which are stored in the organizatio
directory, can simply do:

String[] attrs = {*workPhone”,

“cellPhone”, “faxNumber”};

bobsPhones =
directory.getAttributes(
“cn=Bob,0=Widget,c=US",
attrs);

If there may be several Bobs in the W
get organization, the application ¢
search the organization’s directory
find the right Bob as follows:

bob = directory.search(
“o=Widget,c=US",“cn=Bob”,
controls);

Other application examples inclu
access to security credentials stored i
enterprise-wide directory service, acc
to electronic mail addresses, and acq
to addresses of a variety of existing S
vices such as databases, network file
tems, etc.

|
Overview of Interfaces

TheJNDI API is contained in two pack
ages: javax.naming  for the naming
operations, and

javax.naming.directory for direc-
tory operations. Th@NDI service pro-
vider interface is contained
packagégavax.naming.spi

The Naming Interface —
javax.naming

javax.naming.Context is the core
interface that specifies a naming contg
It defines basic operations such as ad
a name-to-object binding, looking up t
object bound to a specified name, list
the bindings, removing a name-to-obj
binding, creating and destroying subc
texts of the same typetc.

Context.lookup() is the most com
monly used operation. The conté
implementation can return an object
whatever class is required by the J
application. For example, an applicat
might use the name of a printer to Io

in the

bssand then print to it directly:

ess. . . .

er_?—’rlnter printer = (Printer)
ctx.lookup(“treekiller”);

BYSprinter.print(report);

]

naming service implementation. In fag
a new type of naming service can |
introduced without requiring the applica
tion to be modified or even disrupted if
iS running.

The Directory Interface —
javax.naming.directory

Directory Objects and AttributesThe

DirContext  interface enables the direg
tory capability by defining methods fg
examining and updating attributes asg
ciated with a directory object. Eac
directory object contains a set of zero
more objects of clagstribute . Each

ext.attribute is denoted by a string identifig
jingand can have zero or more values of g
he type.
ng

ect Directory Objects as Naming ConteX
bN- TheDirContext  interface also behave
as a naming context by extending t
Context interface. This means that an
directory object can also provide a nar
2xt ing context. In addition to a director
of object keeping a variety of informatio
avaabout a person, for example, it is alsg

ok associated with that person: a perso

on natural naming context for resources

n’'s
Java Application

" JNDI Implementation Manager

an

0 e INDI SPI

JNDI-
INDI-RMI| [COSNaming ©® ® @ [LDAP NDS
de
nardp the correspondingrinter  object, | Searches.The DirContext  interface

supports content-based searching of
directories. In the simplest and most
common form of usage, the application
specifies a set of attributes — possibly
with specific values — to match. It then

The application is not exposed to amy invokes the DirContext.search()

t, method on the directory object, which

pereturns the matching directory objects

- along with the requested attributes.

it
The Service Provider Interface —
javax.naming.spi

The JNDI SPI provides the means by
which different naming/directory service
providers can develop and hook up their
- implementations so that the correspond-
r ing services are accessible from applica-
o-tions that usdNDI. In addition, because
h JNDI allows specification of names that
or span multiple namespaces, if one service
provider implementation needs to inter-
or act with another in order to complete an
nyoperation, the SPI provides methods that
allow different provider implementa-
tions to cooperate to complete client
t. JNDI operations.
5
ne

y
n- For More Information

y
N Seehttp://java.sun.com/products/jndi/

Sun

microsystems

n's

printers, file system, calendatc.

JavaSoft

JNDI



JNDI

m JavaSoft m

Java Naming
& Directory Interface”

JAN 1998

Java Naming and Directory

Interface ™ (JNDI) is a new addition
to JavaSoft’s platform APIs. It
provides JaviM applications a unified
interface to multiple naming and
directory services in the enterprise. As
part of the Java Enterprise API set,
JNDI enables seamless connectivity td
heterogeneous enterprise naming and
directory services. Developers can
now build powerful and portable
directory-enabled Java applications
using this industry-standard interface.

TheJNDI specification was developed
by JavaSoft with a number of leading
industry partners, including SunSoft,
Novell, Netscape, IBM and HP.

The 1.1 version of
the specification
and code are now
available for
download at the
JavaSoft web site.

Technical Overview

Directory services play a vital role i
Intranets and Internets by providin
access to a variety of information abo
users, machines, networks, services, 3
applications. By its very nature, a direg
tory service incorporates a haming fac
ity for providing human understandabl

namespaces that characterize theinstalled base, can be accessed in a cd
arrangement and identification of the mon way.
various entities.

Directory service developers can bene
The computing environment of an entef- from a service-provider capability tha
prise typically consists of several namirjg enables them to incorporate their respe
facilities often representing different tive implementations without requiring
parts of acompositenamespace. Fof changes to the client.

example, the Internet Domain Name

System (DNS) may be used as the tgp-JNDI also defines a service provider
level naming facility for different organi4{ interface which allows various director
zations within an enterprise. The organi- and naming service drivers to be pluggs
zations themselves may use a directaryin.

service such as LDAP or NDS or NIS.

From a user’'s perspective, there is ohe

namespace consisting of composite E—————
names. URLs are examples of composjteExamples

names because they span hamespaces of

multiple naming facilities. Applications Here are two examples to briefly illus
which use directory services must sup-trate some of the more commonly usg
port this user perspective. features ofINDI.

Many Java application developers canAn application that wants to access
benefit from a directory service API that printer needs the corresponding print
is not only independent of the particular object. This is simply done as follows:
directory or naming service implementa-
tion, but also enables seamless access t8
directory objects through multiple na
ing facilities. In fact, an application cal
attach its own objects to the namespace.
Such a facility enables any Java applica-wherebuilding7  is the naming context
tion to discover and retrieve objects of representing a physical building that pr
any type. vides a convenient context for referrin
to the printers.

rt = (Printer)
~ building7.lookup(“puffin”);
prt.print(document);

JNDI is an API specified in the Java prg-
g gramming language that provides direc- JINDI does all the work of locating the
uttory and naming functionality to Java information needed to construct th
napplications. It is defined to be indepen- printer object.

t- dent of any specific directory servic
I- implementation. Thus, a variety of dire¢- As another example, an application th

e tories, new and existing ones in the wants to find a person’s phone numbef

m_

fit

—

lC_

D

2d

a




