10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex A
Appendix

This appendix contains overall notation, definitions, and implementation details for the chapters
of the BLAS Technical Forum Standard.

A.1 Vector Norms

There are a variety of ways to define the norm of a vector, in particular for vectors of complex
numbers, several of which have been used in the existing Level 1 BLAS and in various LAPACK
auxiliary routines. Our definitions include all of these in a systematic way.

Data Type | Name Notation | Definition
Real one-norm Iz |1 il
two-norm 1z ||2 N T
infinity-norm |z|loo | max; |z
Complex | one-norm |1 >l
= 3 (Re(z;)? + ITm(x;)?) /2
real one-norm lzlhir | (| Re(x:)| + [Im(x;)|)

two-norm ||$||2 V2o |ﬂvz|2

= (Xi(Re(:)? + Im(z;)%))"/?

infinity-norm |z|loo | max; |z
= max;(Re(z;)? + Im(z)?)'/?
real infinity-norm | ||z|lcor | max;(|Re(z;)| + |[Im(x;)]|)

Table A.1: Vector Norms

Rationale. The reason for the two extra norms of complex vectors, the real one-norm and
real infinity-norm, is to avoid the expense of up to n square roots, where n is the length of
the vector . The two-norm only requires one square root, so a real version is not needed.
The infinity norm only requires one square root in principle, but this would require tests and
branches, making it more complicated and slower than the real infinity-norm. When z is real,
the one-norm and real one-norm are identical, as are the infinity-norm and real infinity-norm.
We note that the Level 1 BLAS routine ICAMAX, which finds the largest entry of a complex
vector, finds the largest value of |Re(x;)| + [Im(xz;)|. (End of rationale.)

174 ANNEX A. APPENDIX

Computing the two-norm or Frobenius-norm of a vector is equivalent. However, this is not the
case for computing matrix norms. For consistency of notation between vector and matrix norms,
both norms are available.

A.2 Matrix Norms

Analogously to vector norms as discussed in Section A.1, there are a variety of ways to define the
norm of a matrix, in particular for matrices of complex numbers. Our definitions include all of
these in a systematic way.

Data Type | Name Notation | Definition
Real one-norm IlA]l1 max; y_; |ajl

Frobenius-norm |AlF Vi X e
infinity-norm |Allo | max; 3=, [ag]
max-norm |A|lmax | max; max; |a;;|

Complex | one-norm | A|l1 max; Y, |aij|

= max; 3, (Re(ay)” + Im(aij)*)"/?

real one-norm |Allir | max; Y, (|Re(asj)| + [Im(asj)|)

Frobenius-norm [AllF | /2 2 |ai]?

= (X X;(Re(aij)? + Im(a;;)?))"/?
infinity-norm lAlloo | max; 37 |aijl

= max; Y, (Re(ai;)? + Im(ai;)?)"/?
real infinity-norm | |[[Allcor | max; 35 (| Re(aij)| + [Im(aij)|)

max-norm |A||lmax | max; max; |a;;|
= max; maxj(Re(aij)2 + Im(aij)Q)l/2
real max-norm | Allmax r | = max; max;(|Re(ai;)| + |[Im(aij)|)

Table A.2: Matrix Norms

In contrast to computing vector norms, computing the two-norm and Frobenius-norm of a
matrix are not equivalent. If the user asks for the two-norm of a matrix, where the matrix is 2-by-2
or larger, an error flag is raised. The one exception occurs when the matrix is a single column or
a single row. In this case, the two-norm is requested and the Frobenius-norm is returned.

A.3 Operator Arguments

The following table lists the operator arguments and their associated named constants. For com-
plete details of the meanings of the operator prec, refer to section 4.3.1.

Example: Consider the matrix-vector products z = Az, = ATz and z = A¥z. Tt is convenient
to use the trans operator and define op(A) as being A, AT or A¥ depending on the value of the
trans operator argument. Again, the specification of the type and the valid values such an operator
should have will be defined in the language-dependent section and may vary from one language
binding to another.

It is worthwhile noticing that in some rare cases, the meaning of the trans operator argument
is extended to a function of the matrix to which it applies. Consider for example the symmetric

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. OPERATOR ARGUMENTS 175

operator argument | named constant meaning
norm blas_one_norm 1-norm
blas_real one_norm real 1-norm
blas_two_norm 2-norm
blas_frobenius norm | Frobenius-norm
blas_inf norm infinity-norm
blas_real_inf norm real infinity-norm
blas_max_norm max-norm
blas real max norm | real max-norm
sort blas_increasing order | sort in increasing order
blas_decreasing_order | sort in decreasing order
side blas_left_side operate on the left-hand side
blas_right _side operate on the right-hand side
uplo blas_upper reference upper triangle only
blas_lower reference lower triangle only
transz blas_no_trans operate with z
blas_trans operate with zT
blas_conj_trans operate with zf
conj blas_conj operate with z
blas_no_conj operate with z
diag blas_non_unit_diag non-unit triangular
blas_unit_diag unit triangular
jrot blas_jrot_inner inner rotation ¢ > %
blas_jrot_outer outer rotation 0 < ¢ < %
blas_jrot_sorted sorted rotation abs(a) > abs(b)
order blas_colmajor assume column-major ordering
blas_rowmajor assume row-major ordering
index_base blas_zero_base assumes zero-based indexing
blas_one_base assumes one-based indexing
prec blas_prec_single internal computation performed
in single precision
blas_prec_double internal computation performed
in double precision
blas_prec_indigenous | internal computation performed
in the widest hardware-supported
format available
blas_prec_extra internal computation performed
in format wider than 80-bits

Table A.3: Operator Arguments

rank-k update operations, C < C + AA” and C « C + AT A where C is a symmetric matrix.
The value of the trans operator refers to the product AA”. Tt follows that these operations can be
specified by C < C + op(AAT) where op(AAT) is AAT or AT A depending on the input value of
the trans argument.

All possible values of the operator argument trans are not always meaningful. For example, in

176 ANNEX A. APPENDIX

the symmetric rank-k update operations defined above, when the matrix C' is complex symmetric,
the only valid values of op(AAT) are AAT or AT A. Similarly, when the matrix C is complex
Hermitian, the only valid values of op(AA¥) are AA” or A® A. Such restrictions are detailed for
each dense and banded BLAS function to which they apply.

Some BLAS routines have more than one trans operator argument because such an argument
is needed for each matrix to which it applies. For example, a general matrix-multiply operation
can be specified as C' < op(A)op(B) where A, B and C are general matrices. A trans argument is
needed for each of the input matrices A and B; by convention we denote those formal arguments
transA and transB.

Rationale. As mentioned above, section (1.4) does not specify how the objects manipu-
lated by the BLAS routines are stored. This important aspect of the interface specification is
deferred to the language-dependent specification sections. In particular, the operator argu-
ments do not indicate whether only half or all entries of triangular, symmetric and Hermitian
matrices are stored, or even how these entries are stored. The intent is to provide each lan-
guage binding with the opportunity to choose the appropriate data structures for each object.
Note that a given language binding specification may provide multiple functions performing
the same operation on operands stored differently. For example, triangular matrices may be
stored within conventional two-dimensional arrays or in packed storage, where the triangle
may be packed by rows or columns. Consequently, a BLAS routine specified in the function-
ality tables may induce multiple functions in a particular language binding, say for instance,
to provide the user with the same operation on objects that are stored differently. (End of
rationale.)

It follows that, in general, a mathematical operation involving a matrix A, where A could be
general or banded, triangular, symmetric or Hermitian, induces the language-independent speci-
fication of multiple routines. However, this language-independent section ignores the fact that a
given language binding may choose to provide multiple storage schemes for some specific classes of
matrices, such as triangular matrices.

A.4 Fortran 95 Modules

Several Fortran 95 modules are provided, allowing for the flexible inclusion of only select portions
of the document. The modules blas _dense, blas_sparse, and blas_extended, are provided for
Chapters 2, 3, and 4, respectively.

http://www.netlib.org/blas/blast-forum/blas_dense.f90
http://www.netlib.org/blas/blast-forum/blas_sparse.f90
http://www.netlib.org/blas/blast-forum/blas_extended.f90

Each of these modules in turn contains a USE statement to include the module of operator arguments
(blas_operator_arguments for Chapters 2 and 4, and blas_sparse namedconstants for Chapter
3), and the respective module(s) of explicit interfaces for that chapter.

For Chapters 2 and 4, one derived type is specified for each category of operator arguments (such
as trans) and some parameters are defined of this type (for the different settings). For consistency,
the suffix _type is used to name all of the derived types. This suffix is needed in some cases to
differentiate between the type and one of the parameters (for example, blas_trans_type is a type
and blas_trans is a parameter of this type). The Sparse BLAS chapter represents its operator
arguments and a list of matrix properties (see section 3.5.1) as named constants.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN 95 MODULES 177

Advice to implementors. For Chapter 2, all the entities (derived types, named constants and
BLAS procedures) must be accessible to the user via the module blas_dense.

There are many ways to create this module. However the following three conditions MUST
be adhered to:

e all entities can be accessed by the module
e the generic names must be the same as in the Fortran 95 bindings

e the specific name must be standard. The standard that we recommend is “suffix _d, _z,
_s and _¢” for double precision, double complex, real and complex.

For example the Fortran 95 bindings gives the generic name gemm. This is a generic procedure
for the following 12 specific procedures:

gemm_d corresponds to BLAS_ DGEMM (legacy DGEMM)
gemm z corresponds to BLAS_ZGEMM (legacy ZGEMM)
gemm s corresponds to BLAS_SGEMM (legacy SGEMM)
gemm c corresponds to BLAS_CGEMM (legacy CGEMM)
gemv_d corresponds to BLAS_ DGEMYV (legacy DGEMYV)
gemv_z corresponds to BLAS_ ZGEMYV (legacy ZGEMV)
gemv_s corresponds to BLAS_ SGEMV (legacy SGEMYV)
gemv_c corresponds to BLAS_ CGEMYV (legacy CGEMYV)

ger.d corresponds to BLAS_DGER (legacy DGER)

ger.z corresponds to BLAS_ZGER (legacy SGER)

ger_s corresponds to BLAS_SGER (legacy ZGERU, ZGERC)
ger.c corresponds to BLAS_CGER (legacy CGERU, CGERC)

A specific procedure could be an external procedure or a module procedure.

One approach for creating the module blas_dense is to:

e create one file for each procedure
e create the interface blocks for the generic names using one or more modules

e create the module blas_dense from the modules in the last step and other modules such
as blas_operator_arguments

Assuming we are using external procedures, the following files could be used as templates to
create the module blas_dense. The interface blocks are grouped according to the grouping
in section 2.8.1. The files are:

e http://www.netlib.org/blas/blast-forum/blas_operator_arguments.f90
file containing the module blas_operator_arguments

e http://www.netlib.org/blas/blast-forum/blas precision.f90
file containing the module used to specify the precision (not visible to the user)

e http://www.netlib.org/blas/blast-forum/blas dense red_op.f90
file containing the interface blocks for the reduction operations (section 2.8.2)

e http://www.netlib.org/blas/blast-forum/blas.dense_gen trans.f90
file containing the interface blocks for the generate transformations procedures (sec-
tion 2.8.3)

178 ANNEX A. APPENDIX

e http://www.netlib.org/blas/blast-forum/blas dense _vec_op.f90
file containing the interface blocks for the vector operations (section 2.8.4)

e http://www.netlib.org/blas/blast-forum/blas_dense _vec_mov.f90
file containing the interface blocks for the data movement with vectors (section 2.8.5)

e http://www.netlib.org/blas/blast-forum/blas dense mat_vec_op.f90
file containing the interface blocks for the matrix_vector operations (section 2.8.6)

e http://www.netlib.org/blas/blast-forum/blas_dense mat_op.f90
file containing the interface blocks for the matrix operations (section 2.8.7)

e http://www.netlib.org/blas/blast-forum/blas_dense mat_mat_op.f90
file containing the interface blocks for the matrix_matrix operations (section 2.8.8)

e http://www.netlib.org/blas/blast-forum/blas_dense mat _mov.f90
file containing the interface blocks for the data movement with matrices (section 2.8.9)

e http://www.netlib.org/blas/blast-forum/blas.dense fpinfo.f90
file containing the interface blocks for the environmental enquiry (section 2.8.10)

e http://www.netlib.org/blas/blast-forum/blas_dense.f90
file containing the module blas_dense that imports the information from all other mod-
ules and makes them available.

The specifications for all specific procedures MUST be as they appear in the above files. The
only change is the way that the precision is specified. (End of advice to implementors.)

A.5 Fortran 77 Include File

One Fortran 77 include file is provided, blas namedconstants.h. This include file contains the
values of all named constants, and applies to Chapters 2, 3, and 4.

http://www.netlib.org/blas/blast-forum/blas namedconstants.h

Operator arguments norm, sort, side, uplo, trans, conj, diag, jrot, index_base, and prec are rep-
resented in the Fortran 77 interface as INTEGERs. These operator arguments assume the named
constant values as defined in section A.3. The Sparse BLAS chapter defines a list of matrix prop-
erties (see section 3.5.1) that must also be defined.

Advice to implementors. This specification is a deviation from the Legacy BLAS, where
these operator arguments were defined as CHARACTER*1. (End of advice to implementors.)

A.6 C Include Files

Several C include files are provided, allowing for the flexible inclusion of only select portions of the
document. The file blas.h contains the enumerated types and all prototypes for Chapters 2, 3,
and 4. The files blas dense.h, blas sparse.h, and blas_extended.h, include the values of the
operator arguments (enumerated types) and the function prototypes for the respective chapter.

http://www.netlib.org/blas/blast-forum/blas.h
http://www.netlib.org/blas/blast-forum/blas dense.h
http://www.netlib.org/blas/blast-forum/blas sparse.h
http://www.netlib.org/blas/blast-forum/blas_extended.h

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.6. CINCLUDE FILES 179

The file blas_enum.h contains the values of all enumerated types, applying to all chapters. The files
blas_dense_proto.h, blas_sparse_proto.h, and blas_extended proto.h, contain the respective
function prototypes for Chapters 2, 3, and 4.

http://www.netlib.org/blas/blast-forum/blas_enum.h
http://www.netlib.org/blas/blast-forum/blas_dense_proto.h
http://www.netlib.org/blas/blast-forum/blas_sparse _proto.h
http://www.netlib.org/blas/blast-forum/blas extended proto.h

All operator arguments are handled by enumerated types in the C interface. This allows for
tighter error checking, and provides less opportunity for user error. In addition to the operator
arguments of norm, sort, side, uplo, trans, conj, diag, jrot, index_base, and prec, this interface adds
another such argument to all routines involving two dimensional arrays, order. order designates if
the array elements are stored in row-major or column-major ordering. Refer to section 2.6.6 for
further details. The Sparse BLAS chapter defines a list of matrix properties (see section 3.5.1) that
must also be defined.

