Installation guide for the Sparse
Benchmark, version 0.9.7

Victor Eijkhout

17 Nov 2000

1 Introduction

This guide explains the executables, shell scripts, and general structure of the Sparse
Iterative Benchmark. This is a set of Fortran77 codes to test the performance of a
machine on typical iterative linear system solver operation. The philosophy behind
the benchmark is explained in another document.

The basic commands available are:

Configuration of source and shell scripts:
configure
Installation of the executables:
make install
which creates the executables
bench_gen bench_sym crs_gen crs_sym reg_gen reg_sym
Validation of the installation:
Validate
Test of performance:
Test
Analysis of the results:
Analyze
Report of the results to sparsebench@cs.utk.edu:
Report

Both the Test and Validate commands start by a call to make install.
The structure of the benchmark supports easy exploration of multiple architectures
and of multiple variants of the code. Code variants (see section 8) are aimed at

exploring different behaviour on mathematically equivalent, but differently imple-
mented, version of the same code.

2 Machine and platform

With one copy of the benchmark package you can test more than one architecture,
and more than one variants of the code. These two variables are controlled by using

make MACH=<mach> PLAT=<plat> OPT=<opt> install
or
Install -m <mach> -p <plat> -o <opt>

Leaving these variables out leads to defaults

MACH=default_machine
PLAT=default_platform
OPT=reference

being taken.

The machine name implies nothing more than an identifier for your machine: the
platform option indicates what kind of machine you have; see section 3. The opti-
misation name has to be the name of a subdirectory of SRC; see section 8 on code
variants below.

The reason for having both a machine and platform name is that you may want
to test two machines of the same architecture, but different clock speeds or cache
sizes.

Object files and executables will now be made in the directory
SRC/<opt>/<mach>

and subsequently linked into the main directory. After an initial make, a subsequent
make for that machine is simply a link of the executables.

3 Installation

For compile flags and other platform-specific changes to the makefile, you can

. see if there is a file Make.<plat> for your platform, or
. make a copy of Make.default_platform,

and edit that file. In most cases this edit is not needed for an initial install, but it
will most likely be when you are tuning the performnce.

A shell script detects the architecture, and omitting the platform parameter for a
platform for which a Make.<plat> file is present for the detected platform, leads
to this file being used. Currently, platform-specific instructions are supplied for
default_platform ALPHA HPPA HP300 RS6K SGI5 SGI64.

The detected platform name can be obtained by echo ‘Scripts/arch‘;it is a good
idea to use this as the extension for any Make.<plat> files you create yourself.

Otherwise, use the platform name you choose as the value of the -p option to
Install, or, the PLAT option to make install, or the —p option to one of the other
shell scripts (see section 4). Performance will depend on the value of F_OPT_FLAGS
you set; the C_OPT_FLAGS flag only affects the timer and the quicksort routine that
is used in the matrix generating part, that is, it does not affect the benchmark
performance.

Since this is a F77 code, all allocation is static. To allocate more space, edit the
rsize and isize parameters in main.F and main_symm.F.

The source files all have extension ”.F” meaning ”fortran77 with preprocessor direc-
tives”. Some systems think that ”.F” means ”fortran90”. Some of the Make.<plat>
files contain an attempt to disabuse them of that notion.

The makefile used for the actual installation is SRC/<opt>/Makefile. If you inspect
the makefile, you will see that the link lines start with an invocation of $PURIFY. If
you have purify on your system and you run into a bug you can track it down by

make clean ; make PURIFY=purify install

4 The ‘Test’, ‘Analyze’, ‘Validate’, ‘Report’ scripts

The benchmark package comes with four shell scripts.

Validate Run some tests and compare the results against results in the file reference_results.
Test Run some tests, aimed at getting optimum performance. See section 3 about
setting compiler options. See section 7?7 about generating the test data.
Analyze Post-process the results of the ‘Test’ script to give benchmark results.
Report Bundle up the results in a file, and send it to sparsebench@cs.utk.edu.

4.1 Specifying machine name and type

If you want to test more than one machine, do
Validate -m <machine name> -p <platform>
and
Test -m <machine name> -p <platform>

which will use the file Make.<platform>and leave the results in Out/<machine name>,
and subsequently

Analyze -m <machine name>

The ’Analyze’ command writes to the screen, so just capture the results however you
want. If you leave out the -m option, default_machine is taken as the architecture
name; if you leave out the -p option, default_platform is taken as the platform
name.

The ‘Test’ and ‘Validate’ scripts also take a code variant argument (see section 8),
for instance
Test -p mta -o wave_ilu

This does not change the location of where test results are stored.

The ‘Test’ and ‘Validate’ scripts start out by calling
make PLAT=<platform> MACH=<machine> OPT=<opt> install

where the platform, machine, and optimisation have been specified by -p, -m and
-o options or are taken as the default.

4.2 Test data and analysis

The ‘Test’ script runs every problem a number of times; by default 3 times. You can
alter this number by Test -r <n>. In each run, the script tests whether a certain
problem has already been run, and will only overwrite results if the new run gives
higher performance.

Since the full set of test matrices will take a few hundred megabyte of disc space,
matrices are deleted after use. If you want to test several machines, want to save

the time it takes to generate them repeatedly, and have a few hundred megabyte
to spare, use Test -d which saves the matrices to disc.

The ‘Analyze’ script has an option to limit the results that are analyzed. For instance
Analyze -c gmres
displays only timings for files in Out/<platform> that have gmres in the name.

You can get a plot of the analysis data by specifying

Analyze -d
Since this will currently draw 12 plots in one figure, it is a good idea to combine this
with the -c option to limit what you are plotting. The -d option relies on ‘gnuplot’
(version 3.5 is too old, 3.7 works, I have not tested 3.6) and ‘ghostview’ being in
your path.

The ‘Analyze’ script uses a combination of awk and perl scripts, and a small Fortran
program Scripts/lsq.f, which gets made the first time you call ‘Analyze’. You
can specify a -p option to make sure the correct Make.<platform> file is used in
the compilation.

Sometimes, the ‘Analyze’ script will report a flop rate of zero, especially for the
vector operations. This is a consequence of the timer being used, which has on most
platforms a resolution of 1/100 second. Often, operations will take less than this.
In that case, time values of zero will be reported as a zero flop rate.

4.3 Benchmark reporting

The ‘Report’ script bundles up all files in Out/<machine name> into a file ‘Results.<machine>’,
and sends this by email to sparsebench@cs.utk.edu. There are a few options to
modify the behaviour of this script:

-m jname; Report for machine name; leaving this out causes ‘default'machine’ to
be used.

-p iplat; Include information that the platform is plat; leaving this out causes
the result of Scripts/arch to be used.

-c jcomponent; Report only results that match component; for instance, Report
-c gmres causes only GMRES results to be reported.

-n Do not use email. By default, the bundled reports in ‘Results.<machine>’ are
sent using
mail sparsebench@cs.utk.edu < \verb+Results.<machine>+
Using the ‘-n’ option omits this step, and it is up to you to get the file to us
somehow.

The ‘Report’ script asks you a few questions, such as a description of your machine,
and whether the code was compiled straight out of the box, or with modifications
applied. This should all be fairly obvious.

5 Test data

There are programs crs_gen and reg_gen to generate unsymmetric, and crs_sym
and reg_symto generate symmetric matrices, of crs and diagonal storage respecitively,
and write them to file. The bench_x* programs will detect these dumps and read
them.

Both the Test and Validate scripts call these auxiliaries, so they generate some large
temporary files with names crsmat* and regmat*. If you want to test more than
once, or more than one architecture, it is a good idea to leave these test matrices
around; normally they are deleted immediately. If you have plenty of disk space,
use

Test -d
to have the matrices saved after use.
Generating the test matrices may take quite some time if you are running larger
problems. There is an option

-s "sizel size2 ... "

to indicate which sizes are to be tested or validated. By default, validation uses
sizes 10 20, while testing is done on the sizes 12 14 16 18 20 24 28 32 36 38.
You will see an error message if you try to validate sizes for which no reference data
is in the file reference_results.

6 Output

The benchmark code runs for 10 iterations of an iterative method, printing the
residual error in each iteration. Especially if you specify a large matrix size, you
may not see the error go down by much in each iteration. Not to worry. This is
because the iterative method would need hundreds of iterations to converge, and
we are only interested in benchmarking the per iteration performance.

7 Documentation

In addition to the README file, this installation guide, you can also read:

. bench.ps about the philosophy of the benchmark, and lists of results, and
. generate.ps about the random matrix generator.

8 Code variants
A small number of lightly optimised code variants are provided. These can be con-
structed by
make OPT=name install
Object files and executables are left in directories
SRC/<0PT>/<ARCH>
see section 2.

The currently available variants are:

naive_ilu naive coding of regular ilu solve, with bound checking tests inside the
inner loop.

wave_ilu wavefront coding of regular ilu solve.

long_vector contiguous storage of diagonals in regular storage.

bulkgmres implementation of gmres using QR after building Krylov space.

bulkgmres_lapack as above, but using lapack routines where possible.
classical_gs implementation of gmres using classical Gram-Schmidt.
cprod matrix-vector product in C.

reference the reference code.

9 Executables

The installation leaves the executables
bench_gen bench_sym crs_gen crs_sym reg_gen reg_sym
in the current directory.

bench_gen code for general linear systems, choice between BiCG and GMRES
methods

bench_sym code for symmetric systems, only half the matrix is stored; only CG.

The same names are used for the code variants, so you have to do a make 0PT=<opt> install

in between tests of different variants.

