3-7

3-8 JavaMail API Design Specification • March 1998

ge
e
he

PI

treams

pecify
pe of the
essage
4

The Message Class

Message is an abstract class that defines a set of attributes and a content for a mail message. Messa
attributes specify message addressing information and define the structure of the content, including th
content type. The content is represented by a DataHandler object that wraps around the actual data. T
Message class is an abstract class that implements the Part interface.

Message subclasses can implement several standard message formats. For example, the JavaMail A
provides the MimeMessage class, that extends Message in order to implement the RFC822 and MIME
standards. Implementations can typically construct themselves from byte streams and generate byte s
for transmission.

A Message subclass instantiates an object that holds message content, together with attributes that s
addresses for the sender and recipients, structural information about the message, and the content ty
message body. Messages placed into a Folder also have a set of flags that describe the state of the m
within the folder.

The figure below illustrates the Message class structure.
Chapter 4 The Message Class 4-1

 of

ect of
n
oves

ntent.
ach
class
The Message object has no direct knowledge of the nature or semantics of its content. This separation
structure from content allows the message object to contain any arbitrary content.

Message objects are either retrieved from a Folder or constructed by instantiating a new Message obj
the appropriate subclass. Messages stored within a Folder are sequentially numbered, starting at 1. A
assigned message number can change when the folder is expunged, since the expunge operation rem
deleted messages from the folder and also renumbers the remaining messages.

A Message object can contain multiple parts, where each part contains its own set of attributes and co
The content of a Multipart Message is a Multipart object that contains BodyPart objects representing e
individual part. The Part interface defines the structural and semantic similarity between the Message
and the BodyPart class.

Message Class

Header Attributes

Content Body

Attributes defined by the
Part interface, including
Content-Type .

Attributes added by the
Message Class.

Optional attributes added by
a Message Subclass,
such as MimeMessage.

 Part interface

 DataHandler
Class

DataHandler Object

Contains data that conforms
to the Content-Type
attribute, together with meth-
ods that provide access to
that data.

JavaBean
queries the
DataHandler
object in order to
view and handle
content body.
4-2 JavaMail API Design Specification • March 1998

et of
ct
The figure below illustrates a Message instance hierarchy, where the Message contains attributes, a s
flags, and content. See “MimeMessage Object Hierarchy” for an illustration of the MimeMessage obje
hierarchy.

The Message class provides methods to perform the following tasks:

• Get, Set and Create its attributes and content:

public String getSubject() throws MessagingException;
public void setSubject(String subject)
 throws MessagingException;
public String[] getHeader(String name)
 throws MessagingException;
public void setHeader(String name, String value)
 throws MessagingException;
public Object getContent()
 throws MessagingException;
public void setContent(Object content, String type)
 throws MessagingException

MessageFlags Attributes

Legend

Contains

Implements

Part

Content

Interface

Class

References
Chapter 4 The Message Class 4-3

anged

-type
bers. It
ge and

d in a

hese
 The
avadoc)
ems
to the

on
, and
 type-
• Save changes to its containing folder.

public void saveChanges()
 throws MessagingException;

This method also ensures that the Message header fields are updated to be consistent with the ch
message contents.

• Generate a bytestream for the Message object.

public void writeTo(OutputStream os)
 throws Exception, MessagingException;

This byte stream can be used to save the message or send it to a Transport object.

4.1 The Part Interface
The Part interface defines a set of standard headers common to most mail systems, specifies the data
assigned to data comprising a content block, and defines set and get methods for each of these mem
is the basic data component in the JavaMail API and provides a common interface for both the Messa
the BodyPart classes. See the JavaMail API (Javadoc) documentation for details.

Note – A Message object can not be contained directly in a multipart object, but must be embedde
BodyPart first.

4.1.1 Message Attributes
The Message class adds its own set of standard attributes to those it inherits from the Part interface. T
attributes include the sender and recipient addresses, the subject, flags, and sent and received dates.
Message class also supports non-standard attributes in the form of Headers. See the JavaMail API (J
Documentation for the list of standard attributes defined in the Message class. Not all messaging syst
will support arbitrary headers, and the availability and meaning of particular header names is specific
messaging system implementation.

4.1.2 The ContentType Attribute
The ContentType attribute specifies the data type of the content, following the MIME typing specificati
(RFC 2045). A MIME type is composed of a primary type that declares the general type of the content
a subtype that specifies a specific format for the content. A MIME type also includes an optional set of
specific parameters.
4-4 JavaMail API Design Specification • March 1998

ost

r its

ntent
or
JavaMail API components can access content via these mechanisms:

ThesetDataHandler(DataHandler) method specifies content for a new Part object, as a step
toward the construction of a new Message. Part also provides some convenience methods to set up m
common content types.

Part provides thewriteTo() method that writes its byte stream in mail-safe form suitable for
transmission. This byte stream is typically an aggregation of the Part attributes and the byte stream fo
content.

4.2 The Address Class
The Address class represents email addresses. Address is an abstract class. Subclasses provide
implementation-specific semantics.

4.3 The BodyPart Class
BodyPart is an abstract class that implements the Part interface in order to define the attribute and co
body definitions that Part declares. It does not declare attributes that set From, To, Subject, ReplyTo,
other address header fields, as a Message object does.

A BodyPart object is intended to be inserted into a Multipart container, later accessed via a Multipart
Message.

As an input stream The Part interface declares thegetInputStream() method that
returns an input stream to the content. Note that Part implementa-
tions must decode any mail-specific transfer encoding before provid-
ing the input stream.

As a DataHandler object The Part interface declares thegetDataHandler() method that
returns ajavax.activation.DataHandler object that wraps
around the content. The DataHandler object allows clients to dis-
cover the operations available to perform on the content, and to
instantiate the appropriate component to perform those operations.
See “The JavaBeans Activation Framework” for details describing
the DataTyping framework

As a Java object The Part interface declares thegetContent() method that returns
the content as a Java object. The type of the returned object is depen-
dent on the content data type. If the content is of type multipart, the
getContent() returns a Multipart object, or a Multipart subclass
object. getContent() returns an input stream for unknown con-
tent-types. Note thatgetContent() uses the DataHandler inter-
nally to obtain the native form.
Chapter 4 The Message Class 4-5

the

r to
ck the
4.4 The Multipart Class
The Multipart class implements Multipart Messages. A Multipart Message is a Message object where
content-type specifier has been set tomultipart. Multipart is a container class that contains objects of type
Bodypart. A Bodypart object is an instantiation of the Part interface-- it contains either a new Multipart
container object, or a DataHandler object.

The figure below illustrates the structure and content of a Multipart Message:

Note that Multipart objects can be nested to any reasonable depth within a Multipart Message, in orde
build an appropriate structure for data carried in DataHandler objects. Therefore, it is important to che
ContentType header for each BodyPart element stored within a Multipart container. The figure below
illustrates a typical nested Multipart Message.

Multipart Object

Header Attributes

Content Body

Attributes defined by the Part
interface only.

Attributes include a second
Content-Type attribute.

The content body itself can be
either a DataHandler object con-
taining data, or another Multipart
object.

Bodypart Object

A Multipart Message can hold more
than one Multipart Object.

Message

Header Attributes
Normal Message,
includes a Content-
Type attribute
set to ‘Multipart.’ .

A Multipart Message is a simple
message object where the Con-
tent-Type is set to ‘multipart , ‘
and the Content Body carries a
reference to a Multipart object .

Content Body
Normal Message,
includes a Content
body of type
‘multipart.’

A Multipart object is a container
of Bodypart objects, where each
Bodypart can contain either a
DataHandler object, or another
Multipart object.

Bodypart Object
4-6 JavaMail API Design Specification • March 1998

Typically, the client callsgetContentType() to get the ContentType of a message. If
getContentType() returns a MIME-type whose primary type ismultipart, then the client calls
getContent() to get the Multipart container object.

Multipart supports several methods that get, create, and remove individual BodyPart objects.

public int getCount() throws MessagingException;
public Body getBodyPart(int index)
 throws MessagingException;
public void addBodyPart(BodyPart part)
 throws MessagingException;
public void removeBodyPart(BodyPart body)
 throws MessagingException;
public void removeBodyPart(int index)
 throws MessagingException;

Message
Object

Multipart Container
Object

Bodypart object that
carries a DataHan-
dler object holding
data.

Bodypart object that
holds a DataHan-
dler object holding a
Multipart Container
object.

Other Optional
Multipart Objects

New bodyparts,
containing a
Datahandler
object.Other Bodypart

objects.

Content body
references a
Multipart con-
tainer object.

Bodypart

Bodypart

Bodypart

Carries
addresses for
the entire tree.
Chapter 4 The Message Class 4-7

r

 already

ltipart

 Use

PI”
Multipart implements thejavax.beans.DataSource interface. It can act as the DataSource object fo
javax.beans.DataHandler s andjavax.beans.DataContentHandlers . This allows
message-aware content handlers to handle Multipart data sources more efficiently, since the data has
been parsed into individual parts.

This diagram illustrates the structure of a Multipart Message, and shows associated Message and Mu
calls for a typical call sequence returning a bodypart containing text/plain content.

In this figure, the ContentType attribute of a Message object indicates that it holds a multipart content.
thegetContent() method to obtain the Multipart object.

This code sample below shows the retrieval of a Multipart object. See “Examples Using the JavaMail A
for examples that traverse a Multipart Message and examples that create new Multipart Messages.

Multipart mp = (Multipart)message.getContent();
int count = mp.getCount();
BodyPart body_part;

Message

Multipart

BodyPart

0... n-1

getContent()

getBodyPart(index)

Legend

extends

contains

getContentType()
multipart/mixed

Text

getContent()

text/plain
getContentType()
4-8 JavaMail API Design Specification • March 1998

e

ent can

ge object.

cation
es to
asses
for (int i = 0; i < count; i++)
body_part = mp.getBodyPart(i);

4.5 The Flags Class
Flags objects carry flag settings that describe the state of a Message within its containing folder.
Message.getFlags () returns a Flags object that holds all the flags currently set for that message.

ThesetFlags(Flags f, boolean set) method sets the specified flags for that Message. The
add(Flags.Flag f) method on a Flags object sets the specified flag; thecontains(Flags. Flag
f) method returns whether the specified flag is set.

Note that a Folder is not guaranteed to support either standard system flags or arbitrary user flags. Th
getPermanentFlags () method in a Folder returns a Flags object that contains all the system flags
supported by that Folder implementation. The presence of the special USER flag indicates that the cli
set arbitrary user-definable flags on any Message belonging to this folder.

4.6 Message Creation And Transmission
Message is an abstract class, so an appropriate subclass must be instantiated to create a new Messa
A client creates a message by instantiating an appropriate Message subclass.

For example, the MimeMessage subclass handles Internet email messages. Typically, the client appli
creates an email message by instantiating a MimeMessage object, and passing required attribute valu
that object. In an email message, the client defines Subject, From, and To attributes. The client then p

ANSWERED Clients set this flag to indicate that this Message has been answered.

DRAFT Indicates that this Message is a draft.

FLAGGED No defined semantics. Clients can use this flag to mark a message in
some user-defined manner.

RECENT This Message is newly arrived in this Folder. This flag is set when
the message is first delivered into the folder and cleared when the
containing folder is closed. Clients cannot set this flag.

SEEN Marks a message that has been opened. A Client sets this flag implic-
itly when the message contents are retrieved.

DELETED Allows undoable message deletion. Setting this flag for a message
marks it 'deleted' but does not physically remove the message from
its folder. The client callsexpunge() on a folder to remove all
deleted messages in that folder.
Chapter 4 The Message Class 4-9

e

cess.
message content into the MimeMessage object by using a suitably configured DataHandler object. Se
“Message Composition” for details.

After the Message object is constructed, the client calls the Transport.send() method to route it to its
specified recipients. See “Transport Protocols and Mechanisms” for a discussion of the Transport pro
4-10 JavaMail API Design Specification • March 1998

ge stores
hare the
 the
n use
bject,

ation.

es

ct
ic
he

 it as a
tem. It
5

The Mail Session

A mail Session object manages the configuration options and user authentication information used to
interact with messaging systems.

The JavaMail API supports simultaneous multiple sessions. Each session can access multiple messa
and transports. Any desktop application that needs to access the current primary message store can s
default session. Typically the mail-enabled application establishes the default session, which initializes
authentication information necessary to access the user’s Inbox folder. Other desktop applications the
the default session when sending or accessing mail on behalf of the user. When sharing the session o
all applications share authentication information, properties, and the rest of the state of the object.

For example:

A Session object is created using a static factory method:
Session session = Session.getInstance(props, authenticator);

to create an unshared session, or to access the default session.
Session defaultSession =
 Session.getDefaultInstance(props, authenticator);

The Properties object that initializes the Session contains default values and other configuration inform
It is expected that clients using the APIs set the values for the listed properties, especially
mail.store.protocol, mail.transport.protocol, mail.host, mail.user, and mail.from, since the defaults are
unlikely to work in all cases. See Appendix A, “Environment Properties” on page 1 for a list of properti
used by the JavaMail APIs and their defaults.

Some messaging system implementations can use additional properties. Typically the properties obje
contains user-defined customizations in addition to system-wide defaults. Mail-enabled application log
determines the appropriate set of properties. Lacking a specific requirement, the application can use t
system properties object retrieved fromSystem.getProperties() .

The Authenticator object controls security aspects for the session object. The messaging system uses
callback mechanism to interact with the user when a password is required to login to a messaging sys
indirectly controls access to the default session, as described below.
Chapter 5 The Mail Session 5-1

ter in
ontain
jects
sibility

llowed
efault
" Also, if
 access

r send
r that

lar

ned.
port

ail
r

Clients using JavaMail can register PasswordAuthentication objects with the Session object for use la
the session or for use by other users of the same session. Because PasswordAuthentication objects c
passwords, access to this information must be carefully controlled. Applications that create Session ob
must restrict access to those objects appropriately. In addition, the Session class shares some respon
for controlling access to the default session object.

The first call togetDefaultInstance() creates a new Session object and associates it with the
Authenticator object. Subsequent calls togetDefaultInstance() compare the Authenticator object
passed in with the Authenticator object saved in the default session. Access to the default session is a
if both objects have been loaded by the same class loader. Typically, this is the case when both the d
session creator and the program requesting default session access are in the same "security domain.
both objects are null, access is allowed. Using null to gain access is discouraged, because this allows
to the default session from any security domain.

A mail-enabled client uses the Session object to retrieve a Store or Transport object in order to read o
mail. Typically, the client retrieves the default Store or Transport object based on properties loaded fo
session:

Store store = session.getStore();

The client can override the session defaults and access a Store or Transport that implements a particu
protocol.

Store store = session.getStore("imap");

See "The Provider Registry" for details.

Implementations of Store and Transport objects will be told the session to which they have been assig
They can then make the Session object available to other objects contained within this Store or Trans
using application-dependent logic.

5.1 The Provider Registry
The Provider Registry allows providers to register their protocol implementations to be used by JavaM
APIs. It provides a mechanism for discovering available protocol, for registering new protocols, and fo
specifying default implementations.

5.1.1 Resource Files
 The providers for JavaMail APIs are configured using the following files:

• javamail.providers and javamail.default.providers

• javamail.address.map and javamail.default.address.map

Eachjavamail. X resource file is searched in the following order:
5-2 JavaMail API Design Specification • March 1998

he
s

dence
e

ith the

 name-
1. <java.home>/lib/javamail. X

2. META-INF/javamail. X

3. META-INF/javamail.default. X

Method 1 allows the user to include their own version of the resource file by placing it in thelib directory
where thejava.home property points. Method 2 allows an application that uses the JavaMail APIs to
include their own resource files in their application’s or jar file’s META-INF directory. The
javamail.default. X default files are part of the JavaMailmail.jar file.

File location depends upon how theClassLoader.getResource() method is implemented. Usually,
getResource() searches throughCLASSPATH until it finds the requested file and then stops. JDK 1.1
has a limitation that the number of files of each type that will be found in theCLASSPATH is limited to one.
However, this only affects method 2 above; method 1 is loaded from a specific location (if allowed by t
SecurityManager) and method 3 uses a different name to ensure that the default resource file is alway
loaded successfully.

The ordering of entries in the resource files matters. If multiple entries exist, the first entries take prece
over the latter entries as the initial defaults. For example, the first IMAP provider found will be set as th
default imap implementation until explicitly changed by the application.

The user- or system-supplied resource files augment, they do not override, the default files included w
JavaMail APIs. This means that all entries in all files loaded will be available.

5.1.1.1 javamail.providers and javamail.default.providers
These resource files specify the stores and transports that are available on the system, allowing an
application to "discover" what store and transport implementations are available. The protocol
implementations are listed one per line. The file format defines four attributes that describe a protocol
implementation. Each attribute is an "="-separated name-value pair with the name in lowercase. Each
value pair is semi-colon (";") separated.

protocol Name assigned to protocol. For example, ’smtp’ for Transport.

type Valid entries are "store" and "transport"

class Class name that implements this protocol.

vendor Optional string identifying the vendor.

version Optional string identifying the version.
Chapter 5 The Mail Session 5-3

 the

for a

thods
Here’s an example ofMETA-INF/javamail.default.providers file contents:

protocol=imap; type=store;class=com.sun.mail.imap.IMAPStore;vendor=SunMicrosystems,Inc;
protocol=smtp; type=transport; class=com.sun.mail.smtp.SMTPTransport;

5.1.1.2 javamail.address.map and javamail.default.address.map
These resource files map transport address types to the transport protocol. The
javax.mail.Address.getType() method returns the address type. Thejavamail.address.map file
maps the transport type to the protocol. The file format is a series of name-value pairs. Each key name should
correspond to an address type that is currently installed on the system; there should also be an entry for each
javax.mail.Address implementation that is present if it is to be used. For example,
javax.mail.internet.InternetAddress.getType() returnsrfc822. Each referenced protocol should
be installed on the system. For the case ofnews, below, the client should install a Transport provider supporting the
nntp protocol.

Here are the typical contents of ajavamail.address.map file.

rfc822=smtp
news=nntp

5.1.2 Provider
Provider is a class that describes a protocol implementation. The values come from thejavamail.providers
andjavamail.default.providers resource files.

5.1.3 Protocol Selection and Defaults
The constructor for the Session object initializes the appropriate variables from the resource files. The order of
protocols in the resource files determines the initial defaults for protocol implementations. The methods,
getProviders() , {getProvider() and setProvider() allow the client to discover the available
(installed) protocol implementations, and to set the protocols to be used by default.

At runtime, an application may set the default implementation for a particular protocol. It can set the
mail. protocol .class property when it creates the Session object. This property specifies the class to use
particular protocol. ThegetProvider() method consults this property first.

The code can also callsetProviders() passing in a Provider that was returned by the discovery methods. A
Provider object cannot be explicitly created; it must be retrieved using thegetProviders() method.

In either case, the provider specified must be one of the ones configured in the resource files. Note that the me
described here allow the client tochoose from among preconfigured implementations, but doesn’t allow it to
configure a new implementation.
5-4 JavaMail API Design Specification • March 1998

er’s
5.1.4 Example Scenarios

Scenario 1: The client application invokes the default protocols:

class Application1 {
init() {

// application properties include the JavaMail
// required properties: mail.store.protocol,
// mail.transport.protocol, mail.host, mail.user

Properties props = loadApplicationProps();
Session session = Session.getInstance(props, null);

// get the store implementation of the protocol
// defined in mail.store.protocol; the implementation
// returned will be defined by the order of entries in
// javamail.providers & javamail.default.providers

try {
Store store = session.getStore();
store.connect();

} catch (MessagingException mex) {}
...

}
}

Scenario 2: The client application presents available implementations to the user and then sets the us
choice as the default implementation:

class Application2 {
init() {

// application properties include the JavaMail
// properties: mail.store.protocol,
// mail.transport.protocol, mail.host, mail.user

Properties props = loadApplicationProps();
Session session = Session.getInstance(props, null);

// find out which implementations are available

Provider[] providers = session.getProviders();
Chapter 5 The Mail Session 5-5

// ask the user which implementations to use
// user’s response may include a number of choices,
// i.e. imap & nntp store providers & smtp transport

Provider[] userChosenProviders =
askUserWhichProvidersToUse(providers);

// set the defaults based on users response

for (int i = 0; i < userChosenProviders.length; i++)
session.setProvider(userChosenProviders[i]);

// get the store implementation of the protocol
// defined in mail.store.protocol; the implementation
// returned will be the one configured previously

try {
Store store = session.getStore();
store.connect();

} catch (MessagingException mex) {}
...

}
}

Scenario 3 Application wants to specify an implementation for a given protocol:

class Application3 {
init() {

// application properties include the JavaMail
// required properties: mail.store.protocol,
// mail.transport.protocol, mail.host, mail.user

Properties props = loadApplicationProps();

// hard-code an implementation to use
// "com.acme.SMTPTRANSPORT"

props.put("mail.smtp.class", "com.acme.SMTPTRANSPORT");
Session session = Session.getInstance(props, null);

// get the smtp transport implementation; the
// implementation returned will be com.acme.SMTPTRANSPORT
// if it was correctly configured in the resource files.
// If com.acme.SMTPTRANSPORT can’t be loaded, a
// MessagingException is thrown.
5-6 JavaMail API Design Specification • March 1998

llows
d in a

ate a

r when a

ject for
on
eate
res some

ator

y the

fault
ase is
in.

ith the
ed
n. The

hods
erned
try {
Transport transport = session.getTransport("smtp");

} catch (MessagingException mex) {
quit();

}
}

...
}

5.2 Managing Security
The Session class allows messaging system implementations to use the Authenticator object that was
registered when the session was created. The Authenticator object is created by the application and a
interaction with the user to obtain a user name and password. The user name and password is returne
PasswordAuthentication object. The messaging system implementation can ask the session to associ
user name and password with a particular message store using thesetPasswordAuthentication()
method. This information is retrieved using thegetPasswordAuthentication() method. This
avoids the need to ask the user for a password when reconnecting to a Store that has disconnected, o
second application sharing the same session needs to create its own connection to the same Store.

Messaging system implementations can register PasswordAuthentication objects with the Session ob
use later in the session or for use by other users of the same session. Because PasswordAuthenticati
objects contain passwords, access to this information must be carefully controlled. Applications that cr
Session objects must restrict access to those objects appropriately. In addition, the Session class sha
responsibility for controlling access to the default Session object.

The first call togetDefaultInstance() creates a new Session object and associates the Authentic
object with the Session object. Later calls togetDefaultInstance() compare the Authenticator object
passed in, to the Authenticator object saved in the default session. If both objects have been loaded b
same class loader, then getDefaultInstance() will allow access to the default session. Typically,
this is the case when both the creator of the default session and the code requesting access to the de
session are in the same "security domain." Also, if both objects are null, access is allowed. This last c
discouraged because setting objects tonull allows access to the default session from any security doma

In the future, JDK 1.2 security Permissions could control access to the default session. Note that the
Authenticator and PasswordAuthentication classes and their use in JavaMail is similar to the classes w
same names provided in thejava.net package in JDK 1.2. As new authentication mechanisms are add
to the system, new methods can be added to the Authenticator class to request the needed informatio
default implementations of these new methods will fail, but new clients that understand these new
authentication mechanisms can provide implementations of these methods. New classes other than
PasswordAuthentication could be needed to contain the new authentication information, and new met
could be needed in the Session class to store such information. JavaMail design evolution will be patt
after the corresponding JDK classes.
Chapter 5 The Mail Session 5-7

 folders
 of
5.3 Store and Folder URLs
To simplify message folder naming and to minimize the need to manage Store and Transport objects,
can be named using URLNames. URLNames are similar to URLs except they only include the parsing
the URL string. The Session class provides methods to retrieve a Folder object given a URLName:

Folder f = session.getFolder(URLName);

// or

Store s = session.getStore(URLName);
;

5-8 JavaMail API Design Specification • March 1998

.

tocol or

 also
stract

ess

r. The

e
bject.

 all

ctly
6

Message Storage And Retrieval

This Section describes JavaMail message storage facilities supported by the Store and Folder classes

Messages are contained in Folders. New messages are usually delivered to folders by a transport pro
a delivery agent. Clients retrieve messages from folders using an access protocol.

6.1 The Store Class
The Store class defines a database that holds a Folder hierarchy and the messages within. The Store
defines the access protocol used to access folders and retrieve messages from folders. Store is an ab
class. Subclasses implement specific message databases and access protocols.

Clients gain access to a Message Store by obtaining a Store object that implements the database acc
protocol. Most message stores require the user to be authenticated before they allow access.connect()
performs that authentication.

For many message stores, a host name, user name, and password are sufficient to authenticate a use
JavaMail API provides aconnect() method that takes this information as input parameters. Store also
provides a defaultconnect() method. In either case, the client can obtain missing information from th
Session object’s properties, or by interacting with the user by accessing the Session’s Authenticator o

The default implementation of the connect method in the Store class uses these techniques to retrieve
needed information and then calls theprotocolConnect() method. The messaging system must
provide an appropriate implementation of this method. The messaging system can also choose to dire
override theconnect() method.

By default, Store queries the following properties for the user name and host name:

mail.user, or user.name system property (ifmail.user is not set)
mail.host

These global defaults can be overridden on a per-protocol basis by the properties:

mail.<protocol>.user
Chapter 6 Message Storage And Retrieval 6-1

espaces.

fic

r’s

r
.

mail.<protocol>.host

Note that Passwords can not be specified using properties.

The Store presents a default namespace to clients. Store implementations can also present other nam
ThegetDefaultFolder() method on Store returns the root folder for the default namespace.

Clients terminate a session by calling theclose() method on the Store object. Once a Store is closed
(either explicitly using theclose () method; or externally, if the Mail server dies), all Messaging
components belonging to that Store become invalid. Typically, clients will try to recover from an
unexpected termination by callingconnect() to reconnect to the Store object, and then fetching new
Folder objects and new Message objects.

6.1.1 Store Events
Store sends the following events to interested listeners:

6.2 The Folder Class
The Folder class represents a folder containing messages. Folders can contain subfolders as well as
messages, thus providing a hierarchical structure. ThegetType() method returns whether a Folder can
hold subfolders, messages, or both. Folder is an abstract class. Subclasses implement protocol-speci
Message Folders.

ThegetDefaultFolder() method for the corresponding Store object returns the root folder of a use
default folder hierarchy. Thelist () method for a Folder returns all the subfolders under that folder. The
getFolder (String name) method for a Folder returns the named subfolder. Note that this subfolde
need not exist physically in the Store. Theexists () method in a folder indicates whether this folder exists
A folder is created in the Store by invoking itscreate () method.

A closed folder allows certain operations; they include deleting the folder, renaming the folder, listing

ConnectionEvent Generated when a connection is successfully made to the
Store, or when an existing connection is terminated or dis-
connected.

StoreEvent Communicates alerts and notification messages from the
Store to the end user. ThegetMessageType() method
returns the event type, which can be one of:ALERT or
NOTICE. The client must displayALERT events in some
fashion that calls the user’s attention to the message.

FolderEvent Communicates changes to any folder contained within the
Store. These changes include creation of a new Folder, dele-
tion of an existing Folder, and renaming of an existing
Folder.
6-2 JavaMail API Design Specification • March 1998

es. This
 in the
r than

s

erable
tending
ing

ertain
such

folder.
subfolders, creating subfolders and monitoring for new messages. The open() method opens a Folder. All
Folder methods exceptopen() , delete(), andrenameTo() are valid on an open Folder. Note that
theopen() method is applicable only on Folders that can contain messages.

The messages within a Folder are sequentially numbered, from 1 through the total number of messag
ordering is referred to as the "mailbox order" and is usually based on the arrival time of the messages
folder. As each new message arrives into a folder, it is assigned a sequence number that is one highe
the previous number of messages in that folder. ThegetMessageNumber() method on a Message
returns its sequence number.

The sequence number assigned to a Message is valid within a session, but only as long as it retains it
relative position within the Folder. Any change in message ordering can change the Message object's
sequence number. Currently this occurs when the client callsexpunge() to remove deleted messages and
renumber messages remaining in the folder.

A client can reference a message stored within a Folder either by its sequence number, or by the
corresponding Message object itself. Since a sequence number can change within a session, it is pref
to use Message objects rather than sequence numbers as cached references to messages. Clients ex
JavaMail are expected to provide light-weight Message objects that get filled ’on-demand’, so that call
getMessages() on a Folder object is an inexpensive operation - both in terms of CPU cycles and
memory. For instance, an IMAP implementation could return Message objects that contain only the
corresponding IMAP UIDs.

6.2.1 The FetchProfile Method
The Message objects returned by a Folder are expected to be light-weight objects. Invokinggetxxx()
methods on a Message cause the corresponding data items to be loaded into the object on demand. C
Store implementations support batch fetching of data items for a range of Messages. Clients can use
optimizations, for example, when filling the header-list window for a range of messages. The
FetchProfile() method allows a client to list the items it will fetch in a batch for a certain message
range.

The following code illustrates the use ofFetchProfile() when fetching Messages from a Folder. The
client fills its header-list window with the Subject, From, and X-mailer headers for all messages in the

Message[] msgs = folder.getMessages();
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.ENVELOPE);
fp.add("X-mailer");
folder.fetch(msgs, fp);
for (int i = 0; i < folder.getMessageCount(); i++) {

display(msgs[i].getFrom());
display(msgs[i].getSubject());
display(msgs[i].getHeader("X-mailer"));

}

Chapter 6 Message Storage And Retrieval 6-3

e
is
6.2.2 Folder Events
Folders generate events to notify listeners of any change in either the folder or in its Messages list. Th
client can register listeners to a closed Folder, but generates a notification event only after that folder
opened.

Folder supports the following events:

6.2.3 The Expunge Process
Deleting messages from a Folder is a two-phase operation. Setting theDELETED flag on messages marks

ConnectionEvent This event is generated when a Folder is opened or closed.

When a Folder closes (either because the client has calledclose ()
or from some external cause), all Messaging components belonging
to that Folder become invalid. Typically, clients will attempt to
recover by reopening that Folder, and then fetching Message
objects.

FolderEvent This event is generated when the client creates, deletes or renames
this folder. Note that the Store object containing this folder can also
generate this event.

MessageCountEvent This event notifies listeners that the message count has changed. The
following actions can cause this change:

• Addition of new Messages into the Folder, either by a delivery
agent or because of anappend () operation. The new
Message objects are included in the event.

• Removal of existing messages from this Folder. Removed
messages are referred to as expunged messages. The
isExpunged () method returns true for removed Messages
and thegetMessageNumber () method returns the original
sequence number assigned to that message. All other
Message methods throw a
MessageRemovedException . See “The Folder Class”
for a discussion of removing deleted messages in shared
folders. The expunged Message objects are included in the
event. An expunged message is invalid and should be pruned
from the client's view as early as possible. See “The Expunge
Process” for details on theexpunge() method.
6-4 JavaMail API Design Specification • March 1998

ly when

e
sages

s still

rtant
ribe a

 that the

s

graph
lder

r it

f
w,

 figure.

sider
object,

r. The
ndle
them as deleted, but it does not remove them from the Folder. The deleted messages are removed on
the client invokes theexpunge() method on that Folder. The Folder then notifies listeners by firing an
appropriate MessageEvent. The MessageEvent contains the expunged Message objects. Note that th
expunge() method also returns the expunged Message objects. The Folder also renumbers the mes
falling after the expunged messages in the message list. Thus, when theexpunge() method returns, the
sequence number of those Message objects will change. Note, however, that the expunged message
retain their original sequence numbers.

Since expunging a folder can remove some messages from the folder and renumber others, it is impo
that the client synchronize itself with the expunged folder as early as possible. The next Sections desc
set of recommendations for clients wanting to expunge a Folder:

• Expunge the folder; close it; and then reopen and refetch messages from that Folder. This ensures
client was notified of the updated folder state. In fact, the client can just issue theclose () method with
theexpunge parameter set to true to force an expunge of the Folder during the close operation, thu
even avoiding the explicit call toexpunge ().

• The previous solution might prove to be too simple or too drastic in some circumstances. This para
describes the scenario of a more complex client expunging a single access folder; for example, a fo
that allows only one read-write connection at a time. The recommended steps for such a client afte
issues theexpunge () command on the folder are:

• Update its message count, either by decrementing it by the number of expunged messages, or by
invoking thegetMessageCount() method on the Folder.

• If the client uses sequence numbers to reference Messages, it must account for the renumbering o
Messages subsequent to the expunged messages. Thus if a Folder has 5 messages as shown belo
(sequence numbers are within parenthesis), and if the client is notified that Messages A and C are
removed, it should account for the renumbering of the remaining Messages as shown in the second

.

• The client should prune expunged messages from its internal storage as early as possible.

• The Expunge process becomes complex when dealing with a shared folder that can be edited. Con
the case where two clients are operating on the same folder. Each client possesses its own Folder
but each Folder object actually represents the same physical folder.

If one client expunges the shared folder, any deleted messages are physically removed from the folde
primary client can probably deal with this appropriately since it initiated this process and is ready to ha

A (1) B (2) C (3) D (4) E (5)

D (2) E (3)B (1)
Chapter 6 Message Storage And Retrieval 6-5

ndle an
ence

te is

r; an

r, the
this
rnal
g set to

s.

 If the
t

client
sical
lso

n. The
the consequences. However, secondary clients are not guaranteed to be in a state where they can ha
unexpected Message removed event-- especially if the client is heavily multithreaded or if it uses sequ
numbers.

To allow clients to handle such situations gracefully, the JavaMail API applies following restrictions to
Folder implementations:

• A Folder can remove and renumber its Messages only when it is explicitly expunged using the
expunge() method. When the folder is implicitly expunged, it marks any expunged messages as
expunged, but it still maintains access to those Message objects. This means that the following sta
maintained when the Folder is implicitly expunged:

• getMessages() returns expunged Message objects together with valid message objects. Howeve
expunged message can throw the MessageExpungedException if direct access is attempted.

• The messages in the Folder should not be renumbered.

• The implicit expunge operation can not change the total Folder message count.

A Folder can notify listeners of 'implicit' expunges by generating appropriate MessageEvents. Howeve
removed field in the event must be set to false to indicate that the message is still in the folder. When
Folder is explicitly expunged, then the Folder must remove all expunged messages, renumber it's inte
Message cache, and generate MessageEvents for all the expunged messages, with each removed fla
true.

The recommended set of actions for a client under the above situation is as follows:

• Multithreaded clients that expect to handle shared folders are advised not to use sequence number

• If a client receives a MessageEvent indicating message removal, it should check the removed flag.
flag is false, this indicates that another client has removed the message from this folder. This clien
might want to issue anexpunge() request on the folder object to synchronize it with the physical
folder (but note the caveats in the previous section about using a shared folder). Alternatively, this
might want to close the Folder object (without expunging) and reopen it to synchronize with the phy
folder (but note that all message objects would need to be refreshed in this case). The client may a
mark the expeunged messages in order to notify the end user.

• If the removed flag was set to true, the client should follow earlier recommendations on dealing with
explicit expunges.

6.3 The Search Process
Search criteria are expressed as a tree of search-terms, forming a parse tree for the search expressio
SearchTerm class represents search terms. This is an abstract class with a single method:

public boolean match(Message msg);

Subclasses implement specific matching algorithms by implementing the match() method. Thus new
6-6 JavaMail API Design Specification • March 1998

d Java

r of the

se

ntation
ptimize
search terms and algorithms can be easily introduced into the search framework by writing the require
language code.

The search package provides a set of standard search terms that implement specific match criteria on
Message objects. For example, SubjectTerm pattern-matches the given String with the subject heade
given message.

public final class SubjectTerm extends StringTerm {
public SubjectTerm(String pattern);
public boolean match(Message m);

}

The search package also provides a set of standard logical operator terms that can be used to compo
complex search terms. These include AndTerm, OrTerm and NotTerm.

final class AndTerm extends SearchTerm {
public AndTerm(SearchTerm t1, SearchTerm t2);
public boolean match(Message msg) {
 // The AND operator
 for (int i=0; i < terms.length; i++)

if (!terms[i].match(msg))
return false;

 return true;
}

}

The Folder class supports searches on messages through thesesearch() method versions:

public Message[] search(SearchTerm term)
public Message[] search(SearchTerm term, Message[] msgs)

These methods return the Message objects matching the specified search Term. The default impleme
applies the search term on each Message object in the specified range. Other implementations may o
this; for example, the IMAP Folder implementation maps the search Term into an IMAP SEARCH
command that the server executes.
Chapter 6 Message Storage And Retrieval 6-7

6-8 JavaMail API Design Specification • March 1998

e, to
to a
ils

arts.

e
s and
ail

ience

mple:
7

The JavaBeans Activation
Framework

JavaMail relies heavily on the JavaBeans Activation Framework (JAF) to determine the MIME data typ
determine the commands available on that data, and to provide a software component corresponding
particular behavior. The JAF specification is part of the "Glasgow" JavaBeans specification. More deta
can be obtained fromhttp://java.sun.com/beans/glasgow/jaf.html

This section explains how the JavaMail and JAF APIs work together to manage message content. It
describes how clients using JavaMail can access and operate on the content of Messages and BodyP
This discussion assumes you are familiar with the JAF specification posted at http://java.sun.com.

7.1 Accessing the Content
For a client using JavaMail, arbitrary data is introduced to the system in the form of mail messages. Th
javax.mail.Part interface allows the client to access the content. Part consists of a set of attribute
a "content". The Part interface is the common base interface for Messages and BodyParts. A typical m
message has one or more body parts, each of a particular MIME type.

Anything that deals with the content of a Part will use the Part’s DataHandler. The content is available
through the DataHandlers either as an InputStream or as a Java Object. The Part also defines conven
methods that call through to the DataHandler. For example;Part.getContent() is the same as
Part.getDataHandler().getContent() andPart.getInputStream() is the same as
Part.getDataHandler().getInputStream() .

The content returned (either via an InputStream or a Java Object) depends on the MIME type. For exa
a Part that contains a picture (GIF) returns the following:

■ Part.getContentType() returns image/gif
■ Part.getInputStream() returns an InputStream with the bytes of the GIF

image as the stream

■ Part.getContent() returns a java.awt.Image object

Content is returned either as an input stream, or as a Java Object.

• When anInputStream is returned, any mail-specific encodings are decoded before the stream is
Chapter 7 The JavaBeans Activation Framework 7-1

 to
Message
returned.

• When a Java Object is returned using thegetContent() method. the returned object depends upon
the content itself. In the JavaMail API, any Part with a main content type set to"multipart/" (any
kind of multipart) should return ajavax.mail.Multipart object fromgetContent() . A Part
with a content type ofmessage/rfc822 returns ajavax.mail.Message object from
getContent() .

7.1.1 Example: Message Output
This example shows how you can traverse Parts and display the data contained in the message.

public void printParts(Part p) {

Object o = p.getContent();
if (o instanceof String) {

System.out.println("This is a String");
System.out.println((String)o);

} else if (o instanceof Multipart) {
System.out.println("This is a Multipart");
Multipart mp = (Multipart)o;
int count = mp.getCount();
for (int i = 0; i < count; i++) {

printParts(mp.getBodyPart(i));
}

} else if (o instanceof InputStream) {
 System.out.println("This is just an input stream");
 InputStream is = (InputStream)o;
 int c; //
 while ((c = is.read()) != -1)

System.out.write(c);
}

}

7.2 Operating on the Content
The DataHandler allows clients to discover the operations available on the content of a Message, and
instantiate the appropriate JavaBeans to perform those operations. The most common operations on
content areview, edit andprint.

7.2.1 Example: Viewing a Message
Consider a Message "Viewer" Bean that presents a user interface that displays a mail message. This
example shows how a viewer bean can be used to display the content of a message (that usually istext/
plain, text/html, or multipart/mixed).
7-2 JavaMail API Design Specification • March 1998

 client

nd JAF

-type
Note – Perform error checking to ensure that a valid Component was created.

// message passed in as parameter
void setMessage(Message msg) {

DataHandler dh = msg.getDataHandler();
CommandInfo cinfo = dh.getCommand("view");
 Component comp = dh.getBean(cinfo);
this.setMainViewer(comp);

}

7.2.2 Example: Showing Attachments
In this example, the user has selected an attachment and wishes to display it in a separate dialog. The
locates the correct viewer object as follows.

// Retrieve the BodyPart from the current attachment
BodyPart bp = getSelectedAttachment();

DataHandler dh = bp.getDataHandler();
CommandInfo cinfo = dh.getCommand("view");
Component comp = dh.getBean(cinfo);

// Add viewer to dialog Panel
MyDialog myDialog = new MyDialog();
myDialog.add(viewer);

// display dialog on screen
myDialog.show();

See “Setting Message Content” for examples that construct a message for asend operation.

7.3 Adding Support for Content Types
Support for commands acting on message data is an implementation task left to the client. JavaMail a
APIs intend for this support to be provided by a JAF-Aware JavaBean. Almost all data will requireedit and
view support.

Currently, the JavaMail API does not provideviewerJavaBeans. The JAF does provide two very simple
JAF-aware viewer beans: A Text Viewer and Image Viewer. These beans handle data where content
has been set totext/plain or image/gif .
Chapter 7 The JavaBeans Activation Framework 7-3

ntent

s how
Developers writing a JavaMail client need to write additional viewers that support some of the basic co
types-- specificallymessage/rfc822, multipart/mixed,and text/plain. These are the usual content-types
encountered when displaying a Message, and they provide the look and feel of the application.

Content developers providing additional data types should refer to the JAF specification, that discusse
to create DataContentHandlers and Beans that operate on those contents.
7-4 JavaMail API Design Specification • March 1998

, and

 been

 then

code and

A

s. The
 can
8

Message Composition

This Section describes the process used to instantiate a message object, add content to that message
send it to its intended list of recipients.

The JavaMail API allows a client program to create a message of arbitrary complexity. Messages are
instantiated from the Message subclass. The client program can manipulate any message as if it had
retrieved from a Store.

8.1 Building a Message Object
To create a message, a client program instantiates a Message object, sets appropriate attributes, and
inserts the content.

• The attributes specify the message address and other values necessary to send, route, receive, de
store the message. Attributes also specify the message structure and data content type.

• Message content is carried in a DataHandler object, that carries either data or a Multipart object. A
DataHandler carries the content body and provides methods the client uses to handle the content.
Multipart object is a container that contains one or more Bodypart objects, each of which can in turn
contain DataHandler objects.

8.2 Message Creation
javax.mail.Message is an abstract class that implements the Part interface. Therefore, to create a
message object, select a message subclass that implements the appropriate message type.

For example, to create a Mime message, a JavaMail client instantiates an empty
javax.mail.internet.MimeMessage object passing the current Session object to it:

Message msg = new MimeMessage(session);

8.3 Setting Message Attributes
The Message class provides a set of methods that specify standard attributes common to all message
MimeMessage class provides additional methods that set MIME-specific attributes. The client program
also set non-standard attributes (custom headers) as name-value pairs.
Chapter 8 Message Composition 8-1

 objects
o

The methods for setting standard attributes are listed below:

public class Message {
public void setFrom(Address addr);
public void setFrom(); // retrieves from system
public void setRecipients(RecipientType type, Address[]

addrs);
public void setReplyTo(Address[] addrs);
public void setSentDate(Date date);
public void setSubject(String subject);
...

}

The Part interface specifies the following method, that sets custom headers:

public void setHeader(String name, String value)

ThesetRecipients() method takes a RecipientType as its first parameter, which specifies which
recipient field to use. Currently,Message.RecipientType.TO , Message.RecipientType.CC ,
andMessage.RecipientType.BCC are defined. Additional RecipientTypes may be defined as
necessary.

The Message class provides two versions of the of thesetFrom() method:

• setFrom(Address addr) specifies the sender explicitly from an Address object parameter.

• setFrom() retrieves the sender’s username from the local system.

The code sample below sets attributes for the MimeMessage just created. First, it instantiates address
to be used as ’To’ and ’From’ addresses. Then, it calls ’set’ methods, which equate those addresses t
appropriate message attributes.

The Message class provides two versions of the of the setFrom(

The Message class provides two versions of the of the
setFrom(Address toAddrs[] = new InternetAddress[1];
toAddrs[0] = new InternetAddress("luke@rebellion.gov");
Address fromAddr =
 new InternetAddress("han.solo@smuggler.com");

msg.setFrom(fromAddr);
msg.setRecipients(Message.RecipientType.TO, toAddrs);
msg.setSubject("Takeoff time.");
msg.setSentDate(new Date());
8-2 JavaMail API Design Specification • March 1998

 client
laces

t. The
al

t as a
 the

pe.
8.4 Setting Message Content
The Message object carries content data within a DataHandler object. To add content to a Message, a
creates content, instantiates a DataHandler object, places content into that DataHandler object, and p
that object into a Message object that has had its attributes defined.

The JavaMail API provides two techniques that set message content. The first technique uses the
setDataHandler() method. The second technique uses thesetContent() method.

Typically, clients add content to a DataHandler object by callingsetDataHandler(DataHandler) on
a Message object. The DataHandler is an object that encapsulates data. The data is passed to the
DataHandler's constructor as either a DataSource (a stream connected to the data) or as a Java objec
InputStream object creates the DataSource. See “The JavaBeans Activation Framework” for addition
information.

public class DataHandler {
DataHandler(DataSource dataSource);
DataHandler(Object data, String mimeType);

}

The code sample below shows how to place text content into an InternetMessage. First, create the tex
string object. Then, pass the string into a DataHandler object, together with its MIME type. Finally, add
DataHandler object to the message object:

// create brief message text
String content = "Leave at 300.";

// instantiate the DataHandler object

DataHandler data = new DataHandler(content, "text/plain");

// Use setDataHandler() to insert data into the
// new Message object

 msg.setDataHandler(data);

Alternately,setContent() implements a simpler technique that takes the data object and its MIME ty
setContent() creates the DataHandler object automatically:

// create the message text
String content = "Leave at 300.";

// call setContent to pass content and content type
// together into the message object
Chapter 8 Message Composition 8-3

tion.

type
msg.setContent(content, "text/plain");

When the client callsTransport.send() to send this message, the recipient will receive the message
below, using either technique:

Date: Wed, 23 Apr 1997 22:38:07 -0700 (PDT)
From: han.solo@smuggler.com
Subject: Takeoff time
To: luke@rebellion.gov

Leave at 300.

8.5 Building a MIME Multipart Message
Follow these steps to create a MIME Multipart Message:

1. Instantiate a new MimeMultipart object, or a subclass.

2. Create MimeBodyParts for the specific message parts. UsesetContent() or
setDataHandler() to create the content for each Bodypart, as described in the previous sec

Note – The default subtype for a MimeMultipart object ismixed. It can be set to other subtypes as
required. MimeMultipart subclasses might already have their subtype set appropriately.

3. Insert the Multipart object into the Message object by callingsetContent(Multipart) within a
newly-constructed Message object.

The example below creates a Multipart object and then adds two message parts to it. The first
message part is a text string, “Spaceport Map,” and the second contains a document of type
“application/postscript.” Finally, this multipart object is added to a MimeMessage object of the
described above.

// Instantiate a Multipart object
MimeMultipart mp = new MimeMultipart();

// create the first bodypart object
MimeBodyPart b1 = new MimeBodyPart();

// create textual content
// and add it to the bodypart object
b1.setContent("Spaceport Map","text/plain");
mp.addBodyPart(b1);
8-4 JavaMail API Design Specification • March 1998

te that
// Multipart messages usually have more than
// one body part. Create a second body part
// object, add new text to it, and place it
// into the multipart message as well. This
// second object holds postscript data.

MimeBodyPart b2 = new MimeBodyPart();
b2.setContent(map,"application/postscript");
mp.addBodyPart(b2);

// Create a new message object as described above,
// and set its attributes. Add the multipart
// object to this message and call saveChanges()
// to write other message headers automatically.

Message msg = new MimeMessage(session);

// Set message attrubutes as in a singlepart
// message.

msg.setContent(mp); // add Multipart
msg.saveChanges(); // save changes

After all message parts are created and inserted, callsaveChanges() to ensure that the client writes
appropriate message headers. This is identical to the process followed with a single part message. No
the JavaMail API callssaveChanges() implicitly during thesend() process, so invoking it is
unnecessary and expensive if the message is to be sent immediately.
Chapter 8 Message Composition 8-5

8-6 JavaMail API Design Specification • March 1998

asses

the
or
pports
9

Transport Protocols and
Mechanisms

The Transport abstract class defines the message submission and transport protocol. Transport subcl
implement SMTP and other transport protocols.

9.1 Obtaining the Transport Object
The Transport object is seldom explicitly created.getTransport() obtains a transport object from the
Session factory. The JavaMail API provides three versions ofgetTransport() :

public class Session {
public Transport getTransport(Address address);
public Transport getTransport(String protocol);
public Transport getTransport();

}

• getTransport(Address address) returns the implementation of the transport class based on
address type. A user-extensible map defines which transport type to use for a particular address. F
example, if the address is an InternetAddress, and InternetAddress is mapped to a protocol that su
SMTP then SMTPTransport can be returned.

• The client can also call getTransport("SMTP") to request SMTP, or another transport implementation
protocol.

• getTransport() returns the transport specified in themail.transport.protocol property.

See “The Mail Session” for details.

9.1.1 Transport Methods
The Transport class providesconnect() andprotocolConnect() methods, which operate similarly
to those on the Store class. See “The Store Class” for details.
Chapter 9 Transport Protocols and Mechanisms 9-1

wn,
g

t

 the end-
r, and

tract
ere are
Transport generates a ConnectionEvent to notify its listeners of a successful or a failed connection.
Transport can throw an IOException if the connection fails.

Transport implementations should ensure that the message specified is of a known type. If the type is
known, then the transport object sends the message to its specified destinations. If the type is not kno
then the Transport object can attempt to reformat the Message into a suitable version using gatewayin
techniques, or it can throw a MessagingException, indicating failure. For example, the SMTP transpor
implementation recognizes MimeMessages. It invokes thewriteTo() method on MimeMessage to
generate a RFC822 format byte stream that is sent to the SMTP host.

The message is sent using theTransport.send() static method orsendMessage() instance method.
Transport.send() is a convenience method that instantiates the transports necessary to send the
message, depending on the recipients' addresses, and then passes the message to each transport's
sendMessage() method. Alternatively, the client can get the transport that implements a particular
protocol itself and send the message using thesendMessage() method. This adds the benefit of being
able to register as event listeners on the individual transports.

Note that theAddress[] argument passed to thesend() andsendMessage() methods do not need to
match the addresses provided in the message headers. Although these arguments usually will match,
user determines where the messages are actually sent. This is useful for implementing the Bcc: heade
other similar functions.

9.2 Transport Events
Clients can register as listeners for events generated by transport implementations. (Note that the abs
Transport class doesn't fire any events, only particular protocol implementations generate events). Th
two events generated: ConnectionEvent andTransportEvent .

9.2.1 ConnectionEvent
If the transport connects successfully, it will fire the ConnectionEvent with the type set toOPENED. If the
connection times out or is closed,ConnectionEvent with typeCLOSED is generated.

9.2.2 TransportEvent
ThesendMessage() method generatesTransportEvent to its listeners. That event contains
information about the method’s success or failure. There are three types of TransportEvent:
MESSAGE_DELIVERED, MESSAGE_NOT_DELIVERED, MESSAGE_PARTIALLY_DELIVERED. The
event contains three arrays of addresses:validSent[], validUnsent[] and invalid[] that list
the valid and invalid addresses for this message and protocol.
9-2 JavaMail API Design Specification • March 1998

 object
ect uses a
9.3 Using The Transport Class
The code segment below sends an InternetMessage using a Transport class implementing the SMTP
protocol. The client creates two InternetAddresses that specify the recipients and retrieves a transport
from the default Session that supports sending messages to InternetAddresses. Then the session obj
transport object to send the message.

// Get a session
Session session = Session.getInstance(props, null);

// Create an empty MimeMessage and its part
Message msg = new MimeMessage(session);
... add headers and message parts as before

// create two destination addresses
Address[] addrs = {new InternetAddress("mickey@disney.com"),
 new InternetAddress("goofy@disney.com")};

// get a transport that can handle sending message to
// InternetAddresses. This will probably map to a transport
// that supports SMTP.

MESSAGE_DELIVERED When the message has been successfully sent to all
recipients by this transport.validSent[] contains
all the addresses. validUnsent[] andinvalid[
] are null.

MESSAGE_NOT_
DELIVERED

When ValidSent[] is null, the message was not

successfully sent to any recipients.

validUnsent[] may have addresses that are

valid. invalidSent[] may contain invalid

addresses.

MESSAGE_PARTIALLY_
DELIVERED

Message was successfully sent to some recipients

but not to all. ValidSent[] holds addresses of

recipients to whom the message was sent.

validUnsent[] holds valid addresses but the

message wasn't sent to them. invalid[] holds

invalid addresses
Chapter 9 Transport Protocols and Mechanisms 9-3

Transport trans = session.getTransport(addrs[0]);

// add ourselves as ConnectionEvent and TransportEvent listeners
trans.addConnectionListener(this);
trans.addTransportListener(this);

// connect method determines what host to use from the
// session properties
trans.connect();

// send the message to the addresses we specified above
trans.sendMessage(msg, addrs);
9-4 JavaMail API Design Specification • March 1998

of
an be
 to the

s having a
ader is

ontents.

parts, a
 into

ds listed
nd
s and

chy of
10

Internet Mail

The JavaMail specification does not define any implementation. However, the API does include a set
classes that implement Internet Mail standards. Although not part of the specification, these classes c
considered part of the JavaMail package. They show how to adapt an existing messaging architecture
JavaMail framework.

These classes implement the Internet Mail Standards defined by the RFCs listed below:

• RFC822 (Standard for the Format of Internet Text Messages)

• RFC2045, RFC2046, RFC2047 (MIME)

RFC822 describes the structure of messages exchanged across the Internet. Messages are viewed a
header and contents. The header is composed of a set of standard and optional header fields. The he
separated from the content by a blank line. The RFC specifies the syntax for all header fields and the
semantics of the standard header fields. It does not however, impose any structure on the message c

The MIME RFCs 2045, 2046 and 2047 define message content structure by defining structured body
typing mechanism for identifying different media types, and a set of encoding schemes to encode data
mail-safe characters.

The Internet Mail package allows clients to create, use and send messages conforming to the standar
above. It gives service providers a set of base classes and utilities they can use to implement Stores a
Transports that use the Internet mail protocols. See “MimeMessage Object Hierarchy” for a Mime clas
interface hierarchy diagram.

The JavaMail MimePart interface models anentity as defined in RFC2045, Section 2.4. MimePart extends
the JavaMail Part interface to add MIME-specific methods and semantics. The MimeMessage and
MimeBodyPart classes implement the MimePart interface. The following figure shows the class hierar
these classes.
Chapter 10 Internet Mail 10-1

il

an fill

ting
nd

 a

lient
10.1 The MimeMessage Class
The MimeMessage class extends Message and implements MimePart. This class implements an ema
message that conforms to the RFC822 and MIME standards.

MimeMessage provides a default constructor that creates an empty MimeMessage object. The client c
in the message later by invoking theparse() method on an RFC822 input stream. Note thatparse() is
protected, so that only this class and its subclasses can use this method. Service providers implemen
’light-weight’ Message objects that are filled in on demand can generate the appropriate byte stream a
invokeparse() when a component is requested from a message. Service providers that can provide
separate byte stream for the message body (distinct from the message header) can override the
getContentStream() method.

The client can also use the default constructor to create new MimeMessage objects for sending. The c
sets appropriate attributes and headers, inserts content into the message object, and finally calls thesend()
method for that MimeMessage object.

This code sample creates a new MimeMessage object for sending. See “Message Composition” and
“Transport Protocols and Mechanisms” for details.

MimeMessage m = new MimeMessage(session);

MimePartMessage

MimeMessage

MimePartBodyPart

MimeBodyPart

Legend

Extends

Implements
10-2 JavaMail API Design Specification • March 1998

tor
of

aders;

ents a

g a

 a
// Set FROM:
m.setFrom(new InternetAddress("jmk@Sun.COM"));
// Set TO:
InternetAddress a[] = new InternetAddress[1];
a[0] = new InternetAddress("javamail@Sun.COM");
m.setRecipients(Message.RecipientType.TO, a);
// Set content
m.setContent(data, "text/plain");
// Send message
m.send();

MimeMessage also provides a constructor that uses an input stream to instantiate itself. The construc
internally invokesparse() to fill in the message. The InputStream object is left positioned at the end
the message body.

InputStream in = getMailSource(); // a stream of mail
messages
MimeMessage m = null;
for (; ;) {
 try {

m = new MimeMessage(session,in);
 } catch (MessagingException ex) {

// reached end of message stream
break;

 }
}

MimeMessage implements the writeTo() method by writing an RFC822-formatted byte stream of its
headers and body. This is accomplished in two steps: First, the MimeMessage object writes out its he
then it delegates the rest to the DataHandler object representing the content.

10.2 The MimeBodyPart Class
The MimeBodyPart class extends BodyPart and implements the MimePart interface. This class repres
Part inside a Multipart. MimeBodyPart implements a Body Part as defined by RFC2045, Section 2.5.

getBodyPart(int index) returns the MimeBodyPart object at the given index. MimeMultipart also
allows the client to fetch MimeBodyPart objects based on their Content-IDs.

addBodyPart() adds a new MimeBodyPart object to a MimeMultipart as a step towards constructin
new multipart MimeMessage.

10.3 The MimeMultipart Class
The MimeMultipart class extends Multipart and models a MIME multipart content within a message or
body part.
Chapter 10 Internet Mail 10-3

MIME

part

r for

nerate

y non-

ing

ng

fies a
A MimeMultipart is obtained from a MimePart containing a ContentType attribute set to "multipart," by
invoking that part'sgetContent() method.

The client creates a new MimeMultipart object by invoking its default constructor. To create a new
multipart MimeMessage, create a MimeMultipart object (or its subclass); use set methods to fill in the
appropriate MimeBodyParts; and finally, usesetContent(Multipart) to insert it into the
MimeMessage.

MimeMultipart also provides a constructor that takes an input stream positioned at the beginning of a
multipart stream. This class parses the input stream and creates the child body parts.

ThegetSubType() method returns the multipart message MIME subtype. The subtype defines the
relationship among the individual body parts of a multipart message. More semantically complex multi
subtypes are implemented as subclasses of MimeMultipart, providing additional methods that expose
specific functionality.

Note that a multipart content object is treated like any other content. When parsing a MIME Multipart
stream, the JavaMail implementation uses the JAF framework to locate a suitable DataContentHandle
the specific subtype and uses that handler to create the appropriate Multipart instance. Similarly, when
generating the output stream for a Multipart object, the appropriate DataContentHandler is used to ge
the stream.

10.4 The MimeUtility Class
MimeUtility is a utility class that provides MIME-related functions. All methods in this class are static
methods. These methods currently perform the functions listed below:

10.4.1 Content Encoding and Decoding
Data sent over RFC 821/822-based mail systems are restricted to 7-bit US-ASCII bytes. Therefore, an
US-ASCII content needs to be encoded into the 7-bit US-ASCII (mail-safe) format. MIME (RFC 2045)
specifies the "base64" and "quoted-printable" encoding schemes to perform this encoding. The follow
methods support content encoding:

• ThegetEncoding() method takes a DataSource object and returns the Content-Transfer-Encodi
that should be applied to the data in that Datasource object to make it mail-safe.

• Theencode() method wraps an encoder around the given output stream based on the specified
Content-Transfer-Encoding. Thedecode() method decodes the given input stream, based on the
specified Content-Transfer-Encoding.

10.4.2 Header Encoding and Decoding
RFC 822 restricts the data in message headers to 7bit US-ASCII characters. MIME (RFC 2047) speci
mechanism to encode non 7bit US-ASCII characters so that they are suitable for inclusion in message
headers. This section describes the methods that enable this functionality.
10-4 JavaMail API Design Specification • March 1998

objects

e
 into a

il-safe.

that as
. It is

 from a

ng
ed only

 the
The header-related methods (getHeader, setHeader) in Part and Message operate on Strings. String
contain (16 bit) Unicode characters.

Since RFC 822 prohibits non US-ASCII characters in headers, clients invoking thesetHeader()
methods must ensure that the header values are appropriately encoded if they contain non US-ASCII
characters.

The encoding process (based on RFC 2047) consists of two steps:

1. Convert the Unicode String into an array of bytes in another charset. This step is required becaus
Unicode is not yet a widely used charset. Therefore, a client must convert the Unicode characters
charset that is more palatable to the recipient.

2. Apply a suitable encoding format that ensures that the bytes obtained in the previous step are ma

TheencodeText() method combines the two steps listed above to create an encoded header. Note
RFC 2047 specifies, only "unstructured" headers and user-defined extension headers can be encoded
prudent coding practice to run such header values through the encoder to be safe. Also note that
encodeText() encodes header values only if they contain non US-ASCII characters.

The reverse of this process (decoding) needs to be performed when handling header values obtained
MimeMessage or MimeBodyPart using thegetHeader() set of methods, since those headers might be
encoded as per RFC 2047. ThedecodeText() method takes a header value, applies RFC 2047 decodi
standards, and returns the decoded value as a Unicode String. Note that this method should be invok
on "unstructured" or user-defined headers. Also note thatdecodeText() attempts decoding only if the
header value was encoded in RFC 2047 style. It is advised that you always run header values through
decoder to be safe.

10.5 The ContentType Class
The ContentType class is a utility class that parses and generates MIME content-type headers.

To parse a MIME content-Type value, create a ContentType object and invoke thetoString() method.

The ContentType class also provides methods that match Content-Type values.

The following code fragment illustrates the use of this class to extract a MIME parameter.

String type = part.getContentType();
ContentType cType = new ContentType(type);

if (cType.match("application/x-foobar"))
iString color = cType.getParameter("color");

This code sample uses this class to construct a MIME Content-Type value:

ContentType cType = new ContentType();
Chapter 10 Internet Mail 10-5

cType.setPrimaryType("application");
cType.setSubType("x-foobar");
cType.setParameter("color", "red");

String contentType = cType.toString();
10-6 JavaMail API Design Specification • March 1998

u

A

Environment Properties

This section lists the environment properties that are used by the JavaMail APIs.

Note that Applets can not determine some defaults listed in this Appendix. When writing an applet, yo
must specify the properties you require.

Property Description

mail.store.protocol Specifies the default Message Access Protocol.
TheSession.getStore() method returns a
Store object that implements this protocol. The
protocol can be explicitly specified by using
Session.getStore(String protocol) .
Defaults to the first appropriate protocol in the
config fies.

mail.transport.
protocol

Specifies the default Transport Protocol. The
Session.getTransport() method returns a
Transport object that implements this protocol.
The client can explicitly specify the protocol by
usingSession.getTransport(String
protocol) .

mail.host Specifies the default Mail server. The Store and
Transport connect() methods use this property
(if the protocol-specific host property is absent) to
locate the target host. Defaults to the local
machine.
Chapter A Environment Properties A-1

mail.user Specifies the username provided when connecting
to a Mail server. The Store and Transport con-
nect() methods use this property (if the proto-
col-specific username property is absent) to obtain
the username. Defaults touser.name .

mail.<protocol>.host Specifies the protocol-specific default Mail server.
This overrides the mail.host property.

mail.<protocol>.user Specifies the protocol-specific default username
for connecting to the Mail server. This overrides
the mail.user property.

mail.from Specifies the return address of the current user.
Used by theInternetAddress.getLocal-
Address() method to specify the current user’s
email address.
Defaults to"username@host"

Property Description
A-2 JavaMail API Design Specification • March 1998

re also
B

Examples Using the JavaMail API

Following are some example programs that illustrate the use of the Java Mail APIs. These examples a
included in the JavaMail implementation.

B.1 Example: Showing a Message
import java.util.*;
import java.io.*;
import javax.mail.*;
import javax.mail.internet.*;

/*
 * Demo app that exercises the Message interfaces.
 * Show information about and contents of messages.
 *
 * msgshow protocol host user password mailbox msgnum
 */

public class msgshow {

public static void main(String argv[]) {
try {

if (argv.length != 6) {
System.out.println(

"usage: msgshow protocol host user password mailbox msgnum");
System.exit(1);

}

boolean debug = false;

String protocol = argv[0];
String host = argv[1];
String user = argv[2];
Chapter B Examples Using the JavaMail API B-1

String password = argv[3];
String mbox = argv[4]; // mailbox name

// which message number to retrieve
int msgnum = Integer.parseInt(argv[5]);

// Get a Session object
Properties props = System.getProperties();
Session session = Session.getDefaultInstance(props, null);

// Get a Store object
Store store = session.getStore(protocol);
store.connect(host, user, password);

// Open the Folder
Folder folder = store.getDefaultFolder();
if (folder == null) {

System.out.println("No default folder");
System.exit(1);

}

folder = folder.getFolder(mbox);
if (folder == null) {

System.out.println("Invalid folder");
System.exit(1);

}

folder.open(Folder.READ_WRITE);
int totalMessages = folder.getMessageCount();

int newMessages = folder.getNewMessageCount();
System.out.println("Total messages = " + totalMessages);
System.out.println("New messages = " + newMessages);
System.out.println("-------------------------------");

if (msgnum == -1) {
// Attributes & Flags for all messages ..
Message[] msgs = folder.getMessages();

// Use a suitable FetchProfile
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.ENVELOPE);
fp.add(FetchProfile.Item.FLAGS);
fp.add("X-Mailer");
folder.fetch(msgs, fp);

for (int i = 0; i < msgs.length; i++) {
System.out.println("--------------------------");
System.out.println("MESSAGE #" + (i + 1) + ":");
B-2 JavaMail API Design Specification • March 1998

dumpEnvelope(msgs[i]);
}

} else {
System.out.println("Getting message number: " + msgnum);
Message m = folder.getMessage(msgnum);

dumpPart(m);
}

folder.close(false);
store.close();

} catch (Exception ex) {
ex.printStackTrace();

}
}

public static void dumpPart(Part p) throws Exception {
if (p instanceof Message)

dumpEnvelope((Message)p);

System.out.println("CONTENT-TYPE: " + p.getContentType());

Object o = p.getContent();
if (o instanceof String) {

System.out.println("This is a String");
System.out.println((String)o);

} else if (o instanceof Multipart) {
System.out.println("This is a Multipart");
Multipart mp = (Multipart)o;
int count = mp.getCount();
for (int i = 0; i < count; i++)

dumpPart(mp.getBodyPart(i));
} else if (o instanceof InputStream) {

System.out.println("This is just an input stream");
InputStream is = (InputStream)o;
int c;
while ((c = is.read()) != -1)

System.out.write(c);
}

}

public static void dumpEnvelope(Message m) throws Exception {
Address[] a;

if ((a = m.getFrom()) != null) {
for (int j = 0; j < a.length; j++)

System.out.println("FROM: " + a[j].toString());
}

Chapter B Examples Using the JavaMail API B-3

if ((a = m.getRecipients(Message.RecipientType.TO)) != null) {
for (int j = 0; j < a.length; j++)

System.out.println("TO: " + a[j].toString());
}

System.out.println("SUBJECT: " + m.getSubject());

Date d = m.getSentDate();
System.out.println("SendDate: " +

(d != null ? d.toString() : "UNKNOWN"));

Flags flags = m.getFlags();
StringBuffer sb = new StringBuffer();
Flags.Flag[] sf = flags.getSystemFlags(); // get the system flags

boolean first = true;
for (int i = 0; i < sf.length; i++) {

String s;
Flags.Flag f = sf[i];
if (f == Flags.Flag.ANSWERED)

s = "\\Answered";
else if (f == Flags.Flag.DELETED)

s = "\\Deleted";
else if (f == Flags.Flag.DRAFT)

s = "\\Draft";
else if (f == Flags.Flag.FLAGGED)

s = "\\Flagged";
else if (f == Flags.Flag.RECENT)

s = "\\Recent";
else if (f == Flags.Flag.SEEN)

s = "\\Seen";
else

continue; // skip it
if (first)

first = false;
else

sb.append(' ');
sb.append(s);

}
String[] uf = flags.getUserFlags(); // get the user flag strings
for (int i = 0; i < uf.length; i++) {

if (first)
first = false;

else
sb.append(' ');

sb.append(uf[i]);
}
System.out.println("FLAGS = " + sb.toString());
B-4 JavaMail API Design Specification • March 1998

B.2 Example : Listing Folders

import java.util.Properties;
import javax.mail.*;

/**
 * Demo app that exercises the Message interfaces.
 * List information about folders.
 */

public class listfolders {
public static void main(String argv[]) throws Exception {

String protocol = argv[0];
String host = argv[1];
String user = argv[2];
String password = argv[3];
String root = argv[4];
String pattern = argv[5]; // normally "%"
boolean recursive = Boolean.valueOf(argv[6]).booleanValue();

// Get a Session object
Session session = Session.getDefaultInstance(

System.getProperties(), null);
session.setDebug(true);

// Get a Store object
Store store = session.getStore(protocol);
store.connect(host, user, password);

// Open a Folder
Folder folder = store.getFolder(argv[3]);
if (folder == null || !folder.exists()) {

System.out.println("Invalid folder");
System.exit(1);

}

// List namespace
Folder rf;
if (root.length() != 0)

rf = store.getFolder(root);
else

rf = store.getDefaultFolder();
Folder[] f = rf.list(pattern);
for (int i = 0; i < f.length; i++)
Chapter B Examples Using the JavaMail API B-5

dumpFolder(f[i], "", recursive);
}

static void dumpFolder(Folder folder, String tab, boolean recurse) throws
Exception {

System.out.println(tab + "Name: " + folder.getName());
System.out.println(tab + "Full Name: " + folder.getFullName());

if (!folder.isSubscribed())
System.out.println(tab + "Not Subscribed");

if (((folder.getType() & Folder.HOLDS_MESSAGES) != 0) &&
folder.hasNewMessages())
System.out.println(tab + "Has New Messages");

if ((folder.getType() & Folder.HOLDS_FOLDERS) != 0) {
System.out.println(tab + "Is Directory");
if (recurse) {

Folder[] f = folder.list();
for (int i=0; i < f.length; i++)

dumpFolder(f[i], tab + "", recurse);
}

}
}

}

B.3 Example: Search a Folder for a Message

import javax.mail.*;
import javax.mail.internet.*;
import javax.mail.search.*;
import java.util.Date;

/*
 * Search the given folder for messages matching the given
 * criteria.
 */

public class searchmessages {

public static void main(String argv[]) {

if (argv.length != 8) {
B-6 JavaMail API Design Specification • March 1998

 System.out.println(
 "Usage: monitor <protocol> <host> <user> <password> <mbox> " +
 "<subject> <from> and|or");

 System.exit(1);
}

String protocol = argv[0];
String host = argv[1];
String user = argv[2];
String password = argv[3];
String mbox = argv[4];
String subject = argv[5];
String from = argv[6];
boolean or = argv[7].equalsIgnoreCase("or");

try {
// Get a Session object
Session session = Session.getDefaultInstance(

System.getProperties(), null);
session.setDebug(true);

// Get a Store object
Store store = session.getStore(protocol);
store.connect(host, user, password);

// Open the Folder
Folder folder = store.getDefaultFolder();
if (folder == null) {

System.out.println("No default folder");
System.exit(1);

}

folder = folder.getFolder(mbox);
if (folder == null) {

System.out.println("Invalid folder");
System.exit(1);

}

folder.open(Folder.READ_ONLY);
SearchTerm term = null;

if (subject.length() != 0)
term = new SubjectTerm(subject);

if (from.length() != 0) {
FromTerm fromTerm = new FromTerm(new InternetAddress(from));
if (term != null) {

if (or)
term = new OrTerm(term, fromTerm);
Chapter B Examples Using the JavaMail API B-7

else
term = new AndTerm(term, fromTerm);

}
else

term = fromTerm;
}

Message[] msgs = folder.search(term);
if (msgs != null)

System.out.println("FOUND " + msgs.length + " MESSAGES");
else {

System.out.println(" NO MATCHES");
System.exit(1);

}

// Use a suitable FetchProfile
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.ENVELOPE);
folder.fetch(msgs, fp);

for (int i = 0; i < msgs.length; i++) {
System.out.println("--------------------------");
System.out.println("MESSAGE #" + (i + 1) + ":");
dumpMessage(msgs[i]);

}

folder.close(false);
store.close();

} catch (Exception ex) {
ex.printStackTrace();

}

System.exit(1);
}

public static void dumpMessage(Message m) throws Exception {
Address[] a;
if ((a = m.getFrom()) != null) {

for (int j = 0; j < a.length; j++)
System.out.println("FROM: " + a[j].toString());

}

if ((a = m.getRecipients(Message.RecipientType.TO)) != null) {
for (int j = 0; j < a.length; j++)

System.out.println("TO: " + a[j].toString());
}

System.out.println("SUBJECT: " + m.getSubject());
B-8 JavaMail API Design Specification • March 1998

Date d = m.getSentDate();
if (d == null) {

System.out.println("SendDate: UNKNOWN");
} else {

System.out.println("SendDate: " +
 d.toString());

}

Flags flags = m.getFlags();
StringBuffer sb = new StringBuffer();
Flags.Flag[] sf = flags.getSystemFlags(); // get the system flags

boolean first = true;
for (int i = 0; i < sf.length; i++) {

String s;
Flags.Flag f = sf[i];
if (f == Flags.Flag.ANSWERED)

s = "\\Answered";
else if (f == Flags.Flag.DELETED)

s = "\\Deleted";
else if (f == Flags.Flag.DRAFT)

s = "\\Draft";
else if (f == Flags.Flag.FLAGGED)

s = "\\Flagged";
else if (f == Flags.Flag.RECENT)

s = "\\Recent";
else if (f == Flags.Flag.SEEN)

s = "\\Seen";
else

continue; // skip it
if (first)

first = false;
else

sb.append(' ');
sb.append(s);

}
String[] uf = flags.getUserFlags(); // get the user flag strings
for (int i = 0; i < uf.length; i++) {

if (first)
first = false;

else
sb.append(' ');

sb.append(uf[i]);
}
System.out.println("FLAGS = " + sb.toString());
Chapter B Examples Using the JavaMail API B-9

B.4 Example: Monitoring a Mailbox

import java.io.*;
import javax.mail.*;
import javax.mail.event.*;

/* Monitors given mailbox for new mail */

public class monitormailbox {

public static void main(String argv[])
{

if (argv.length != 6) {
 System.out.println(
 "Usage: monitor <protocol> <host> <user> <password> <mbox> <freq>");

 System.exit(1);
}

String protocol = argv[0];
String host = argv[1];
String user = argv[2];
String password = argv[3];
String mbox = argv[4];
String freqarg = argv[5];

System.out.println("\nTesting monitor\n");
try {

// Get a Session object
Session session = Session.getDefaultInstance(

System.getProperties(), null);
session.setDebug(true);

// Get a Store object
Store store = session.getStore(protocol);

 // Connect
store.connect(host, user, password);

 // Open a Folder
Folder folder = store.getFolder(mbox);
if (folder == null || !folder.exists()) {

System.out.println("Invalid folder");
System.exit(1);

}

B-10 JavaMail API Design Specification • March 1998

folder.open(Folder.READ_WRITE);

// Add messageCountListener to listen for new messages
folder.addMessageCountListener(new MessageCountAdapter() {

public void messagesAdded(MessageCountEvent ev) {
Message[] msgs = ev.getMessages();
System.out.println("Got " + msgs.length + " new messages");

// Just dump out the new messages
for (int i = 0; i < msgs.length; i++) {

try {
msgs[i].writeTo(System.out);

} catch (Exception ex) {
ex.printStackTrace();

}
}

}
});

 // Check mail once in "freq" MILLIseconds
int freq = Integer.parseInt(freqarg);

while (true) {
Thread.sleep(freq); // sleep for freq milliseconds

// This is to force the IMAP server to send us
// EXISTS notifications.

folder.getMessageCount();
}

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

B.5 Example: Sending a Message

import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
Chapter B Examples Using the JavaMail API B-11

/**
 * usage: sendmessage to from smtphost multipart
 *
 * Send a simple text/plain message to the "to"
 * address, from the "from" address, using the
 * smtphost as the machine with the smtp server
 * running.
 *
 * if multipart is "true" send a multipart message
 * else if multipart is "false" send a text/plain
 * message.
 */

public class sendmessage {

public static void main(String[] args) {
if (args.length != 4) {

System.out.println(
"usage: sendmessage <to> <from> <smtphost> <true|false>");

System.exit(1);
}

boolean debug = false; // change to get more information
String msgText = "A body.\nthe second line.";
String msgText2 = "Another body.\nmore lines";
boolean sendmultipart = Boolean.valueOf(args[3]).booleanValue();

// set the host
Properties props = new Properties();
props.put("mail.smtp.host", args[2]);

// create some properties and get the default Session
Session session = Session.getDefaultInstance(props, null);
session.setDebug(debug);

try {
// create a message
Message msg = new MimeMessage(session);

// set the from
InternetAddress from = new InternetAddress(args[1]);
msg.setFrom(from);

InternetAddress[] address = {new InternetAddress(args[0])};
msg.setRecipients(Message.RecipientType.TO, address);
msg.setSubject("JavaMail APIs Test");

if (!sendmultipart) {
// send a plain text message
B-12 JavaMail API Design Specification • March 1998

msg.setContent(msgText, "text/plain");

} else {
// send a multipart message

// create and fill the first message part
MimeBodyPart mbp1 = new MimeBodyPart();
mbp1.setContent(msgText, "text/plain");

// create and fill the second message part
MimeBodyPart mbp2 = new MimeBodyPart();
mbp2.setContent(msgText2, "text/plain");

// create the Multipart and its parts to it
Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp1);
mp.addBodyPart(mbp2);

// add the Multipart to the message
msg.setContent(mp);

}

Transport.send(msg);
} catch (MessagingException mex) {

mex.printStackTrace();
}

}
}

Chapter B Examples Using the JavaMail API B-13

B-14 JavaMail API Design Specification • March 1998

is is

ity

cuss

uses the
isplays
bean).

.
d.
he

es
earch

hrough
C

Message Security

C.1 Overview
This is not a full specification of how Message Security will be integrated into the JavaMail system. Th
a description of implementation strategy. The purpose of this section is to declare that it is possible to
integrate message security, not to define how it will be integrated. The final design for Message Secur
will change based on feedback and finalization of the S/MIME IETF specification.
This section discusses encrypting/decrypting messages, and signing/verifying signatures. It will not dis
how Security Restrictions on untrusted or signed applets will work, nor will it discuss a general
authentication model for Stores (For example; a GSS API in Java.)

C.1.1 Displaying an Encrypted/Signed Message
Displaying an encrypted or signed message is the same as displaying any other message. The client
Datahandler for that encrypted message together with the "view" command. This returns a bean that d
the data. There will be both a multipart/signed and multipart/encrypted viewer bean (can be the same
The beans will need to be aware of the MultiPartSigned/MultiPartEncrypted classes.

C.1.2 MultiPartEncrypted/Signed Classes
The JavaMail API will probably add two new content classes: MultiPartEncrypted and MultiPartSigned
They subclass the MultiPart class and handle the MIME types multipart/encrypted and multipart/signe
There are many possible "protocols" that specify how a message has been encrypted and/or signed. T
MPE/MPS classes will find all the installed protocols. The ContentType’s protocol parameter determin
which protocol class to use. There needs to be a standard registration of protocol objects or a way to s
for valid packages and instantiate a particular class. The MultiPart classes will hand off the control
information, other parameters, and the data to be manipulated (either the signed or encrypted block) t
Chapter C Message Security C-1

pted

e
e the

this
some defined Protocol interface.

C.1.3 Reading the Contents
There will be times when an applet/application needs to retrieve the content of the message without
displaying it. The code sample below shows one possible technique with a message containing encry
content:

Message msg = // message gotten from some folder.
if (msg.isMimeType("multipart/encrypted")) {

Object o = msg.getContent();
if (o instanceof MultiPartEncrypted) {

MultiPartEncrypted mpe = (MultiPartEncrypted) o;
mpe.decrypt();
 // use the default keys/certs from the user.
 // We should alsobe able to determine
 // whether or not to interact with the user

// should then be able to use the multipart methods to
// get any contained blocks }
}

}

getContent() returns a MultiPartEncrypted object. There will be methods on this class to decrypt th
content. The decryption could either determine which keys needed to be used, use the defaults (mayb
current user’s keys) or explicitly pass which keys/certificates to use.

C.1.4 Verifying Signatures
Applications/applets will need to verify the validity of a signature. The code sample below shows how
might be done:

Message msg = // message gotten from some folder
if (msg.isMimeType("multipart/signed")) {

Object o = msg.getContent();
if (o instanceof MultiPartSigned) {

MultiPartSigned mps = (MultiPartSigned) o;
boolean validsig = mps.verifySignature();

// could already get the other blocks
// even if it wasn't a valid signature
}

}

If the signature is invalid, the application can still access the data. There will be methods in
C-2 JavaMail API Design Specification • March 1998

bean

e

. The
work:

setting

t that
MultiPartSigned that allow the setting of which keys or certificates to use when verifying the signature.

C.1.5 Creating a Message
There are two methods for creating an Encrypted/Signed message. Users will probably see an editor
for the content types multipart/signed and multipart/encrypted. These beans would handle the UI
components to allow the user to select how they want to encrypt/sign the message. The beans could b
integrated into an application’s Message Composition window.

C.1.5.1 Encrypted/Signed
The non-GUI method of creating the messages involves using the MultiPartEncrypted/Signed classes
classes can be created and used as the content for a message. The following code shows how might

MultiPartEncrypted mpe = new MultiPartEncrypted();
// Can setup parameters for how you want to encrypt the
// message; otherwise, it will use the user's preferences.
// Set the content you wish to encrypt (to encrypt multiple
// contents a multipart/mixed block should be used)
String ourContent = "Please encrypt me!";
mpe.setContent(ourContent);

MimeMessage m = new MimeMessage(session);
m.setContent(mpe);

The message will be encrypted when the message is sent. There will be other methods that allow the
of which encryption scheme shall be used, and the keys involved.

Creating a Multipart Signed message is very similar to creating a Multipart Encrypted message, excep
a Multipart Signed object is created instead.
Chapter C Message Security C-3

C-4 JavaMail API Design Specification • March 1998

D

Part and Multipart Class Diagram

This Appendix illustrates relationships between Part interfaces and Message classes.
Chapter D Part and Multipart Class Diagram D-1

D-2 JavaMail API Design Specification • March 1998

E

MimeMessage Object Hierarchy

This Appendix illustrates the MimeMessage object hierarchy.
Chapter E MimeMessage Object Hierarchy E-1

(2)

(1)

(0)

(2)

<address of message sender>
E-2 JavaMail API Design Specification • March 1998

	Table Of Contents
	1. Introduction�1-1
	2. Goals and Design Principles�2-1
	3. Architectural Overview�3-1
	4. The Message Class�4-1
	5. The Mail Session�5-1
	6. Message Storage And Retrieval�6-1
	7. The JavaBeans Activation Framework�7-1
	8. Message Composition�8-1
	9. Transport Protocols and Mechanisms�9-1
	10. Internet Mail�10-1
	A. Environment Properties�A-1
	B. Examples Using the Mail API�B-1
	C. Message Security�C-1
	D. Part and Multipart Class Diagram�D-1
	E. MimeMessage Object Hierarchy�E-1
	Introduction
	1.1 Target Audience
	1.2 Acknowledgments
	Goals and Design Principles
	Architectural Overview

	3.1 JavaMail Layered Architecture
	3.2 JavaMail Class Hierarchy
	3.3 The JavaMail Framework
	3.4 Major JavaMail API Components
	3.4.1 The Message Class
	3.4.2 Message Storage and Retrieval
	3.4.3 Message Composition and Transport
	3.4.4 The Session Class

	3.5 The JavaMail Event Model
	3.6 Using the JavaMail API
	4
	The Message Class

	4.1 The Part Interface
	4.1.1 Message Attributes
	4.1.2 The ContentType Attribute

	4.2 The Address Class
	4.3 The BodyPart Class
	4.4 The Multipart Class
	4.5 The Flags Class
	4.6 Message Creation And Transmission
	5
	The Mail Session

	5.1 The Provider Registry
	5.1.1 Resource Files
	1. <java.home>/lib/javamail.X
	2. META-INF/javamail.X
	3. META-INF/javamail.default.X
	5.1.1.1 javamail.providers and javamail.default.pr...
	5.1.1.2 javamail.address.map and javamail.default....

	5.1.2 Provider
	5.1.3 Protocol Selection and Defaults
	5.1.4 Example Scenarios

	5.2 Managing Security
	5.3 Store and Folder URLs
	Message Storage And Retrieval

	6.1 The Store Class
	6.1.1 Store Events

	6.2 The Folder Class
	6.2.1 The FetchProfile Method
	6.2.2 Folder Events
	6.2.3 The Expunge Process

	6.3 The Search Process
	7
	The JavaBeans Activation Framework

	7.1 Accessing the Content
	7.1.1 Example: Message Output

	7.2 Operating on the Content
	7.2.1 Example: Viewing a Message
	7.2.2 Example: Showing Attachments

	7.3 Adding Support for Content Types
	Message Composition

	8.1 Building a Message Object
	8.2 Message Creation
	8.3 Setting Message Attributes
	8.4 Setting Message Content
	8.5 Building a MIME Multipart Message
	1. Instantiate a new MimeMultipart object, or a su...
	2. Create MimeBodyParts for the specific message p...
	3. Insert the Multipart object into the Message ob...
	Transport Protocols and Mechanisms

	9.1 Obtaining the Transport Object
	9.1.1 Transport Methods

	9.2 Transport Events
	9.2.1 ConnectionEvent
	9.2.2 TransportEvent

	9.3 Using The Transport Class
	Internet Mail

	10.1 The MimeMessage Class
	10.2 The MimeBodyPart Class
	10.3 The MimeMultipart Class
	10.4 The MimeUtility Class
	10.4.1 Content Encoding and Decoding
	10.4.2 Header Encoding and Decoding
	1. Convert the Unicode String into an array of byt...
	2. Apply a suitable encoding format that ensures t...

	10.5 The ContentType Class
	Environment Properties
	Examples Using the JavaMail API

	B.1 Example: Showing a Message
	B.2 Example : Listing Folders
	B.3 Example: Search a Folder for a Message
	B.4 Example: Monitoring a Mailbox
	B.5 Example: Sending a Message
	Message Security

	C.1 Overview
	C.1.1 Displaying an Encrypted/Signed Message
	C.1.2 MultiPartEncrypted/Signed Classes
	C.1.3 Reading the Contents
	C.1.4 Verifying Signatures
	C.1.5 Creating a Message
	C.1.5.1 Encrypted/Signed
	Part and Multipart Class Diagram
	E

	MimeMessage Object Hierarchy

