Basic Linear Algebra Subprograms Technical (BLAST) Forum
Standard

Basic Linear Algebra Subprograms Technical (BLAST) Forum

August 21, 2001

(©1996-2000 University of Tennessee, Knoxville, Tennessee. Permission to copy without fee all
or part of this material is granted, provided the University of Tennessee copyright notice and the
title of this document appear, and notice is given that copying is by permission of the University
of Tennessee.

10

11

12

13

14

15

16

17

18

19

20

21

22

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Contents

Acknowledgments

Suggestions for Reading

1 Introduction

2

1.1
1.2
1.3
1.4

1.5

1.6
1.7
1.8

2.1

2.2

Introduction L
Motivation L L e e e e e e
Organization of the Document
Nomenclature and Conventions e
1.4.1 Notation L o o e e e e e e
1.4.2 Operator Arguments Lo
1.4.3 Scalar Arguments L. L
1.44 Vector Operands o o it e e
1.4.5 Matrix Operands L
1.4.6 Naming Conventions ottt
Overall Functionality o e
1.5.1 Scalar and Vector Operations
1.5.2 Matrix-Vector Operations
1.5.3 Matrix Operations L L e e
Numerical Accuracy and Environmental Enquiry
Language Bindings L. e
Error Handling o e e
1.8.1 Return Codes oL e
1.8.2 FError Handlers e
Dense and Banded BLAS
Overview and Functionality
2.1.1 Scalar and Vector Operations o
2.1.2 Matrix-Vector Operations o
2.1.3 Matrix Operations o e
Matrix Storage Schemes L.
2.2.1 Conventional Storage Lo e
2.2.2 Packed Storage e
2.2.3 Band Storage e e e e e
2.2.4 Unit Triangular Matrices
2.2.5 Representation of a Householder Matrix
2.2.6 Representation of a Permutation Matrix oL,

viii

2.3 Imterface Issues L L e e e e 26
2.3.1 Naming Conventions o 26
2.3.2 Argument Aliasing oL L e e 26

2.4 Interface Issues for Fortran 95o oo oo 26
24.1 Fortran 95 Modules e 26
242 Indexing L e e e 26
2.4.3 Design of the Fortran 95 Interfaces 27
2.4.4 Matrix Storage Schemes Lo o e 28
2.4.5 Format of the Fortran 95 bindings 28
24.6 Error Handling e 29

2.5 Interface Issues for Fortran 77 Lo oL 30
2.5.1 Fortran 77 Include File oo 30
2.5.2 Indexing L e e e 30
253 Array Arguments L 30
2.5.4 Matrix Storage Schemes L. oL o 31
2.5.5 Format of the Fortran 77 bindings 31
2.5.6 Error Handling e 31

2.6 Interface Issues for C L L e 32
2.6.1 ClIncludeFile e 32
2.6.2 Indexing e e e 32
2.6.3 Handling of complex data typeso oo L. 32
2.6.4 Return values of complex functionso oo 32
2.6.5 Aliasing of arguments L. Lo 33
2.6.6 Array arguments oL e e e e e e e e e e 33
2.6.7 Matrix Storage Schemes L Lo e 33
2.6.8 Format of the C bindings 33
2.6.9 Error Handling 33

2.7 Numerical Accuracy and Environmental Enquiry 34

2.8 Language Bindings 35
2.8.1 Overview e e e e e e 36
2.8.2 Reduction Operations 38
2.8.3 Generate Transformations 43
2.8.4 Vector Operations i e e 47
2.8.5 Data Movement with Vectors L. 50
2.8.6 Matrix-Vector Operations oo e 53
2.8.7 Matrix Operations e 69
2.8.8 Matrix-Matrix Operations oo e 83
2.8.9 Data Movement with Matrices 98
2.8.10 Environmental Enquiry0 Lo e 103

3 Sparse BLAS 104

3.1 Overview oL e e e e e 104

3.2 Naming Conventions o e 105

3.3 Functionality o . 105
3.3.1 Scalar and Vector Operationso 106
3.3.2 Matrix-Vector Operations oo o e 106
3.3.3 Matrix-Matrix Operations oo e 106

3.4 Describing sparsityo oL e e e e e 107

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N o w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.4.1 Sparse Vectors e e e e 107

34.2 Indexbases e e e e e 107
3.4.3 Repeated Indices e 108
3.5 Sparse BLAS Matrices o . . 108
3.5.1 Creation Routines L 108
3.5.2 Specifying matrix properties.o Lo oo 109
3.5.3 Sparse Matrices: Inserting a Single Entry 109
3.5.4 Sparse Matrices: Inserting List of Entries 110
3.5.5 Sparse Matrices: Inserting Row and Column Vectors 111
3.5.6 Sparse Matrices: Inserting Cliques 111
3.6 Imterface Issues L e e 111
3.6.1 Interface Issues for Fortran 95. oL, 111
3.6.2 Interface Issues for Fortran 77 oL, 113
3.6.3 Interface Issuesfor C. 114
3.7 Numerical Accuracy and Environmental Enquiry 116
3.8 Language Bindings Lo 116
3.8.1 Overview L e e e e e e 116
3.8.2 Level 1 Computational Routines 117
3.8.3 Level 2 Computational Routines 120
3.8.4 Level 3 Computational Routines 122
3.8.5 Handle Management 123
3.8.6 Creation Routines L 123
3.8.7 Imsertion routines 125
3.8.8 Completion of construction routine 129
3.8.9 Matrix property routines Lo oo 130
3.8.10 Destruction routine.o Lo o 131
Extended and Mixed Precision BLAS 132
4.1 OVEIVIEW . . . o i i e e e e e e e e e e e 132
4.2 Design Goals and Summaryo o 132
4.3 Functionality 134
4.3.1 Specifying Extra Precision Lo 0oL 134
4.3.2 Mixed Precisiono 135
4.3.3 Numerical Accuracy and Environmental Enquiries 136
4.3.4 Function Tables. o 139
4.4 Interface Issues e e e e e e e e e 139
4.4.1 Interface Issues for Fortran 95. oo L. 140
4.4.2 Interface Issues for Fortran 77 L. 141
4.4.3 Interface Issuesfor C. o Lo 141
4.5 Language Bindings L L 142
4.5.1 OVervIEW o e e e e e e e e e e e e e e e 142
4.5.2 Mixed and Extended Precision Reduction Operations 143
4.5.3 Mixed and Extended Precision Vector Operations. 145
4.5.4 Mixed and Extended Precision Matrix-Vector Operations 147
4.5.5 Mixed and Extended Precision Matrix-Matrix Operations 157
4.5.6 Environmental Enquiry L o0 o oL 172

A Appendix 173

A1 Vector Norms o L 0o e e e 173
A2 Matrix Norms o L o e e e 174
A3 Operator Arguments Lo e e 174
A4 Fortran 95 Modules. o . 176
A5 Fortran 77 Include File. _ 178
A6 Clnclude Files o . o e 178
B Legacy BLAS 180
B.1 Imtroduction. e e 180
B.2 Cinterface to the Legacy BLAS o 180
B.2.1 Namingschemeo 180
B.2.2 Indices and ILAMAX o . . e 181
B.2.3 Character argumentso oo e e e 181
B.2.4 Handling of complex data types 181
B.2.5 Return values of complex functions oo oL 182
B.2.6 Array argumentsl 183
B.2.7 Aliasing of arguments oL oo Lo 185
B.2.8 Cinterface includefile Lo o o 186
B.2.9 Error checking Lo 186
B.2.10 Rules for obtaining the C interface from the Fortran 77 186
B.2.11 cblas.hinclude file Lo 186
B.2.12 Using Fortran 77 BLAS to support row-major BLAS operations 187

C Journal of Development 196
C.1 Environmental Routine for Effective use of Cache, Pipelining and Registers 197
C.1.1 Imtroduction e e e 197
C.1.2 Language Extensions for the Cache 197
C.1.3 For Efficient LA Software 198
C.1.4 Advantages of thisapproach 198
C.1.5 Disadvantages of this approach 198

C.2 Distributed-memory Dense BLAS oo 200
C.3 Fortran 95 Thin BLAS 206
C.3.1 Imtroduction e e e 206
C.3.2 Design of Fortran 95 Interfaces oo L. 206
C.3.3 Imterfaces for Real Data 207
C.3.4 Interfaces for Complex Data o L. 211
C.3.5 Error checking e 211
C.3.6 Comparison with the Fortran 77 BLAS 211
C.3.7 Conclusion e e e e 213
C.3.8 Further Details: Specific procedures for gemm 214

C.4 Imterval BLAS e e 219
C.4.1 Introduction L e e e 219
C.4.2 Functionality e 220
C.4.3 Imterface Issues L e 224
C.4.4 Numerical Accuracy and Environmental Enquiry 226
C.4.5 Language Bindings 227

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

-

w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

Index

299

303

Acknowledgments

The technical development was carried out by subgroups, whose work was reviewed by the full
committee. During the period of development of the Basic Linear Algebra Subprograms (BLAS)
Technical Forum Standard, many people served in positions of responsibility and are listed below.

Jack Dongarra and Sven Hammarling, Conveners and Meeting Chairs
Susan Blackford and Andrew Lumsdaine, Minutes

Susan Blackford, Editor

The primary chapter authors are the following:

Susan Blackford, Jack Dongarra, and Sven Hammarling, Chapter 1

Susan Blackford, Jack Dongarra, and Sven Hammarling, Linda Kaufman, Zohair Maany,
Antoine Petitet, Chapter 2

Tain Duff, Mike Heroux, Roldan Pozo, Karin Remington, Chapter 3

Jim Demmel, Greg Henry, Velvel Kahan, Xiaoye Li, Chapter 4

Clint Whaley, C Interface to the Legacy BLAS

Jack Dongarra, Fred Krogh, Journal of Development — Environmental routines
Antoine Petitet, Journal of Development — Distributed-Memory Dense BLAS

Sven Hammarling, Zohair Maany, Journal of Development — Fortran95 Thin BLAS

George Corliss, Chenyi Hu, Baker Kearfoot, Bill Walster, J. Wolff v. Gudenberg, Journal of
Development — Interval BLAS

We would like to thank the individuals from the following organizations who have written the
reference implementations: University of California, Berkeley, University of Houston, Downtown,
University of Notre Dame, University of Tennessee, HP /Convex, NAG, NIST, and CERFACS.

Specifically, we thank the following students at the University of California, Berkeley, for their
work on the reference implementations and proofreading of various versions of the document: Ben
Wanzo, Berkat Tung, Weihua Shen, Anil Kapur, Michael Martin, Jimmy Iskandar, Yozo Hida,
Teresa Tung, Yulin Li.

We would like to thank the following vendors and ISPs: Cray, Digital/Compaq, HP/Convex,

IBM,

Intel, NEC, SGI, Tera, NAG, and VNI.

We thank Paul McMahan of the University of Tennessee for preparing the commenting and
voting pages on the BLAS Technical Forum webpage.

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N o w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

We would like to thank the members of the global community who have posted comments,
suggestions, and proposals to the email reflector and the BLAS Technical Forum webpage.

And lastly, we would like to thank the attendees of the BLAS Technical Forum meetings:

Andy Anda, Ed Anderson, Zhaojun Bai, David Bailey, Satish Balay, Puri Bangalore, Claus
Bendtsen, Jesse Bennett, Mike Berry, Jeff Bilmes, Susan Blackford, Phil Bording, Clay Breshears,
Sandra Carney, Mimi Celis, Andrew Chapman, Samar Choudhary, Edmond Chow, Almadena
Chtchelkanova, Andrew Cleary, Isom Crawford, Michel Daydé, John Dempsey, Theresa Do, Dave
Dodson, Jack Dongarra, Craig Douglas, Paul Dressel, Jeremy Du Croz, lain Duff, Carter Ed-
wards, Salvatore Filippone, Rob Gjertsen, Roger Golliver, Cormac Garvey, lan Gladwell, Bruce
Greer, Bill Gropp, John Gunnels, Fred Gustavson, Sven Hammarling, Richard Hanson, Hidehiko
Hasegawa, Satomi Hasegawa, Greg Henry, Mike Heroux, Jeff Horner, Gary Howell, Mary Beth
Hribar, Chenyi Hu, Steve Huss-Lederman, Melody Ivory, Naoki Iwata, Bo Kagstrom, Velvel Kahan,
Chandrika Kamath, Linda Kaufman, David Kincaid, Jim Koehler, Vipin Kumar, Rich Lee, Steve
Lee, Guangye Li, Jin Li, Sherry Li, Hsin-Ying Lin, John Liu, Andew Lumsdaine, Dave Mackay,
Kristin Marshoffe, Kristi Maschhoff, Brian McCandless, Joan McComb, Noel Nachtigal, Jim Nagy,
Esmond Ng, Tom Oppe, Antoine Petitet, Roldan Pozo, Avi Purkayastha, Padma Raghavan, Karin
Remington, Yousef Saad, Majed Sidani, Jeremy Siek, Tony Skjellum, Barry Smith, Ken Stan-
ley, Pete Stewart, Shane Story, Chuck Swanson, Francoise Tisseur, Anne Trefethen, Anna Tsao,
Robert van de Geijn, Phuong Vu, Kevin Wadleigh, David Walker, Bob Ward, Jerzy Wasniewski,
Clint Whaley, Yuan-Jye Jason Wu, Chao Yang, and Guodong Zhang.

Suggestions for Reading

This document is divided into chapters, appendices, a journal of development, and an index of
routine names. It is large, and it is not necessary for a user to read it in its entirety. A user may
choose to not read certain chapters or sections within this document, depending upon his/her areas
of interest. Chapters 2—4 contain a functionality discussion and language bindings for dense and
band, sparse, and mixed and extended precision BLAS, respectively. Thus, these chapters may
be read independently, referring to Chapter 1 and the Appendix for notation and implemen-
tation details common to all chapters. Refer to section 1.3 for a more detailed description of the
organization of this document.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 1

Introduction

1.1 Introduction

This document defines the BLAS Technical Forum standard, a specification of a set of kernel
routines for linear algebra, historically called the Basic Linear Algebra Subprograms and commonly
known as the BLAS. In addition to this publication, the complete standard can be found on the
BLAS Technical Forum webpage (http://www.netlib.org/blas/blast-forum/).

Numerical linear algebra, particularly the solution of linear systems of equations, linear least
squares problems, eigenvalue problems and singular value problems, is fundamental to most calcu-
lations in scientific computing, and is often the computationally intense part of such calculations.
Designers of computer programs involving linear algebraic operations have frequently chosen to
implement certain low level operations, such as the dot product or the matrix vector product, as
separate subprograms. This may be observed both in many published codes and in codes written
for specific applications at many computer installations.

This approach encourages structured programming and improves the self-documenting quality
of the software by specifying basic building blocks and identifying these operations with unique
mnemonic names. Since a significant amount of execution time in complicated linear algebraic
programs may be spent in a few low level operations, reducing the execution time spent in these
operations leads to an overall reduction in the execution time of the program. The programming
of some of these low level operations involves algorithmic and implementation subtleties that need
care, and can be easily overlooked. If there is general agreement on standard names and parameter
lists for some of these basic operations, then portability and efficiency can also be achieved.

The first major concerted effort to achieve agreement on the specification of a set of linear algebra
kernels resulted in the Level 1 Basic Linear Algebra Subprograms (BLAS)! [39] and associated test
suite. The Level 1 BLAS are the specification and implementation in Fortran of subprograms for
scalar and vector operations. This was the result of a collaborative project in 1973-77. Following
the distribution of the initial version of the specifications to people active in the development of
numerical linear algebra software, a series of open meetings were held at conferences and, as a result,
extensive modifications were made in an effort to improve the design and make the subprograms
more robust. The Level 1 BLAS were extensively and successfully exploited by LINPACK [23],
a software package for the solution of dense and banded linear equations and linear least squares
problems.

With the advent of vector machines, hierarchical memory machines and shared memory parallel
machines, specifications for the Level 2 and 3 BLAS [26, 25|, concerned with matrix-vector and

! Originally known just as the BLAS, but in the light of subsequent developments now known as the Level 1 BLAS

2 CHAPTER 1. INTRODUCTION

matrix-matrix operations respectively, were drawn up in 1984-86 and 1987-88. These specifications
made it possible to construct new software to utilize the memory hierarchy of modern comput-
ers more effectively. In particular, the Level 3 BLAS allowed the construction of software based
upon block-partitioned algorithms, typified by the linear algebra software package LAPACK [6].
LAPACK is state-of-the-art software for the solution of dense and banded linear equations, linear
least squares, eigenvalue and singular value problems, makes extensive use of all levels of BLAS
and particularly utilizes the Level 2 and 3 BLAS for portable performance. LAPACK is widely
used in application software and is supported by a number of hardware and software vendors.

To a great extent, the user community embraced the BLAS, not only for performance reasons,
but also because developing software around a core of common routines like the BLAS is good
software engineering practice. Highly efficient machine-specific implementations of the BLAS are
available for most modern high-performance computers. The BLAS have enabled software to
achieve high performance with portable code.

The original BLAS concentrated on dense and banded operations, but many applications require
the solution of problems involving sparse matrices, and there have also been efforts to specify
computational kernels for sparse vector and matrix operations [22, 27].

In the spirit of the earlier BLAS meetings and the standardization efforts of the MPI and
HPF forums, a technical forum was established to consider expanding the BLAS in the light of
modern software, language, and hardware developments. The BLAS Technical Forum meetings
began with a workshop in November 1995 at the University of Tennessee. Meetings were hosted by
universities, government institutions, and software and hardware vendors. Detailed minutes were
taken for each of the meetings, and these minutes are available on the BLAS Technical Forum
webpage (http://www.netlib.org/blas/blast-forum/).

Various working groups within the Technical Forum were established to consider issues such
as the overall functionality, language interfaces, sparse BLAS, distributed-memory dense BLAS,
extended and mixed precision BLAS, interval BLAS, and extensions to the existing BLAS. The
rules of the forum were adopted from those used for the MPI and HPF forums. In other words,
final acceptance of each of the chapters in the BLAS Technical Forum standard were decided at the
meetings using Robert’s Rules. Drafts of the document were also available on the BLAS Technical
Forum webpage, and attendees were permitted to edit chapters, give comments, and vote on-line
in “virtual meetings”, as well as to conduct discussions on the email reflector. The efforts of these
working groups are summarized in this document. Most of these discussions resulted in definitive
proposals which led to the specifications given in Chapters 2 - 4. Not all of the discussions resulted
in definitive proposals, and such discussions are summarized in the Journal of Development in the
hope that they may encourage future efforts to take those discussions to a successful conclusion.

A major aim of the standards defined in this document is to enable linear algebra libraries
(both public domain and commercial) to interoperate efficiently, reliably and easily. We believe
that hardware and software vendors, higher level library writers and application programmers all
benefit from the efforts of this forum and are the intended end users of these standards.

The specification of the original BLAS was given in the form of Fortran 66 and subsequently
Fortran 77 subprograms. In this document we provide specifications for Fortran 952, Fortran 77 and
C. Reference implementations of the standard are provided on the BLAS Technical Forum webpage
(http://www.netlib.org/blas/blast-forum/). Alternative language bindings for C++ and Java
were also discussed during the meetings of the forum, but the specifications for these bindings were
postponed for a future series of meetings.

The remainder of this chapter is organized as follows. Section 1.2 provides motivation for the

2the current Fortran standard

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MOTIVATION 3

functionality. Section 1.3 outlines the organization of the document, and section 1.4 summarizes the
nomenclature and conventions used in the document. Section 1.5 presents tables of functionality
for the routines, and section 1.6 discusses issues concerning the numerical accuracy of the BLAS.
Section 1.7 briefly describes the presentation of the specifications for the routines, and section 1.8
details the error handling mechanisms utilized within the routines.

1.2 Motivation

The motivation for the kernel operations is proven functionality. Many of the new operations are
based upon auxiliary routines in LAPACK [6] (e.g., SUMSQ, GEN_GROT, GEN_HOUSE, SORT,
GE_NORM, GE_COPY). Only after the LAPACK project was begun was it realized that there
were operations like the matrix copy routine (GE_COPY), the computation of a norm of a matrix
(GE_NORM) and the generation of Householder transformations (GEN_HOUSE) that occurred so
often that it was wise to make separate routines for them.

A second group of these operations extended the functionality of some of the existing BLAS (e.g.,
AXPBY, WAXPBY, GER, SYR/HER, SPR/HPR, SYR2/HER2, SPR2/HPR2). For example, the
Level 3 BLAS for the rank k& update of a symmetric matrix only allows a positive update, which
means that it cannot be used for the reduction of a symmetric matrix to tridiagonal form (to
facilitate the computation of the eigensystem of a symmetric matrix), or for the factorization of a
symmetric indefinite matrix, or for a quasi-Newton update in an optimization routine.

Other extensions (e.g., AXPY_DOT, GE.SUM_MV, GEMVT, TRMVT, GEMVER) perform
two Level 1 BLAS (or Level 2 BLAS) routine calls simultaneously to increase performance by
reducing memory traffic.

One important feature of the new standard is the inclusion of sparse matrix computational
routines. Because there are many formats commonly used to represent sparse matrices, the Level 2
and Level 3 Sparse BLAS routines utilize an abstract representation, or handle, rather than a fixed
storage description (e.g. compressed row, or skyline storage). This handle-based representation
allows one to write portable numerical algorithms using the Sparse BLAS, independent of the matrix
storage implementation, and gives BLAS library developers the best opportunity for optimizing and
fine-tuning their kernels for specific architectures or application domains.

The original Level 2 BLAS included, as an appendix, the specification of extended precision
subprograms. With the widespread adoption of hardware supporting the IEEE extended arithmetic
format [37], as well as other forms of extended precision arithmetic, together with the increased
understanding of algorithms to successfully exploit such arithmetic, it was felt to be timely to
include a complete specification for a set of extra precise BLAS.

1.3 Organization of the Document

This document is divided into chapters, appendices, a journal of development, and an index. It
is large, and it is not necessary for a user to read it in its entirety. A user may choose to not
read certain chapters or sections within this document, depending upon his/her areas of interest.
Chapters 2—4 contain a functionality discussion and language bindings for dense and band, sparse,
and mixed and extended precision BLAS, respectively. The Journal of Development presents
areas of research that are not yet mature enough to be considered as chapters, but were nevertheless
discussed at the meetings of the forum. A Bibliography is also provided, as well as an Index of
routine names.

CHAPTER 1. INTRODUCTION

All users are encouraged to frequently refer to the list of notation denoted in sections 1.4, 2.3,
and 3.4.

1.4

Chapter 1: Introduction provides a brief overview of the background, motivation, and
history of the BLAS Technical Forum effort. It also outlines the structure of the document,
conventions in notation, and overall functionality contained in the chapters.

Chapter 2: Dense and Banded BLAS presents the functionality and language bind-
ings for proposed “new” dense and banded BLAS routines for serial and shared memory
computing.

Chapter 3: Sparse BLAS presents the functionality and language bindings for proposed
“new” sparse BLAS routines for serial and shared memory computing.

Chapter 4: Extended and Mixed Precision BLAS presents the functionality and lan-
guage bindings for proposed extended- precision and mixed-precision BLAS routines for serial
and shared memory computing.

Appendix contains pertinent definitions and implementation details for the chapters.

Legacy BLAS contains alternative language bindings for the legacy Level 1, 2, and 3 BLAS
for dense and band matrix computations.

Journal of Development contains separate proposals for environmental enquiry routines,
Distributed-memory dense BLAS, Fortran 95 Thin BLAS, and Interval BLAS.

Nomenclature and Conventions

This section addresses mathematical notation and definitions, as well as the numerical accuracy for
the BLAS routines. Language-independent issues are also presented.

1.4.1 Notation

The following notation is used throughout the document.

A, B, C — matrices

D, Dy, Dg — diagonal matrices

H - Householder matrix

J — symmetric tridiagonal matrix (including 2 x 2 blocked diagonal)
P — permutation matrix

T — triangular matrix

op(A) — denotes A, or AT or A” where A is a matrix.

transpose — denotes AT where A is a matrix.

conjugate-transpose — denotes A where A is a complex Hermitian matrix.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

1.4. NOMENCLATURE AND CONVENTIONS 5

u, v, w, T, Y, 2 — vectors

T — specifies the conjugate of the complex vector z

incu, 1ncy, incw, ince, incy, incz — stride between successive elements of the respective vector
Greek letters - scalars (but not exclusively Greek letters)

z; - an element of a one-dimensional array

Y|z — refers to the elements of y that have common indices with the sparse vector z.

€ - machine epsilon

< — assignment statement

< — swap (assignment) statement

|| - ||, — the p-norm of a vector or matrix

Additional notation for sparse matrices can be found in 3.4.

For the mathematical formulation of the operations, as well as their algorithmic presentation, we
have chosen to index the vector and matrix operands starting from zero. This decision was taken
to simplify the presentation of the document but has no impact on the convention a particular
language binding may choose.

1.4.2 Operator Arguments

Some BLAS routines take input-only arguments that are called “operator” arguments. These
arguments allow for the specification of multiple related operations to be performed by a single
function.

The operator arguments used in this document are norm, sort, side, uplo, trans, conj, diag, jrot,
order, index_base, and prec. Their possible meanings are defined as follows:

norm:

sort:

side:

uplo:

trans:

this argument is used by the routines computing the norm of a vector or matrix. Eight possible
distinct values are valid that specify the norm to be computed, namely the one-norm, real
one-norm, infinity-norm and real infinity norms for vectors and matrices, the 2-norm for
vectors, and the Frobenius-norm, max-norm and real max-norm for matrices.

this argument is used by the sorting routines. Two possible distinct values are valid that
specify whether the data should be sorted in increasing or decreasing order.

this argument is used only by functions computing the product of two matrices A and B.
Two possible distinct values are valid, that specify whether A-B or B- A should be computed.

this argument refers to triangular and symmetric (Hermitian) matrices. Two possible distinct
values are valid distinguishing whether the matrix, or its storage representation, is upper or
lower triangular.

this argument is used by the routines applying a matrix, say A, to another vector or another
matrix. Three possible distinct values are valid that specify whether the matrix A, its trans-
pose A or its conjugate transpose A¥ should be applied. We use the notation op(A) to refer
to A, AT or A¥ depending on the input value of the trans operator argument.

6 CHAPTER 1. INTRODUCTION

conj: this argument is used by the complex routines operating with Z or x.

diag: this argument refers exclusively to triangular matrices. Two possible distinct values are valid
distinguishing whether the triangular matrix has unit-diagonal or not.

jrot: this argument is used by the routine to generate Jacobi rotations. Three possible distinct
values are valid and specify whether the rotation is an inner rotation, an outer rotation, or a
sorted rotation.

order: this argument is used by the C bindings to specify if elements within a row of an array are
contiguous, or if elements within a column of an array are contiguous (see section 2.6.6).

index_base: this argument is used by Chapter 3 to specify either one-based or zero-based indexing (see

section 3.4.1).

prec: this argument is used in Chapter 4 and specifies the internal precision to be used by an
extended precision routine. Four distinct values are valid and specify whether the internal
precision is single precision, double precision, indigenous, or extra. Details on these settings
can be found in section 4.3.1.

All possible meanings for each operator are listed in section A.3. Their representation is defined
in the interface issues for the specific programming language: sections 2.4, 3.6.1, and 4.4.1 for
Fortran 95; sections 2.5, 3.6.2, and 4.4.2 for Fortran 77; and sections 2.6, 3.6.3, and 4.4.3 for C. The
values of the Fortran 95 derived types (for Chapters 2 and 4) are defined in the Fortran 95 module
blas_operator_arguments, and the values of the Fortran 95 named constants (for Chapter 3) are
defined in blas_sparse namedconstants, see section A.4. Similarly, the values of the Fortran 77
named constants are defined in the Fortran 77 include file blas namedconstants.h, in section A.5.
And finally, the values of the C enumerated types are defined in the C include file blas _enum.h, in
section A.6.

Rationale. The intent is to provide each language binding with the opportunity to choose
the most appropriate form these arguments should take. For example, in Fortran 95, derived
types with named constants have been selected for Chapters 2 and 4, whereas derived types
could not be used in Chapter 3 (see section 3.6.1 for details). In Fortran 77, integers with
named constants have been chosen. And finally, in C, operator arguments are represented by
enumerated types. (End of rationale.)

1.4.3 Scalar Arguments

Many scalar arguments are used in the specifications of the BLAS routines. For example, the size
of a vector or matrix operand is determined by the integer argument(s) m and/or n. Note that
it is permissible to call the routines with m or n equal to zero, in which case the routine exits
immediately without referencing its vector/matrix elements. Some routines return a displacement
denoted by the integer argument k. The scaling of a vector or matrix is often denoted by the
arguments alpha and beta.

The following symbols are used: a, b, c, d, r, s, t, alpha, beta and tau.

1.4.4 Vector Operands

A n-length vector operand z is specified by two arguments — x and incx. x is an array that contains
the entries of the n-length vector x. incx is the stride within x between two successive elements of
the vector .

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.4. NOMENCLATURE AND CONVENTIONS 7

The following lowercase letters are used to denote a vector: u, v, w, X, y, and z. The corre-
sponding strides are respectively denoted incu, incv, incw, incx, incy, and incz.

Advice to implementors. The increment arguments incu, incv, incw, incx, incy and incz may
not be zero. (End of advice to implementors.)

Example: The mathematical function returning the inner-product r of two real n-length vectors
z and y can be defined by:

n—1
T
r=aly=3 aw.
i=0

Rationale. The arguments incx, and incy do not play a role in the mathematical formulation
of the operation. These arguments allow for the specification of subvector operands in various
language bindings. Therefore, some of these arguments may not be present in all language-
dependent specifications. (End of rationale.)

1.4.5 Matrix Operands

A m-by-n matrix operand A is specified by the argument A. A is a language-dependent data
structure containing the entries of the matrix operand A. The representation of the matrix entry
a;j in A is denoted by A(i,j) for all (i,j) in the interval [0...m —1] x [0...n —1].

Capital letters are used to denote a matrix. The functions involving matrices use only four
symbols, namely A, B, C, and T.

1.4.6 Naming Conventions

Language bindings are specified for Fortran 95, Fortran 77, and C.

The Fortran 95 language bindings have routine names of the form <name>, where <name> is
in lowercase letters and indicates the computation performed. These bindings use generic interfaces
to manipulate the data type of the routine, and thus their names do not contain a letter to denote
the data type.

The Fortran 77 and C language bindings have routine names of the form
BLAS _x<name>, where the letter x, indicates the data type as follows:

Data type x | Fortran 77 x| C

s.p. real S | REAL s | float
d.p. real D | DOUBLE PRECISION d | double
s.p. complex | C | COMPLEX ¢ | float
d.p.complex | Z | COMPLEX*16 or DOUBLE COMPLEX | z | double

The suffix <name> in the routine name indicates the computation performed. In the matrix-
vector and matrix-matrix routines of Chapters 2 and 4 (and Appendix C.4), the type of the matrix
(or of the most significant matrix) is also specified as part of this <name> name of the routine.
Most of these matrix types apply to both real and complex matrices; a few apply specifically to one
or the other, as indicated below. Note that for Appendix C.4, these matrix types apply to interval
matrices.

8 CHAPTER 1. INTRODUCTION

GB general band

GE general (i.e., unsymmetric, in some cases rectangular)
HB (complex) Hermitian band

HE (complex) Hermitian

HP (complex) Hermitian, packed storage

SB (real) symmetric band

SP symmetric, packed storage

SY symmetric

TB triangular band

TP triangular, packed storage

TR triangular (or in some cases quasi-triangular)
US unstructured sparse

For Fortran 77, routine names are in uppercase letters; however, for the C interfaces all routine
names are in lowercase letters. To avoid possible name collisions, programmers are strongly advised
not to declare variables or functions with names beginning with these prefixes.

A detailed discussion of the format of the <name> naming convention is contained in each
respective chapter of the document.

1.5 Overall Functionality

This section summarizes, in tabular form, the functionality of the proposed routines. Issues such
as storage formats or data types are not addressed. The functionality of the existing Level 1, 2 and
3 BLAS [39, 22, 26, 25] is a subset of the functionality proposed in this document.

In the original BLAS, each level was categorized by the type of operation; Level 1 addressed
scalar and vector operations, Level 2 addressed matrix-vector operations, while Level 3 addressed
matrix-matrix operations. The functionality tables in this document are categorized in a similar
manner, with additional categories to cover operations which were not addressed in the original
BLAS.

Unless otherwise specified, the operations apply to both real and complex arguments. For the
sake of compactness the complex operators are omitted, so that whenever a transpose operation is
given the conjugate transpose should also be assumed for the complex case.

The last column of each table denotes in which chapter of this document the functionality
occurs. Specifically,

e “D” denotes dense and banded BLAS (Chapter 2),
e “S” denotes sparse BLAS (Chapter 3), and

e “E” denotes extended and mixed precision BLAS (Chapter 4).

1.5.1 Scalar and Vector Operations

This section lists scalar and vector operations. The functionality tables are organized as follows.
Table 1.1 lists the scalar and vector reduction operations, Table 1.2 lists the vector rotation opera-
tions, Table 1.3 lists the vector operations, and Table 1.4 lists those vector operations that involve
only data movement.

For the Sparse BLAS, z is a compressed sparse vector and y is a dense vector. Details of data
structures are in Section 3.4.1.

For further details of vector norm notation, refer to section 2.1.1.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.5. OVERALL FUNCTIONALITY

Dot product

Vector norms

Sum

Min value & location
Min abs value & location
Max value & location
Max abs value & location
Sum of squares

T fr+azly

rzly

r ||z,

r < ||z||1r,

r < |[|zl|2,

7 |[|2[oo;

7 < [|z|cors

T D T

k,xy,; k = arg min; x;

k,z, k = argmin;(|Re(z;)| + |[Im(z;)])
k,xk,; k = argmax; x;

by, b = arg max,(|Re(z:)| + Tm(:)))
(scl,ssq) + 32,

ssq-scl? =Y x?

=

wivivlviivivlolvlvlwlwlel 2w
&=

Table 1.1: Reduction Operations

Generate Givens rotation (¢,s,7) rot(a,b) D
Generate Jacobi rotation (a,b,c,s) « jrot(z,y,z) | D
Generate Householder transform | (o, z,7) < house(a, z), | D
H=1—- auu’
Table 1.2: Generate Transformations
Reciprocal Scale T+ z/a D
Scaled vector accumulation y < az + Py, D,E
y<—ar—+y S
Scaled vector addition w 4 az + Py D.E
W 4w — av
i D
Combined axpy & dot product { v 0Ty
Apply plane rotation (z y)«(z y)R

Table

1.3: Vector Operations

Copy
Swap
Sort vector

Permute vector
Sparse gather

Sparse scatter

Sort vector & return index vector

Sparse gather and zero

Yz

IREX"

x < sort(x)
(p,x) + sort(x)
z < Pz

T4 Yo

T 4 Ylo; Yle 0
Yo <

Nnnnggoggod

Table 1.4: Data Movement with Vectors

10 CHAPTER 1. INTRODUCTION

1.5.2 Matrix-Vector Operations

This section lists matrix-vector operations in table 1.5. The matrix arguments A, B and T are dense
or banded or sparse. In addition, where appropriate, the matrix A can be symmetric (Hermitian)
or triangular or general. The matrix T represents an upper or lower triangular matrix, which can
be unit or non-unit triangular. For the Sparse BLAS, the matrix A is sparse, the matrix T is sparse
triangular, and the vectors z and y are dense.

Details of the data structures are discussed in sections 2.2, and 3.4.1.

Matrix-vector product Yy oAz + By, y < aATz + py | D,S,.E
z 4 oTz, oIz D,E
Yy Az +y, y+ aATz+y S
Summed matrix-vector multiplies | y + a«Ax + SBx D,E
Multiple matrix-vector multiplies { z Ty D
w< Tz
{ z+ ATy + 2
D
w 4+ Az
Multiple matrix-vector mults
A A+ uo! + ugod
and low rank updates z— BATy + 2 D
w — adz
Triangular solve z— ol 'z, 2 ol Tz D,S,E
Rank one updates A« azyT +BA D
and symmetric (A = AT) A« azz? + A D
rank one & two updates A+ (az)y? +y(az)T + BA D

Table 1.5: Matrix-Vector Operations

1.5.3 Matrix Operations

This section lists a variety of matrix operations. The functionality tables are organized as follows.
Table 1.6 lists single matrix operations and matrix operations that involve O(n?) operations, Table
1.7 lists the O(n?) matrix-matrix operations and Table 1.8 lists those matrix operations that involve
only data movement. Where appropriate one or more of the matrices can also be symmetric
(Hermitian) or triangular or general. The matrix T represents an upper or lower triangular matrix,
which can be unit or non-unit triangular. D, Dr, and Dpg represent diagonal matrices, and J
represents a symmetric tridiagonal matrix (including 2 x 2 block diagonal).

Details of the data structures are discussed in sections 2.2, and 3.4.1.

For further details of matrix norm notation, refer to section 2.1.3.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.5. OVERALL FUNCTIONALITY

Matrix norms

Diagonal scaling

Matrix acc and scale

Matrix add and scale

r < |[All1,r < [|Alr

< |[Allr, T < [|A]loo, 7 < [|Alloor
7 || Allmaz, T < [|Allmazr

A+ DA, A< AD, A+ Dy ADp
A<+ DAD

A+ A+ BD

C + aA+ BB

B« aA+ BB, B + oA + 3B

Doogoououo

Table 1.6: Matrix Operations — O(n?) floating point operations

Matrix-matrix product | C < aAB + C, C < aATB + C D.E
C + aABT + BC, C «+ aATBT + BC | D,E
C < aAB + BC, C + aATB + BC S
Triangular multiply B+ oaT'B, B+ aBT D,E
B+ oTTB, B < aBT" D.E
Triangular solve B« aoT 'B, B+ oT 'B D,S,E
B¢+ aBT™ ', B+ aBT™ T D.E
Symmetric rank k & 2k | C + aAAT + BC, C + aATA + C D.E
updates (C = CT) C + aAJAT +BC, C + aATJA+BC | D
C « (aA)BT + B(aA)T + BC, D,E
C + («A)TB + BT (aA) + pC
C « (aAJ)BT + B(aAJ)T + BC, D
C « (aAJ)TB + BT (aAJ) + BC

Table 1.7: Matrix-Matrix Operations - O(n?®) floating point operations

Matrix copy
Matrix transpose
Permute Matrix

B« A B+ AT |D
A+ AT D
A+ PA, A+ AP |D

Table 1.8:

Data Movement with Matrices

11

12 CHAPTER 1. INTRODUCTION

1.6 Numerical Accuracy and Environmental Enquiry

To understand the numerical behavior of the routines proposed here, certain floating point pa-
rameters are necessary. Detailed error bounds and limitations due to overflow and underflow are
discussed in individual chapters (see sections 2.7, 3.7, 4.3.3, and C.4.4) but all of them depend on
details of how floating point numbers are represented. These details are available by calling an
environmental enquiry function called FPINFO.

Floating point numbers are represented in scientific notation as follows. This discussion follows
the IEEE Floating Point Arithmetic Standard 754 [7].3

z=+dd---d*x BASEF

where d.d---d is a number represented as a string of T significant digits in base BASE with the
“point” to the right of the leftmost digit, and E is an integer exponent. E ranges from EMIN up
to EMAX. This means that the largest representable number, which is also called the overflow
threshold or OV, is just less than BASEPMAX+1 This also means that the smallest positive “nor-
malized” representable number (i.e. where the leading digit of d.d - - - d is nonzero) is BASEEMIN
which is also called the underflow threshold or UN.

When overflow occurs (because a computed quantity exceeds OV in absolute value), the result is
typically +o0, or perhaps an error message. When underflow occurs (because a computed quantity
is less than UN in absolute magnitude) the returned result may be either 0 or a tiny number less
than UN in magnitude, with minimal exponent EMIN but with a leading zero (0.d - - - d). Such tiny
numbers are often called denormalized or subnormal, and floating point arithmetic which returns
them instead of 0 is said to support gradual underflow.

The relative machine precision (or machine epsilon) of a basic operation ® € {4, —,x,/} is
defined as the smallest EPS > 0 satisfying

flla®b) = (a ®b) * (1+ 6)for some|§| < EPS

for all arguments a¢ and b that do not cause underflow, overflow, division by zero, or an invalid
operation. When fl(a ® b) is a closest floating point number to the true result ¢ ® b (with ties
broken arbitrarily), then rounding is called “proper” and EPS = .5+ BASE'"T. Otherwise
typically EPS = BASE'~T, although it can sometimes be worse if arithmetic is not implemented
carefully. We further say that rounding is “IEEE style” if ties are broken by rounding to the nearest
number whose least significant digit is even (i.e. whose bottom bit is 0).

The function FPINFO returns the above floating point parameters, among others, to help the
user understand the accuracy to which results are computed. FPINFO can return the values for
either single precision or double precision. The way the precision is specified is language dependent,
as is the choice of floating point parameter to return, and described in section 2.7. The names single
and double may have different meanings on different machines: We have long been accustomed to
single precision meaning 32-bits on all IEEE and most other machines [7], except for Cray and
its emulators where single is 64-bits. And there are historical examples of 60-bit formats on some
old CDC machines, etc. Nonetheless, we all agree on single precision as a phrase with a certain
system-dependent meaning, and double precision too, meaning at least twice as many significant
digits as single.

3We ignore implementation details like “hidden bits”, as well as unusual representations like logarithmic arithmetic
and double-double.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.7. LANGUAGE BINDINGS 13

The values returned by FPINFO are as follows, including the values returned for IEEE single and
IEEE double, the most common cases. The floating point parameters in column 1 have analogous
meanings as the like-named character arguments of the LAPACK subroutine xLAMCH.*

Floating point | Description Value in Value in
parameter IEEE single IEEE double
BASE base of the machine 2 2
T number of digits 24 53
RND 1 when proper rounding 1 1

occurs in addition
0 otherwise

IEEE 1 when rounding in addition 1 1
is IEEE style
0 otherwise

EMIN minimum exponent before -126 -1022
(gradual) underflow

EMAX maximum exponent before 127 1023
overflow

EPS machine epsilon 272 x5 x 1078 2753 ~ 10716

= 5«xBASE!T if RND=1
= BASE!7T if RND=0

PREC EPS*BASE 272 2752

UN underflow threshold 27126 5 10738 | 271022 5 19308
— BASEEMIN

ov overflow threshold ~ 2128 1038 | ~ 21024 5 1308
= BASEFPMAX+L 4 (1-EPS)

SFMIN safe minimum, such that 27126 10738 | 271022 5 1 —308

1/SFMIN does not overflow
— UN if 1/OV<UN,
else (1+EPS)/OV

Table 1.9: Values returned by FPINFO

Chapter 4 defines an additional FPINFO-like function to supplement this one with additional
information needed for error bounds.

1.7 Language Bindings

Each specification of a routine corresponds to an operation outlined in the functionality tables.
Operations are organized analogous to the order in which they are presented in the functionality
tables. The specification has the form:

NAME (multi-word description of operation) < mathematical representation >

“Here are the differences: In xLAMCH, UN was called RMIN and OV was called RMAX. The value of IEEE was
computed by xLAMCH but not returned. xXLAMCH returned EMIN+1 and EMAX+1 instead of EMIN and EMAX,
respectively (this corresponds to a different choice of where to put the “point” in d.d---d * BASEE).

14 CHAPTER 1. INTRODUCTION

Optional brief textual description of the functionality including any restrictions that apply to all
language bindings.

e Fortran 95 binding
e Fortran 77 binding
e C binding

Alternative language bindings for C4++ and Java were also discussed during the meetings of the
forum, but the specifications for these bindings were postponed for a future series of meetings.

1.8 Error Handling

This document supports two types of error-handling capabilities: an error handler and error return
codes. Each chapter of this document, and thus each flavor of BLAS, has the choice of using either
capability, whichever is more appropriate. Chapters 2 and 4 rely on an error handler, and Chapter 3
provides error return codes.

One error handler, BLAS_ERROR, is defined. A series of error return codes are also defined.
Each function in this document determines when and if an error-handling mechanism is called, and
its function specification must document the conditions (if any) which trigger the error handling
mechanism.

1.8.1 Return Codes

Routines in the Sparse BLAS chapter utilize return codes since many of the operations need to
be recoverable. In Fortran 95 and 77, the error return code of a BLAS routine is returned in the
parameter istat, usually the last argument in the parameter list. In C, the error code is the return
value of the function. In either case, the value of the error code is the integer 0 if the operation
was successful. In the event of an error detection, a nonzero value is returned and control returns
back to the calling program, as usual. The application is not aborted or halted, and it is the
responsibility of the caller to check error status of these BLAS operations.

1.8.2 Error Handlers

The error handler defines some minimal scalar input argument checking.

Advice to implementors. A BLAS supplier is free to provide multiple interfaces to the
libraries, so that a second interface may perform no error checking. (End of advice to imple-
mentors.)

Additional error checking may be performed (for instance, checking that there are no zeros on the
diagonal of a triangular solve), but these kinds of tests are too implementation-constraining to be
mandated by the standard. Any additional error checking must not abort execution.

When any of the mandated scalar input argument checks fail, if the BLAS error handler is used,
it must use the API given below. The default behavior of the BLAS-compliant error handler is to
print an informative error message and abort execution. However, the API of this error handler is
mandated by this document specifically so that a user can override the default error handler with
a user-defined routine, so that this behavior can be changed. It is therefore necessary that the
implementor not assume that the error handler stops execution, but rather must return explicitly
before altering the routine’s operands in the event of an error.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1.8. ERROR HANDLING 15

The following are defined as errors by this standard. All Fortran 95, Fortran 77, and C routines
must perform the following error check.

e Any value of the operator arguments whose meaning is not specified in section A.3 is invalid.

Additionally, all Fortran 77 and C routines must perform the following error checks, unless otherwise
noted in the specification of the routine.

e Any problem dimension or bandwidth (eg., m, n, k, kl, ku) less than zero
e Any vector increment (eg., incw, incx, incy, incz) equal to zero
e Any leading dimension (eg. Ida, Idb, Idc, Idt) less than one

e Any leading dimension (eg. Ida, Idb, Idc, Idt) less than the relevant dimension of the problem.
The relevant dimension of the problem is:
— n, for a square, symmetric, or triangular matrix
— m, for a m X n general, non-transposed matrix

— n, for a m X n general, transposed matrix

kl + ku 4 1 for a m X n general band matrix

k + 1 for a n X n symmetric or triangular band matrix with k super- or subdiagonals

Each language binding possesses its own unique error handler. However, all error handlers
minimally pass three pieces of information:

1. RNAME, the name of the routine in which the error occurred.

2. IFLAG, an integer flag which, if negative, means that parameter number -IFLAG caused the
error, and if set to nonnegative, is an implementation-specific error code

3. IVAL, the value of parameter number -IFLAG.

Each language’s BLAS error handler should print an informative error message describing the error,
and halt execution. The APT of the error handler is explicitly spelled out in each section, so that if
this behavior is not desired by the user or higher level library provider, it may be changed by the
BLAS user, overriding the BLAS’s error handler with one which performs as required.

The API for each language binding is mandated in the following sections; as an advice to the
implementor, an example of a BLAS-2000 compliant error handler is included as well.

F95 error handler

The Fortran 95 BLAS do not need to test the option arguments, since these are derived types and
hence invalid arguments are flagged by the compiler. The only case where array dimensions are
arguments to the Fortran 95 BLAS are the nonsymmetric band routines where m and kl are passed
as arguments. The other array dimensions can be determined in the BLAS routines using the
intrinsic function SIZE, and arrays should be checked for conformance according to the operation
being performed. For example in the operation AB the second dimension of A must equal the first
dimension of B. Note that, for consistency, m is included in all of the nonsymmetric band routines
although in some cases it is redundant; in those cases it should be tested against the relevant array
dimension.
The mandated API of the routine is:

16

MODULE blas_error_handler
INTERFACE blas_error
SUBROUTINE blas_error(rname,iflag,ival)
INTEGER, INTENT (IN) :: iflag
INTEGER, OPTIONAL, INTENT (IN) :: ival
CHARACTER (%), INTENT (IN) :: rname
END SUBROUTINE blas_error
END INTERFACE
END MODULE blas_error_handler

A possible implementation would be:

SUBROUTINE blas_error(rname,iflag,ival)
! .. Scalar Arguments ..

CHAPTER 1. INTRODUCTION

! The optional argument ival must be present when iflag is in (-98,-1)

INTEGER, INTENT (IN) :: iflag
INTEGER, OPTIONAL, INTENT (IN) :: ival
CHARACTER (%), INTENT (IN) :: rname
|
SELECT CASE (iflag)
CASE (-99)

WRITE (*,1000) rname
CASE (-98:-1)

WRITE (*,2000) rname, -iflag, ival
CASE DEFAULT

WRITE (*,3000) iflag, rname
END SELECT

STOP

1000 FORMAT (°On entry to ’,A, &

’ two or more array argument sizes do not conform’)
2000 FORMAT (’0On entry to ’,A,’ argument number’,I3, &

> had the illegal value of ’,I5)

3000 FORMAT (’Unknown error code ’,I5,’ raised by routine ’,A)

END SUBROUTINE blas_error

F77 error handler
The mandated API of the routine is:

SUBROUTINE BLAS_ERROR(RNAME, IFLAG, IVAL)

CHARACTER* (*) RNAME
INTEGER IFLAG, IVAL

A possible implementation would be:

SUBROUTINE BLAS_ERROR(RNAME, IFLAG, IVAL)

CHARACTER* (*) RNAME

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.8. ERROR HANDLING

INTEGER IFLAG, IVAL

IF(IFLAG.LT.0) THEN
WRITE(*,1000) RNAME, -IFLAG, IVAL
ELSE
WRITE(*,2000) IFLAG, RNAME
END IF
STOP

1000 FORMAT(’On entry to ’,A, ’ parameter number’, I3,
$ > had the illegal value of’, I)

2000 FORMAT(’Unknown error code ’,I,’ raised by routine’,A)
END

C error handler

The mandated API of the routine is:
void BLAS_error(char *rname, int iflag, int ival, char *form, ...)
A possible implementation would be:

#include <stdio.h>
#include <stdarg.h>
void BLAS_error(char *rname, int iflag, int ival, char *form, ...)

{

va_list argptr;

va_start(argptr, form);
fprintf (stderr, "Error #)d from routine %s:\n", iflag, rname);
if (form) vfprintf(stderr, form, argptr);
else if (iflag < 0)

fprintf (stderr,

" Parameter number %d to routine %s had the illegal value %d\n"
-iflag, rname, ival);
else fprintf(stderr, " Unknown error code %d from routine %s\n",
iflag, rname);

exit(iflag);

17

Chapter 2

Dense and Banded BLAS

2.1 Overview and Functionality

This chapter defines the functionality and language bindings for the dense and banded BLAS rou-
tines, addressing mathematical operations with scalars, vectors and dense, banded, and triangular
matrices but not sparse data structures.

The chapter is organized as follows. Sections 2.1.1, 2.1.2, and 2.1.3 list in tabular form the
functionality of the proposed routines. Unless otherwise specified, the operations apply to both
real and complex arguments. For the sake of compactness the complex operators are omitted, so
that whenever a transpose operation is given the conjugate transpose should also be assumed for
the complex case. Section 2.2 defines the matrix storage schemes. Section 2.3 discusses general
interface issues, and sections 2.4, 2.5, and 2.6 detail the interface issues for the respective language
bindings — Fortran 95, Fortran 77, and C. Section 2.7 discusses issues concerning the numerical
accuracy of the BLAS. And lastly, sections 2.8.2 — 2.8.10 present the language bindings for the
proposed routines.

2.1.1 Scalar and Vector Operations

This section lists scalar and vector operations. The functionality tables are organized as follows.
Table 2.1 lists the scalar and vector reduction operations, table 2.2 lists the rotation operations,
table 2.3 lists the vector operations, and table 2.4 lists vector operations involving only data move-
ment. Notation in the tables is defined in section 1.4, and details of the data structures are discussed
in section 2.2. Vector norms are defined in Appendix A.1. The language bindings are presented in
sections 2.8.2, 2.8.4, and 2.8.5.

2.1.2 Matrix-Vector Operations

This section lists the matrix-vectors operations in functionality table 2.5. Unless otherwise specified,
the operations apply to both real and complex arguments. For the sake of compactness the complex
operators are omitted, so that whenever a transpose operation is given both the conjugate and
conjugate transpose should also be assumed for the complex case.

The matrix T represents an upper or lower triangular matrix, which can be unit or non-unit
triangular. D represents a diagonal matrix. Notation in the tables is defined in section 1.4, and
details of the data structures are discussed in section 2.2. The language bindings are presented in
section 2.8.6.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.1. OVERVIEW AND FUNCTIONALITY

Dot product T+ fr+azly DOT
Vector norms r <« ||z||1, 7 < ||z||1R, NORM
7 ||2ll2,
7 ||Zlloo, 7 < [|Zlloor
Sum T4 Y T SUM
Min value & location k,xg,; k = arg min; x; MIN_VAL
Min abs value & location | k,z, k = arg min;(|Re(z;)| + |Im(z;)|) | AMIN_VAL
Max value & location k,zy,; k = arg max; x; MAX_VAL
Max abs value & location | k,z, k = arg max;(|Re(z;)| + [Im(z;)|) | AMAX_VAL
Sum of squares (ssq,scl) < Y. 2, SUMSQ
8sq - scl? =Y x?
Table 2.1: Reduction Operations
Generate Givens rotation (¢,s,1) rot(a,b) GEN_GROT
Generate Jacobi rotation (a,b,c,s) « jrot(z,y,z) | GEN_JROT
Generate Householder transform | (o, z,7) < house(a, z), | GEN_HOUSE
H=1-auu”
Table 2.2: Generate Transformations
Reciprocal Scale T+ z/a RSCALE
Scaled vector accumulation Yy azx + By, AXPBY
Scaled vector addition w 4+ azx + By WAXPBY
Combined axpy & dot product { W ZUT_ v AXPY_DOT
T Wy
Apply plane rotation (z y)«<(z y)R|APPLY_GROT
Table 2.3: Vector Operations
Copy YT COPY
Swap Yy SWAP
Sort vector x < sort(z) SORT
Sort vector & return index vector | (p,z) < sort(z) | SORTV
Permute vector T+ Px PERMUTE

Table

2.1.3 Matrix Operations

2.4: Data Movement with Vectors

19

This section lists single matrix operations, matrix-matrix operations, and matrix operations in-
volving data movement. The functionality tables are organized as follows. Table 2.6 lists single

matrix operations and matrix operations that involve O(n?) floating point operations, Table 2.7
lists the O(n?®) matrix-matrix floating point operations and Table 2.8 lists those matrix floating

point operations that involve only data movement. Unless otherwise specified, the operations apply
to both real and complex arguments. For the sake of compactness the complex operators are omit-

20 CHAPTER 2. DENSE AND BANDED BLAS

Matrix vector product Yy aAzx + By GE,GB,SY,HE, | MV !

SB,HB,SP,HP >

y <+ aATz + By GE,GB MV 3

z— alz, z+— alTz TR, TB, TP MV 4

Summed matrix vector multiplies y + aAzx + Bz GE SUM_MV ¢p

. . - { T TTy e

Multiple matrix vector multiplies TR MVT .
w< Tz

8

{ z— BATYy + 2 GE MVT X

w <+ qAzx .

A A+ uv? + ugvd L

Multiple mv mults & low rank updates T+ ﬁATy + z GE MVER 5

w + aAz 3

Triangular solve z—aol 'z, z —aT T2 TR,TB,TP SV 4

Rank one updates A« azy’ + BA GE R 5

and symmetric (A = AT) A azz? + BA SY,HE,SP,HP | R 6

rank one & two updates A« (az)y” +y(az)T + BA | SY,HE,SP,HP | R2 7

Table 2.5: Matrix-Vector Operations

ted, so that whenever a transpose operation is given both the conjugate and conjugate transpose 22
should also be assumed for the complex case. The matrix T represents an upper or lower triangular 23
matrix, which can be unit or non-unit triangular. D, Dy, and Dpg represent diagonal matrices, and 24
J is a symmetric tridiagonal matrix. Notation in the tables is defined in section 1.4, and details of 25
the data structures are discussed in section 2.2. Matrix norms are defined in Appendix A.2. The 26

language bindings are listed in sections 2.8.6, 2.8.7, 2.8.8, and 2.8.9. 27
28
Matrix norms r < ||Al|l1,r < ||A|lir,T < ||A||F, | GE,GB,SY,HE,SB,HB, | NORM 29
7 4 ||Alloos T < ||A]|cor, SP,HP,TR,TB,TP 30
< ||Allmaz, T < ||Al|lmazr 31
Diagonal scaling A<+ DA, A<~ AD GE,GB DIAG_SCALE;,
A<+ DL ADg GE,GB LRSCALE
A<+ DAD SY,HE,SB,HB,SP.HP | LRSCALE ,,

A+ A+ BD GE,GB DIAG_SCALE,ACC
Matrix acc and scale | B < aA + BB, B + aAT + B GE,GB,SY,SB, _ACC 36
SP,TR,TB,TP a7
Matrix add and scale | C' < aA + 6B GE,GB,SY,SB, _ADD 38
SP,TR,TB,TP 30

Table 2.6: Matrix Operations — O(n?) floating point operations i?
42
43
44
45
46
47

48

© o] ~ [« (S [w N -

B A R A B A A W W W W W W W W W N N NN NN NN N R R R R R e s e s
I3 G A B oNom O ©® kN aA b= O ® ® N G A BN R O © ® N O ;oA W N = O

'S
oo

2.1. OVERVIEW AND FUNCTIONALITY

21

Matrix matrix product | C « aAB + C, C + aATB + C GE MM
C « aABT + BC, C + aATBT + pC
C <+ aAB+ pC, C < aBA+ pC SY,HE | MM
Triangular multiply B+ oT'B, B <+ aBT TR MM
B+« oTTB, B + aBTT
Triangular solve B+ oT 'B, B+ aBT™! TR SM
B+ ol' TB, B+ oBT T
Symmetric rank k & 2k | C «+ aAAT + BC, C < aATA + BC SY,HE | RK
updates (C = CT) C — aAJAT + BC, C <+ aATJA+ BC | SY,HE | _TRIDIAG_RK
C + (cA)BT + B(acA)T + BC, SY.HE | R2K
C + (aA)TB + BT (aA) + BC
C + (cAJ)BT + B(cAJ)T + BC, SY.HE | TRIDIAG_R2K
C + (aAJ)TB + BT (aAJ) + BC

Table 2.7: Matrix-Matrix Operations — O(n?) floating point operations

Matrix copy B+ A GE,GB,SY,HE,SB,HB,SP,HP,TR,TB, TP | _COPY
B« AT GE,GB _COPY

Matrix transpose | A «+ AT GE _TRANS

Permute Matrix | A« PA, A+ AP | GE _PERMUTE

Table 2.8: Data Movement with Matrices

22 CHAPTER 2. DENSE AND BANDED BLAS

2.2 Matrix Storage Schemes

The following matrix storage schemes are used:
e column-based and row-based storage in a contiguous array;
e packed storage for symmetric, Hermitian or triangular matrices;
e band storage for band matrices;

In the examples below, * indicates an array element that need not be set and is not referenced
by the BLAS routines. Elements that “need not be set” are never read, written to, or otherwise
accessed by the BLAS routines. The examples illustrate only the relevant part of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing
array arguments in C or Fortran.

2.2.1 Conventional Storage

The default scheme for storing matrices in the Fortran 95 and Fortran 77 interfaces is the one
described in subsection 2.5.3: a matrix A is stored in a two-dimensional array A, with matrix
element a;; stored in array element A(i, j), assuming one-based indexing.

For the C language interfaces, matrices may be stored column-wise or row-wise as described in
subsection 2.6.6: a matrix A is stored in a one-dimensional array A, with matrix element a;; stored
column-wise in array element A(i + j * lda) or row-wise in array element A(j + i * lda), assuming
zero-based indexing.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements
of the relevant triangle are accessed. The remaining elements of the array need not be set. Such
elements are indicated by * in the examples below. For example, assuming zero-based indexing and
n=3:

order uplo Triangular matrix A Storage in array A
app a1 @2
blas_colmajor | blas_upper ail aio agy * * QgL A11 * Qo2 A1 4929
a22
apo @1 @02
blas_rowmajor | blas_upper ail a1 agpo ap1 Qo2 * Q11 G12 * * Q99
a2
apo
blas_colmajor | blas_lower alp a1 ago A1 A20 * Q11 Q21 * * 499

a0 G211 a2

aoo
blas_rowmajor | blas_lower ap a1 apgy * * a1p Q11 * Qa9 A21 429

a0 G211 a2

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower
triangle of the matrix (as specified by uplo) to be stored in the corresponding elements of the array;
the remaining elements of the array need not be set. For example, when n = 3:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.2. MATRIX STORAGE SCHEMES 23

order uplo Hermitian matrix A Storage in array A

apo aor ap2
blas_colmajor | blas_upper apl G11 G12 apgy * * agl a11 * Qg2 A12 A2

ag2 Q12 a2

app G@o1 Qo2
blas_rowmajor | blas_upper ag1 G611 @12 agp Gol Qg2 * G11 Q12 * * A9y
Go2 Q12 @22

ago @io G20
blas_colmajor | blas_lower a1y @11 G91 agy @10 @20 * G171 Q91 * * @99
a0 G21 Q22

ago @io G20
blas_rowmajor blas_lower alp a1l a21 agp * * aig a1l * agp a21 a2
az0 G21 a22

2.2.2 Packed Storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by uplo) is packed by columns or rows in a one-dimensional array. In the
BLAS, arrays that hold matrices in packed storage, have names ending in ‘P’. So, in the case of
zero-based addressing as in C, we have the following formulas (For one-based addressing, as in
Fortran, replace ¢ by 4 — 1 and j by j — 1 in these formulas).

e ifuplo = blas_upper then

— if order = blas_colmajor, a;; is stored in AP (i + j(j + 1)/2) for i < j;

— if order = blas_rowmajor, a;; is stored in AP(j 4+ ¢(2n —i —1)/2) for i < j;

e ifuplo = blas lower then

— if order = blas_colmajor, a;; is stored in AP(i + j(2n — j — 1)/2) for j <.

blas_rowmajor, a;; is stored in AP(j +i(i + 1)/2) for j <.

— if order

For example, assuming zero-based indexing;:

order uplo Triangular matrix A | Packed storage in array ap
apo Go1 @02
blas_colmajor | blas_upper a1l a2 ago Qo1 a11 @g2 @12 a9
——— N ——
a2
app apr ap2
blas_rowmajor | blas_upper a1l a1 ago apl @o2 @11 G12 G922
—————— ———r
a2
ago
blas_colmajor blas_lower ajg ai1 app a1p a20 A1l a1 a922
——— N —
a0 G21 @22
ano
blas_rowmajor | blas_lower alp a11 ago @1p A11 G20 G21 A2
——— ———

a0 Q21 a2

24 CHAPTER 2. DENSE AND BANDED BLAS

Note that for real or complex symmetric matrices, packing the upper triangle by columns is
equivalent to packing the lower triangle by rows; packing the lower triangle by columns is equivalent
to packing the upper triangle by rows. For complex Hermitian matrices, packing the upper triangle
by columns is equivalent to packing the conjugate of the lower triangle by rows; packing the lower
triangle by columns is equivalent to packing the conjugate of the upper triangle by rows.

2.2.3 Band Storage

For Fortran (column-major storage), an m-by-n band matrix with kl subdiagonals and ku super-
diagonals may be stored compactly in a two-dimensional array with kl+ku+1 rows and n columns.
Columns of the matrix are stored in corresponding columns (contiguous storage dimension) of the
array, and diagonals of the matrix are stored in rows (non-contiguous or strided dimension) of the
array. This storage scheme should be used in practice only if kl, ku < min(m,n), although BLAS
routines work correctly for all values of kI and ku. In the BLAS, arrays that hold matrices in band
storage have names ending in ‘B’.

To be precise, for column-major storage, a;; is stored in AB(ku + i — j, j) for max(0,j — ku) <
i < min(m — 1, j + kl). For row-major storage, a;; is stored in AB(q, kl + j — i) for max(0, j — ku) <
i < min(n — 1,7 + kl). For example, assuming column-major storage, when m =n =5, kl = 2 and
ku = 1:

Band matrix A Band storage in array AB

apo ap1
aijp ai11 a2
azp a1 a2 G23
aslr as2 a3z 0G34
a4 043 0O44

¥ Go1 G612 G23 (34
app Qi1 a2 a3z a4
ajp @21 G32 043 %
azp azr a4z X *

The elements marked * in the upper left and lower right corners of the array AB need not be
set, and are not referenced by BLAS routines.

For C (row-major storage), order = blas rowmajor, the rows of the matrix are stored in
corresponding rows (contiguous storage dimension) of the array, and diagonals of the matrix are
stored in columns (non-contiguous or strided dimension) of the array. The m-by-n band matrix
with k[subdiagonals and ku superdiagonals is stored in a one-dimensional array with n rows and
kl+ku+1 columns, strided by lda. The padding with elements marked * is now shifted to ensure
that rows of the matrix are stored contiguously. Refer to section B.2.12 for full details.

Triangular band matrices are stored in the same format, with either kI = 0 if upper triangular,
or ku = 0 if lower triangular.

For Fortran 77, and symmetric or Hermitian band matrices with kd subdiagonals or superdiag-
onals, only the upper or lower triangle (as specified by uplo) need be stored:

e if uplo = blas_upper, a;; is stored in AB(kd + i — 7, j) for max(0,j — kd) < i < j;

e if uplo = blas_lower, a;; is stored in AB(i — j,j) for j < ¢ < min(n — 1,5 + kd).

For example, assuming zero-based indexing and n = 5 and kd = 2:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.2. MATRIX STORAGE SCHEMES 25

uplo Hermitian band matrix A Band storage in array AB
apo apr Qo2
Go1 @11 @12 013 * * ag2 Q13 G024
blas_upper Go2 Q12 G2 G23 G24 * Qo1 @12 a3 G34
G13 G23 Q33 Qs34 Goo Q11 Q22 a3z 44

Q24 Q34 Q44
ago a1 Q20

ajp a1l a?l ZL31 app ai1 G2 a33 Q44
blas_lower ag) Q921 Q92 Q32 G492 alg a21 Qa3 G43 %
az1 az2 a3 043 azp az1 G42 X *

a42 @43 Q44

Similarly, for C (row-major storage), order = blas_rowmajor, the contiguous dimension (rows)
of the matrix is stored in the contiguous dimension (rows) of the array, strided by lda. And pictori-
ally, the one-dimensional array is the transpose of the AB storage as depicted above. The padding
with elements marked * is now shifted to ensure that rows of the matrix are stored contiguously.
Refer to section B.2.12 for full details.

2.2.4 Unit Triangular Matrices

Some BLAS routines have an option to handle unit triangular matrices (that is, triangular ma-
trices with diagonal elements = 1). This option is specified by an argument diag. If diag =
blas_unit_diag (Unit triangular)), the array elements corresponding to the diagonal elements of
the matrix are not referenced by the BLAS routines. The storage scheme for the matrix (whether
conventional, packed or band) remains unchanged, as described in subsection 2.2.1.

2.2.5 Representation of a Householder Matrix

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix
of the form
H=1-7vwl (2.1)

where 7 is a scalar, and v is an n-vector, with |7|2||v||3 = 2Re(7); v is often referred to as the
Householder vector. Often v has several leading or trailing zero elements, but for the purpose
of this discussion assume that H has no such special structure.

This representation agrees with what is used in LAPACK [6] (which differs from those used in
LINPACK [23] or EISPACK [48, 32]) sets v; = 1; hence v; need not be stored. In real arithmetic,
1 <7 <2, except that 7 = 0 implies H = 1.

In complex arithmetic, 7 may be complex, and satisfies 1 < Re(7) < 2 and |7 — 1] < 1. Thus
a complex H is not Hermitian (as it is in other representations), but it is unitary, which is the
important property. The advantage of allowing 7 to be complex is that, given an arbitrary complex
vector z, H can be computed so that

with real 8. This is useful, for example, when reducing a complex Hermitian matrix to real sym-
metric tridiagonal matrix, or a complex rectangular matrix to real bidiagonal form.

26 CHAPTER 2. DENSE AND BANDED BLAS

2.2.6 Representation of a Permutation Matrix 1

An n-by-n permutation matrix P is represented as a product of at most n interchange permutations.
An interchange permutation F is a permutation obtained by swapping two rows of the identity ma-
trix. An efficient way to represent a general permutation matrix P is with an integer vector p of
length n. In other words, P = E,, ... F; and each Ej; is the identity with rows ¢ and p; interchanged.

Doi=0ton—1 or Doi=n—-1t00

(1)) < x(p(i)))) x(i)) <> x(p(i))) 190
End do End do

11
12
13
2.3 Interface Issues N
. . 15
2.3.1 Naming Conventions y

The naming conventions adopted for the routines are as defined in section 1.4.6. 17
18
2.3.2 Argument Aliasing 19
20
Correctness is only guaranteed if output arguments are not aliased with any other arguments. 91
22

2.4 Interface Issues for Fortran 95 23

24

Some of the functions in the tables of this chapter can be replaced by simple array expressions 25

and assignments in Fortran 95, without loss of convenience or performance (assuming a reasonable 26
degree of optimization by the compiler). Fortran 95 also allows groups of related functions to be 27
merged together, each group being covered by a single interface. 28

The following sections discuss the indexing base for vector and matrix operands, the features of 29
the Fortran 95 language that are used, the matrix storage schemes that are supported, and error 30

handling. 31
We strongly recommend that optional arguments be supplied by keyword, not by position, 32
since the order in which they are described may differ from the order in which they appear in the 33
argument list. 34
35

2.4.1 Fortran 95 Modules 36

37
Refer to Appendix A.4 for the Fortran 95 module blas_dense. The module blas_operator_arguments

contains the derived type values, and separate modules are supplied with explicit interfaces to the 30
routines. If the module blas _dense is accessed by a USE statement in any program which makes 0
calls to these BLAS routines, then those calls can be checked by the compiler for errors in the
numbers or types of arguments.

38

42
43

2.4.2 Indexing 1

The Fortran 95 interface returns indices in the range 1 < I < N (where N is the number of entries
in the dimension in question, and I is the index). This allows functions returning indices to be

directly used to index standard arrays. "

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

2.4. INTERFACE ISSUES FOR FORTRAN 95 27

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at one.

2.4.3 Design of the Fortran 95 Interfaces

The proposed design utilizes the following features of the Fortran 95 language.

Generic interfaces: all procedures are accessed through generic interfaces. A single generic name
covers several specific instances whose arguments may differ in the following properties:

data type (real or complex).

precision (or equivalently, kind type parameter “kind-value”). However, all real or complex
arguments must have the same precision. We allow both single and double precision.

rank Some arguments may either have rank 2 (to store a matrix) or rank 1 (to store a vector).
In other cases an argument may be either a rank 1 array or a scalar.

different argument lists Some of the arguments are optional. If one of these arguments
does not appear in the calling sequence, a predefined value or a predefined action is
assumed. Table 2.9 contains the predefined value or action for these arguments.

Assumed-shape arrays: all array arguments are assumed-shape arrays, which must have the
exact shape required to store the corresponding matrix or vector. Hence arguments to specify
array-dimensions or problem-dimensions are not required. The procedures assume that the
supplied arrays have valid and consistent shapes. Zero dimensions (implying empty arrays)
are allowed.

This means that, for a vector operand, the offset and stride are not needed as arguments.
The actual argument corresponding to a n-length vector dummy argument could be:

actual argument

comments

x(ix:ix+(n-1)*incx)
x(1:14(n-1)*incx)
x(0:(n-1)*incx)
(1
(1:

x(ix:ix+n-1)
x(1:m)
x

ix# 1 and incx# 1

ix= 1 and incx# 1

ix= 0 and incx# 1

ix# 1 and incx= 1

ix= 1 and incx= 1

if x is declared with shape (n), i.e.

x(n)

where iz is an integer vector of n elements
containing valid indices of z

column j of a two-dimension array assuming
that it has n rows (SIZE(a,1) = n)

row 7 of a two-dimension array assuming
that it has n columns (SIZE(a,2) = n)

Derived types: In the Fortran 95 bindings, we use dummy arguments whose actual argument
must be a named constant of a derived type, which is defined within the BLAS module (and
accessible via the BLAS module).

28 CHAPTER 2. DENSE AND BANDED BLAS

2.4.4 Matrix Storage Schemes

The matrix storage schemes for the Fortran 95 interfaces are as described in section 2.2. As with
the Fortran 77 interfaces, only column-major storage is permitted. However, assumed-shape arrays
are used instead of assumed-size arrays.

For a general banded matrix, a, three arguments a, m and kI are used to define the matrix since
ku is defined from the shape of the matrix and kl (ku = SIZE(a,1) — kl — 1). For a symmetric
banded matrix, a Hermitian banded matrix or triangular banded matrix, a, only a is used as an
argument to define the matrix as the band width is defined from the shape of the matrix and is
equal to SIZE(a,1) —1 and m = n.

2.45 Format of the Fortran 95 bindings

Each interface is summarized in the form of a SUBROUTINE statement (or in few cases a FUNCTION
statement), in which all of the potential arguments appear. Arguments which need not be supplied
are grouped after the mandatory arguments and enclosed in square brackets, for example:

SUBROUTINE axpby(x, y [, alpha] [, betal)
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (INOUT) :: y(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

The default value for S is 1.0 or (1.0,0.0).
As generic interfaces are used, floating point variables that can be REAL or COMPLEX are denoted
by the keyword <type> which designates the data type for the operand

<type> ::= REAL | COMPLEX

In some routines, however, some of the floating point arguments must be of a specific data type. If
this is the case, then the argument type REAL or COMPLEX is used.
The precision of the floating point variable is denoted by <wp> (i.e., “working precision”) where

<wp> ::= KIND(1.0) | KIND(1.0DO)

and KIND(1.0) and KIND(1.0DO) represent single precision and double precision, respectively.
Some arguments may either have rank 2 (to store a matrix) or rank 1 (to store a vector). In
this case, the following notation is used:

<bb> ::= b(:,:) | b(:)
The same notation is used in the case of an argument that may either have rank 1 or is a scalar.
<bb> ::=b(:) | b

Fortran 95 bindings use assumed shape arrays. The actual arguments must have the correct
dimension. For all the procedures that contain array arguments the shape of the array arguments
is given in detail after the specification. For example the specification of the SUBROUTINE axpby
given above is followed by:

x and y have shape (n)

which indicates that both arrays x and y must be rank 1 with the same number of elements.

The calling sequence may be followed by a table which lists the different variants of the oper-
ation, depending either on the ranks of some of the arguments or on the optional arguments. The
scalar values alpha and beta take the defaults given in the following table:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.4. INTERFACE ISSUES FOR FORTRAN 95 29

Argument | default value in real case | default value in complex case
alpha 1.0 (1.0,0.0)
beta 0.0 OR 1.0 (0.0,0.0) OR (1.0,0.0)

Procedures that contain the optional scalar beta state the default value for beta only if it is
1.0 or (1.0,0.0), otherwise the default is assumed to be 0.0 or (0.0,0.0).

The following table shows the notation that is used for the values of optional arguments (since
alpha and beta are also optional, for example):

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Dummy | Notation in table Named constant Default value
argument
norm l-norm blas_one_norm blas_one norm
1R-norm blas_real_one norm
2-norm blas_two_norm
Frobenius-norm blas_frobenius norm
inf-norm blas_inf norm
real-inf-norm blas_real_inf norm
max-norm blas max_norm
real-max-norm blas_real max norm
sort sort in decreasing order | blas_decreasing order | blas_increasing order
sort in increasing order | blas_increasing order
side L blas_left_side blas_left
R blas_right_side
uplo U blas_upper blas_upper
L blas_lower
transz N blas no_trans blas no_trans
T blas_trans
H blas_conj_trans
conj blas no_conj blas no_conj
blas_conj
diag N blas non_unit_diag blas non_unit_diag
U blas_unit_diag
jrot inner rotation blas_jrot_inner blas_jrot_inner
outer rotation blas_jrot_outer
sorted rotation blas_jrot_sorted

Table 2.9: Default values of Operator Arguments

2.4.6 Error Handling

The Fortran 95 interface must supply an error-handling routine blas_error. The API for this
error-handling routine is defined in section 1.8. By default, this routine will print an error message
and stop execution. The user may modify the action performed by the error-handling routine, and
this modification must be documented.

The following values of arguments are invalid and will be flagged by the error-handling routine:

e Any value of the operator arguments whose meaning is not specified in the language-dependent
section is invalid;

30 CHAPTER 2. DENSE AND BANDED BLAS

Routine-specific error conditions are listed in the respective language bindings.

2.5 Interface Issues for Fortran 77

Unless explicitly stated, the Fortran 77 binding is consistent with ANSI standard Fortran 77. There
are several points where this standard diverges from the ANSI Fortran 77 standard. In particular:

e Subroutine names are not limited to six significant characters.
e Subroutine names contain an underscore.
e Subroutines may use the INCLUDE statement for include files.

Section 2.5.2 discusses the indexing of vector and matrix operands. Section A.5 defines the
operator arguments, section 2.5.3 defines array arguments, and section 2.2 lists the matrix storage
schemes that are supported. Section 2.5.5 details the format of the language binding, and section
2.5.6 discusses error handling.

25.1 Fortran 77 Include File

Refer to Appendix A.5 for details of the Fortran 77 include file blas_namedconstants.h.

2.5.2 Indexing

The Fortran 77 interface returns indices in the range 1 < I < N (where N is the number of entries
in the dimension in question, and I is the index). This allows functions returning indices to be
directly used to index standard arrays.

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at one.

2.5.3 Array Arguments

Vector arguments are permitted to have a storage spacing between elements. This spacing is
specified by an increment argument. For example, suppose a vector z having components z;,
i=1,...,N, is stored in an array X () with increment argument INCX. If INCX > 0 then z; is
stored in X (14 (1 —1)*INCX). If INCX < 0 then z; is stored in X (1+ (N —i) x |[INCX]|). This
method of indexing when INCX < 0 avoids negative indices in the array X () and thus permits
the subprograms to be written in Fortran 77. INCX = 0 is an illegal value.

Each two-dimensional array argument is immediately followed in the argument list by its leading
dimension, whose name has the form LD <array-name>. If a two-dimensional array A of dimension
(LDA,N) holds an m-by-n matrix A, then A(4,j) holds a;; fori =1,...,mand j =1,...,n (LDA
must be at least m). See Section 2.2 for more about storage of matrices.

Note that array arguments are usually declared in the software as assumed-size arrays (last
dimension *), for example:

REAL A(LDA, *)

although the documentation gives the dimensions as (LDA,N). The latter form is more informative
since it specifies the required minimum value of the last dimension. However an assumed-size array
declaration has been used in the software in order to overcome some limitations in the Fortran 77
standard. In particular it allows the routine to be called when the relevant dimension (N, in this

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.5. INTERFACE ISSUES FOR FORTRAN 77 31

case) is zero. However actual array dimensions in the calling program must be at least 1 (LDA in
this example).

254 Matrix Storage Schemes

The matrix storage schemes for the Fortran 77 interfaces are as described in section 2.2. Only
column-major storage is permitted, and all two-dimensional arrays are assumed-size arrays.

255 Format of the Fortran 77 bindings

Each interface is summarized in the form of a SUBROUTINE statement (or a FUNCTION statement).
The declarations of the arguments are listed in alphabetical order. For example,

SUBROUTINE BLAS_xAXPBY(N, ALPHA, X, INCX, BETA, Y, INCY)

INTEGER INCX, INCY, N
<type> ALPHA, BETA
<type> XC*), Y(*)

Floating point variables are denoted by the keyword <type> which designates the data type for
the operand (REAL, DOUBLE PRECISION, COMPLEX, or COMPLEX*16). This data type will agree with
the x letter in the naming convention of the routine. In some routines, however, not all floating
point variables will be of the same data type. If this is the case, then a variable may be denoted by
the keyword <ctype> to restrict the data type to COMPLEX or COMPLEX#*16, or <rtype> to restrict
the data type to REAL or DOUBLE PRECISION.

The language binding will be followed by any restrictions dictated for this interface.

2.5.6 Error Handling

The Fortran 77 interface supplies an error-handling routine BLAS_ERROR, as defined in section 1.8.
By default, this routine will print an error message and stop execution. The user may modify the
action performed by the error-handling routine, and this modification must be documented.

The following values of arguments are invalid and will be flagged by the error-handling routine:

e Any value of the operator arguments whose meaning is not specified in the language-dependent
section is invalid;

e incw=0 or incx=0 or incy=0 or incz=0;

e Ida, Idb, Idc, or Idt < 1;

e |da < m if the matrix is an m X n general matrix and trans = blas_no_trans;
e |da < n if the matrix is an m X n general matrix and trans = blas_trans;

e |da < n if the matrix is an n X n square, symmetric, or triangular matrix;

e |da < kl + ku + 1, if the matrix is an m X n general band matrix;

e |da < k+1, if the matrix is an n X n symmetric or triangular band matrix with k super- or
subdiagonals;

Routine-specific error conditions are listed in the respective language bindings.

32 CHAPTER 2. DENSE AND BANDED BLAS

2.6 Interface Issues for C

The interface is expressed in terms of ANSI/ISO C. Most platforms provide ANSI/ISO C compilers,
and if this is not the case, free ANSI/ISO C compilers are available (eg., gcc).

Section 2.6.2 discusses the indexing of vector and matrix operands. Section A.6 defines the
operator arguments, section 2.6.3 discusses the handling of complex data types, section 2.6.4 defines
return values of complex functions, and section 2.6.5 provides the rule for argument aliasing. Section
2.6.6 defines array arguments, and section 2.6.7 lists the matrix storage schemes that are supported.
Section 2.6.8 details the format of the language binding, and section 2.6.9 discusses error handling.

2.6.1 C Include File

The C interface to the BLAS has a standard include file, called blas_dense.h, which minimally
contains the values of the enumerated types and ANSI/ISO C prototypes for all BLAS routines.
Refer to Appendix A.6 for details of the C include files pertaining to Chapters 2 — 4.

Advice to implementors. Note that the vendor is not constrained to using precisely this
include file; only the enumerated type definitions are fully specified. The implementor is
free to make any other changes which are not apparent to the user. For instance, all matrix
dimensions might be accepted as size_t instead of int, or the implementor might choose to
make some routines in-line. (End of advice to implementors.)

2.6.2 Indexing

The C interface returns indices in the range 0 < I < N —1 (where N is the number of entries in the
dimension in question, and I is the index). This allows functions returning indices to be directly
used to index standard arrays.

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at zero.

2.6.3 Handling of complex data types

All complex arguments are accepted as void *. A complex element consists of two consecutive
memory locations of the underlying data type (i.e., float or double), where the first location
contains the real component, and the second contains the imaginary component.

An ISO/IEC committee (WG14/X3J11) [38] is presently working on an extension to ANSI/ISO
C which defines complex data types. This extension is one of several additions to the C language,
commonly referred to as the C9X standard. The definition of a complex element is the same as
given above, and so the handling of complex types by this interface will not need to be changed
when ANSI/ISO C standard is extended.

2.6.4 Return values of complex functions

BLAS routines which return complex values in Fortran 77 are instead recast as subroutines in the
C interface, with the return value being an output parameter added to the end of the argument
list. This allows the output parameter to be accepted as a void pointer, as discussed above.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.6. INTERFACE ISSUES FOR C 33

2.6.5 Aliasing of arguments

Unless specified otherwise, only input-only arguments (specified with the const qualifier), may be
legally aliased on a call to the C interface to the BLAS.

2.6.6 Array arguments

Arrays are constrained to being contiguous in memory. They are accepted as pointers, not as arrays
of pointers. Note that this means that two-dimensional array arguments in C are not permitted.

All BLAS routines which take one or more two dimensional arrays as arguments receive one
extra parameter as their first argument. This argument is an enumerated type (see Appendix A).
If this parameter is set to blas_rowmajor, it is assumed that elements within a row of the array(s)
are contiguous in memory, while elements within array columns are separated by a constant stride
given in the stride parameter (this parameter corresponds to the leading dimension [e.g. LDA] in
the Fortran 77 interface).

If the order is given as blas_colmajor, elements within array columns are assumed to be
contiguous, with elements within array rows separated by stride memory elements.

Note that there is only one blas_order_type parameter to a given routine: all array operands
are required to use the same ordering.

2.6.7 Matrix Storage Schemes

The matrix storage schemes for the C interfaces are as described in section 2.2. Column-major
storage and row-major storage in a contiguous array are permitted.

2.6.8 Format of the C bindings
Each routine is summarized in the form of an ANSI/ISO C prototype. For example:

void BLAS_xaxpby(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY y, int incy);

Floating point variables are denoted by the keywords SCALAR and ARRAY to denote scalar argu-
ments and array arguments respectively.

SCALAR_IN ARRAY or SCALAR_INQUT | operation
float or double | float * or double * real arithmetic
const void * void * complex arithmetic

This data type will agree with the x letter in the naming convention of the routine. In some
routines, however, not all floating point variables will be of the same data type. If this is the
case, then a variable may be denoted by the keyword RSCALAR_INQUT, CSCALAR_INQUT, RARRAY, or
CARRAY, to restrict the data type to real or complex arithmetic, respectively.

The language binding will be followed by any restrictions dictated for this interface.

2.6.9 Error Handling

The C interface must supply an error-handling routine BLAS error. This error-handling routine
will accept as input a character string, specifying the name of the routine where the error occurred.

34 CHAPTER 2. DENSE AND BANDED BLAS

By default, this routine will print an error message and stop execution. The user may modify the
action performed by the error-handling routine, and this modification must be documented.
The following values of arguments are invalid and will be flagged by the error-handling routine:

e Any value of the operator arguments whose meaning is not specified in the language-dependent
section is invalid;

e incw=0 or incx=0 or incy=0 or incz=0;

e |da, Idb, Idc, or Idt < 1;

e |da < m if the matrix is an m X n general matrix;

e |da < n if the matrix is an n X n square, symmetric, or triangular matrix;
e |da < kl + ku + 1, if the matrix is an m X n general band matrix;

e |da < k+1, if the matrix is an n X n symmetric or triangular band matrix with k super- or
subdiagonals;

Routine-specific error conditions are listed in the respective language bindings.

2.7 Numerical Accuracy and Environmental Enquiry

With a few exceptions that are explicitly described below, no particular computational order is
mandated by the function specifications. In other words, any algorithm that produces results “close
enough” to the usual algorithms presented in a standard book on matrix computations [33, 19, 35]
is acceptable. For example, Strassen’s algorithm may be used for matrix multiplication, even
though it can be significantly less accurate than conventional matrix multiplication for some pairs
of matrices [35]. Also, matrix multiplication may be implemented either as C' = (a-A)-B+ (8- C)
orC=a-(A-B)+(-C)or C=A-(a-B)+ (B C), whichever is convenient.

To use the error bounds in [33, 19, 35| and elsewhere, certain machine parameters are needed
to describe the accuracy of the arithmetic.

These are described in detail in section 1.6, and returned by function xFPINFO. Its calling
sequence in C or Fortran 77 is

result = xFPINFO(CMACH)
where x=S for single precision and x=D for double precision. In Fortran 95, its calling sequence is
result = FPINFO(CMACH, float)

where the “kind” of float (single or double) is used to determine the kind of the result. The
argument CMACH can take on the following named constant values (the exact representations
are language dependent, with CMACH available as a derived type in Fortran 95, named integer
constants in Fortran 77, and an enumerated type in C). The named constant values are defined in
sections A.4, A.5, and A.6. CMACH has the analogous meaning (see footnote 4 in section 1.6 for
a discussion) as the like-named character argument of the LAPACK auxiliary routine xLAMCH:

-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS

Value of CMACH

Name of floating point parameter
(see Table 1.9 in section 1.6 for details)

blas_base
blas_t
blas_rnd
blas_ieee
blas_emin
blas_emax
blas_eps
blas_prec
blas_underflow
blas_overflow
blas_sfmin

BASE
T
RND
IEEE
EMIN
EMAX
EPS
PREC
UN
ov
SFMIN

35

Here are the exceptional routines where we ask for particularly careful implementations to avoid

unnecessary over/underflows, that could make the output unnecessarily inaccurate or unreliable.
The details of each routine are described with the language dependent calling sequences. Model
implementations that avoid unnecessary over/underflows are based on corresponding LAPACK
auxiliary routines, NAG routines, or cited reports.

1. Reduction Operations (Section 2.8.2)

e NORM (Vector norms)
e SUMSQ (Sum of squares)

2. Generate Transformations (Section 2.8.3)

¢ GEN_GROT (Generate Givens rotation)
e GEN_JROT (Generate Jacobi rotation)
¢ GEN_HOUSE (Generate Householder transform)

3. Vector Operations (Section 2.8.4)
e RSCALE (Reciprocal scale)
4. Matrix Operations (Section 2.8.7)

¢ {GE,GB,SY,HE,SB,SP,HP,TR,TB,TP} NORM (Matrix norms)

2.8 Language Bindings

Each specification of a routine will correspond to an operation outlined in the functionality tables.
Operations are organized analogous to the order in which they are presented in the functionality
tables. The specification will have the form:

NAME (multi-word description of operation) < mathematical representation >

Optional brief textual description of the functionality including any restrictions that apply to all
language bindings.

36 CHAPTER 2. DENSE AND BANDED BLAS

e Fortran 95 binding
e Fortran 77 binding
e C binding

2.8.1 Overview

¢ Reduction Operations (section 2.8.2)

DOT (Dot product)

— NORM (Vector norms)

SUM (Sum)

MIN_VAL (Min value & location)
AMIN_VAL (Min absolute value & location)
MAX_VAL (Max value & location)
AMAX_VAL (Max absolute value & location)
— SUMSQ (Sum of squares)

Generate Transformations (section 2.8.3)

— GEN_GROT (Generate Givens rotation)
— GEN_JROT (Generate Jacobi rotation)
— GEN_HOUSE (Generate Householder transform)

Vector Operations (section 2.8.4)

— RSCALE (Reciprocal Scale)

— AXPBY (Scaled vector accumulation)

— WAXPBY (Scaled vector addition)

— AXPY_DOT (Combined AXPY and DOT)
— APPLY_GROT (Apply plane rotation)

Data Movement with Vectors (section 2.8.5)

— COPY (Vector copy)

— SWAP (Swap)

— SORT (Sort vector)

— SORTYV (Sort vector & return index vector)
— PERMUTE (Permute vector)

Matrix-Vector Operations (section 2.8.6)

— {GE,GB}MV (Matrix vector product)
— {SY,SB,SP}MV (Symmetric matrix vector product)
— {HE,HB,HP}MV (Hermitian matrix vector product)

© o] ~ [« ot [w N =

- ~ - - [- - -~ w w w w w w w w w w N [V M) [V M) N [V N [V [(o [- - - - [- - [
- (=] ot - w M) —- o © o ~ » ot - w N - o © o] =~ [=2] ot -~ w N - o © 0o -~ (=2} ot - w M) - o

'
oo

© o] ~ [« (S [w N -

BB A R A B A A W W W W W W W W W N N NN NN NN N R R R R R e s e s
I3 G A B oNom O ©® kN e aA b= O ® ® N O G A BN R O © ® N O ;oA W N = O

'S
oo

2.8. LANGUAGE BINDINGS

— {TR,TB,TP}MV (Triangular matrix vector product)
— GE_.SUM_MV (Summed matrix vector multiplies)

— GEMVT (Combined matrix vector product)

— TRMVT (Combined triangular matrix vector product)
— GEMVER (Combined matrix vector product with a rank 2 update)
— {TR,TB,TP}SV (Triangular solve)

— GER (Rank one update)

— {SY,SP}R (Symmetric rank one update)

— {HE,HP}R (Hermitian rank one update)

— {SY,SP}R2 (Symmetric rank two update)

— {HE,HP}R2 (Hermitian rank two update)

e Matrix Operations (section 2.8.7)

— {GE,GB,SY,HE,SB,HB,SP,HP, TR, TB, TP} _NORM (Matrix norms)

— {GE,GB}_.DIAG_SCALE (Diagonal scaling)

— {GE,GB}_.LRSCALE (Two-sided diagonal scaling)

— {SY,SB,SP}_.LRSCALE (Two-sided diagonal scaling of a symmetric matrix)
— {HE,HB,HP} LRSCALE (Two-sided diagonal scaling of a Hermitian matrix)
— {GE,GB}_.DIAG_SCALE_ACC (Diagonal scaling and accumulation)

- {GE,GB,SY,SB,SP,TR,TB,TP}_ACC (Matrix accumulation and scale)

- {GE,GB,SY,SB,SP,TR,TB,TP}_ADD (Matrix add and scale)

e Matrix-Matrix Operations (section 2.8.8)

— GEMM (General Matrix Matrix product)
SYMM (Symmetric matrix matrix product)

HEMM (Hermitian matrix matrix product)
(

TRMM (Triangular matrix matrix multiply)

TRSM (Triangular solve)

SYRK (Symmetric rank-k update)

HERK (Hermitian rank-k update)

— SY_TRIDIAG_RK (Symmetric rank-k update with tridiagonal matrix)

— HE_TRIDIAG_RK (Hermitian rank-k update with tridiagonal matrix)

— SYR2K (Symmetric rank-2k update)

— HER2K (Hermitian rank-2k update)

— SY_TRIDIAG_R2K (Symmetric rank-2k update with tridiagonal matrix)
— HE_TRIDIAG_R2K (Hermitian rank-2k update with tridiagonal matrix)

e Data Movement with Matrices (section 2.8.9)

- {GE,GB,SY,SB,SP,TR,TB,TP}_COPY (Matrix copy)

37

38 CHAPTER 2. DENSE AND BANDED BLAS

— {HE,HB,HP} COPY (Matrix copy)
— {GE}_TRANS (Matrix transposition)
— {GE}.PERMUTE (Permute matrix)

¢ Environmental Enquiry (section 2.8.10)

— FPINFO (Environmental enquiry)

2.8.2 Reduction Operations

n—1
DOT (Dot Product) z,y € R",r + pr+ azly = Br+« Z ZTiYi
i=0
n—1 n—1
z,y €C™,r + fr+az’y =Br+a2x,~yi or r + Br + azfly =ﬁr+a2x}yi
i=0 i=0

The routine DOT adds the scaled dot product of two vectors z and y into a scaled scalar r. The
routine returns immediately if n is less than zero, or, if beta is equal to one and either alpha or n
is equal to zero. If alpha is equal to zero then z and y are not read. Similarly, if beta is equal to
zero, r is not read. As described in section 2.5.3, the value incx or incy less than zero is permitted.
However, if incx or incy is equal to zero, an error flag is set and passed to the error handler.

When z and y are complex vectors, the vector components z; are used unconjugated or conju-
gated as specified by the operator argument conj. If z and y are real vectors, the operator argument
conj has no effect.

e Fortran 95 binding:

SUBROUTINE dot(x, y, r [, conj] [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: x(:), y(:)
<type>(<wp>), INTENT (INOUT) :: r
TYPE (blas_conj_type), INTENT(IN), OPTIONAL :: conj
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xDOT(CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)

INTEGER CONJ, INCX, INCY, N
<type> ALPHA, BETA, R
<type> X(C*), Y(%)

e C binding:

void BLAS_xdot(enum blas_conj_type conj, int n, SCALAR_IN alpha,
const ARRAY x, int incx, SCALAR_IN beta, const ARRAY vy,
int incy, SCALAR_INQOUT r);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 39

NORM (Vector norms) r < ||z||1, [|Z]|1r, l|Z|l2, ||Z||co, OF ||Z||lcor

The routine NORM computes the ||-||1, ||-||1r, || - |l2, || - [|oos OF || - ||cor Of a vector z depending
on the value passed as the norm operator argument.

If norm = blas _frobenius norm, an error flag is not raised, and the two-norm is returned to
the user. If n is less than or equal to zero, this routine returns immediately with the output scalar
r set to zero. The resulting scalar r is always real and its value is as defined in section 2.1.1. As
described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

REAL (<wp>) FUNCTION norm(x [, norm])

<type>(<wp>), INTENT (IN) :: x(:)

TYPE (blas_norm_type), INTENT (IN), OPTIONAL :: norm
where

x has shape (n)

e Fortran 77 binding:

<rtype> FUNCTION BLAS_xNORM(NORM, N, X, INCX)

INTEGER INCX, N, NORM
<type> X(*)
e C binding:

void BLAS_xnorm(enum blas_norm_type norm, int n, const ARRAY x,
int incx, RSCALAR_INOUT r);

n—1
SUM (Sum) T Z z;
i=0

The routine SUM computes the sum of the entries of a vector z. If n is less than or equal to
zero, this routine returns immediately with the output scalar r set to zero. As described in section
2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error flag is
set and passed to the error handler.

e Fortran 95 binding:

<type>(<wp>) FUNCTION sum(x)
<type>(<wp>), INTENT (IN) :: x(:)
where
x has shape (n)

This is the same as the Fortran 95 intrinsic function SUM.

e Fortran 77 binding:

40 CHAPTER 2. DENSE AND BANDED BLAS

<type> FUNCTION BLAS_xSUM(N, X, INCX)

INTEGER INCX, N
<type> X(*)
e C binding:

void BLAS_xsum(int n, const ARRAY x, int incx, SCALAR_INQUT sum);

MIN_VAL (Min value & location) k,zy such that k = arg Ogl.in Z;
<i<n
The routine MIN_VAL finds the smallest component of a real vector z and determines the
smallest offset or index k£ such that x; = 0121,121 x;. This value z; is returned by the routine and
<i<n

denoted by arg Oréljg z; below. When the value of the n argument is less than or equal to zero, the
<<n

routine should initialize the output scalars k to the largest invalid index or offset value (negative
one or zero) and r to zero. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

Advice to users. The routine MIN_VAL strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

e Fortran 95 binding:

SUBROUTINE min_val(x, k, r)
REAL (<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL (<wp>), INTENT (QOUT) :: r

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xMIN_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<rtype> X(*)

e C binding:

void BLAS_xmin_val(int n, const RARRAY x, int incx, int k,
RSCALAR_INOUT r);

AMIN_VAL (Min absolute value & location) k,zj such that k = arg 0I<n_i<n (|Re(zi)| + [Im(z;)])
<i<n

The routine AMIN_VAL finds the offset or index of the smallest component of a vector x and
also returns the smallest component of the vector z with respect to the absolute value. When the
value of the n argument is less than or equal to zero, the routine should initialize the output scalars
k to the largest invalid index or offset value (negative one or zero) and r to zero. The resulting
scalar r is always real. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 41

e Fortran 95 binding:

SUBROUTINE amin_val(x, k, r)
<type>(<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL (<wp>), INTENT (OUT) :: r

where
x has shape (n)

A Fortran 95 interface was defined for this routine since it would have been too expensive
using Fortran 95 intrinsics.

e Fortran 77 binding:

SUBROUTINE BLAS_xAMIN_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<type> X(%)

¢ C binding:

void BLAS_xamin_val(int n, const ARRAY x, int incx, int k,
RSCALAR_INOUT r);

MAX _VAL (Max value & location) k,zy such that k = arg [Dax i
<i<n
The routine MAX_VAL finds the largest component of a real vector z and determines the smallest

offset or index k such that z; = 01£1a<x z;. This value zj is returned by the routine and denoted
<<n

by arg 0r£1a<x z; below. When the value of the n argument is less than or equal to zero, the routine
<i<n

should initialize the output scalars k to the largest invalid index or offset value (negative one or zero)

and r to zero. As described in section 2.5.3, the value incx less than zero is permitted. However, if

incx is equal to zero, an error flag is set and passed to the error handler.

Advice to users. The routine MAX_VAL strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

e Fortran 95 binding:

SUBROUTINE max_val(x, k, r)
REAL(<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL (<wp>), INTENT (OUT) :: r

where
x has shape (n)

e Fortran 77 binding:

42 CHAPTER 2. DENSE AND BANDED BLAS

SUBROUTINE BLAS_xMAX_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<rtype> X(*)

¢ C binding:

void BLAS_xmax_val(int n, const RARRAY x, int incx, int k,
RSCALAR_INOUT r);

AMAX_VAL (Max absolute value & location) k,zj such that k = arg [max (|Re(z)| + [Im(z;)])
<i<n

The routine AMAX_VAL finds the offset or index of the largest component of a vector x and also
returns the largest component of the vector with respect to the absolute value. When the value
of the n argument is less than or equal to zero, the routine should initialize the output scalars k to
the largest invalid index or offset value (negative one or zero) and r to zero. The resulting scalar r
is always real. As described in section 2.5.3, the value incx less than zero is permitted. However, if
incx is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE amax_val(x, k, r)
<type>(<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL (<wp>), INTENT (QOUT) :: r

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xAMAX_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<type> X(%)

e C binding:

void BLAS_xamax_val(int n, const ARRAY x, int incx, int k,
RSCALAR_INQUT r);

SUMSQ (Sum of squares) (scl, ssq) + 3 x2,

The routine SUMSQ returns the values scl and ssq such that

n—1
scl® x ssq = scale® x sumsq + Z(Re(mi)2 + Im(z;)?),
1=0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2.8. LANGUAGE BINDINGS 43

The value of sumsq is assumed to be at least unity and the value of ssq will then satisfy 1.0 <
ssq < (sumsq + n) when z is a real vector and 1.0 < ssq < (sumsq + 2n) when z is a complex
vector. scale is assumed to be non-negative and scl returns the value

scl = max (scale,abs(Re(x;)), abs(Im(z;))).
0<i<n

scale and sumsq must be supplied on entry in scl and ssq respectively. scl and ssq are overwritten
by scl and ssq respectively. The arguments scl and ssq are therefore always real scalars. If scl is
less than zero or ssq is less than one, an error flag is set and passed to the error handler. If n is less
than or equal to zero, this routine returns immediately with scl and ssq unchanged. As described
in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error
flag is set and passed to the error handler.

Advice to implementors. High-quality implementations of this routine SUMSQ should be
accurate. The subroutine SLASSQ of the LAPACK [6] software library is an example of such
an accurate implementation. High-quality implementations should document the accuracy of
the algorithms used in this routine so as to alleviate the portability problems this represents.
(End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE sumsq(x, ssq, scl)
<type>(<wp>), INTENT (IN) :: x(:)
REAL(<wp>), INTENT (INOUT) :: ssq, scl

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xSUMSQ(N, X, INCX, SSQ, SCL)

INTEGER INCX, N
<rtype> SCL, SSQ
<type> X(*)

e C binding:

void BLAS_xsumsq(int n, const ARRAY x, int incx, RSCALAR_INOUT ssq,
RSCALAR_INOUT scl);

2.8.3 Generate Transformations

GEN_GROT (Generate Givens rotation) (¢,8,7) < rot(a,b)

The routine GEN_GROT constructs a Givens plane rotation so that

(50 ()-(5),

44 CHAPTER 2. DENSE AND BANDED BLAS

where c is always a real scalar and ¢? + |s|? is equal to one. The scalars a and b are unchanged on

exit. ¢, s and r are defined precisely as follows, where we use the function

. zf/lx| ifxz#0
51gn(w)5{1/|| ifin

Defining Givens rotations:
if b = 0 (includes the case a = b = 0)

c=1
s=0
r=a
elseif a = 0 (b must be nonzero)
c=0
s = sign(b)
r = b

else (a and b both nonzero)
¢ = lal/V/]a]* + |b]?
s = sign(a)b/+/]a[® + [b]?
r = sign(a)+/|a|*> + |b]?

endif
When @ and b are real, b may be replaced by b.

Advice to implementors. High-quality implementations of this routine GEN_GROT should
be accurate. We recommend one of the implementations described in [9]. We note that
the above definition of Givens rotations matches the one in the subroutine CLARTG of the
LAPACK [6] software library, but differs slightly from the definitions used in LAPACK rou-
tines SLARTG, SLARGV and CLARGV. LAPACK routines using these slightly different Givens
rotations continue to function correctly [9]. (End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE gen_grot(a, b, c, s, r)
<type>(<wp>), INTENT (IN) :: a, b
REAL(<wp>), INTENT (OUT) :: c
<type>(<wp>), INTENT (OUT) :: s, r

e Fortran 77 binding:

SUBROUTINE BLAS_xGEN_GROT(A, B, C, S, R)

<rtype> C
<type> A, B, R, 8
e C binding:

void BLAS_xgen_grot(SCALAR_IN a, SCALAR_IN b, RSCALAR_INOUT c,
SCALAR_INOUT s, SCALAR_INOUT r);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 45

GEN_JROT (Generate Jacobi rotation) (a,b,c,8) < jrot(z,y, z)

The routine GEN_JROT constructs a Jacobi rotation so that

a 0\ c s T Yy c —3
0 b)) \ —-s ¢ 7y 2z s ¢ |’
If JROT = blas_inner rotation, then the rotation is chosen so that ¢ > %
If JROT = blas_outer_rotation, then the rotation is chosen so that 0 < ¢ < LQ
If JROT = blas_sorted_rotation, then the rotation is chosen so that abs(a) > abs(b).
On entry, the argument x contains the value x, and on exit it contains the value a. On entry,
the argument y contains the value y. On entry, the argument z contains the value z, and on exit

it contains the value b. The arguments x and z are real scalars, and argument c is always a real
scalar and c? + |s|? is equal to one.

Advice to implementors. High-quality implementations of this routine GEN_JROT should
document the accuracy of the algorithms used in those functions so as to alleviate the porta-
bility problems this represents. (See NAG routine FO6BEF). (End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE gen_jrot(x, y, 2z, ¢, s [, jrot])
REAL(<wp>), INTENT (INOUT) :: x, z
<type>(<wp>), INTENT (IN) :: y
REAL (<wp>), INTENT (OUT) :: ¢
<type>(<wp>), INTENT (OUT) :: s
TYPE (blas_jrot_type), INTENT(IN), OPTIONAL :: jrot

e Fortran 77 binding:

SUBROUTINE BLAS_xGEN_JROT(JROT, X, Y, Z, C, S)

INTEGER JROT
<rtype> C, X, Z
<type> S, Y

e C binding:

void BLAS_xgen_jrot(enum blas_jrot_type jrot, RSCALAR_INOUT x,
SCALAR_IN y, RSCALAR_INOUT z, RSCALAR_INOUT c,
SCALAR_INOUT s);

GEN_HOUSE (Generate Householder transform) (a, z,) < house(a, x),

The routine GEN_HOUSE generates an elementary reflector H of order n, such that

Y (Pyand HHH =T,

H(z 0

46 CHAPTER 2. DENSE AND BANDED BLAS

where « and (3 are scalars, and z is an (n — 1)-element vector. [is always a real scalar. H is
represented in the form

H=I-7()(1 o),

where 7 is a scalar and v is a (n — 1)-element vector. 7 is called the Householder scalar and

the Householder vector. Note that when x is a complex vector, H is not Hermitian. If the elements
of x are zero, and « is real, then 7 is equal to zero and H is taken to be the unit matrix. Otherwise,
the real part of 7 is greater than or equal to one and less than or equal to two. Moreover, the
absolute value of the quantity 7 — 1 is less than or equal to one.

On exit, the scalar argument alpha is overwritten with the value of the scalar 8. Similarly, the
vector argument x is overwritten with the vector v. If n is less than or equal to zero, this function
returns immediately with the output scalar tau set to zero. As described in section 2.5.3, the value
incx less than zero is permitted. However, if incx is equal to zero, an error flag is set and passed to
the error handler.

Advice to implementors. High-quality implementations of this routine GEN_HOUSE should
be accurate. The subroutines SLARFG and CLARFG of the LAPACK [6] software library are
examples of such an accurate implementation. High-quality implementations should docu-
ment the accuracy of the algorithms used in those functions so as to alleviate the portability
problems this represents. (End of advice to implementors.)

Advice to users. Routines to apply Householder transformations are not provided. The sub-
routines xORMyy of the LAPACK [6] software library are examples of such implementations.
(End of advice to users.)

e Fortran 95 binding:

SUBROUTINE gen_house(alpha, x, tau)
<type>(<wp>), INTENT (INOUT) :: alpha
<type>(<wp>), INTENT (INOUT) :: x(:)
<type>(<wp>), INTENT (OUT) :: tau

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xGEN_HOUSE(N, ALPHA, X, INCX, TAU)

INTEGER INCX, N
<type> ALPHA, TAU
<type> X(*)

e C binding:

void BLAS_xgen_house(int n, SCALAR_INOUT alpha, ARRAY x, int incx,
SCALAR_INOUT tau);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 47

2.8.4 Vector Operations
RSCALE (Reciprocal Scale) T+ z/a

The routine RSCALE scales the entries of a vector z by the real scalar 1/a. The scalar « is
always real and supposed to be nonzero. This should be done without overflow or underflow as
long as the final result z/a does not overflow or underflow. If n is less than or equal to zero,
this routine returns immediately. As described in section 2.5.3, the value incx less than zero is
permitted. However, if incx is equal to zero or if alpha is equal to zero, an error flag is set and
passed to the error handler.

Advice to implementors. High-quality implementations of this routine RSCALE should be
accurate. The subroutine xRSCL of the LAPACK [6] software library is an example of such an
accurate implementation. High-quality implementations should document the accuracy of the
algorithms used in those functions so as to alleviate the portability problems this represents.
(End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE rscale(alpha, x)
REAL(<wp>), INTENT (IN) :: alpha
<type>(<wp>), INTENT (INOUT) :: x(:)

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xRSCALE(N, ALPHA, X, INCX)

INTEGER INCX, N

<rtype> ALPHA

<type> X(%)
e C binding:

void BLAS_xrscale(int n, RSCALAR_IN alpha, ARRAY x, int incx);

AXPBY (Scaled vector accumulation) Y+ ar+ By

The routine AXPBY scales the vector z by a and the vector y by 3, adds these two vectors to
one another and stores the result in the vector y. If n is less than or equal to zero, or if « is equal
to zero and f is equal to one, this routine returns immediately. As described in section 2.5.3, the
value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero, an
error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE axpby(x, y [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: x(:)

48 CHAPTER 2. DENSE AND BANDED BLAS

<type>(<wp>), INTENT (INOUT) :: y(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
where

x and y have shape (n)

The default value for g8 is 1.0 or (1.0,0.0).

e Fortran 77 binding:

SUBROUTINE BLAS_xAXPBY(N, ALPHA, X, INCX, BETA, Y, INCY)

INTEGER INCX, INCY, N

<type> ALPHA, BETA

<type> XC*x), YO *)
e C binding:

void BLAS_xaxpby(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY y, int incy);

WAXPBY (Scaled vector addition) w 4 axr + By

The routine WAXPBY scales the vector z by « and the vector y by 3, adds these two vectors
to one another and stores the result in the vector w. If n is less than or equal to zero, this routine
returns immediately. As described in section 2.5.3, the value incx or incy or incw less than zero is
permitted. However, if either incx or incy or incw is equal to zero, an error flag is set and passed to
the error handler.

e Fortran 95 binding:

SUBROUTINE waxpby(x, y, w [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: x(:), y(:)
<type>(<wp>), INTENT (OUT) :: w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
X, y and w have shape (n)

The default value for g8 is 1.0 or (1.0,0.0).

e Fortran 77 binding:

SUBROUTINE BLAS_xWAXPBY(N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

INTEGER INCW, INCX, INCY, N
<type> ALPHA, BETA
<type> W(*), X(*), Y(*)

e C binding:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 49

void BLAS_xwaxpby(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, const ARRAY y, int incy, ARRAY w,
int incw);

AXPY_DOT (Combined AXPY and DOT) W w— av,r + 0l u

The routine combines an axpy and a dot product. w is decremented by a multiple of v. A dot
product is then computed with the decremented w.

Advice to implementors. Note that @ may be used to update r before it is written back
to memory. This optimization, which accelerates algorithms like modified Gram-Schmidt
orthogonalization, is the justification for AXPY_DOT, which could otherwise be implemented
by calls to AXPBY and DOT. (End of advice to implementors.)

If n is less than or equal to zero, this routine returns immediately. As described in section 2.5.3,
the value incw or incv or incu less than zero is permitted. However, if either incw or incv or incu is
equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE axpy_dot(w, v, u, r [, alpha])
<type>(<wp>), INTENT (IN) :: v(:), u(:)
<type>(<wp>), INTENT (INOUT) :: w(:)
<type>(<wp>), INTENT (OUT) :: r
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha

where
u, v and w have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xAXPY_DOT(N, ALPHA, W, INCW, V, INCV, U, INCU,

$ R)
INTEGER INCW, INCV, INCU, N
<type> ALPHA, R
<type> WC*), VOx*x), UC *)
e C binding:

void BLAS_xaxpy_dot(int n, SCALAR_IN alpha, ARRAY w, int incw,
const ARRAY v, int incv, const ARRAY u, int incu,
SCALAR_INOUT r);

APPLY_GROT (Apply plane rotation) (z y)«(z y)R

50 CHAPTER 2. DENSE AND BANDED BLAS

The routine APPLY_GROT applies a plane rotation to the vectors z and y. When the vectors z
and y are real vectors, the scalars ¢ and s are real scalars. When the vectors z and y are complex
vectors, c is a real scalar and s is a complex scalar. This routine computes

e ()= (5 1) (=)

If n is less than or equal to zero or if ¢ is one and s is zero, the routine APPLY_GROT returns
immediately. As described in section 2.5.3, the value of incx or incy less than zero is permitted.
However, if incx or incy is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE apply_grot(c, s, X, y)
REAL(<wp>), INTENT (IN) :: ¢
<type>(<wp>), INTENT (IN) :: s
<type>(<wp>), INTENT (INOUT) :: x(:), y(:)
where
x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xAPPLY_GROT(N, C, S, X, INCX, Y, INCY)

INTEGER INCX, INCY, N

<rtype> C

<type> S

<type> XC*x), YO *)
e C binding:

void BLAS_xapply_grot(int n, RSCALAR_IN c, SCALAR_IN s, ARRAY x, int incx,
ARRAY y, int incy);

2.8.5 Data Movement with Vectors
COPY (Vector copy) Yz

The routine COPY copies the vector z into the vector y. If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incy less than zero is
permitted. However, if either incx or incy is equal to zero, an error flag is set and passed to the
error handler.

e Fortran 95 binding:

SUBROUTINE copy(x, y)
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (OUT) :: y(:)

where
x and y have shape (n)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 51

This is similar to the Fortran 95 assignment y=z.

e Fortran 77 binding:

SUBROUTINE BLAS_xCOPY(N, X, INCX, Y, INCY)

INTEGER INCX, INCY, N
<type> X(C*), Y(*)
e C binding:

void BLAS_xcopy(int n, const ARRAY x, int incx, ARRAY y, int incy);

SWAP (Swap) Yy

The routine SWAP interchanges the vectors z and y. If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incy less than zero is
permitted. However, if either incx or incy is equal to zero, an error flag is set and passed to the
error handler.

e Fortran 95 binding:

SUBROUTINE swap(x, y)

<type>(<wp>), INTENT (INOUT) :: x(:), y(:)
where

x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xSWAP(N, X, INCX, Y, INCY)

INTEGER INCX, INCY, N
<type> XC*), Y(C*x)
e C binding:

void BLAS_xswap(int n, ARRAY x, int incx, ARRAY y, int incy);

SORT (Sort vector) x + sort(x)

The routine SORT sorts the entries of a real vector z in increasing or decreasing order and
overwrites this vector z with the sorted vector. If n is less than or equal to zero, the function
returns immediately. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

Advice to users. The routine SORT strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

Advice to implementors. The subroutine xLASRT of the LAPACK [6] software library is an
example of such a routine. (End of advice to implementors.)

52 CHAPTER 2. DENSE AND BANDED BLAS

e Fortran 95 binding: Refer to SORTYV specification

e Fortran 77 binding:

SUBROUTINE BLAS_xSORT(SORT, N, X, INCX)

INTEGER INCX, N, SORT
<rtype> X(x)
e C binding:

void BLAS_xsort(enum blas_sort_type sort, int n, RARRAY x, int incx);

SORTYV (Sort vector & return index vector) (p, x) «+ sort(x)

The routine SORTV sorts the entries of a real vector z in increasing or decreasing order and
overwrites this vector z with the sorted vector (z = P * z). If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incp less than zero is
permitted. However, if either incx or incp is equal to zero, an error flag is set and passed to the
error handler.

The representation of the permutation vector p is described in section 2.2.6.

Advice to users. The routine SORTYV strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

e Fortran 95 binding:

SUBROUTINE sortv(x [, sort] [, pl)
REAL(<wp>), INTENT (INOUT) :: x(:)
TYPE (blas_sort_type), INTENT (IN), OPTIONAL :: sort
INTEGER, INTENT (OUT), OPTIONAL :: p(:)
where
x and p have shape (n)

The functionality of SORT is covered by SORTV.

e Fortran 77 binding:

SUBROUTINE BLAS_xSORTV(SORT, N, X, INCX, P, INCP)

INTEGER INCP, INCX, N, SORT
INTEGER P(*)
<rtype> X(*)

e C binding:

void BLAS_xsortv(enum blas_sort_type sort, int n, RARRAY x, int incx,
int *p, int incp);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 53

PERMUTE (Permute vector) z + Pz

The routine PERMUTE permutes the entries of a vector z according to the permutation vector
p. If n is less than or equal to zero, the routine returns immediately. As described in section 2.5.3,
the value incx or incp less than zero is permitted. However, if either incx or incp is equal to zero,
an error flag is set and passed to the error handler.

The encoding of the permutation P in the vector p follows the same conventions as the ones
described above for the routine SORTV. Refer to section 2.2.6 for complete details.

e Fortran 95 binding:
SUBROUTINE permute(x, p)
<type>(<wp>), INTENT (INOUT) :: x(:)
INTEGER, INTENT (IN) :: p(:)

where
x and p have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xPERMUTE(N, P, INCP, X, INCX)

INTEGER INCP, INCX, N
INTEGER P(*)
<type> X(*)

The value of INCP may be positive or negative. A negative value of INCP applies the permu-
tation in the opposite direction.

e C binding:
void BLAS_xpermute(int n, const int *p, int incp, ARRAY x, int incx);

The value of incp may be positive or negative. A negative value of incp applies the permu-
tation in the opposite direction.

2.8.6 Matrix-Vector Operations

In the following section, op(X) denotes X, or X7 or X where X is a matrix.
{GE,GB}MV (Matrix vector product) y < aop(A)z + By

The routines perform a matrix vector multiply y < aop(A)z + By where a and 8 are scalars,
and A is a general (or general band) matrix. If m or n is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine GEMV, if Ida is less than
one, or trans = blas_no_trans and Ida is less than m, or trans = blas_trans and lda is less than
n, an error flag is set and passed to the error handler. For the C bindings of GEMV, if order =
blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and passed to the

o4 CHAPTER 2. DENSE AND BANDED BLAS

error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than m, an error
flag is set and passed to the error handler. For the routine GBMV, if kl or ku is less than zero, or
if Ida is less than kl plus ku plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE gbmv(a, m, k1, x, y [, trans] [, alphal] [, betal])
<type>(<wp>), INTENT(IN) :: a(:,:), x(:)
INTEGER, INTENT(IN) :: m, k1
<type>(<wp>), INTENT(INOUT) :: y(:)
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
if trans = blas_no_trans then
x has shape (n)
y has shape (m)
else if trans =/ blas_no_trans then
x has shape (m)
y has shape (n)
end if

The functionality of gemv is covered by gemm.

Fortran 77 binding:

General:
SUBROUTINE BLAS_xGEMV(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
$ Y, INCY)

General Band:
SUBROUTINE BLAS_xGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA, X,

$ INCX, BETA, Y, INCY)
all:
INTEGER INCX, INCY, KL, KU, LDA, M, N, TRANS
<type> ALPHA, BETA
<type> ACLDA, *), X(*), Y(x)
C binding;:
General:

void BLAS_xgemv(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy);
General Band:
void BLAS_xgbmv(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, int k1, int ku, SCALAR_IN alpha, const ARRAY a,
int lda, const ARRAY x, int incx, SCALAR_IN beta,
ARRAY y, int incy);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 55

{SY,SB,SP}MV (Symmetric matrix vector product) y < Az + By with A = AT

The routines multiply a vector z by a real or complex symmetric matrix A, scales the resulting
vector and adds it to the scaled vector operand y. If n or k is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine SYMV, if Ida is less than
one or Ida is less than n, an error flag is set and passed to the error handler. For the routine SBMV,
if Ida is less than k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Symmetric Band:
SUBROUTINE sbmv(a, x, y [, uplo] [, alphal [, betal)
Symmetric Packed:
SUBROUTINE spmv(ap, x, y [, uplo] [, alphal [, betal)
all:
<type>(<wp>), INTENT(IN) :: <aa>, x(:)
<type>(<wp>), INTENT(INOUT) :: y(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
<aa> ::= a(:,:) or ap(:)
and
SB a has shape (k+1,n)
SP ap has shape (n*(n+1)/2)
x and y have shape (n)
(k=band width)

The funtionality of symv is covered by symm.

e Fortran 77 binding:

Symmetric:
SUBROUTINE BLAS_xSYMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY)
Symmetric Band:
SUBROUTINE BLAS_xSBMV(UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY)
Symmetric Packed:
SUBROUTINE BLAS_xSPMV(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

all:
INTEGER INCX, INCY, K, LDA, N, UPLO
<type> ALPHA, BETA
<type> AC LDA, *) or AP(*), X(*), Y(%)

e C binding:

56 CHAPTER 2. DENSE AND BANDED BLAS

Symmetric: !
void BLAS_xsymv(enum blas_order_type order, enum blas_uplo_type uplo, 2

int n, SCALAR_IN alpha, const ARRAY a, int 1lda, 3

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy); 4

Symmetric Band: 5
void BLAS_xsbmv(enum blas_order_type order, enum blas_uplo_type uplo, 6

int n, int k, SCALAR_IN alpha, const ARRAY a, int 1da, 7

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy); 8

Symmetric Packed: 9
void BLAS_xspmv(enum blas_order_type order, enum blas_uplo_type uplo, int n, 10
SCALAR_IN alpha, const ARRAY ap, const ARRAY x, int incx, 1

SCALAR_IN beta, ARRAY y, int incy); 12

13

14

{HE,HB,HP}MV (Hermitian matrix vector product) y < aAz + By with A = A# 15
16

The routines multiply a vector by a Hermitian matrix A, scales the resulting vector and adds 7

it to the scaled vector operand y. If n is less than or equal to zero or if beta is equal to one and alpha 18

is equal to zero, this routine returns immediately. The imaginary part of the diagonal entries of 19
the matrix operand are supposed to be zero and should not be referenced. As described in section 20
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to 2
zero, an error flag is set and passed to the error handler. For the routine HEMV, if Ida is less than 22

one or |da is less than n, an error flag is set and passed to the error handler. For the routine HBMV, 23
if Ida is less than k plus one, an error flag is set and passed to the error handler. 24
25

e Fortran 95 binding: 26
27

Hermitian Band: 28
SUBROUTINE hbmv(a, x, y [, uplo] [, alphal [, betal]) 29
Hermitian Packed: 30
SUBROUTINE hpmv(ap, x, y [, uplo] [, alphal [, betal) 31

all: 32
COMPLEX (<wp>) , INTENT(IN) :: <aa>, x(:) 33

COMPLEX (<wp>), INTENT(INOUT) :: y(:) 34

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo 35

COMPLEX (<wp>), INTENT(IN), OPTIONAL :: alpha, beta 36

where 37

<aa> ::= a(:,:) or ap(:) 38

and 39

HB a has shape (k+1,n) 40

HP ap has shape (n*(n+1)/2) a1

x and y have shape (n) 42

(k=band width) 43

44

The funtionality of hemv is covered by hemm. 45

46

e Fortran 77 binding:

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS o7

Hermitian:
SUBROUTINE BLAS_xHEMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY)
Hermitian Band:
SUBROUTINE BLAS_xHBMV(UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA,
$ Y, INCY)
Hermitian Packed:
SUBROUTINE BLAS_xHPMV(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

all:
INTEGER INCX, INCY, K, LDA, N, UPLO
<ctype> ALPHA, BETA
<ctype> ACLDA, *) or AP(*), X(*x), Y(*)
e C binding:
Hermitian:

void BLAS_xhemv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,
int incy);

Hermitian Band:

void BLAS_xhbmv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, CSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,
int incy);

Hermitian Packed:

void BLAS_xhpmv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY ap, const CARRAY x,
int incx, CSCALAR_IN beta, CARRAY y, int incy);

{TR,TB,TP}MV (Triangular matrix vector product) z 4+ oz, z + oIz or z < oTHz

The routines multiply a vector x by a general triangular matrix 7' or its transpose, or its
conjugate transpose, and copies the resulting vector in the vector operand z. If n is less than or
equal to zero, this routine returns immediately. As described in section 2.5.3, the value incx less
than zero is permitted. However, if incx is equal to zero, an error flag is set and passed to the error
handler. For the routine TRMV, if Idt is less than one or Idt is less than n, an error flag is set and
passed to the error handler. For the routine TBMV, if Idt is less than k plus one, an error flag is
set and passed to the error handler.

e Fortran 95 binding:

Triangular Band:

SUBROUTINE tbmv(t, x [, uplo]l [, trans] [, diag] [, alphal)
Triangular Packed:

SUBROUTINE tpmv(tp, x [, uplo]l [, trans] [, diag] [, alphal)
all:

o8

CHAPTER 2. DENSE AND BANDED BLAS

<type>(<wp>), INTENT(IN) :: <tt>
<type>(<wp>), INTENT(INOUT) :: =x(:)
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
where
<tt> :i:=t(:,:) or tp(:)
and
TB t has shape (k+1,n)
TP tp has shape (n*(n+1)/2)
x has shape (n)
(k=band width)

The funtionality of trmv is covered by trmm.

Fortran 77 binding:

Triangular:
SUBROUTINE BLAS_xTRMV(UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,
$ INCX)

Triangular Band:
SUBROUTINE BLAS_xTBMV(UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,
$ X, INCX)

Triangular Packed:

SUBROUTINE BLAS_xTPMV(UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX
all:

INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO

<type> ALPHA

<type> T(LDT, *) or TP(*), X(*)
C binding;:
Triangular:

void BLAS_xtrmv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
SCALAR_IN alpha, const ARRAY t, int 1dt, ARRAY x, int

Triangular Band:

void BLAS_xtbmv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int k, SCALAR_IN alpha, const ARRAY t, int 1dt, ARRAY
int incx);

Triangular Packed:

void BLAS_xtpmv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
SCALAR_IN alpha, const ARRAY tp, ARRAY x, int incx);

)

int n,
incx);

int n,

int n,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 59

GE_SUM_MV (Summed matrix vector multiplies) y < aAz + Bz

This routine adds the product of two scaled matrix vector products. It can be used to compute
the residual of an approximate eigenvector and eigenvalue of the generalized eigenvalue problem
Axx =A*Bxx. If mor n is less than or equal to zero, then this routine returns immediately.
As described in section 2.5.3, the value incx or incy less than zero is permitted. However, if incx
or incy is equal to zero, an error flag is set and passed to the error handler. If Ida is less than one
or Ida is less than m, or Idb is less than one or Idb is less than m, an error flag is set and passed
to the error handler. For the C bindings for GE_ SUM_MV, if order = blas rowmajor and if Ida is
less than one or Ida is less than n, or if Idb is less than one or Idb is less than n, an error flag is set
and passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less
than m, or if Idb is less than one or Idb is less than m, an error flag is set and passed to the error
handler.

e Fortran 95 binding:

SUBROUTINE ge_sum_mv(a, x, b, y [, alphal [, beta])
<type>(<wp>), INTENT (IN) :: a(:,:), b(:,:)
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (OUT) :: y(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
x has shape (n);

y has shape (m);
a and b have shape (m,n) for general matrices

e Fortran 77 binding:

SUBROUTINE BLAS_xGE_SUM_MV(M, N, ALPHA, A, LDA, X, INCX, BETA,

$ B, LDB, Y, INCY)
INTEGER INCX, INCY, LDA, LDB, M, N
<type> ALPHA, BETA
<type> AC LDA, *), BCLDB, *), X(*), Y(*)
e C binding:

void BLAS_xge_sum_mv(enum blas_order_type order, int m, int n,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta,
const ARRAY B, int 1db, ARRAY y, int incy);

GEMVT (Multiple matrix vector multiplies) z + BATY + z,w < Az

The routine combines a matrix vector and a transposed matrix vector multiply. It multiplies a
vector y by a general matrix A, scales the resulting vector and adds the result to z, storing the
result in the vector operand z. It then multiplies the matrix A by z, scales the resulting vector
and stores it in the vector operand w.

60 CHAPTER 2. DENSE AND BANDED BLAS

Advice to implementors. Note that x and w may be computed while passing A through the
top of the memory just once. This optimization, which accelerates algorithms like reducing a
symmetric matrix to tridiagonal form, is the justification for GEMVT, which could otherwise
be implemented by two calls to GEMV. (End of advice to implementors.)

If m or n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error flag is set and passed to the error handler. If Ida is less than
one or Ida is less than m, an error flag is set and passed to the error handler. For the C bindings,
if order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler; if order = blas _colmajor and if Ida is less than one or Ida is less than
m, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE gemvt(a, x, y, w, z [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: a(:,:)
<type>(<wp>), INTENT (IN) :: y(:), z(:)
<type>(<wp>), INTENT (OUT) :: x(:), w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
where
w and y have shape (m);
x and z have shape (n);
a has shape (m,n) for general matrix

e Fortran 77 binding:

SUBROUTINE BLAS_xGEMVT(M, N, ALPHA, A, LDA, X, INCX, Y, INCY,

$ BETA, W, INCW, Z, INCZ)
INTEGER INCW, INCX, INCY, INCZ, LDA, M, N
<type> ALPHA, BETA
<type> ACLDA, *), XC *), YC*), W(C*), Z(*)
e C binding:

void BLAS_xgemvt(enum blas_order_type order, int m, int n, SCALAR_IN alpha,
const ARRAY a, int 1lda, ARRAY x, int incx, const ARRAY y,
int incy, SCALAR_IN beta, ARRAY w, int incw, const ARRAY z,
int incz);

TRMVT (Multiple triangular matrix vector product) z+ TTy and w < Tz

The routine combines a matrix vector and a transposed matrix vector multiply. It multiplies
a vector y by a triangular matrix 77, storing the result as z. It also multiplies the matrix by the
vector z, storing the result as w.

Advice to implementors. Note that £ and w may be computed while passing T' through the
top of the memory just once. This optimization, which accelerates algorithms like reducing a
symmetric matrix to tridiagonal form, is the justification for TRMVT, which could otherwise
be implemented by two calls to TRMV. (End of advice to implementors.)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 61

If n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error flag is set and passed to the error handler. If Idt is less than
one or Idt is less than n, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE trmvt(t, x, y, w, z [, uplo])
<type>(<wp>), INTENT (IN) :: t(:,:)
<type>(<wp>), INTENT (IN) :: y(:), z(:)
<type>(<wp>), INTENT (OUT) :: x(:), w(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
where
W, X, y and z have shape (n);
t has shape (n,n).

e Fortran 77 binding:

SUBROUTINE BLAS_xTRMVT(UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW,

$ Z, INCZ)
INTEGER INCW, INCX, INCY, INCZ, LDT, N, UPLO
<type> T(C LDT, *), WC *), XC *), Y(C *x), Z(*)
e C binding:

void BLAS_xtrmvt(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY t, int 1dt, ARRAY x, int incx,
const ARRAY y, int incy, ARRAY w, int incw, const ARRAY z,
int incz);

GEMVER (Multiple matrix vector multiply with a rank 2 update)
A+ A+ uvl + ugvd and z — BATy + z and w + aAz

The routine precedes a combined matrix vector and a transposed matrix vector multiply by a
rank two update. A matrix A is updated by uyv? and uyvl . The transpose of the updated matrix
is multiplied by a vector y. The resulting vector is scaled and added to the vector operand z, and
stored in z . The operand z is multiplied by the updated matrix A. The resulting vector is scaled
and stored as w.

Advice to implementors. Note that /1, z and w may be computed while passing A through the
top of the memory just once. This optimization, which accelerates algorithms like reducing
a general matrix to bidiagonal form, is the justification for GEMVER, which could otherwise
be implemented by calls to other BLAS routines. (End of advice to implementors.)

If m or n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error flag is set and passed to the error handler. If Ida is less than

62 CHAPTER 2. DENSE AND BANDED BLAS

one or Ida is less than m, an error flag is set and passed to the error handler. For the C bindings,
if order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler; if order = blas _colmajor and if Ida is less than one or Ida is less than
m, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE gemver(a, ul, vi, u2, v2, x, y, z, w [, alphal [, betal])
<type>(<wp>), INTENT (IN) :: ul(:), u2(:), vi(:), v2(:), y(:), z(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:), x(:)
<type>(<wp>), INTENT (OUT) :: w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
ul, u2, w and y have shape (m);

vl, v2, x and z have shape (n);
a has shape (m,n).

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGEMVER(M, N, A, LDA, U1, Vi, U2, V2, ALPHA, X,
$ INCX, Y, INCY, BETA, W, INCW, Z, INCZ)
INTEGER INCW, INCX, INCY, INCZ, LDA, M, N
<type> ALPHA, BETA
<type> U1(>), Vi(=), U2(*), V2(*)
<type> ACLDA, *), WC *), XC*), Y(*), Z(*)
e C binding:
General:

void BLAS_xgemver(enum blas_order_type order, int m, int n, ARRAY a,
int lda, const ARRAY ul, const ARRAY vi,
const ARRAY u2, const ARRAY v2, SCALAR_IN alpha,
ARRAY x, int incx, const ARRAY y, int incy, ARRAY w,
int incw, SCALAR_IN beta, const ARRAY z, int incz);

{TR,TB,TP}SV (Triangular solve) ol 'z, 2+ T Tz

These routines solve one of the systems of equations z < oT 'z or z + aT Tz, where z is
a vector and the matrix 7" is a unit, non-unit, upper or lower triangular (or triangular banded or
triangular packed) matrix. If n is less than or equal to zero, this function returns immediately. As
described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error flag is set and passed to the error handler. For TRSV, if Idt is less than one or Idt is
less than n, an error flag is set and passed to the error handler. For TBSV, if Idt is less than one or
Idt is less than k plus one, an error flag is set and passed to the error handler.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 63

Advice to implementors. Note that no check for singularity, or near singularity is specified
for these triangular equation-solving routines. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver. (End of advice to implementors.)

e Fortran 95 binding:

Triangular Band:
SUBROUTINE tbsv(t, x [, uplo] [, trans] [, diagl [, alphal])
Triangular Packed:
SUBROUTINE tpsv(tp, x [, uplo]l [, trans] [, diag] [, alphal)
all:
<type>(<wp>), INTENT(IN) :: <tt>
<type>(<wp>), INTENT(INOUT) :: x(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
where
<tt> ::=t(:,:) or tp(:)
and
x has shape (n)
TB t has shape (k+1,n)
TP tp has shape (n*(n+1)/2)
(k=band width)

The funtionality of trsv is covered by trsm.

e Fortran 77 binding:

Triangular:
SUBROUTINE BLAS_xTRSV(UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,
$ INCX)
Triangular Band:
SUBROUTINE BLAS_xTBSV(UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,
$ X, INCX)
Triangular Packed:
SUBROUTINE BLAS_xTPSV(UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX)

all:
INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO
<type> ALPHA
<type> T(LDT, *) or TP(*), X(*)
e C binding:
Triangular:

void BLAS_xtrsv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, SCALAR_IN alpha, const ARRAY t, int 1dt,

64 CHAPTER 2. DENSE AND BANDED BLAS

ARRAY x, int incx);

Triangular Band:

void BLAS_xtbsv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, SCALAR_IN alpha, const ARRAY t, int 1dt,
ARRAY x, int incx);

Triangular Packed:

void BLAS_xtpsv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, SCALAR_IN alpha, const ARRAY tp, ARRAY x,
int incx);

GER (Rank one update) A € IR"Q, A—azy" +BA A E@’”Z,A — azy’ + A or A« azy® + pA

This routine performs the rank 1 operation A < azy” + A where o and f are scalars, and
y are vectors, and and A is a matrix. If m or n is less than or equal to zero or if beta is equal to
one and alpha is equal to zero, this function returns immediately. As described in section 2.5.3,
the value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero,
an error flag is set and passed to the error handler. If Ida is less than one or Ida is less than m, an
error flag is set and passed to the error handler. For the C bindings, if order = blas_rowmajor
and if Ida is less than one or Ida is less than n, an error flag is set and passed to the error handler;
if order = blas_colmajor and if Ida is less than one or Ida is less than m, an error flag is set and
passed to the error handler.

The operator argument conj is only referenced when x and y are complex vectors. When z and
y are complex vectors, the vector components y; are used unconjugated or conjugated as specified
by the operator argument conj.

e Fortran 95 binding: Refer to GEMM specification

e Fortran 77 binding:

SUBROUTINE BLAS_xGER(CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA,

$ A, LDA)
INTEGER CONJ, INCX, INCY, LDA, M, N
<type> ALPHA, BETA
<type> ACLDA, *), X(C*), Y(*)
e C binding:

void BLAS_xger(enum blas_order_type order, enum blas_conj_type conj,
int m, int n, SCALAR_IN alpha, const ARRAY x, int incx,
const ARRAY y, int incy, SCALAR_IN beta, ARRAY a, int 1lda);

{SY,SP}R (Symmetric Rank One Update) A+ azz? + BA with A = AT

The routine performs the symmetric rank-1 update A = azz’ + SA, where o and 3 are scalars,
x is a vector and A is a symmetric (symmetric packed) matrix. This routine returns immediately

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

2.8. LANGUAGE BINDINGS

if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero. As described in
section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error
flag is set and passed to the error handler. If Ida is less than one or Ida is less than n, an error flag

is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routines xSYR and xSPR with added functionality

for complex symmetric matrices.

e Fortran 95 binding:

Symmetric Packed:

SUBROUTINE spr(x, ap [, uplo] [, trans] [, alphal [, beta])

<type>(<wp>), INTENT(IN) :: x(:)

<type>(<wp>), INTENT(INOUT) :: ap(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x has shape (n)
ap has shape (n*(n+1)/2)

The functionality of syr is covered by syrk.

e Fortran 77 binding:

Symmetric:

SUBROUTINE BLAS_xSYR(UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

Symmetric Packed:

SUBROUTINE BLAS_xSPR(UPLO, N, ALPHA, X, INCX, BETA, AP)

all:
INTEGER INCX, LDA, N, UPLO
<type> ALPHA, BETA
<type> A(C LDA, *) or AP(*), X(*)
e C binding:
Symmetric:

void BLAS_xsyr(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY a, int 1lda);

Symmetric Packed:
void BLAS_xspr(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY ap);

{HE,HP}R (Hermitian Rank One Update)

The routine performs the Hermitian rank-1 update A = azz + SA, where o and 3 are real
scalars, z is a complex vector and A is a Hermitian (Hermitian packed) matrix. This routine returns

A+ azzt + BA with A = A

66 CHAPTER 2. DENSE AND BANDED BLAS

immediately if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero.
As described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error flag is set and passed to the error handler. If Ida is less than one or Ida is less than
n, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Hermitian Packed:

SUBROUTINE hpr(x, ap [, uplo] [, trans] [, alphal [, betal)
COMPLEX (<wp>) , INTENT(IN) :: x(:)
COMPLEX (<wp>), INTENT(INOUT) :: ap(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
REAL(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x has shape (n)

ap has shape (n*(n+1)/2)

The functionality of her is covered by herk.

e Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHER(UPLO, N, ALPHA, X, INCX, BETA, A, LDA)
Hermitian Packed:

SUBROUTINE BLAS_xHPR(UPLO, N, ALPHA, X, INCX, BETA, AP)

all:
INTEGER INCX, LDA, N, UPLOD
<rtype> ALPHA, BETA
<ctype> AC LDA, *) or AP(*), X(*)
e C binding:
Hermitian:

void BLAS_xher(enum blas_order_type order, enum blas_uplo_type uplo,
int n, RSCALAR_IN alpha, const CARRAY x, int incx,
RSCALAR_IN beta, CARRAY a, int 1lda);

Hermitian Packed:

void BLAS_xhpr(enum blas_order_type order, enum blas_uplo_type uplo,
int n, RSCALAR_IN alpha, const CARRAY x, int incx,
RSCALAR_IN beta, CARRAY ap);

{SY,SP}R2 (Symmetric Rank two update) A < azy” + ayz” + BA with A = AT

The routine performs the symmetric rank-2 update A = azy’ + ayz? + BA, where o and S
are scalars, z is a vector and A is a symmetric (symmetric packed) matrix. This routine returns
immediately if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero.
As described in section 2.5.3, the value incx or incy less than zero is permitted. However, if either

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

®

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

2.8. LANGUAGE BINDINGS 67

incx or incy is equal to zero, an error flag is set and passed to the error handler. If Ida is less than
one or lda is less than n, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routines xSYR2 and xSPR2 with added function-
ality for complex symmetric matrices.

e Fortran 95 binding:

Symmetric Packed:

SUBROUTINE spr2(x, y, ap [, uplo] [, trans] [, alphal] [, betal])
<type>(<wp>), INTENT(IN) :: x(:), y(:)
<type>(<wp>), INTENT(INOUT) :: ap(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x and y have shape (n)

ap has shape (n*(n+1)/2)

The functionality of syr2 is covered by syr2k.

e Fortran 77 binding:

Symmetric:
SUBROUTINE BLAS_xSYR2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A,
$ LDA)

Symmetric Packed:
SUBROUTINE BLAS_xSPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA,

$ AP)
all:
INTEGER INCX, LDA, N, UPLO
<type> ALPHA, BETA
<type> ACLDA, *) or AP(*), X(*), Y(*)
e C binding:
Symmetric:

void BLAS_xsyr2(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,

const ARRAY y, int incy, SCALAR_IN beta, ARRAY a, int lda);
Symmetric Packed:
void BLAS_xspr2(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,

const ARRAY y, int incy, SCALAR_IN beta, ARRAY ap);

{HE,HP}R2 (Hermitian Rank two update) A+ azy® + ayz® + BA with A = AH

The routine performs the Hermitian rank-2 update A = azy? + ayz + BA, where o is a
complex scalar and and £ is a real scalar, £ and y are complex vectors and A is a Hermitian

68 CHAPTER 2. DENSE AND BANDED BLAS

(Hermitian packed) matrix. This routine returns immediately if n is less than or equal to zero or
if beta is equal to one and alpha is equal to zero. As described in section 2.5.3, the value incx or
incy less than zero is permitted. However, if either incx or incy is equal to zero, an error flag is set
and passed to the error handler. If Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler.

e Fortran 95 binding:

Hermitian Packed:

SUBROUTINE hpr2(x, y, ap [, uplo] [, trans] [, alphal] [, beta])
COMPLEX (<wp>), INTENT(IN) :: x(:), y(:)
COMPLEX (<wp>) , INTENT(INOUT) :: ap(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>) , INTENT(IN), OPTIONAL :: alpha, beta

where

x and y have shape (n)

ap has shape (n*(n+1)/2)

The functionality of her2 is covered by her2k.

e Fortran 77 binding:

Hermitian:
SUBROUTINE BLAS_xHER2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A,
$ LDA)

Hermitian Packed:
SUBROUTINE BLAS_xHPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA,

$ AP)
all:
INTEGER INCX, LDA, N, UPLO
<ctype> ALPHA
<rtype> BETA
<ctype> ACLDA, *) or AP(*), X(*), Y(*)
e C binding:
Hermitian:

void BLAS_xher2(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY x, int incx,
const CARRAY y, int incy, RSCALAR_IN beta, CARRAY a,
int 1lda);

Hermitian Packed:

void BLAS_xhpr2(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY x, int incx,
const CARRAY y, int incy, RSCALAR_IN beta, CARRAY ap);

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 69

2.8.7 Matrix Operations
{GE,GB,SY,HE,SB,HB,SP,HP,TR,TB,TP}_NORM (Matrix norms)

< |[All1; [[All1r; [[All7s [[Alloo, [|Alloors [|Allmazs or ||Allmazr

These routines compute the one-norm, real one-norm, Frobenius-norm, infinity-norm, real
infinity-norm, max-norm, or real max-norm of a general matrix A depending on the value passed
as the norm operator argument. This routine returns immediately with the output scalar r set to
zero if m (for nonsymmetric matrices) or n or kl or ku (for band matrices) or k (for symmetric
band matrices) is less than or equal to zero. The resulting scalar r is always real and as defined in
section 2.1.3. If norm = blas_two_norm, requesting the two-norm of a matrix, an error flag is set
and passed to the error handler. The only exception to this rule is if the matrix is a single column
or a single row, whereby the Frobenius-norm is returned since the two-norm and Frobenius-norm
of a vector are identical. For the routine GE_ZNORM, if Ida is less than one or Ida is less than m,
an error flag is set and passed to the error handler. For the C bindings of GE_ZNORM, if order =
blas rowmajor and if |da is less than one or Ida is less than n, an error flag is set and passed to
the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than m, an
error flag is set and passed to the error handler. For the routine GB_NORM, if Ida is less than ki
plus ku plus one, an error flag is set and passed to the error handler. For the routines SY_ NORM,
HE_NORM, and TR_NORM, if Ida is less than one or Ida is less than n, an error flag is set and passed
to the error handler. For the routines SB_LNORM, HB_NORM, and TB_NORM, if Ida is less than k
plus one, an error flag is set and passed to the error handler.

Advice to implementors. High-quality implementations of these routines should be accu-
rate. The subroutines SLANGB, SLANGE, SLANGT, SLANHS, SLANSB, SLANSP, SLANST,
SLANSY, SLANTB, SLANTP, and SLANTR, of the LAPACK [6] software library are examples
of accurate implementations. High-quality implementations should document the accuracy of
the algorithms used in this routine so as to alleviate the portability problems this represents.
(End of advice to implementors.)

e Fortran 95 binding:

General:

REAL (<wp>) FUNCTION ge_norm(a [, norm])
General Band:

REAL (<wp>) FUNCTION gb_norm(a, m, k1 [, norm])
Symmetric:

REAL (<wp>) FUNCTION sy_norm(
Hermitian:

REAL (<wp>) FUNCTION he_norm(a [, norm] [, uplo])
Symmetric Band:

REAL (<wp>) FUNCTION sb_norm(a [, norm] [, uplo])
Hermitian Band:

REAL (<wp>) FUNCTION hb_norm(a [, norm] [, uplo])
Symmetric Packed:

REAL (<wp>) FUNCTION sp_norm(ap [, norm] [, uplo])
Hermitian Packed:

REAL (<wp>) FUNCTION hp_norm(ap [, norm] [, uplo])

norm] [, uplo])

)
™

70

Triangular:

CHAPTER 2. DENSE AND BANDED BLAS

REAL (<wp>) FUNCTION tr_norm(a [, norm] [, uplo] [, diag])

Triangular Band:

REAL (<wp>) FUNCTION tb_norm(a [, norm] [, uplo] [, diagl)

Triangular Packed:

REAL (<wp>) FUNCTION tp_norm(ap [, norm] [, uplo] [, diag])

all:

<type>(<wp>), INTENT (IN)

INTEGER, INTENT (IN) :: m, k1

TYPE (blas_norm_type), INTENT (IN), OPTIONAL ::
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL ::
TYPE (blas_diag_type), INTENT (IN), OPTIONAL ::

where

a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
(n,n) for symmetric, Hermitian or triangular
(k+1,n) for symmetric banded, Hermitian banded

or triangular banded (k=band width)

ap has shape (n*x(n+1)/2).

Fortran 77 binding:

General:

<rtype> FUNCTION
General Band:

<rtype> FUNCTION
Symmetric:

<rtype> FUNCTION
Hermitian:

<rtype> FUNCTION
Symmetric Band:

<rtype> FUNCTION
Hermitian Band:

<rtype> FUNCTION
Symmetric Packed:

<rtype> FUNCTION
Hermitian Packed:

<rtype> FUNCTION
Triangular:

<rtype> FUNCTION
Triangular Band:

<rtype> FUNCTION
Triangular Packed:

<rtype> FUNCTION
all:

INTEGER

<type>

BLAS_xGE_NORM(NORM, M, N,
BLAS_xGB_NORM(NORM, M, N,
BLAS_xSY_NORM(NORM, UPLO,
BLAS_xHE_NORM(NORM, UPLO,
BLAS_xSB_NORM(NORM, UPLO,
BLAS_xHB_NORM(NORM, UPLO,
BLAS_xSP_NORM(NORM, UPLO,
BLAS_xHP_NORM(NORM, UPLO,
BLAS_xTR_NORM(NORM, UPLO,
BLAS_xTB_NORM(NORM, UPLO,
BLAS_xTP_NORM(NORM, UPLO,

DIAG, K, KL, KU, LDA, M,

AC LDA, *) or AP(*)

taC:,:) | ap(:)

norm
uplo
diag

A, LDA)

KL, KU, A, LDA)
N, A, LDA)

N, A, LDA)

N, K, A, LDA)
N, K, A, LDA)

N, AP)

DIAG, N, A, LDA)
DIAG, N, K, A, LDA)
DIAG, N, AP)

N, NORM, UPLO

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 71

e C binding:

General:
void BLAS_xge_norm(

General Band:

void BLAS_xgb_norm(

Symmetric:
void BLAS_xsy_norm(

Hermitian:
void BLAS_xhe_norm(

Symmetric Band:
void BLAS_xsb_norm(

Hermitian Band:
void BLAS_xhb_norm(

Symmetric Packed:
void BLAS_xsp_norm(

Hermitian Packed:
void BLAS_xhp_norm(

Triangular:
void BLAS_xtr_norm(

Triangular Band:
void BLAS_xtb_norm(

Triangular Packed:
void BLAS_xtp_norm(

enum blas_order_type order, enum blas_norm_type norm,
int m, int n, const ARRAY a, int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
int m, int n, int kl, int ku, const ARRAY a, int lda,
RSCALAR_INQUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, const ARRAY a,
int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, const CARRAY a,
int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, int k, const ARRAY a,
int 1lda, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, int k, const CARRAY a,
int 1lda, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, const ARRAY ap,
RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, const CARRAY ap,
RSCALAR_INQUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,
int n, const ARRAY a, int 1lda, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,
int n, int k, const ARRAY a, int 1lda, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,
int n, const ARRAY ap, RSCALAR_INOUT r);

72 CHAPTER 2. DENSE AND BANDED BLAS

{GE,GB}_DIAG_SCALE (Diagonal scaling) A« DA, AD with D diagonal

These routines scale a general (or banded) matrix A on the left side or the right side by a
diagonal matrix D. This routine returns immediately if m or n or kl or ku (for band matrices) is
less than or equal to zero. As described in section 2.5.3, the value incd less than zero is permitted.
However, if incd is equal to zero, an error flag is set and passed to the error handler. For the
routine GE_DIAG_SCALE, if Ida is less than one or Ida is less than m, an error flag is set and passed
to the error handler. For the C bindings of GE_DIAG_SCALE, if order = blas_rowmajor and if Ida
is less than one or Ida is less than n, an error flag is set and passed to the error handler; if order
= blas_colmajor and if Ida is less than one or Ida is less than m, an error flag is set and passed to
the error handler. For the routine GB_DIAG_SCALE, if Ida is less than kl plus ku plus one, an error
flag is set and passed to the error handler.

e Fortran 95 binding:

General:
SUBROUTINE ge_diag_scale(d, a [, side])
General Band:
SUBROUTINE gb_diag_scale(d, a, m, k1 [, side])
all:
<type>(<wp>), INTENT (IN) :: d(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:)
INTEGER, INTENT (IN) :: m, k1
TYPE (blas_side_type), INTENT (IN), OPTIONAL :: side
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
d has shape (p) where p = m if side = blas_left_side
p = n if side = blas_right_side

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_DIAG_SCALE(SIDE, M, N, D, INCD, A, LDA)
General Band:

SUBROUTINE BLAS_xGB_DIAG_SCALE(SIDE, M, N, KL, KU, D, INCD, A,

$ LDA)
all:
INTEGER INCD, KL, KU, LDA, M, N, SIDE
<type> ACLDA, *), D(*)
e C binding:
General:

void BLAS_xge_diag_scale(enum blas_order_type order,
enum blas_side_type side, int m, int n,
const ARRAY d, int incd, ARRAY a, int 1lda);
General Band:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 73

void BLAS_xgb_diag_scale(enum blas_order_type order,
enum blas_side_type side, int m, int n, int k1,
int ku, const ARRAY d, int incd, ARRAY a, int 1lda);

{GE,GB}_LRSCALE (Two-sided diagonal scaling) A<+ DL ADpg

These routines scale a general (or banded) matrix A on the left side by a diagonal matrix Dy,
and on the right side by a diagonal matrix Dg. This routine returns immediately if m or n or kl or
ku (for band matrices) is less than or equal to zero. As described in section 2.5.3, the value incdl or
incdr less than zero is permitted. However, if either incdl or incdr is equal to zero, an error flag is set
and passed to the error handler. For the routine GE_LRSCALE, if Ida is less than one or Ida is less
than m, an error flag is set and passed to the error handler. For the C bindings of GE_LRSCALE,
if order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler; if order = blas _colmajor and if Ida is less than one or Ida is less than
m, an error flag is set and passed to the error handler. For the routine GB_LRSCALE, if Ida is less
than kl plus ku plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

General:
SUBROUTINE ge_lrscale(dl1, dr, a)
General Band:
SUBROUTINE gb_lrscale(d1, dr, a, m, k1)
all:
<type>(<wp>), INTENT (IN) :: d1(:), dr(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:)
INTEGER, INTENT (IN) :: m, k1
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
dl has shape (m)
dr has shape (n)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_LRSCALE(M, N, DL, INCDL, DR, INCDR, A, LDA)
General Band:

SUBROUTINE BLAS_xGB_LRSCALE(M, N, KL, KU, DL, INCDL, DR, INCDR,

$ A, LDA)

all:
INTEGER INCDL, INCDR, KL, KU, LDA, M, N
<type> AC LDA, *), DL(*), DR(*)

e C binding:

74 CHAPTER 2. DENSE AND BANDED BLAS

General:

void BLAS_xge_lrscale(enum blas_order_type order, int m, int n,
const ARRAY dl, int incdl, const ARRAY dr,
int incdr, ARRAY a, int 1lda);

General Band:

void BLAS_xgb_lrscale(enum blas_order_type order, int m, int n, int k1,
int ku, const ARRAY dl, int incdl, const ARRAY dr,
int incdr, ARRAY a, int 1lda);

{SY,SB,SP}_ LRSCALE (Two-sided diagonal scaling of a symmetric matrix)
A+ DAD with A = A"

These routines perform a two-sided scaling of a symmetric (or symmetric banded or symmetric
packed) matrix A by a diagonal matrix D. This routine returns immediately if n or k (for symmetric
band matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than
zero is permitted. However, if incd is equal to zero, an error flag is set and passed to the error
handler. For the routines SY_LRSCALE and SP_LRSCALE, if Ida is less than one or Ida is less than
n, an error flag is set and passed to the error handler. For the routine SB_LRSCALE, if Ida is less
than k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Symmetric:
SUBROUTINE sy_lrscale(d, a [, uplo])
Symmetric Band:
SUBROUTINE sb_lrscale(d, a [, uplo])
Symmetric Packed:
SUBROUTINE sp_lrscale(d, ap [, uplo])
all:
<type>(<wp>), INTENT (IN) :: d4(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:) | ap(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
where
a has shape (n,n) for symmetric
(k+1,n) for symmetric banded (k=band width)
ap has shape (n*(n+1)/2).
d has shape (n)

e Fortran 77 binding:

Symmetric:

SUBROUTINE BLAS_xSY_LRSCALE(UPLO, N, D, INCD, A, LDA)
Symmetric Band:

SUBROUTINE BLAS_xSB_LRSCALE(UPLO, N, K, D, INCD, A, LDA)
Symmetric Packed:

SUBROUTINE BLAS_xSP_LRSCALE(UPLO, N, D, INCD, AP)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 75

all:
INTEGER
<type>

e C binding:

Symmetric:

INCD, K, LDA, N, UPLO
AC LDA, *) or AP(*), D(*)

void BLAS_xsy_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,

Symmetric Band:

int n, const ARRAY d, int incd, ARRAY a, int 1lda);

void BLAS_xsb_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,

Symmetric Packed:

int n, int k, const ARRAY d, int incd, ARRAY a,
int 1da);

void BLAS_xsp_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,

int n, const ARRAY d, int incd, ARRAY ap);

{HE,HB,HP}_LRSCALE (Two-sided diagonal scaling of a Hermitian matrix)

A+ DADY with A = A"

These routines perform a two-sided scaling of a Hermitian (or Hermitian banded or Hermitian
packed) matrix A by a diagonal matrix D. This routine returns immediately if n or k (for Hermitian
band matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than
zero is permitted. However, if incd is equal to zero, an error flag is set and passed to the error
handler. For the routines HE_LRSCALE, if Ida is less than one or Ida is less than n, an error flag is
set and passed to the error handler. For the routine HB_LRSCALE, if Ida is less than k plus one, an
error flag is set and passed to the error handler.

e Fortran 95 binding:

Hermitian:

SUBROUTINE he_lrscale(d, a [, uplo])

Hermitian Band:

SUBROUTINE hb_lrscale(d, a [, uplo])

Hermitian Packed:

SUBROUTINE hp_lrscale(d, ap [, uplo])

all:

COMPLEX (<wp>), INTENT (IN) :: d(:)
COMPLEX (<wp>), INTENT (INOUT) :: a(:,:) | ap(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo

where

a has shape (n,n) for Hermitian

(k+1,n) for Hermitian banded (k=band width)

ap has shape (n*(n+1)/2).
d has shape (n)

e Fortran 77 binding:

76 CHAPTER 2. DENSE AND BANDED BLAS

Hermitian:

SUBROUTINE BLAS_xHE_LRSCALE(UPLO, N, D, INCD, A, LDA)
Hermitian Band:

SUBROUTINE BLAS_xHB_LRSCALE(UPLO, N, K, D, INCD, A, LDA)
Hermitian Packed:

SUBROUTINE BLAS_xHP_LRSCALE(UPLO, N, D, INCD, AP)

all:
INTEGER INCD, K, LDA, N, UPLO
<ctype> A(LDA, *) or AP(*), D(*)
e C binding:
Hermitian:

void BLAS_xhe_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY d, int incd, ARRAY a, int 1lda);

Hermitian Band:

void BLAS_xhb_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const ARRAY d, int incd, ARRAY a,
int 1da);

Hermitian Packed:

void BLAS_xhp_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY d, int incd, ARRAY ap);

{GE,GB}_DIAG_SCALE_ACC (Diagonal scaling and accumulation) A« A+BD

These routines perform the diagonal scaling of a general (or banded) matrix B and accumulate
the result in the matrix A. This routine returns immediately if m or n or kl or ku (for band
matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than zero
is permitted. However, if incd is equal to zero, an error flag is set and passed to the error handler.
For the routine GE_DIAG_SCALE_ACC, if Ida or Idb is less than one or Ida or Idb is less than m, an
error flag is set and passed to the error handler. For the C bindings of GE_DIAG_SCALE_ACC, if
order = blas_rowmajor and if I[da or Idb is less than one or Ida or Idb is less than n, an error flag
is set and passed to the error handler; if order = blas colmajor and if Ida or Idb is less than one
or Ida or Idb is less than m, an error flag is set and passed to the error handler. For the routine
GB_DIAG_SCALE_ACC, if Ida is less than kl plus ku plus one, an error flag is set and passed to the
error handler.

e Fortran 95 binding:

General:
SUBROUTINE ge_diag_scale_acc(b, d, a)
Band:
SUBROUTINE gb_diag_scale_acc(b, m, k1, d, a)
all:
<type>(<wp>), INTENT (IN) :: b(:,:), d(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:)
INTEGER, INTENT (IN) :: m, k1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 7

where
a has shape (m,n)
b has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > kl)
d has shape (n)

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGE_DIAG_SCALE_ACC(M, N, B, LDB, D, INCD, A,
$ LDA)

Band:
SUBROUTINE BLAS_xGB_DIAG_SCALE_ACC(M, N, KL, KU, B, LDB, D, INCD,
$ A, LDA)

all:
INTEGER INCD, KL, KU, LDA, LDB, M, N
<type> AC LDA, *), BCLDB, *), D(*)

e C binding:
General:

void BLAS_xge_diag_scale_acc(enum blas_order_type order, int m, int n,
const ARRAY b, int 1db, const ARRAY d,
int incd, ARRAY a, int lda);

General Band:

void BLAS_xgb_diag_scale_acc(enum blas_order_type order, int m, int n,
int k1, int ku, const ARRAY b, int 1db,
const ARRAY d, int incd, ARRAY a, int 1lda);

{GE,SY,SB,SP}_ACC (Matrix accumulation and scale) B+ aA+ BB, B+ aA” + 8B

These routines scale a matrix A (or its transpose) and scale a matrix B and accumulate the
result in the matrix B. Matrices A and B have the same storage format. These routines return
immediately if alpha is equal to zero and beta is equal to one, or if m (for nonsymmetric matrices)
or n or k (for symmetric band matrices) is less than or equal to zero. As described in section 2.5.3,
for the routine GE_ACC, if |da or Idb is less than one or Ida or Idb is less than m, an error flag is set
and passed to the error handler. For the C bindings for GE_ACC, if order = blas_rowmajor and
if Ida or Idb is less than one or |da or Idb is less than n, an error flag is set and passed to the error
handler; if order = blas_colmajor and if Ida or Idb is less than one or Ida or Idb is less than m, an
error flag is set and passed to the error handler. For the routine SY_ACC, if Ida or Idb is less than
one or Ida or Idb is less than n, an error flag is set and passed to the error handler. For the routine
SB_ACC, if Ida or Idb is less than k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

General:
SUBROUTINE ge_acc(a, b [, trans] [, alphal [, betal)

78

CHAPTER 2. DENSE AND BANDED BLAS

Symmetric:
SUBROUTINE sy_acc(a, b [, uplo] [, trans] [, alphal [, betal)
Symmetric Band:
SUBROUTINE sb_acc(a, b [, uplo]l [, trans] [, alphal [, betal)
Symmetric Packed:
SUBROUTINE sp_acc(ap, bp [, uplo]l [, trans] [, alphal [, betal)
all:
<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)
<type>(<wp>), INTENT(INOUT) :: b(:,:) | bp(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT (IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

The default value for 5 is 1.0 or (1.0,0.0).

Fortran 77 binding:

General:
SUBROUTINE BLAS_xGE_ACC(TRANS, M, N, ALPHA, A, LDA, BETA, B,
$ LDB)
Symmetric:
SUBROUTINE BLAS_xSY_ACC(UPLO, TRANS, N, ALPHA, A, LDA, BETA, B,
$ LDB)

Symmetric Band:
SUBROUTINE BLAS_xSB_ACC(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
$ B, LDB)

Symmetric Packed:
SUBROUTINE BLAS_xSP_ACC(UPLO, TRANS, N, ALPHA, AP, BETA, BP)

all:

INTEGER K, LDA, LDB, M, N, TRANS, UPLD

<type> ALPHA, BETA

<type> A(C LDA, *) or AP(*), B(LDB, *) or BP(*)
C binding:
General:

void BLAS_xge_acc(enum blas_order_type order, enum blas_trans_type trauns,
int m, int n, SCALAR_IN alpha, const ARRAY a, int 1lda,
SCALAR_IN beta, ARRAY b, int 1db);
Symmetric:
void BLAS_xsy_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, SCALAR_IN alpha,
const ARRAY a, int 1lda, SCALAR_IN beta, ARRAY b, int 1db);
Symmetric Band:
void BLAS_xsb_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k, SCALAR_IN alpha,
const ARRAY a, int 1lda, SCALAR_IN beta, ARRAY b, int 1db);
Symmetric Packed:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 79

void BLAS_xsp_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, SCALAR_IN alpha,
const ARRAY ap, SCALAR_IN beta, ARRAY bp);

{GB,TR,TB,TP}_ACC (Matrix accumulation and scale) B+ aA+ BB

These routines scale matrices A and B and accumulate the result in the matrix B. Matrices A
and B have the same storage format. These routines return immediately if alpha is equal to zero
and beta is equal to one, or if m or ki or ku (for general band matrices) or n or k (for triangular band
matrices) is less than or equal to zero. For the routine GB_ACC, if Ida is less than kl plus ku plus
one, an error flag is set and passed to the error handler. For the routines TR_ACC and TP_ACC, if
Ida is less than one or Ida is less than n, an error flag is set and passed to the error handler. For the
routine TB_ACC, if Ida is less than k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

General Band:
SUBROUTINE gb_acc(a, m, k1, b [, alphal] [, betal)
Triangular:
SUBROUTINE tr_acc(a, b [, uplo] [, diag]l [, alphal [, betal)
Triangular Band:
SUBROUTINE tb_acc(a, b [, uplo] [, diag]l [, alphal [, betal)
Triangular Packed:
SUBROUTINE tp_acc(ap, bp [, uplo] [, diag] [, alphal] [, betal])
all:
<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)
INTEGER, INTENT (IN) :: m, k1
<type>(<wp>), INTENT(INOUT) :: b(:,:) | bp(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
TYPE (blas_diag_type), INTENT (IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

The default value for 3 is 1.0 or (1.0,0.0).
e Fortran 77 binding:

General Band:
SUBROUTINE BLAS_xGB_ACC(M, N, KL, KU, ALPHA, A, LDA, BETA, B,

$ LDB)
Triangular:
SUBROUTINE BLAS_xTR_ACC(UPLO, DIAG, N, ALPHA, A, LDA, BETA, B,
$ LDB)

Triangular Band:
SUBROUTINE BLAS_xTB_ACC(UPLO, DIAG, N, K, ALPHA, A, LDA, BETA, B,
$ LDB)

Triangular Packed:
SUBROUTINE BLAS_xTP_ACC(UPLO, DIAG, N, ALPHA, AP, BETA, BP)

80 CHAPTER 2. DENSE AND BANDED BLAS

all:
INTEGER DIAG, K, KL, KU, LDA, LDB, M, N, UPLO
<type> ALPHA, BETA
<type> AC LDA, *) or AP(*), B(LDB, *) or BP(*)
e C binding:

General Band:
void BLAS_xgb_acc(enum blas_order_type order, int m, int n, int k1, int ku,
SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,
ARRAY b, int 1db);
Triangular:
void BLAS_xtr_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY a, int 1da, SCALAR_IN beta, ARRAY b, int 1db);
Triangular Band:
void BLAS_xtb_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k, SCALAR_IN alpha,
const ARRAY a, int 1da, SCALAR_IN beta, ARRAY b, int 1db);
Triangular Packed:
void BLAS_xtp_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY ap, SCALAR_IN beta, ARRAY bp);

{GE,GB,SY,SB,SP,TR,TB,TP}_ADD (Matrix add and scale) C <~ aA+ BB

This routine scales two matrices A and B and stores their sum in a matrix C. Matrices A, B,
and C have the same storage format. This routine returns immediately if m or kl or ku (for general
band matrices) or n or k (for symmetric or triangular band matrices) is less than or equal to zero.
For the routine GE_ADD, if Ida or Idb is less than one or less than m, an error flag is set and passed
to the error handler. For the C bindings for GE_ADD, if order = blas rowmajor and if Ida or Idb
is less than one or Ida or Idb is less than n, an error flag is set and passed to the error handler; if
order = blas colmajor and if Ida or Idb is less than one or Ida or Idb is less than m, an error flag
is set and passed to the error handler. For the routine GB_ADD, if Ida or Idb is less than kl plus ku
plus one, an error flag is set and passed to the error handler. For the routines SY_ADD, TR_ADD,
SP_ADD, and TP_ADD, if Ida or Idb is less than one or Ida or Idb is less than n, an error flag is set
and passed to the error handler. For the routines SB_ADD and TB_ADD, if Ida or Idb is less than
k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

General:

SUBROUTINE ge_add(a, b, ¢ [, alphal [, beta])
General Band:

SUBROUTINE gb_add(a, m, k1, b, ¢ [, alphal [, beta])
Symmetric:

SUBROUTINE sy_add(a, b, ¢ [, uplo] [, alphal] [, betal)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Symmetric Band:

2.8. LANGUAGE BINDINGS

SUBROUTINE sb_add(a, b, ¢ [, uplo] [, alphal [, betal)

Symmetric Packed:

SUBROUTINE sp_add(ap, bp, cp [, uplo]l [, alphal [, betal)

Triangular:

SUBROUTINE tr_add(a, b, ¢ [, uplo]l [, diag]l [, alphal [, betal)

Triangular Band:

SUBROUTINE tb_add(a, b, ¢ [, uplo]l [, diagl [, alphal [, betal)
Triangular Packed:
SUBROUTINE tp_add(ap, bp, cp [, uplo]l [, diagl [, alphal [, betal)

all:

<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)
INTEGER, INTENT (IN) :: m, kl

<type>(<wp>), INTENT(IN) :: b(:,:) | bp(:)
<type>(<wp>), INTENT(OUT) :: c(:,:) | cp(:)

TYPE (blas_
TYPE (blas_

uplo_type), INTENT (IN), OPTIONAL :: uplo
diag_type), INTENT (IN), OPTIONAL :: diag

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
assuming A,

B and C all the same (general, banded or packed) with

the same size.

a, b and ¢

ap, bp and

have shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
(n,n) for symmetric or triangular
(k+1,n) for symmetric banded or triangular
banded (k=band width)
cp have shape (n*x(n+1)/2).

The default value for 8 is 1.0 or (1.0,0.0).

Fortran 77 binding:

General:
SUBROUTINE
$

General Band:
SUBROUTINE
$

Symmetric:
SUBROUTINE
$

Symmetric Band:
SUBROUTINE
$

Symmetric Packed:
SUBROUTINE

Triangular:
SUBROUTINE

BLAS_xGE_ADD(M, N, ALPHA, A, LDA, BETA, B, LDB, C,
LDC)

BLAS_xGB_ADD(M, N, KL, KU, ALPHA, A, LDA, BETA, B,
LDB, C, LDC)

BLAS_xSY_ADD(UPLO, N, ALPHA, A, LDA, BETA, B, LDB,
¢, LDC)

BLAS_xSB_ADD(UPLO, N, K, ALPHA, A, LDA, BETA, B, LDB,
¢, LDC)

BLAS_xSP_ADD(UPLO, N, ALPHA, AP, BETA, BP, CP)

BLAS_xTR_ADD(UPLO, DIAG, N, ALPHA, A, LDA, BETA, B,

81

82

$
Triangular Band:

CHAPTER 2. DENSE AND BANDED BLAS

LDB, C, LDC)

SUBROUTINE BLAS_xTB_ADD(UPLO, DIAG, N, K, ALPHA, A, LDA, BETA,

$
Triangular Packed:

B, LDB, C, LDC)

SUBROUTINE BLAS_xTP_ADD(UPLO, DIAG, N, ALPHA, AP, BETA, BP, CP)

all:
INTEGER
<type>
<type>
<type>
C binding:
General:

void BLAS_xge_add(

General Band:
void BLAS_xgb_add(

Symmetric:
void BLAS_xsy_add(

Symmetric Band:
void BLAS_xsb_add(

Symmetric Packed:
void BLAS_xsp_add(

Triangular:
void BLAS_xtr_add(

Triangular Band:
void BLAS_xtb_add(

Triangular Packed:
void BLAS_xtp_add(

DIAG, K, KL, KU, LDA, LDB, M, N, TRANS, UPLO
ALPHA, BETA

A(C LDA, *) or AP(*), B(LDB, *) or BP(*),
C(LDC, *) or CP(*)

enum blas_order_type order, int m, int n, SCALAR_IN alpha,
const ARRAY a, int lda, SCALAR_IN beta, const ARRAY b,
int 1db, ARRAY c, int ldc);

enum blas_order_type order, int m, int n, int k1, int ku,
SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,
const ARRAY b, int 1db, ARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo, int n,
SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,
const ARRAY b, int 1db, ARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, SCALAR_IN alpha, const ARRAY a, int 1lda,
SCALAR_IN beta, const ARRAY b, int 1db, ARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, SCALAR_IN alpha, const ARRAY ap, SCALAR_IN beta,
const ARRAY bp, ARRAY cp);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY a, int lda, SCALAR_IN beta, const ARRAY b,
int 1db, ARRAY c, int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k, SCALAR_IN alpha,
const ARRAY a, int lda, SCALAR_IN beta, const ARRAY b,
int 1db, ARRAY c, int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY ap, SCALAR_IN beta, const ARRAY bp,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 83

ARRAY cp);

2.8.8 Matrix-Matrix Operations

In the following section, op(X) denotes X, or X or X# where X is a matrix.
GEMM (General Matrix Matrix Product) C «+ aop(A)op(B) + pC

The routine performs a general matrix matrix multiply C' < aop(A)op(B) + BC where a and
B are scalars, and A, B, and C are general matrices. This routine returns immediately if alpha
is equal to zero and beta is equal to one, or if m or n or k is less than or equal to zero. If Ida is
less than one, or transa = blas_no_trans and lda is less than m, or transa # blas_no_trans and
Ida is less than k, or Idb is less than one, or transb = blas_no_trans and |db is less than k, or
transb # blas_no_trans and Idb is less than n, or Idc is less than one or less than m, an error flag
is set and passed to the error handler.

This interface encompasses the Legacy BLAS routine xGEMM.

e Fortran 95 binding:

SUBROUTINE gemm(a, b, ¢ [, transa] [, transb] [, alphal] [, betal)
<type>(<wp>), INTENT(IN) :: <aa>, <bb>
<type>(<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa, transb
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
<aa> ::= a(:,:) or a(:)
<bb> = b(:,:) or b(:)
<cc> =c(:,:) or c(:)
and

¢, rank 2, has shape (m,n)
a has shape (m,k) if transa = blas_no_trans (the default)
(k,m) if transa /= blas_no_trans
(m) if rank 1
b has shape (k,n) if transb = blas_no_trans (the default)
(n,k) if transb /= blas_no_trans
(n) if rank 1
c, rank 1, has shape (m)
a has shape (m,n) if transa = blas_no_trans (the default)
(n,m) if transa /= blas_no_trans
b has shape (n)

84 CHAPTER 2. DENSE AND BANDED BLAS

Rank a | Rank b | Rank ¢ | transa | transb | Operation Arguments
2 2 2 N N C + aAB + pC real or complex
2 2 2 N T C + aABT 4+ pC real or complex
2 2 2 N H C + aABY + gC complex
2 2 2 T N C + aAT"B + pC real or complex
2 2 2 T T C + aATBT + BC | real or complex
2 2 2 H N C + aA’B+ pC | complex
2 2 2 H H C + aA"BH 4 BC | complex
2 1 1 N - ¢+ aAb+ Be real or complex
2 1 1 T - c <+ aATb+ Be real or complex
2 1 1 H - c <+ aAfb+ Be complex
1 1 2 - - C + aab” + pC real or complex
1 1 2 - H C + aab® + BC complex

The functionality of xGEMV, xGER, xGERU, and xGERC are also covered by this generic
procedure.

e Fortran 77 binding:

SUBROUTINE BLAS_xGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
<type> ALPHA, BETA
<type> A(LDA, *), B(LDB, *), C(LDC, *)
e C binding:

void BLAS_xgemm(enum blas_order_type order, enum blas_trans_type transa,
enum blas_trans_type transb, int m, int n, int k,
SCALAR_IN alpha, const ARRAY a, int lda, const ARRAY b,
int 1db, SCALAR_IN beta, ARRAY c, int 1ldc);

SYMM (Symmetric Matrix Matrix Product) C <+ aAB +pBC or C < aBA+ pC

This routine performs one of the symmetric matrix matrix operations C' < aAB + BC or
C < aBA + BC where « and (8 are scalars, A is a symmetric matrix, and B and C' are general
matrices. This routine returns immediately if alpha is equal to zero and beta is equal to one, or if
m or n is less than or equal to zero. For side equal to blas_left_side, and if Ida is less than one or less
than m, or if Idb is less than one or less than m, or if Idc is less than one or less than m, an error
flag is set and passed to the error handler. For side equal to blas_right_side, and if Ida is less than
one or less than n, or if Idb is less than one or less than n, or if Idc is less than one or less than n,
an error flag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xSYMM with added functionality for com-
plex symmetric matrices.

e Fortran 95 binding:

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

2.8. LANGUAGE BINDINGS 85

SUBROUTINE symm(a, b, ¢ [, side] [, uplo]l [, alphal] [, betal)
<type>(<wp>), INTENT(IN) :: a(:,:), <bb>
<type>(<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
<bb> = b(:,:) or b(:)
<cc> =c(:,:) or c(:)
and

c, rank 2, has shape (m,n), b same shape as ¢
SY a has shape (m,m) if side = blas_left_side (the default)
a has shape (n,n) if side /= blas_left_side
c, rank 1, has shape (m), b same shape as c
SY a has shape (m,m)

Rank b | Rank ¢ | side | Operation
2 2 L |C <+ aAB+pC
2 2 R | C <+ aBA+pC
1 1 - ¢+ aAb+ (e

The functionality of xSYMV is covered by symm.
e Fortran 77 binding:

SUBROUTINE BLAS_xSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO
<type> ALPHA, BETA
<type> A(C LDA, *), BCLDB, *), C(LDC, *)
e C binding:

void BLAS_xsymm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, int m, int n, SCALAR_IN alpha,
const ARRAY a, int lda, const ARRAY b, int 1db,
SCALAR_IN beta, ARRAY c, int ldc);

HEMM (Hermitian Matrix Matrix Product) C <+ aAB +pBC or C < aBA+ C

This routine performs one of the Hermitian matrix matrix operations C' <+ aAB + BC or
C <+ aBA + BC where a and 3 are scalars, A is a Hermitian matrix, and B and C are general
matrices. This routine returns immediately if alpha is equal to zero and beta is equal to one, or if
m or n is less than or equal to zero. For side equal to blas_left_side, and if Ida is less than one or less
than m, or if Idb is less than one or less than m, or if Idc is less than one or less than m, an error
flag is set and passed to the error handler. For side equal to blas_right_side, and if Ida is less than
one or less than n, or if Idb is less than one or less than n, or if Idc is less than one or less than n,
an error flag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xHEMM.

86 CHAPTER 2. DENSE AND BANDED BLAS

e Fortran 95 binding:

Hermitian:
SUBROUTINE hemm(a, b, ¢ [, side] [, uplo]l [, alphal] [, betal)
COMPLEX (<wp>) , INTENT(IN) :: a(:,:), <bb>
COMPLEX (<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
COMPLEX (<wp>) , INTENT(IN), OPTIONAL :: alpha, beta

where
<bb> = b(:,:) or b(:)
<cc> =c(:,:) or c(:)
and

c, rank 2, has shape (m,n), b same shape as ¢
HE a has shape (m,m) if "side" = blas_left_side (the default)
a has shape (n,n) if "side" /= blas_left_side
c, rank 1, has shape (m), b same shape as ¢
HE a has shape (m,m)

Rank b | Rank ¢ | side | Operation
2 2 L |C<++ aAB+pC
2 2 R | C <« aBA+pBC
1 1 - c+ aAb+ (e

The functionality of xHEMYV is covered by hemm.

e Fortran 77 binding:

SUBROUTINE BLAS_xHEMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO
<ctype> ALPHA, BETA
<ctype> A(C LDA, *), BC LDB, *), C(LDC, *)
e C binding:

void BLAS_xhemm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, int m, int n, CSCALAR_IN alpha,
const CARRAY a, int 1lda, comnst CARRAY b, int 1db,
CSCALAR_IN beta, CARRAY c, int 1ldc);

TRMM (Triangular Matrix Matrix Multiply) B «+ aop(T)B or B < aBop(T)

These routines perform one of the matrix-matrix operations B <+ aop(T)B or B <+ aBop(T)
where « is a scalar, B is a general matrix, and 7' is a unit, or non-unit, upper or lower triangular
(or triangular band) matrix. This routine returns immediately if m, n, or k (for triangular band
matrices), is less than or equal to zero. For side equal to blas_left_side, and if Idt is less than one

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS

or less than m, or if Idb is less than one or less than m, an error flag is set and passed to the error
handler. For side equal to blas_right_side, and if Idt is less than one or less than n, or if Idb is less
than one or less than m, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xTRMM.

e Fortran 95 binding:

SUBROUTINE trmm(t, b [, side]l [, uplo] [, transt] [, diag]l [, alphal)
: t(:,
:: <bb>

<type>(<wp>), INTENT(IN)

<type>(<wp>), INTENT(INOUT)
<type>(<wp>), INTENT(IN), OPTIONAL ::
TYPE (blas_diag_type), INTENT(IN), OPTIONAL ::
TYPE (blas_side_type), INTENT(IN), OPTIONAL ::
TYPE (blas_trans_type), INTENT(IN), OPTIONAL ::
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL ::

where
<bb> ::=b(:,:) or b(:)
and

b, rank 2, has shape (m,n)

TR t has shape (m,m) if side = blas_left_side (the default)

)

alpha

t has shape (n,n) if side /= blas_left_side

b, rank 1, has shape (m)
TR t has shape (m,m)

Rank b | transt | side | Operation
2 N L |B+ alB
2 T L | B« aT™B
2 H L | B+ aT"B
2 N R | B+« aBT
2 T R | B+ aBTT
2 H R | B+« aBTH
1 N - b+ oTh
1 T - b+ oTTh
1 H - b+ oTHp

The functionality of xXTRMYV is covered by trmm.

e Fortran 77 binding:

SUBROUTINE BLAS_xTRMM(SIDE, UPLO, TRANST, DIAG, M, N, ALPHA, T,

$ LDT, B, LDB)

INTEGER DIAG, LDB, LDT, M, N, SIDE, TRANST, UPLO
<type> ALPHA

<type> T(LDT, *), B(LDB, *)

e C binding:

diag

side
transt

uplo

88 CHAPTER 2. DENSE AND BANDED BLAS

void BLAS_xtrmm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, enum blas_trans_type transt,
enum blas_diag_type diag, int m, int n, SCALAR_IN alpha,
const ARRAY t, int 1dt, ARRAY b, int 1db);

TRSM (Triangular Solve) B + aop(T " ')B or B + aBop(T 1)

This routine solves one of the matrix equations B + aop(T !)B or B <+ aBop(T ') where « is
a scalar, B is a general matrix, and T is a unit, or non-unit, upper or lower triangular matrix. This
routine returns immediately if m or n is less than or equal to zero. For side equal to blas_left_side,
and if Idt is less than one or less than m, or if Idb is less than one or less than m, an error flag is set
and passed to the error handler. For side equal to blas_right_side, and if Idt is less than one or less
than n, or if Idb is less than one or less than m, an error flag is set and passed to the error handler.
These interfaces encompass the Legacy BLAS routine xTRSM.

Advice to implementors. Note that no check for singularity, or near singularity is specified
for these triangular equation-solving routines. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver. (End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE trsm(t, b [, side] [, uplo] [, transt] [, diag] [, alphal])
<type>(<wp>), INTENT(IN) :: t(:,:)
<type>(<wp>), INTENT(INOUT) :: <bb>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
where
<bb> ::= b(:,:) or b(:)
and
b, rank 2, has shape (m,n)
TR t has shape (m,m) if side = blas_left_side (the default)
t has shape (n,n) if side /= blas_left_side
b, rank 1, has shape (m)
TR t has shape (m,m)

Rank b | transt | side | Operation
2 N L | B+ al'B
2 T L |B+al'' "B
2 H L | B+ ol "B
2 N R | B+ aBT!
2 T R | B+ aBT T
2 H R | B+ aBT
1 N - b+ ol b
1 T - | b+—aT Th
1 H - | b+aT Hp

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 89

The functionality of XTRSV is covered by trsm.

e Fortran 77 binding:

SUBROUTINE BLAS_xTRSM(SIDE, UPLO, TRANST, DIAG, M, N, ALPHA,

$ T, LDT, B, LDB)
INTEGER DIAG, LDB, LDT, M, N, SIDE, TRANST, UPLO
<type> ALPHA
<type> T(LDT, *), B(LDB, *)

e C binding:

void BLAS_xtrsm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, enum blas_trans_type transt,
enum blas_diag_type diag, int m, int n, SCALAR_IN alpha,
const ARRAY t, int 1dt, ARRAY b, int 1db);

SYRK (Symmetric Rank K update) C + aAAT + BC, C + aAT A+ BC

This routine performs one of the symmetric rank k operations C < aAA”T + BC or C
aAT A + BC where o and f8 are scalars, C is a symmetric matrix, and A is a general matrix. This
routine returns immediately if alpha is equal to zero and beta is equal to one, or if n or k is less
than or equal to zero. If Idc is less than one or less than n, an error flag is set and passed to the
error handler. For trans equal to blas_no_trans, and if Ida is less than one or less than n, an error
flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less than one
or less than k, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xSYRK with added functionality for
complex symmetric matrices.

e Fortran 95 binding:

SUBROUTINE syrk(a, c¢ [, uplo] [, trans] [, alphal] [, betal)
<type>(<wp>), INTENT(IN) :: <aa>
<type>(<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
<aa> ::= a(:,:) or a(:)
and
¢ has shape (n,n)
a has shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | trans | Operation
2 N | C « adAT +8C
2 T | C+ aATA+pC
1 - C + aaa” + BC

90 CHAPTER 2. DENSE AND BANDED BLAS

The functionality of xSYR is covered by syrk.

e Fortran 77 binding:

SUBROUTINE BLAS_xSYRK(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,

$ C, LDC)
INTEGER K, LDA, LDC, N, TRANS, UPLO
<type> ALPHA, BETA
<type> AC LDA, *), C(LDC, *)
e C binding:

void BLAS_xsyrk(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k, SCALAR_IN alpha,
const ARRAY a, int 1da, SCALAR_IN beta, ARRAY c, int 1dc);

HERK (Hermitian Rank K update) C + aAA" + BC, C + aAP A+ pC

This routine performs one of the Hermitian rank k operations C' <+ aAA® + BC or C «
aA” A 4+ BC where o and B are scalars, C is a Hermitian matrix, and A is a general matrix. This
routine returns immediately if alpha is equal to zero and beta is equal to one, or if n or k is less
than or equal to zero. If Idc is less than one or less than n, an error flag is set and passed to the
error handler. For trans equal to blas_no_trans, and if Ida is less than one or less than n, an error
flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less than one
or less than k, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xHERK.

e Fortran 95 binding:

SUBROUTINE herk(a, ¢ [, uplo] [, trans] [, alphal] [, betal)
COMPLEX (<wp>) , INTENT(IN) :: <aa>
COMPLEX (<wp>) , INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
REAL(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
<aa> ::= a(:,:) or a(:)
and
¢ has shape (n,n)
a has shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | trans | Operation
2 N C + aAA" + 8C
2 T | C+ adAfA+pBC
1 - C + aaad® + BC

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 91

The functionality of xHER is covered by herk.

e Fortran 77 binding:

SUBROUTINE BLAS_xHERK(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C,

$
INTEGER
<rtype>
<ctype>

e C binding:

LDC)
K, LDA, LDC, N, TRANS, UPLO
ALPHA, BETA
A(C LDA, *), C(LDC, *)

void BLAS_xherk(enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k, RSCALAR_IN alpha,
const CARRAY a, int 1da, RSCALAR_IN beta, CARRAY c, int ldc);

SY_TRIDIAG_RK (Symmetric Rank K update with symmetric tridiagonal matrix)

C « aAJAT + BC, C «+ aATJA + BC

This routine performs one of the symmetric rank k operations C + aAJAT + C or C «+
aAT JA + BC where o and 3 are scalars, C is a symmetric matrix, A is a general matrix, and J
is a symmetric tridiagonal matrix. This routine returns immediately if alpha is equal to zero and
beta is equal to one, or if n or k is less than or equal to zero. If Idc is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_no_trans, and if Ida is
less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_trans, and if Ida is less than one or less than k, an error flag is set and passed to the error

handler.

e Fortran 95 binding:

SUBROUTINE sy_tridiag_rk(a, d, e, ¢ [, uplo] [, trans] [, alpha] &

[, betal)

<type>(<wp>), INTENT(IN) :: a(:,:)

<type>(<wp>), INTENT(IN) :: d(:), e(:)

<type>(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

¢ has shape (n,n)

if trans
a has
d has
e has
if trans
a has
d has
e has

= blas_no_trans (the default)
shape (n,k)

shape (k)

shape (k-1)

/= blas_no_trans

shape (k,n)

shape (n)

shape (n-1)

92 CHAPTER 2. DENSE AND BANDED BLAS

Rank a | trans | Operation
2 N | C« aAJAT +BC
2 T | C<+ adTJA+BC

e Fortran 77 binding:

SUBROUTINE BLAS_xSY_TRIDIAG_RK(UPLO, TRANS, N, K, ALPHA, A, LDA, D,

$ E, BETA, C, LDC)
INTEGER K, LDA, LDC, N, TRANS, UPLO
<type> ALPHA, BETA
<type> AC LDA, *), CCLDC, *), D(*), E(*)
e C binding:

void BLAS_xsy_tridiag_rk(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY d, const ARRAY e, SCALAR_IN beta,
ARRAY c, int 1ldc);

HE_TRIDIAG RK (Hermitian Rank K update with symmetric tridiagonal matrix)
C + aAJAH + BC, C + A" JA+ BC

This routine performs one of the Hermitian rank k operations C < aAJAH + BC or C «+
aAH® JA + BC where a and S are scalars, C is a Hermitian matrix, A is a general matrix, and J
is a symmetric tridiagonal matrix. This routine returns immediately if alpha is equal to zero and
beta is equal to one, or if n or k is less than or equal to zero. If Idc is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_no_trans, and if Ida is
less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_trans, and if Ida is less than one or less than k, an error flag is set and passed to the error
handler.

e Fortran 95 binding:

SUBROUTINE he_tridiag rk(a, d, e, ¢ [, uplo] [, trans] [, alpha] &
[, betal)
COMPLEX (<wp>), INTENT(IN) :: a(:,:)
COMPLEX (<wp>) , INTENT(IN) :: d(:), e(:)
COMPLEX (<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
REAL (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
¢ has shape (n,n)
if trans = blas_no_trans (the default)
a has shape (n,k)
d has shape (k)

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 93

e has shape (k-1)
if trans /= blas_no_trans
a has shape (k,n)
d has shape (n)
e has shape (n-1)

Rank a | trans | Operation
2 N C + aAJAY 1+ BC
2 T | C+«+ aA"JA+BC

e Fortran 77 binding:

SUBROUTINE BLAS_xHE_TRIDIAG_RK(UPLO, TRANS, N, K, ALPHA, A, LDA,

$ D, E, BETA, C, LDC)
INTEGER K, LDA, LDC, N, TRANS, UPLO
<rtype> ALPHA, BETA
<ctype> AC LDA, *), C(LDC, *), D(*), E(*)
e C binding:

void BLAS_xhe_tridiag_rk(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
RSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY d, const CARRAY e, RSCALAR_IN beta,
CARRAY ¢, int 1ldc);

SYR2K (Symmetric rank 2k update) C < (aA)BT + B(aA)T + pC
C + (aA)TB + BT (ad) + BC

These routines perform the symmetric rank 2k operation C' «+ (aA)BT + B(aA)! + BC or
C + (aA)"B + BT (aA) + BC where a and j are scalars, C' is a symmetric matrix, and A and B
are general matrices. This routine returns immediately if alpha is equal to zero and beta is equal
to one, or if n or k is less than or equal to zero. If Idc is less than one or less than n, an error flag
is set and passed to the error handler. For trans equal to blas_no_trans, and if Ida is less than one
or less than n, or if Idb is less than one or less than n, an error flag is set and passed to the error
handler. For trans equal to blas_trans, and if Ida is less than one or less than k, or if Idb is less than
one or less than k, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xSYR2K with added functionality for
complex symmetric matrices.

e Fortran 95 binding:

SUBROUTINE syr2k(a, b, ¢ [, uplo] [, trans] [, alphal] [, betal])
<type>(<wp>), INTENT(IN) :: <aa>, <bb>
<type>(<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

94 CHAPTER 2. DENSE AND BANDED BLAS

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
<aa> ::= a(:,:) or a(:)
<bb> = b(:,:) or b(:)
and

¢ has shape (n,n)
if trans = blas_no_trans (the default)
a has shape (n,k)
b has shape (n,k)
if trans /= blas_no_trans
a has shape (k,n)
b has shape (k,n)

Rank a | Rank b | trans | Operation
2 2 N C < aABT + aBAT + 8C
2 2 T C + aATB +aBTA + BC
1 1 - C + aab” + aba® + BC

The functionality of xSYR2 is covered by syr2k.

e Fortran 77 binding:

SUBROUTINE BLAS_xSYR2K(UPLQO, TRANS, N, K, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO
<type> ALPHA, BETA
<type> AC LDA, *), B(LDB, *), C(LDC, *)
e C binding:

void BLAS_xsyr2k(enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k, SCALAR_IN alpha,

const ARRAY a, int lda, const ARRAY b, int 1db,
SCALAR_IN beta, ARRAY ¢, int 1ldc);

HER2K (Hermitian rank 2k update) C « (aA)BY + B(aA)? + BC
C + (aA)" B + B (aA) + BC

These routines perform the Hermitian rank 2k operation C < (ad)BY + B(aA)® + BC or
C + (aA)” B + B¥(aA) + BC where a and 3 are scalars, C' is a Hermitian matrix, and A and B
are general matrices. This routine returns immediately if alpha is equal to zero and beta is equal
to one, or if n or k is less than or equal to zero. If Idc is less than one or less than n, an error flag
is set and passed to the error handler. For trans equal to blas_no_trans, and if Ida is less than one
or less than n, or if Idb is less than one or less than n, an error flag is set and passed to the error
handler. For trans equal to blas_trans, and if Ida is less than one or less than k, or if Idb is less than

one or less than k, an error flag is set and passed to the error handler.
These interfaces encompass the Legacy BLAS routine xHER2K.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 95
e Fortran 95 binding:

SUBROUTINE her2k(a, b, ¢ [, uplo] [, trans] [, alpha] [, betal])
COMPLEX(<wp>), INTENT(IN) :: <aa>, <bb>
COMPLEX (<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>), INTENT(IN), OPTIONAL :: alpha
REAL(<wp>), INTENT(IN), OPTIONAL :: beta

where
<aa> ::= a(:,:) or a(:)
<bb> = b(:,:) or b(:)
and

¢ has shape (n,n)

a and b have shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | Rank b | trans | Operation
2 2 N | C < aABY + aBAY +8C
2 2 T | C<+ aA"B+aB"A+BC
1 1 - C <+ aab® + aba? + pC

The functionality of xHER?2 is covered by her2k.

e Fortran 77 binding:

SUBROUTINE BLAS_xHER2K(UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO
<ctype> ALPHA
<rtype> BETA
<ctype> A(C LDA, *), B(LDB, *), C(LDC, *)
e C binding:

void BLAS_xher2k(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k, CSCALAR_IN alpha,
const CARRAY A, int 1lda, const CARRAY b, int 1db,
RSCALAR_IN beta, CARRAY c, int 1ldc);

SY_TRIDIAG_R2K (Symmetric rank 2k update with symmetric tridiagonal matrix)

C + (aAJ)BT + B(aAJ)T + BC
C « (aAJ)TB + BT (e AJ) + BC

96 CHAPTER 2. DENSE AND BANDED BLAS

These routines perform the symmetric rank 2k operation C' <+ (aAJ)BT + B(aAJ)T + BC or
C + (aAJ)'B + BT (aAJ) + BC where o and f3 are scalars, C is a symmetric matrix, A and B
are general matrices, and J is a symmetric tridiagonal matrix. This routine returns immediately
if alpha is equal to zero and beta is equal to one, or if n or k is less than or equal to zero. If Idc is
less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_no_trans, and if Ida is less than one or less than n, or if Idb is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less
than one or less than k, or if Idb is less than one or less than k, an error flag is set and passed to

the error handler.

e Fortran 95 binding:

SUBROUTINE sy_tridiag_r2k(a, d, e, b, ¢ [, uplo] [, trans] &
[, alphal [, betal)

<type>(<wp>), INTENT(IN) :: a(:,:), b(:,:)
<type>(<wp>), INTENT(IN) :: d(:), e(:)
<type>(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>) , INTENT(IN), OPTIONAL :: alpha
<type>(<wp>), INTENT(IN), OPTIONAL :: beta

where

¢ has shape (n,n)
if trans = blas_no_trans (the default)
a and b have shape (n,k)

d has shape (k)
e has shape (k-1)

if trans /= blas_no_trans
a and b have shape (k,n)

d has shape (n)
e has shape (n-1)

Rank a | Rank b | trans | Operation
2 2 N C « (aeAJ)BT + B(aAJ)T + pC
2 2 T |C+ (edAJ)T'B + BT(aAJ) + BC

e Fortran 77 binding:

SUBROUTINE BLAS_xSY_TRIDIAG_R2K(UPLO, TRANS, N, K, ALPHA, A, LDA,

$ D, E, B, LDB, BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO
<type> ALPHA, BETA
<type> A(C LDA, *), BCLDB, *), C(LDC, *),

$ D(*), E(*)

e C binding:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS

void BLAS_xsy_tridiag_r2k(enum blas_order_type order,
enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY d, const ARRAY e, const ARRAY

b,

int 1db, SCALAR_IN beta, ARRAY c, int 1ldc);

97

HE_TRIDIAG_R2K (Hermitian rank 2k update with symmetric tridiagonal matrix)

C < (aAJ)BY + B(aAJ)H + BC
C + (aAN)EB + BH(aAJ) + BC

These routines perform the symmetric rank 2k operation C <+ (aAJ)BH + B(aAJ)® + BC or
C + (aAJ)" B + BH(aAJ) + BC where o and 3 are scalars, C' is a Hermitian matrix, A and B
are general matrices, and J is a symmetric tridiagonal matrix. This routine returns immediately
if alpha is equal to zero and beta is equal to one, or if n or k is less than or equal to zero. If Idc is
less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_no_trans, and if Ida is less than one or less than n, or if Idb is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less
than one or less than k, or if Idb is less than one or less than k, an error flag is set and passed to

the error handler.

e Fortran 95 binding:

SUBROUTINE he_tridiag_r2k(a, d, e, b, ¢ [, uplo] [, trans] &

COMPLEX (<wp>) , INTENT(IN)
COMPLEX (<wp>) , INTENT(IN)

[, alphal [, beta])

COMPLEX (<wp>) , INTENT(INQOUT)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>) , INTENT(IN), OPTIONAL :: alpha
REAL(<wp>), INTENT(IN), OPTIONAL :: beta

where
¢ has shape (n,n)

t:a(:,:), b(:,:)
10 d(), e(:)
troc(e,2)

if "trans" = blas_no_trans (the default)
a and b have shape (n,k)

d has shape (k)
e has shape (k-1)

if "trans" /= blas_no_trans
a and b have shape (k,n)

d has shape (n)
e has shape (n-1)

Rank a | Rank b | trans | Operation
2 2 N | C « (@AJ)BY + B(aAJ)? + BC
2 2 T | C+ (aAJ)!B+ B (aAJ) + BC

98 CHAPTER 2. DENSE AND BANDED BLAS

e Fortran 77 binding:

SUBROUTINE BLAS_xHE_TRIDIAG_R2K(UPLO, TRANS, N, K, ALPHA, A, LDA,

$ D, E, B, LDB, BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO
<ctype> ALPHA
<rtype> BETA
<ctype> A(C LDA, *), BCLDB, *), C(LDC, *),
$ D(*), E()
e C binding:

void BLAS_xhe_tridiag_r2k(enum blas_order_type order,
enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
CSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY d, const CARRAY e, const CARRAY b,
int 1db, RSCALAR_IN beta, CARRAY c, int ldc);

2.8.9 Data Movement with Matrices
{GE,GB,SY,SB,SP,TR,TB,TP} COPY (Matrix copy) B+ A B+ AT, B+ AH

This routine copies a matrix (or its transpose or conjugate-transpose) A and stores the result
in a matrix B. Matrices A and B have the same storage format. This routine returns immediately
if m (for nonsymmetric matrices), n, k (for symmetric band matrices), or kl or ku (for general band
matrices), is less than or equal to zero. For the routine GE_COPY, if trans equal to blas_no_trans,
and if Ida is less than one or less than m, or if Idb is less than one or less than m, an error flag
is set and passed to the error handler. For the routine GE_COPY, if trans equal to blas_trans or
blas_conj_trans, and if Ida is less than one or less than m, or if Idb is less than one or less than n,
an error flag is set and passed to the error handler. For the routine GB_COPY, if Ida is less than
kl plus ku plus one, or if Idb is less than kl plus ku plus one, an error flag is set and passed to the
error handler. For the routines SY_COPY and TR_COPY, if Ida is less than one or less than n, or
if Idb is less than one or less than n, an error flag is set and passed to the error handler. For the
routines SB_COPY and TB_COPY, if Ida is less than k plus one, or if Idb is less than k plus one, an
error flag is set and passed to the error handler.

e Fortran 95 binding:

General:

SUBROUTINE ge_copy(a, b [, trans])
General Band:

SUBROUTINE gb_copy(a, b, m, k1 [, trans])
Symmetric:

SUBROUTINE sy_copy(a, b [, uplo]l)
Symmetric Band:

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS

SUBROUTINE sb_copy(a, b [, uplo])

Symmetric Packed:

SUBROUTINE sp_copy(ap, bp [, uplo])

Triangular:

SUBROUTINE tr_copy(a, b [, uplo] [,trans] [, diag])

Triangular Band:

SUBROUTINE tb_copy(a, b [, uplo] [,trans] [, diag])

Triangular Packed:

SUBROUTINE tp_copy(ap, bp [, uplo] [,trans] [, diag])

all:

<type>(<wp>), INTENT(IN)
<type>(<wp>), INTENT(OUT)

INTEGER, INTENT(IN)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL ::
TYPE (blas_trans_type), INTENT(IN), OPTIONAL ::
TYPE (blas_diag_type), INTENT(IN), OPTIONAL ::

where

a and b have shape (n,n) for symmetric or triangular
(k+1,n) for symmetric banded or triangular

a, b have shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)

::m, k1

:: a(:,:) or ap(:)
:: b(:,:) or bp(:)

uplo
trans
diag

banded (k=band width)
ap and bp have shape (n*(n+1)/2).

For a general or general banded matrix:

If trans = blas_no_trans (the default)

If trans \= blas_no_trans

a has shape (m,n) and b has shape (n,m) for general matrix
(1,n) and b has shape (1,m) for general banded matrix (1 > k1)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_COPY(TRANS, M,

General Band:

SUBROUTINE BLAS_xGB_COPY(TRANS, M,

Symmetric:

SUBROUTINE BLAS_xSY_COPY(UPLO,

Symmetric Band:

SUBROUTINE BLAS_xSB_COPY(UPLO,

Symmetric Packed:

SUBROUTINE BLAS_xSP_COPY(UPLO,

Triangular:

SUBROUTINE BLAS_xTR_COPY(UPLO,

Triangular Band:

SUBROUTINE BLAS_xTB_COPY(UPLO,

$
Triangular Packed:

SUBROUTINE BLAS_xTP_COPY(UPLO,

LDB)

N, AP, BP)

N, A, LDA, B, LDB)
N, KL, KU, A, LDA, B, LDB)
N, A, LDA, B, LDB)

N, K, A, LDA, B, LDB)

TRANS, DIAG, N, A, LDA, B, LDB)

TRANS, DIAG, N, K, A, LDA, B,

TRANS, DIAG, N, AP, BP)

99

100 CHAPTER 2. DENSE AND BANDED BLAS

all:
INTEGER DIAG, LDA, LDB, N, K, KL, KU, TRANS, UPLO
<type> A(C LDA, *) or AP(*), B(LDB, *) or BP(*)
e C binding:
General:

void BLAS_xge_copy(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, const ARRAY a, int 1lda, ARRAY b, int 1db);
General Band:
void BLAS_xgb_copy(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, int kl, int ku, const ARRAY a, int lda,
ARRAY b, int 1db);
Symmetric:
void BLAS_xsy_copy(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY a, int 1lda, ARRAY b, int 1db);
Symmetric Band:
void BLAS_xsb_copy(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const ARRAY a, int 1lda, ARRAY b, int 1db);
Symmetric Packed:
void BLAS_xsp_copy(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY ap, ARRAY bp);
Triangular:
void BLAS_xtr_copy(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const ARRAY a, int lda, ARRAY b, int 1db);
Triangular Band:
void BLAS_xtb_copy(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, const ARRAY a, int 1lda, ARRAY b, int 1db);
Triangular Packed:
void BLAS_xtp_copy(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const ARRAY ap, ARRAY bp);

{HE,HB,HP}_COPY (Matrix copy) B+ A

This routine copies a Hermitian matrix A and stores the result in a matrix B. This routine
returns immediately if n or k is less than or equal to zero. For the routine HE_COPY, if Ida is less
than one or less than n, or if Idb is less than one or less than n, an error flag is set and passed to
the error handler. For the routine HB_COPY, if Ida is less than k plus one, or if Idb is less than k
plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Hermitian:
SUBROUTINE he_copy(a, b [, uplo])

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 101

Hermitian Band:
SUBROUTINE hb_copy(a, b [, uplo])
Hermitian Packed:
SUBROUTINE hp_copy(ap, bp [, uplo])
all:
COMPLEX (<wp>), INTENT(IN) :: a(:,:) or ap(:)
COMPLEX (<wp>) , INTENT(OUT) :: b(:,:) or bp(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
where
a and b have shape (n,n)
(k+1,n) for banded (k=band width)
ap and bp have shape (n*(n+1)/2).

e Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHE_COPY(UPLO, N, A, LDA, B, LDB)
Hermitian Band:

SUBROUTINE BLAS_xHB_COPY(UPLO, N, K, A, LDA, B, LDB)
Hermitian Packed:

SUBROUTINE BLAS_xHP_COPY(UPLO, N, AP, BP)

all:
INTEGER K, LDA, LDB, N, UPLO
<ctype> A(C LDA, *) or AP(*), B(LDB, *) or BP(*)
e C binding:
Hermitian:

void BLAS_xhe_copy(enum blas_order_type order, enum blas_uplo_type uplo,

int n, const CARRAY a, int lda, CARRAY b, int 1db);
Hermitian Band:
void BLAS_xhb_copy(enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, const CARRAY a, int lda, CARRAY b, int 1ldb);
Hermitian Packed:
void BLAS_xhp_copy(enum blas_order_type order, enum blas_uplo_type uplo,

int n, const CARRAY ap, CARRAY bp);

GE_TRANS (Matrix transposition) A« AT, A+ AH

This routine performs the matrix transposition or conjugate-transposition of a square matrix
A, overwriting the matrix A. This routine returns immediately if n is less than or equal to zero. If
Ida is less than one or less than n, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE ge_trans(a [, conjl)
<type>(<wp>), INTENT(INOUT) :: a(:,:)

102 CHAPTER 2. DENSE AND BANDED BLAS

TYPE (blas_conj_type), INTENT(IN), OPTIONAL :: conj
where
a has shape (n,n)

e Fortran 77 binding:

SUBROUTINE BLAS_xGE_TRANS(CONJ, N, A, LDA)

INTEGER CONJ, LDA, N
<type> A(C LDA, *)
e C binding:

void BLAS_xge_trans(enum blas_order_type order, enum blas_conj_type conj,
int n, ARRAY a, int 1lda);

GE_PERMUTE (Permute matrix) A+ PA,or A+ AP

This routine permutes the rows or columns of a matrix (A + PA or A < AP) by the permu-
tation matrix P. The representation of the permutation vector p is described in section 2.2.6. This
routine returns immediately if m or n is less than or equal to zero. As described in section 2.5.3,
the value incp less than zero is permitted. However, if incp is equal to zero, an error flag is set and
passed to the error handler. If Ida is less than one or less than m, an error flag is set and passed to
the error handler. For the C bindings, if order = blas_rowmajor and if Ida is less than one or Ida
is less than n, an error flag is set and passed to the error handler; if order = blas_colmajor and
if Ida is less than one or Ida is less than m, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE ge_permute(p, a [, side])

INTEGER, INTENT(IN) :: p(:)

<type>(<wp>), INTENT(INOUT) :: a(:,:)

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
where

a has shape (m,n)

d has shape (p) where p = m if side = blas_left_side

p = n if side = blas_right_side

e Fortran 77 binding:

SUBROUTINE BLAS_xGE_PERMUTE(SIDE, M, N, P, INCP, A, LDA)

INTEGER INCP, LDA, M, N, SIDE
INTEGER P(*)
<type> A(LDA, *)

The value of INCP may be positive or negative. A negative value of INCP applies the permu-
tation in the opposite direction.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 103
e C binding:
void BLAS_xge_permute(enum blas_order_type order, enum blas_side_type side,
int m, int n, const int *p, int incp, ARRAY a,

int 1da);

The value of incp may be positive or negative. A negative value of incp applies the permu-
tation in the opposite direction.

2.8.10 Environmental Enquiry

FPINFO (Environmental enquiry)

This routine queries for machine-specific floating point characteristics. Refer to section 1.6 for a
list of all possible return values of this routine, and sections A.4, A.5, and A.6, for their respective
language dependent representations in Fortran 95, Fortran 77, and C.

e Fortran 95 binding:

REAL (<wp>) FUNCTION fpinfo(cmach, prec)
TYPE (blas_cmach_type), INTENT(IN) :: cmach
REAL (<wp>), INTENT(IN) :: prec

e Fortran 77 binding:

<rtype> FUNCTION BLAS_xFPINFO(CMACH)
INTEGER CMACH

e C binding:

<rtype> BLAS_xfpinfo(enum blas_cmach_type cmach) ;

Chapter 3

Sparse BLAS

3.1 Overview

A matrix which contains many zero entries is often referred to as being sparse. Many problems
arising from engineering and scientific computing give rise to large, sparse matrices, hence their
importance in numerical linear algebra. Sparsity provides an opportunity to conserve storage and
reduce computational requirements by storing only the significant (typically, nonzero) entries.

The Sparse BLAS interface addresses computational routines for unstructured sparse matrices.
These are matrices that do not possess a special sparsity pattern (such as banded or triangular
covered in the previous chapter on Dense/Banded specifications). Two fundamental differences
between the Sparse BLAS and other chapters are

¢ Functionality: Only a small subset of the BLAS functionality is specified for sparse matrices
— essentially only matrix multiply and triangular solve, along with sparse vector update, dot
product and gather/scatter. These are among the basic operations used in solving large
sparse linear equations using iterative techniques. Not included are general operations for
direct solvers, functions for explicit matrix reordering, or operations in which both operands
are sparse (e.g. the product of two sparse matrices).

e Generic interface: There is no single “best” method to represent a sparse matrix. The
selection of the possible storage format is dependent on the algorithm being used, the original
sparsity pattern of the matrix, the underlying computer architecture, together with other
considerations such as in what format the data already exists, and so on. Because of this,
sparse matrix arguments to the Level 2 and 3 Sparse BLAS routines are not the actual data
components but rather a placeholder, or handle, which refers to an abstract representation of
a matrix. (For portability, this handle is an integer variable.) Unlike the dense BLAS, there
are many storage representations for sparse matrices, and this handle-based scheme allows
one to write numerical algorithms using the Sparse BLAS independently of the matrix storage
scheme.

Several routines are provided to create Sparse BLAS matrices, but the internal representation
is implementation dependent. This provides BLAS library developers the best opportunity for
optimizing and fine-tuning their kernels for specific situations.

Matrices in the Sparse BLAS can be constructed piece-by-piece, directly from common formats.
The result is a matrix handle that can be passed as a parameter to Sparse BLAS computational
kernels. Routines are also provided to extract information on a matrix identified by its handle and

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

©

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. NAMING CONVENTIONS 105

to release any resources related to the handle when computations with the matrix are completed.
Thus, typical use of the Sparse BLAS consists of three phases:

1. create an internal sparse matrix representation and return its handle

(Sections 3.8.6, 3.8.7, and 3.8.8).

2. use this handle as a parameter in computational Sparse BLAS routines (Sections 3.8.2, 3.8.3,
and 3.8.4).

3. when the matrix is no longer needed, call a cleanup routine to free resources associated with
the handle (Section 3.8.10).

Note that the releasing a matrix handle does not affect any of the user’s data, but only internal
BLAS resources (housekeeping data structures and internal copies of matrix data) that are not
visible to the user. Thus, program resources available to the user after releasing a matrix handle
should be the same as before creating that handle.

In Section 3.3 we describe the functionality of the Level 1, 2 and 3 Sparse BLAS. Section 3.4
provides an overview of the data structures used to express the sparsity of the sparse vectors and
matrices, including a discussion of index bases in Section 3.4.2 and repeated indices in Section 3.4.3.
Section 3.5.1 illustrates how to initialize Sparse BLAS matrices and Section 3.5.2 how to specify
properties of the matrices. Sections 3.6.1- 3.6.3 discuss interface issues. Section 3.7 briefly discusses
numerical accuracy and environmental enquiry. Finally, in Section 3.8, we present the interfaces
for the kernels, giving details for each specific language binding for Fortran 95, Fortran 77, and C
programming languages.

3.2 Naming Conventions

Because this standard addresses multiple language bindings and various precisions, the BLAS
routines are typically referred to in the text by their root names. Sparse BLAS root names use
the two-letter identifier US, for Unstructured Sparse, e.g. as in USMV, or USDOT. These names are
a compact way to represent the various instantiations. For example, the root for matrix-vector
multiplication, USMV, is the general form of routines such as BLAS_dusmv (the C version for double-
precision), or BLAS_CUSMV (the Fortran 77 version of single-precision complex). Functions listed
in the Language Bindings Section 3.8 appear under their root name, followed by their detailed
language-specific bindings.

Where an x appears in the name of a subroutine or function binding, it should be replaced in the
call by one of the letters S, D, C, Z to indicate whether the floating-point data types are real single
precision, real double precision, complex single precision, or complex double precision, respectively.
Notice that, for some calls, this letter and substitution does not appear since the data type is not
referenced explicitly and is only accessed through the matrix handle. In the F95 language, generic
calls enable the use of this letter to be avoided in all cases except the creation routines.

3.3 Functionality

This section describes the Level 1, 2, and 3 routines defined for sparse vectors and matrices. In all
cases only one of the basic operands is sparse, that is there are no sparse-sparse operations. For
the sake of compactness, the case involving complex operators is usually omitted, For matrices,
whenever a transpose operation is described, the conjugate transpose is implied for the complex
case.

106 CHAPTER 3. SPARSE BLAS

3.3.1 Scalar and Vector Operations

USDOT | sparse dot product r < zly,

r« zty
USAXPY | sparse vector update Yy~ ar—+vy
USGA sparse gather z < Y|y
USGZ sparse gather and zero | = < y|g; ylz < 0
Ussc sparse scatter Ylz ¢

Table 3.1: Sparse Vector Operations

This subsection lists the operations corresponding to the Level 1 Sparse BLAS. Table 3.1 lists the
scalar and vector operations. The following notation is used: r and « are scalars, = is a compressed
sparse vector, y is a dense vector, and y|, refers to the entries of y that have common indices with
the sparse vector z. Details of the sparse vector storage format are given in Section 3.4.1.

3.3.2 Matrix-Vector Operations

USMV | sparse matrix/vector multiply | y + aAz +y
y+— ATz 4y
y+— aAflz +y
USSV | sparse triangular solve z ol 'z
z— ol Tz
x4 ol Hy

Table 3.2: Sparse Matrix-Vector Operations

Table 3.2 lists matrix/vector (Level 2) operations. The notation A represents a sparse matrix
and T denotes a sparse triangular matrix. x and y are dense vectors, « is a scalar.

3.3.3 Matrix-Matrix Operations

USMM | sparse matrix/matrix multiply | C <~ aAB + C
C+aATB+C
C+ aA®B+C
USSM | sparse triangular solve B+ oT™'B
B« oT B
B« oT "B

Table 3.3: Sparse Matrix-Matrix Operations

Table 3.3 lists matrix/matrix (Level 3) operations, using the following notation: « is a scalar, A
denotes a general sparse matrix, T' denotes a sparse triangular matrix. B and C are dense matrices.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.4. DESCRIBING SPARSITY 107

3.4 Describing sparsity

3.4.1 Sparse Vectors

Sparse vectors are represented by a pair of conventional vectors, one denoting the nonzero values
and the other denoting their indices. That is, if is a vector that we wish to represent in sparse
format, then it is represented by a one-dimensional array, X, of the entries of z, and an integer
vector of equal length to X whose values indicate the location in z of the corresponding floating-
point values in X. The index values may follow the Fortran convention (where the first element has
an index of 1) or the C/C++ convention (where the first element has an index of 0). These are
referred to as 1-based and 0-based indexing, respectively, and the Sparse BLAS specification usually
handles both (see Section 3.4.2). For example, using 1-based (Fortran) indexing, the vector

z = (11.0 0.0 13.0 14.0 0.0)

can be represented by two vectors as

X = (11.0 13.0 14.0)
INDX = (1 3 4)

although the permutation
X = (14.0 13.0 11.0)
INDX = (4 3 1)

or any other such permutation is equally valid.
We illustrate the use of this structure, through the Fortran 77 routine for a double precision
real sparse dot product :

W = BLAS DUSDOT(CONJ, NZ, X, INDX, Y, INCY)

where NZ is the number of nonzero entries in the sparse vector z, the argument X is the double
precision vector containing the entries of z, INDX is the index vector for z, Y is a dense vector
with INCY defining the stride between consecutive components, and CONJ is a flag specifying if
Z or z is used (although this has no effect in the case of real arguments). This call computes

NZ
w =Y X(I) * YANDX(I))
I=1

3.4.2 Index bases

The Fortran and C programming languages utilize different conventions to index entries of a vector.
Fortran uses a 1-based convention, (that is z(1) is the first entry of vector z); C assumes 0-based
index values (that is z[0] is the first entry of the vector z).

For dense array operations, this difference can often be dealt with by adjustments to the ar-
ray parameters in function and subroutine calls. For sparse data structures, however, the index
information is part of the semantics of the data structure, so this must be dealt with explicitly.

The Fortran interface for the Sparse BLAS defaults to a 1-based indexing, while the C interface
defaults to 0-base indexing. Both interfaces, however, can explicitly override this default with only
one exception: the Fortran interfaces to the Level 1 sparse routines. In the following sections,
we use 1-based conventions in examples and discussions, unless otherwise stated.

For Level 2 and Level 3 operations, the index base may be specified by the
blas_one base/blas_zero_base property, which can be set when constructing BLAS matrices (see
Section 3.5.2).

108 CHAPTER 3. SPARSE BLAS

3.4.3 Repeated Indices

In general, having the same matrix or vector entry specified multiple times in a sparse representation
can lead to ambiguities. There are some cases, however, where it is useful to define the result as
the sum of all entries with a common index. For example, the sparse data structure

N = 5
X = (11.0 13.0 14.0 220)
INDX = (1 3 4 3)

may be interpreted as a representation of the vector
z = (11.0 0.0 35.0 14.0 0.0)

Analogously, a similar convention can be adopted for sparse matrices: whenever an (7, j) index
is specified multiple times, the result is that its corresponding nonzero values are added together.
(This is useful, for example, in the assembling of elemental matrices from finite-element formulations
as in Section 3.5.6).

Because of possible ambiguities and inefficiencies, the use of repeated indices is not supported
in the Level 1 BLAS operations. That is, for those routines the sparse vector parameter must have
unique indices, otherwise the computational results are undefined.

3.5 Sparse BLAS Matrices

3.56.1 Creation Routines

A Sparse BLAS matrix and its associated handle are created by a sequence of calls to the routines
listed in Sections 3.8.6, 3.8.7, and 3.8.8. A call must first be made to a routine to begin the matrix
construction. This can be of three forms depending on whether the input matrix has entries which
are scalars or are dense matrices. The calls for the scalar or single entries case have the form

CALL DUSCRBEGIN(m, n, A, istat) (Fortran 95)
CALL BLAS_DUSCR_BEGIN(M, N, A, ISTAT) (Fortran 77)
A = BLAS duscrbegin(m, n); (C)

where m and n are the matrix dimensions and A is the matrix handle.
When initializing Sparse BLAS matrices from a block-structured format, two variants of the
creation routines may be used. For fixed size k x [blocks, the declaration

CALL DUSCR_BLOCK BEGIN(mb, nb, k, 1, A, istat) (Fortran 95)
CALL BLAS DUSCR_BLOCK BEGIN(MB, NB, K, L, A, ISTAT) (Fortran 77)
A = BLAS duscr_block begin(Mb, Nb, k, 1); (C)

signifies that the input matrix contains Mb x Nb blocks, each of size k x [, that is the total dimensions
of the matrix are (Mbx k) x (Nbx*l).
Likewise, for variable block matrices, the declaration

CALL DUSCR_VARIABLE BLOCK BEGIN(mb, nb, K, L, A, istat) (Fortran 95)
CALL BLAS DUSCR_VARIABLE BLOCK BEGIN(MB, NB, K, L, A, ISTAT) (Fortran 77)
A = BLAS duscr_variable block begin(Mb, Nb, K, L); (C)

denotes that the input matrix has a variable block structure denoted by the integer vectors K and
L.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.5. SPARSE BLAS MATRICES 109

blas_non_unit_diag nonzero diagonal entries are stored (Default)

blas_unit_diag diagonal entries are not stored and assumed to be 1.0

blas_no_repeated_indices | indices are unique (Default)

blas_repeated_indices nonzero values of repeated indices are summed

blas_lower_symmetric only lower half of symmetric matrix is specified by user.

blas_upper_symmetric only upper half of symmetric matrix is specified by user.

blas_lower_hermitian only lower half of Hermitian matrix is specified by user.

blas_upper_hermitian only upper half of Hermitian matrix is specified by user.

blas_lower_triangular sparse matrix is lower triangular

blas_upper_triangular sparse matrix is upper triangular

blas_zero_base indices of inserted items are 0-based (Default for C)

blas_one_base indices of inserted items are 1-based (Default for Fortran)
Applicable for block entries only

blas_rowmajor dense block stored row major order (Default for C)

blas_colmajor dense block stored col major order (Default for Fortran)

blas_irregular general unstructured matrix

blas_regular structured matrix

blas_block_irregular unstructured matrix best represented by blocks

blas_block_regular structured matrix best represented by blocks

blas_unassembled matrix is best represented by cliques

Table 3.4: Matrix properties (can be set by USSP).

3.5.2 Specifying matrix properties

The creation routines allow one to specify various properties about the matrix and optionally pro-
vide hints to the underlying BLAS implementation about how the matrix will be used in subsequent

BLW h%z}p%rggtltﬁ@ta%)gﬁ%ﬁ]g %4 Q%‘Eﬁtg‘)gp%}%‘é ?%g%rgg?%%e or more of the properties in Table 3.4
may be specified with the use of the USSP (set property) routine (See Section 3.8.9). For example,

USSP(A, blas_lower_triangular);
USSP(A, blas_unit_diag);

denotes a lower triangular matrix, with an implicit unit diagonal.

The input properties (Table 3.4), are mutually exclusive for each category and may be specified
only once. The result is undefined if incompatible properties are requested.

An optional description of the sparsity pattern of the matrix may be specified at construction
time. These properties are listed as the last group in Table 3.4 and their use may assist the
underlying implementation in choosing the most efficient internal data structure for subsequent
computation. Note that each description is mutually exclusive. The specification of these properties
is optional and does not effect the correctness of the program.

3.5.3 Sparse Matrices: Inserting a Single Entry

The basic insertion routine USCR_INSERT_ENTRY allows one to build a sparse matrix, one scalar
entry at a time, by specifying its row and column index together with its numeric value. Although
there are other insertion routines for special structures (see below) this version is the simplest and
most universal, as it allows one to build a BLAS Sparse Matrix from any given format.

110 CHAPTER 3. SPARSE BLAS

blas_num_rows returns the number of rows of matrix
blas_num_cols returns the number of columns of matrix
blas_num_nonzeros returns the number of stored entries
blas_complex matrix values are complex

blas_real matrix values are real

blas_integer matrix values are integer

blas_double_precision | matrix values are single precision
blas_single_precision | matrix values are double precision

blas_general neither symmetric nor Hermitian (Default)
blas_symmetric sparse matrix is symmetric
blas_hermitian (complex) sparse matrix is Hermitian

blas_lower_triangular | sparse matrix is lower triangular
blas_upper_triangular | sparse matrix is upper triangular

blas_zero_base indices of inserted items are 0-based (Default for C)

blas_one_base indices of inserted items are 1-based (Default for Fortran)
Applicable for block entries only

blas_rowmajor dense block stored row major order (Default for C)

blas_colmajor dense block stored col major order (Default for Fortran)

blas_void_handle handle not currently in use

blas_new_handle handle created but no entries inserted so far

blas_open_handle an entry has been inserted but creation not yet finished

blas_valid_handle creation completed (USCR_END has been called)

Table 3.5: Matrix properties (can be read by USGP).

3.5.4 Sparse Matrices: Inserting List of Entries

The insertion routine USCR_INSERT_ENTRIES allows us to pass a list of entries with arbitrary row
and column indices. We describe this list with a similar set of data structures as used for sparse
vectors, but now need two integer vectors, one containing the row indices (called INDX) and another
containing the column indices (called JNDX).

To illustrate this, consider the following matrix:

.10 0 0
0 22 0 24
A= 0 033 0| (3.1)

41 0 0 44

We can pass in all entries (following a call to one of the BEGIN routines) by defining NZ = 6 and
setting
VAL = (1.1 22 24 33 41 44)
INDX = (1 2 2 3 4 4)
JNDX = (1 2 4 3 1 4).

Note that calls to the C interface would default to using 0-based indices (see Section 3.4.2). The
ordering of the entries is arbitrary.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

45

47

48

3.6. INTERFACE ISSUES 111

3.5.5 Sparse Matrices: Inserting Row and Column Vectors

The insertion routines USCR_INSERT_COL and USCR_INSERT_ROW allow us to pass a list of entries
that all belong to the same column or row of a matrix. The data structures used to pass the
information are identical to those used to describe a sparse vector in Section 3.4.1.

3.5.6 Sparse Matrices: Inserting Cliques

A clique is a two-dimensional array of values with integer row and column vectors that describe
how the values will be scattered into the sparse matrix. Such data structures are common in finite
element computations. Consider the matrix A in Section 3.5.4. We can pass in the (2,2), (2,4),
(4,2) and (4,4) entries as a clique by defining a two-dimensional array

2.2 24
VAL = (0.0 44) (3.2)
and its associated row and column scattering vectors as

INDX = (2 4)
JNDX = (2 4).

Note that the structure allows cliques to be other than principal submatrices (in which case arrays
INDX and JNDX could differ) and indeed allows the clique matrices to be rectangular.

3.6 Interface Issues

3.6.1 Interface Issues for Fortran 95

e Predefined constants for the Sparse BLAS are included in the module
“blas_sparse namedconstants”. These include the sparse matrix properties constants de-
fined in Tables 3.4 and 3.5. A module “blas_sparse_proto” of explicit interfaces to all
routines is also provided.

e Sparse matrix/vector indices are assumed to begin at 1 (that is they are 1-based), but can
be overridden by specifying blas_zero_base at the time of creation.

e The values of the named constants are as specified in Section A.4.

e Error handling is as defined in Section 2.4.6.

The interface example below illustrates multiplying a sparse 4 x 4 matrix

1.1 0 0 O
0 22 0 24
A= 0 033 O (3:3)

41 0 0 44

with the vector z = {1.0,1.0,1.0,1.0} performing the operation y < Az. In this example, the
sparse matrix is input by point (rather than block) entries.

112

CHAPTER 3. SPARSE BLAS

! Fortran 95 example: sparse matrix-vector multiplication

PROGRAM F95_EX
USE blas_sparse

IMPLICIT NONE

INTEGER NMAX, NNZ

PARAMETER (NMAX = 4, NNZ = 6)

INTEGER i, n, a, istat

INTEGER, DIMENSION(:), ALLOCATABLE: :indx, jndx

DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE:: val, x, y

ALLOCATE (val(NNZ) ,x (NMAX) ,y(NMAX),indx (NNZ) , jndx(NNZ))

indx=(/1,2,2,3,4,4/)
jndx=(/1,2,4,3,1,4/)
val=(/1.1,2.2,2.4,3.3,4.1,4.4/)

N = NMAX

Step 1: Create Sparse BLAS Handle

Step 2: Insert entries one-by-one

DO i=1, nnz
CALL uscr_insert_entry(A, val(i), indx(i), jndx(i), istat)
END DO

Step 5: Release Matrix Handle

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.6. INTERFACE ISSUES 113

CALL usds(a,istat)
END
3.6.2 Interface Issues for Fortran 77

Although Fortran 77 is no longer a standard, Fortran 77 compilers are still heavily used and there
are many Fortran applications that, even if compiled with a Fortran 95 compiler, use a subset

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

of the language that is very close to Fortran 77. In addition, we have seen in the C interface
to the legacy BLAS (see Chapter B) that a Fortran 77 library can provide the vast majority
of functionality required by a higher level interface and greatly reduce the overall amount of work
required to develop and support multiple language bindings. For these reasons we provide a Fortran

77 interface to the sparse BLAS.

QaaQaQaQ

e Predefined constants for the Sparse
“blas_namedconstants.h”. These include the sparse matrix properties constants defined
in Tables 3.4 and 3.5.

Fortran 77 example: sparse matrix-vector multiplication

PROGRAM F77_EX

IMPLICIT NONE

INCLUDE "blas_namedconstants.h"
INTEGER NMAX, NNZ

PARAMETER (NMAX = 4, NNZ = 6)
INTEGER I, N, ISTAT, A

INTEGER INDX(NNZ), JNDX(NNZ)

BLAS

e Sparse matrix/vector indices are assumed to begin at 1 (that is they are 1-based), but can
be overridden by specifying blas_zero_base at the time of creation.

e The values of the named constants are as specified in Section A.5.

e Error handling is as defined in Section 2.5.6.

The following program illustrates the use of Fortran 77 codes on the matrix 3.3.

DOUBLE PRECISION VAL(NNZ), X(NMAX), Y(NMAX)

DATA VAL /
DATA INDX /
DATA JNDX /

DATA X
DATA Y

114

Qo

Qo aQQ

10

QO Qo

Qo

3.6.3

CHAPTER 3. SPARSE BLAS

Step 1: Create Sparse BLAS Handle

Step 2: Insert entries one-by-one

DO 10 I=1, NNZ
CALL BLAS_DUSCR_INSERT_ENTRY (A, VAL(I), INDX(I), JNDX(I), ISTAT)
CONTINUE

Step 3: Complete construction of sparse matrix

Step 5: Release Matrix Handle

CALL BLAS_USDS(A,ISTAT)

END

Interface Issues for C

Predefined constants for the Sparse BLAS are included in the header file “blas_enum.h”.
These include the sparse matrix properties constants defined in Tables 3.4 and 3.5.

Sparse matrix/vector indices are assumed to begin at 0 (that is they are 0-based), but can
be overridden by specifying blas_one_base at the time of creation.

Sparse matrix handles are integers, but are typedef to blas_sparse_matrix for clarity.
The values of the enumerated types are as specified in Section A.6.

Error handling is as defined in Section 2.6.9.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.6.

int

INTERFACE ISSUES

The following program illustrates the use of C codes on the matrix 3.3.

/* C example: sparse matrix/vector multiplication */
#include "blas_sparse.h"
main()

const int N = 4;

const int nz = 6;

double valll = { 1.1, 2.2, 2.4, 3.3, 4.1, 4.4 };
int dindx[1 ={ o0, 1, 1, 2, 3, 3};
int jndx[1 = { O, 1, 3, 2, 0, 3};
double x[] ={1.0, 1.0, 1.0, 1.0 };

double y[l =4{ 0.0, 0.0, 0.0, 0.0 };

blas_sparse_matrix A;
int i;
double alpha = 1.0;

Y e e L P */
/* Step 1: Create Sparse BLAS Handle x*/
[k m - */

[k———————— */
/* Step 2: insert entries */
[k———————— */

for (i=0; i<nz; i++)
BLAS_duscr_insert_entry(A, val[i], indx[i], jndx[i]);

[h——————————— */
/* Step 3: Complete construction of sparse matrix */
[h——————————— */

[k m - */
/* Step 4: Compute Matrix vector product y = A*x */
Y et */

/* Step 5: Release Matrix Handle */

115

116 CHAPTER 3. SPARSE BLAS

BLAS_usds(4);

return 0O;

3.7 Numerical Accuracy and Environmental Enquiry

All the comments on the accuracy of numerical methods made in Sections 1.6 and 2.7 apply here.
In particular, subroutine FPINFO described in Section 2.7 should be used to get floating-point
parameters needed for error bounds.

3.8 Language Bindings

3.8.1 Overview

This sections lists BLAS routines by their root name (see Section 3.2) together with their specific
bindings for Fortran 95, Fortran 77, and C.

e Level 1 computational routines (Section 3.8.2)

USDOT sparse dot product

USAXPY sparse vector update
— USGA sparse gather

USGZ sparse gather and zero
— USSC sparse scatter

e Level 2 computational routines (Section 3.8.3)

— USMV matrix/vector multiply

— USSV matrix/vector triangular solve
e Level 3 computational routines (Section 3.8.4)

— USMM matrix/matrix multiply

— USSM matrix/matrix triangular solve
e Handle Management routines (Level 2/3) (Section 3.8.5)

— Creation routine (Section 3.8.6)

* USCR_BEGIN begin construction

* USCR_BLOCK_BEGIN begin block-entry construction

* USCR_VARIABLE_BLOCK_BEGIN begin variable block-entry construction
— Insertion routines (Section 3.8.7)

* USCR_INSERT_ENTRY add point-entry to construction

* USCR_INSERT_ENTRIES add list of point-entries to construction

* USCR_INSERT_COL add a compressed column to construction

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. LANGUAGE BINDINGS 117

* USCR_INSERT_ROW add a compressed row to construction
* USCR_INSERT_CLIQUE add a dense matrix clique to construction
* USCR_INSERT_BLOCK add a block entry at block coordinate
(bi, bj)
— Completion of construction routine (Section 3.8.8)
* USCR_END entries completed; build internal representation
— Matrix property routines (Section 3.8.9)

* USGP get/test for matrix property
* USSP set matrix property

— Destruction routine (Section 3.8.10)

% USDS release matrix handle

3.8.2 Level 1 Computational Routines

General conventions: in all Level 1 routines, the following common arguments are used:
e x : a sparse vector x, with nz nonzeros
e indx : an (integer) index vector corresponding to z,
e y: a dense vector

e index_base: (C bindings only.) By convention, the Fortran 77 and Fortran 95 bindings assume
that all offsets begin at 1 (that is z(1) is the first entry). For the C language bindings, offsets
can start at 0 (the default for C arrays) or 1 (for Fortran compatibility).

Note that, as stated in Section 3.4.3, the result of a Level 1 BLAS operation called with repeated
indices in array indx will be undefined. The actual return will be dependent on the implementation.

USDOT (Sparse dot product) r zly

The function USDOT computes the dot product of sparse vector with dense vector y. The
routine returns a real zero if the length of arrays x and indx are less than or equal to zero. When
z and y are complex vectors, the vector components x; are used unconjugated or conjugated as
specified by the operator argument conj. If x and y are real vectors, the operator argument conj
has no effect. For the C binding, the lack of a complex data type forces us to return the result in
the parameter r.

e Fortran 95 binding:

<type>(<wp> FUNCTION usdot(x, indx, y [, conjl)
INTEGER, INTENT(IN) :: indx(:)
<type>(<wp>), INTENT(IN) :: x(:), y(:)
TYPE(blas_conj_type), INTENT(IN), OPTIONAL :: conj

e Fortran 77 binding:

118 CHAPTER 3. SPARSE BLAS

<type> FUNCTION BLAS_xUSDOT(CONJ, NZ, X, INDX, Y, INCY)

<type> XC*x), Y(*x)
INTEGER NZ, INDX(*), INCY
INTEGER CONJ

e C binding:

void BLAS_xusdot(enum blas_conj_type conj, int nz, const ARRAY x,
const int *indx, const ARRAY y, int incy,
SCALAR_INOUT r, enum blas_base_type index_base);

USAXPY (Sparse vector update) Yy ar+y

The routine USAXPY scales the sparse vector z by a and adds the result to the dense vector y.
If the length of arrays x and indx are less than or equal to zero or if « is equal to zero, this routine
returns without modifying y. Note that we do not allow a scaling on the vector y (that is, we do
not implement a USAXPBY) as this would change the complexity of our routine because scaling a
dense vector requires n operations while the sparse operations are only O(nz). If the dense vector
y is to be scaled, the appropriate Level 1 dense BLAS kernel should be used.

e Fortran 95 binding:

SUBROUTINE usaxpy(x, indx, y [, alphal)
<type>(<wp>), INTENT(IN) :: x(:)
<type>(<wp>), INTENT(INOUT) :: y(:)
INTEGER, INTENT(IN) :: indx(:)
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

The default value for o is 1.0.

e Fortran 77 binding:

SUBROUTINE BLAS_xUSAXPY(NZ, ALPHA, X, INDX, Y, INCY)

<type> ALPHA

<type> XC*), Y(*)

INTEGER NZ, INDX(*), INCY
e C binding:

void BLAS_xusaxpy(int nz, SCALAR_IN alpha, const ARRAY x, const int *indx,
ARRAY y, int incy, enum blas_base_type index_base);

USGA (Sparse gather into compressed form) T Ylp

Using indx to denote the list of indices of the sparse vector z, for each component i in this
list, the routine USGA assigns x(i) = y(indx(i)). For example, if z is a sparse vector with nonzeros
{3.1,4.9} and indices {1,4} (using 1-based offsets), and y is the dense vector {12.7,68.1,38.1, 54.0},
then the USGA routine changes z to {12.7,54.0}. If the length of x and indx is non-positive, this
routines returns without any modification to its parameters.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. LANGUAGE BINDINGS 119

e Fortran 95 binding:

SUBROUTINE usga(y, x, indx)
<type>(<wp>), INTENT(IN) :: y(:)
<type>(<wp>), INTENT(OUT) :: x(:)
INTEGER, INTENT(IN) :: indx(:)

e Fortran 77 binding:

SUBROUTINE BLAS_xUSGA(NZ, Y, INCY, X, INDX)

INTEGER NZ, INDX(*), INCY
<type> YO *x), X(C*)
e C binding:

void BLAS_xusga(int nz, const ARRAY y, int incy, ARRAY x, const int *indx,
enum blas_base_type index_base) ;

USGZ (Sparse gather and zero) T4 Yz, Ylz 0

This routine combines two operations: (1) a sparse gather of y into z. (see USGA above),
followed by (2) setting the corresponding values of y (y(indx(i)) to zero. For example, if z is a
sparse vector with nonzeros {3.1,4.9} and indices {1,4} (using 1-based offsets), and y is the dense
vector {12.7,68.1,38.1,54.0}, then the USGA routine changes the nonzero values of z to {12.7,54.0}
and changes y to {0.0,68.1,38.1,0.0}.

e Fortran 95 binding:

SUBROUTINE usgz(y, x, indx)
<type>(<wp>), INTENT(INOUT) :: y(:)
<type>(<wp>), INTENT(OUT) :: x(:)
INTEGER, INTENT(IN) :: indx(:)

e Fortran 77 binding:

SUBROUTINE BLAS_xUSGZ(NZ, Y, INCY, X, INDX)

INTEGER NZ, INDX(*), INCY
<type> Y(*), X(%)
e C binding:

void BLAS_xusgz(int nz, ARRAY y, int incy, ARRAY x, const int *indx,
enum blas_base_type index_base) ;

USSC (Sparse scatter) Ylz T

120 CHAPTER 3. SPARSE BLAS

This routine copies the nonzero values of z into the corresponding locations in the dense vector
y. For example, if z is a sparse vector with nonzeros {3.1,4.9} and indices {1,4} (using 1-based
offsets), and y is the dense vector {12.7,68.1,38.1,54.0}, then the USSC routine changes y to
{3.1,68.1,38.1,4.9}. If the length of arrays x and indx are less than or equal to zero, this routine
returns without any modification to its parameters.

e Fortran 95 binding:

SUBROUTINE ussc(x, y, indx)
<type>(<wp>), INTENT(IN) :: x(:)
<type>(<wp>), INTENT(INOUT) :: y(:)
INTEGER, INTENT(IN) :: indx(:)

e Fortran 77 binding:

SUBROUTINE BLAS_xUSSC(NZ, X, Y, INCY, INDX)

INTEGER NZ, INDX(*), INCY
<type> XC*), Y(*)
e C binding:

void BLAS_xussc(int nz, const ARRAY x, ARRAY y, int incy, const int *indx,
enum blas_base_type index_base) ;

3.8.3 Level 2 Computational Routines

USMV (Sparse Matrix/Vector Multiply) y<— aAzr+y
y—aAlz +y

This routine multiplies a dense vector z by a sparse matrix A (or its transpose), and adds it
to the vector operand y. The matrix handle A must be valid, i.e. USGP(A, blas_valid_handle)
must be true, and the precision type of the sparse matrix represented by the handle A must match
the remaining floating-point arguments. istat is used as an error flag and will be zero if the routine
executes successfully. The C binding returns istat as the function return value.

e Fortran 95 binding:

SUBROUTINE usmv(a, x, y, istat [, tramnsal] [, alphal)
INTEGER, INTENT(IN) :: a
<type>(<wp>), INTENT(IN) :: x(:)
<type>(<wp>), INTENT(INOUT) :: y(:)
INTEGER, INTENT(OUT) :: istat
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

Default values for transa and « are blas no_trans and 1.0, respectively.

10

11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. LANGUAGE BINDINGS 121

e Fortran 77 binding:

SUBROUTINE BLAS_xUSMV(TRANSA, ALPHA, A, X, INCX, Y, INCY, ISTAT)

INTEGER INCX, INCY, A, TRANSA, ISTAT
<type> ALPHA
<type> XC*), Y(*)

e C binding:

int BLAS_xusmv(enum blas_trans_type transa, SCALAR_IN alpha,
blas_sparse_matrix A, const ARRAY x, int incx, ARRAY y, int incy);

USSV (Sparse Triangular Solve) r+al lz
z—alT Ty

This routine solves one of the systems of equations z < oT 'z or z < oT Lz, where z is a
dense vector and the matrix 7" is a triangular sparse matrix. The matrix handle T must be valid,
i.e. USGP(T, blas_valid_handle) is true, must represent a valid triangular matrix, i.e. either
USGP (T, blas_lower_triangular or USGP(T, blas_upper_triangular) must be true, and the
precision type of the sparse matrix represented by the handle T must match the remaining floating-
point arguments. istat is used as an error flag and will be zero if the routine executes successfully.
The C binding returns istat as the function return value.

e Fortran 95 binding:

SUBROUTINE ussv(t, x, istat, [, transt] [, alphal)
INTEGER, INTENT(IN) :: t
<type>(<wp>), INTENT(INOUT) :: x(:)
INTEGER, INTENT(OUT) :: istat
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

Default values for transt and « are .TRUE. and 1.0 respectively.

e Fortran 77 binding:

SUBROUTINE BLAS_xUSSV(TRANST, ALPHA, T, X, INCX, ISTAT)

INTEGER T, INCX, TRANST, ISTAT
<type> ALPHA
<type> X(x)

¢ C binding:

int BLAS_xussv(enum blas_trans_type transt, SCALAR_IN alpha,
blas_sparse_matrix T, ARRAY x, int incx);

122 CHAPTER 3. SPARSE BLAS

3.8.4 Level 3 Computational Routines

USMM (Sparse Matrix Multiply) C+—aAB+C
C+aATB+C

This routine multiplies a dense matrix B by a sparse matrix A (or its transpose), and adds it
to a dense matrix operand C. A is of size m by n, B is of size of n by nrhs, and C' is of size m
by nrhs. The input argument nrhs must be greater than zero, and the matrix handle A must be
valid, i.e. USGP(A, blas_valid_handle) must be true, and the precision type of the sparse matrix
represented by the handle A must match the remaining floating-point arguments. istat is used as
an error flag and will be zero if the routine executes successfully. The C binding returns istat as
the function return value.

e Fortran 95 binding:

SUBROUTINE usmm(a, b, ¢, istat, [, transal] [, alphal])
INTEGER, INTENT(IN) :: a
<type>(<wp>), INTENT(IN) :: b(:,:)
<type>(<wp>), INTENT(INOUT) :: c(:,:)
INTEGER, INTENT(OUT) :: istat
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

Default values for transa and « are .TRUE. and 1.0, respectively.

e Fortran 77 binding:

SUBROUTINE BLAS_xUSMM(TRANSA, NRHS, ALPHA, A, B, LDB, C, LDC,

$ ISTAT)
INTEGER NRHS, A, LDB, LDC, TRANSA, ISTAT
<type> ALPHA
<type> B(LDB, *), C(LDC, *)
e C binding:

int BLAS_xusmm(enum blas_order_type order, enum blas_trans_type transa,
int nrhs, SCALAR_IN alpha, blas_sparse_matrix A,
const ARRAY B, int 1db, ARRAY C, int 1ldc);

USSM (Sparse Triangular Solve) B+ aT 'B
B+ aT B

This routine solves one of the systems of equations B < o7 'B or B + o7~ B, where B is a
dense matrix and 7 is a triangular sparse matrix. T is of size n by n, B is of size of n by nrhs, and
C is of size n by nrhs. The input argument nrhs must be greater than zero, and the matrix handle
T must be valid, i.e. USGP(T, blas_valid_handle) must be true, and represent a valid triangular
matrix, i.e. either USGP(T, blas_lower_triangular or USGP(T, blas_upper_triangular) must
be true. The precision type of the sparse matrix represented by the handle T must match the
remaining floating-point arguments. istat is used as an error flag and will be zero if the routine
executes successfully. The C binding returns istat as the function return value.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. LANGUAGE BINDINGS 123

e Fortran 95 binding:

SUBROUTINE ussm(t, b, istat [, transt] [, alphal])
INTEGER, INTENT(IN) :: t
<type>(<wp>), INTENT(INOUT) :: b(:,:)
INTEGER, INTENT(OUT) :: istat
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

Default values for transt and « are .TRUE. and 1.0 respectively.

e Fortran 77 binding:

SUBROUTINE BLAS_xUSSM(TRANST, NRHS, ALPHA, T, B, LDB, ISTAT)

INTEGER NRHS, T, LDB, TRANST, ISTAT
<type> ALPHA
<type> B(LDB, *)

e C binding:

int BLAS_xussm(enum blas_order_type order, enum blas_trans_type transt,
int nrhs, SCALAR_IN alpha, blas_sparse_matrix T, ARRAY B, int 1db
)s

3.8.5 Handle Management

The Handle Management routines can be divided into five sets; the creation routines (Section 3.8.6),
the insertion routines (Section 3.8.7), the completion routine (Section 3.8.8), matrix property rou-
tines (Section 3.8.9), and the destruction routine (Section 3.8.10). A brief discussion of these
routines was given in Section 3.5.1.

3.8.6 Creation Routines
USCR_BEGIN (begin point-entry construction) A<+ (...)

USCR_BEGIN is used to create a sparse matrix handle where the matrix is held in normal point-
wise form (by single scalar entries). m and n must be greater than zero. The x prefix in the binding
names specifies the scalar type and precision of the matrix, as described in 3.2. istat is used as an
error flag and will be zero if the routine executes successfully. The C binding returns a new handle
as its function return value; this handle is void, i.e. USGP(return_value, blas_void_handle) is
true, if the routine did not execute successfully.

e Fortran 95 binding:
SUBROUTINE xuscr_begin(m, n, a, istat)

INTEGER, INTENT(IN) :: m, n
INTEGER, INTENT(OUT) :: a, istat

124 CHAPTER 3. SPARSE BLAS

e Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_BEGIN(M, N, A, ISTAT)
INTEGER M, N, A, ISTAT

e C binding:

blas_sparse_matrix BLAS_xuscr_begin(int m, int n);

USCR_BLOCK _BEGIN (begin constant block-entry construction) A<+ (...)

USCR_BLOCK_BEGIN is used to create a sparse matrix handle referring to a block-entry matrix
where the blocksize of all entries is constant, that is block entries are k x[. Mb, Nb, k and | must all
be greater than zero. The x prefix in the binding names specifies the scalar type and precision of
the matrix, as described in 3.2. istat is used as an error flag and will be zero if the routine executes
successfully. The C binding returns a new handle as its function return value; this handle is void,
i.e. USGP(return_value, blas_void_handle) is true, if the routine did not execute successfully.

e Fortran 95 binding:
SUBROUTINE xuscr_block_begin(Mb, Nb, k, 1, a, istat)
INTEGER, INTENT(IN) :: Mb, Nb, k, 1
INTEGER, INTENT(OUT) :: a, istat

e Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_BLOCK_BEGIN(MB, NB, K, L, A, ISTAT)
INTEGER MB, NB, K, L, A, ISTAT

e C binding:

blas_sparse_matrix BLAS_xuscr_block_begin(int Mb, int Nb, int k, int 1);

USCR_VARIABLE BLOCK_BEGIN (begin variable block-entry construction) A+ (..)

USCR_VARIABLE BLOCK_BEGIN is used to create a sparse matrix handle referring to a block-
entry matrix whose entries may have variable block sizes. The blocksizes are given by the integer
arrays K and L such that the dimension of the (i, j) block entry is K (i) x L(j). Mb, Nb, and all
elements of K and L must be greater than zero. The x prefix in the binding names specifies the
scalar type and precision of the matrix, as described in 3.2. istat is used as an error flag and will be
zero if the routine executes successfully. The C binding returns a new handle as its function return
value; this handle is void, i.e. USGP (return_value, blas_void_handle) is true, if the routine did
not execute successfully.

e Fortran 95 binding:

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. LANGUAGE BINDINGS 125

SUBROUTINE xuscr_variable_block_begin(Mb, Nb, k, 1, a, istat)
INTEGER, INTENT(IN) :: Mb, Nb, k(:), 1(:)
INTEGER, INTENT(OUT) :: a, istat
e Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_VARIABLE_BLOCK_BEGIN(MB, NB, K, L, A, ISTAT)

INTEGER MB, NB, A, ISTAT
INTEGER K(*), L(*)
e C binding:

blas_sparse_matrix BLAS_xuscr_variable_block_begin(int Mb, int Nb,
const int *k,
const int *1);

3.8.7 Insertion routines

USCR_INSERT_ENTRY (insert single value at coordinate (i, j)) A « (val,i,7)

USCR_INSERT_ENTRY is used to build a sparse matrix, passing in one scalar entry at a time.
This routine may only be called on a matrix handle that was opened via the USCR_BEGIN routine
and has not yet been closed via the USCR_END routine. Furthermore, matrix properties cannot be
modified after any insertions, so this call must follow all settings made to the matrix via the USSP
routine. The matrix handle must be in a new state (i.e USPG(A, blas_new_handle) is true) upon
the first call to this routine. Upon successful completion, the matrix handle is an open state (i.e.
USGP (A, blas_open_handle) is true) and subsequent calls to this routine will keep the matrix in
this state, until a call to USCR_END is issued. The precision type of the sparse matrix represented
by the handle A must match the remaining floating-point arguments. istat is used as an error flag
and will be zero if the routine executes successfully. The C binding returns istat as the function
return value.

e Fortran 95 binding:
SUBROUTINE uscr_insert_entry(a, val, i, j, istat)
INTEGER, INTENT(IN) :: a, i, j

<type>(<wp>), INTENT(IN) :: val
INTEGER, INTENT(OUT) :: istat

e Fortran 77 binding:
SUBROUTINE BLAS_xUSCR_INSERT_ENTRY (A, VAL, I, J, ISTAT)
INTEGER A, I, J, ISTAT
<type> VAL

e C binding:

126 CHAPTER 3. SPARSE BLAS

int BLAS_xuscr_insert(blas_sparse_matrix A, SCALAR val, int i, int j);

USCR_INSERT_ENTRIES (insert a list of values in coordinate form (val, i, j)) A <+ (val,i,j)

USCR_INSERT_ENTRIES is used to build a sparse matrix, passing in a list of point entries.
This routine may only be called on a matrix handle that was opened via the USCR_BEGIN routine
and has not yet been closed via the USCR_END routine. Furthermore, matrix properties cannot be
modified after any insertions, so this call must follow all settings made to the matrix via the USSP
routine. The matrix handle must be in a new state (i.e USPG(A, blas_new_handle) is true) upon
the first call to this routine. Upon successful completion, the matrix handle is an open state (i.e.
USGP(A, blas_open_handle) is true) and subsequent calls to this routine will keep the matrix in
this state, until a call to USCR_END is issued. The precision type of the sparse matrix represented
by the handle A must match the remaining floating-point arguments. istat is used as an error flag
and will be zero if the routine executes successfully. The C binding returns istat as the function
return value.

e Fortran 95 binding:

SUBROUTINE uscr_insert_entries(a, val, indx, jndx, istat)
INTEGER, INTENT(IN) :: a, indx(:), jndx(:)
<type>(<wp>), INTENT(IN) :: val (:)

INTEGER, INTENT(OUT) :: istat

e Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_INSERT_ENTRIES(A, NZ, VAL, INDX, JNDX,

$ ISTAT)
INTEGER A, NZ, INDX(*), JNDX(*), ISTAT
<type> VAL(*)
e C binding:

int BLAS_xuscr_insert_entries(blas_sparse_matrix A, int nz,
const ARRAY val,
const int *indx, const int *jndx);

USCR_INSERT_COL (insert a compressed column) A<+ (...)

USCR_INSERT_COL is used to build a sparse matrix, passing in one column at a time.
This routine may only be called on a matrix handle that was opened via the USCR_BEGIN routine
and has not yet been closed via the USCR_END routine. Furthermore, matrix properties cannot be
modified after any insertions, so this call must follow all settings made to the matrix via the USSP
routine. The matrix handle must be in a new state (i.e USPG(A, blas_new_handle) is true) upon
the first call to this routine. Upon successful completion, the matrix handle is an open state (i.e.
USGP (A, blas_open_handle) is true) and subsequent calls to this routine will keep the matrix in
this state, until a call to USCR_END is issued. The precision type of the sparse matrix represented
by the handle A must match the remaining floating-point arguments. istat is used as an error flag
and will be zero if the routine executes successfully. The C binding returns istat as the function
return value.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. LANGUAGE BINDINGS 127

e Fortran 95 binding:

SUBROUTINE uscr_insert_col(a, j, val, indx, istat)
INTEGER, INTENT(IN) :: a, j, indx(:)
<type>(<wp>), INTENT(IN) :: wval(:)

INTEGER, INTENT(OUT) :: istat
e Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_INSERT_COL(A, J, NZ, VAL, INDX, ISTAT)

INTEGER A, J, NZ, INDX(*), ISTAT
<type> VAL(*)
e C binding:

int BLAS_xuscr_insert_col(blas_sparse_matrix A, int j, int nz,
const ARRAY val, const int *indx);

USCR_INSERT_ROW (insert a compressed row) A+ (.)

USCR_INSERT_ROW is used to build a sparse matrix, passing in one row at a time. This
routine may only be called on a matrix handle that was opened via the USCR_BEGIN routine and
has not yet been closed via the USCR_END routine. Furthermore, matrix properties cannot be
modified after any insertions, so this call must follow all settings made to the matrix via the USSP
routine. The matrix handle must be in a new state (i.e USPG(A, blas_new_handle) is true) upon
the first call to this routine. Upon successful completion, the matrix handle is an open state (i.e.
USGP(A, blas_open_handle) is true) and subsequent calls to this routine will keep the matrix in
this state, until a call to USCR_END is issued. The precision type of the sparse matrix represented
by the handle A must match the remaining floating-point arguments. istat is used as an error flag
and will be zero if the routine executes successfully. The C binding returns istat as the function
return value.

e Fortran 95 binding:

SUBROUTINE uscr_insert_row(a, i, val, indx, istat)
INTEGER, INTENT(IN) :: a, i, indx(:)
<type>(<wp>), INTENT(IN) :: wval(:)

INTEGER, INTENT(OUT) :: istat

e Fortran 77 binding:
SUBROUTINE BLAS_xUSCR_INSERT_ROW(A, I, NZ, VAL, INDX, ISTAT)
INTEGER A, I, NZ, INDX(*), ISTAT
<type> VAL(*)

e C binding:

128 CHAPTER 3. SPARSE BLAS

int BLAS_xuscr_insert_row(blas_sparse_matrix A, int i, int nz,
const ARRAY val, const int *indx);

USCR_INSERT_CLIQUE (insert a dense matrix clique) A <+ (val,i,7)

USCR_INSERT _CLIQUE is used to build a sparse matrix, passing in a dense matrix val of dimen-
sion k x | and corresponding integer arrays containing the list of (i, j) indices describing the clique.
This routine may only be called on a matrix handle that was opened via the USCR_BEGIN routine
and has not yet been closed via the USCR_END routine. Furthermore, matrix properties cannot be
modified after any insertions, so this call must follow all settings made to the matrix via the USSP
routine. The matrix handle must be in a new state (i.e USPG(A, blas_new_handle) is true) upon
the first call to this routine. Upon successful completion, the matrix handle is an open state (i.e.
USGP (A, blas_open_handle) is true) and subsequent calls to this routine will keep the matrix in
this state, until a call to USCR_END is issued. The precision type of the sparse matrix represented
by the handle A must match the remaining floating-point arguments. istat is used as an error flag
and will be zero if the routine executes successfully. The C binding returns istat as the function
return value.

e Fortran 95 binding:

SUBROUTINE uscr_insert_clique(a, val, indx, jndx, istat)
INTEGER, INTENT(IN) :: a, indx(:), jndx(:)
<type>(<wp>), INTENT(IN) :: val(:,:)

INTEGER, INTENT(OUT) :: istat
e Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_INSERT_CLIQUE(A, K, L, VAL, LDV, INDX,

$ JNDX, ISTAT)
INTEGER A, K, L, LDV, INDX(*), JNDX(*), ISTAT
<type> VAL(LDV, *)
e C binding:

int BLAS_xuscr_insert_clique(blas_sparse_matrix A, const int k,
const int 1, const ARRAY val,
const int row_stride, const int col_stride,
const int *indx,
const int *jndx);

USCR_INSERT_BLOCK (insert a block entry at block coordinate (bi, bj)) A <+ (val,bi, bj)

USCR_INSERT_BLOCK is used to insert a block entry into a block-entry matrix. This routine
may only be called on a matrix handle that was opened with one of the block creation routines
(USCR_.BLOCK_BEGIN or USCR_VARIABLE_BLOCK_BEGIN) and has not yet been closed via the
USCR_END routine. Furthermore, matrix properties cannot be modified after any insertions, so

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. LANGUAGE BINDINGS 129

this call must follow all settings made to the matrix via the USSP routine. The matrix handle must
be in a new state (i.e USPG(A, blas_new_handle) is true) upon the first call to this routine. Upon
successful completion, the matrix handle is an open state (i.e. USGP(A, blas_open_handle) is
true) and subsequent calls to this routine will keep the matrix in this state, until a call to USCR_END
is issued. The dimensions of the block entry are determined from the blocksize information passed to
USCR_BLOCK_BEGIN or USCR_VARIABLE_BLOCK_BEGIN. In the Fortran 77 binding, LDV denotes
the leading dimension of the dense array VAL. The precision type of the sparse matrix represented
by the handle A must match the remaining floating-point arguments. istat is used as an error flag
and will be zero if the routine executes successfully. The C binding returns istat as the function
return value.

e Fortran 95 binding:

SUBROUTINE uscr_insert_block(a, val, bi, bj, istat)
INTEGER, INTENT(IN) :: a, bi, bj
INTEGER, INTENT(OUT) :: istat
<type>(<wp>), INTENT(IN) :: val(:,:)

e Fortran 77 binding:

SUBROUTINE F_xUSCR_INSERT_BLOCK(A, VAL, LDV, BI, BJ, ISTAT)

INTEGER A, LDV, BI, BJ, ISTAT
<type> VAL(LDV, *)
e C binding:

int BLAS_xuscr_insert_block(int a, const ARRAY val, int row_stride,
int col_stride, int bi, int bj);

3.8.8 Completion of construction routine

USCR_END (entries completed; build valid matrix handle) A+ (..)

USCR_END is used to complete the construction phase and build a valid sparse matrix han-
dle. This routine may be called only with a sparse matrix handle that was previously cre-
ated via the routines USCR_BEGIN, USCR_BLOCK_BEGIN or USCR_VARIABLE_BLOCK_BEGIN.
The matrix handle must be in an open or new state, i.e. either USGP(A, blas_open_handle)
or USGP(A, blas_new_handle) is true. istat is used as an error flag and will be zero if the routine
executes successfully. The C binding returns istat as the function return value.

e Fortran 95 binding:
SUBROUTINE uscr_end(a, istat)
INTEGER, INTENT(IN) :: a
INTEGER, INTENT(OUT) :: istat

e Fortran 77 binding:

130 CHAPTER 3. SPARSE BLAS

SUBROUTINE BLAS_USCR_END(A, ISTAT)
INTEGER A, ISTAT

e C binding:

int BLAS_uscr_end(blas_sparse_matrix A);

3.8.9 Matrix property routines

USGP (get/test matrix property) property-value<— A

For a given sparse matrix A, the routine USGP returns the value of the given property name.
The first argument is the matrix handle and the second argument is one of the properties listed
in in Table 3.5. Each grouping denotes a subset of mutually exclusive properties. The properties
blas_num_rows, blas_num_cols, and blas_num_nonzeros return integer values, all other proper-

ties return 1 if true, and 0 otherwise. If the matrix handle is corrupt, i.e. USGP(A, blas_void_handle)

is true, all other Boolean properties are false, and integer valued properties (blas_num_rows,
blas_num_cols, and blas_num_nonzeros) return 0.

e Fortran 95 binding:

SUBROUTINE usgp(a, pname, m)
INTEGER, INTENT(IN) :: a
INTEGER, INTENT(IN) :: pname
INTEGER, INTENT(OUT) :: m

e Fortran 77 binding:

SUBROUTINE BLAS_USGP(A, PNAME, M)
INTEGER A, PNAME, M

e C binding:

int BLAS_usgp(blas_sparse_matrix A, int pname);

USSP (set matrix property) A « property-value

For a given valid sparse matrix handle A, the routine USSP sets the value of the given ma-
trix property. This routine must be called after the handle has been created, and before any of
the INSERT routines have been called. That is, the matrix handle must be in a new state, i.e.
USGP(A, blas_new_handle) is true. istat is used as an error flag and will be zero if the routine
executes successfully and is set to -1 if the handle is corrupt, i.e. if USGP(A, blas_void_handle)
is true. The C binding returns istat as the function return value.

The first argument is the matrix handle; the second argument is one of the properties listed in
in Table 3.4. Each grouping denotes a subset of mutually exclusive properties.

If two incompatible properties from the same group are set, the results are undefined. For
example, the sequence

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. LANGUAGE BINDINGS 131

BLAS_ussp(A, blas_zero_base);
BLAS_ussp(A, blas_one_base);

leads to an ambiguity and the resulting handle is void (i.e. USGP(A, blas_void_handle) is true).
It is possible to guard against this by testing the properties first.
e Fortran 95 binding:

SUBROUTINE ussp(a, pname, istat)
INTEGER, INTENT(INOUT) :: a
INTEGER, INTENT(IN) :: pname
INTEGER, INTENT(OUT) :: istat

e Fortran 77 binding:

SUBROUTINE BLAS_USSP(A, PNAME, ISTAT)
INTEGER A, PNAME, ISTAT

e C binding:

int BLAS_ussp(blas_sparse_matrix A, int pname);

3.8.10 Destruction routine

USDS (release matrix handle) (L)« A

The routine USDS releases any memory internally used by the sparse matrix handle A. The han-
dle must have been previously closed by the USCR_END routine, i.e. USGP(A, blas_valid_handle)
must be true. It turns this into a handle that is no longer in use, i.e. USGP(A, blas_void_handle)
is true. istat is used as an error flag and will be zero if the routine executes successfully. The C
binding returns istat as the function return value.

e Fortran 95 binding:

SUBROUTINE usds(a, istat)
INTEGER, INTENT(IN) :: a
INTEGER, INTENT(OUT) :: istat

e Fortran 77 binding:

SUBROUTINE BLAS_USDS(A, ISTAT)
INTEGER A, ISTAT

¢ C binding:

int BLAS_usds(blas_sparse_matrix A);

Chapter 4

Extended and Mixed Precision BLAS

4.1 Qverview

This Chapter describes extended and mized precision implementations of the BLAS described in
other chapters. Extended precision is used only internally to the BLAS; the input and output
arguments remain as before. Extended precision permits us to implement some algorithms that
may be simpler, more accurate, and sometimes even faster than without it. Mixed precision refers to
having some input/output parameters that are both single precision and double precision, or both
real and complex. Mixed precision similarly permits us to write simpler or faster algorithms. But
given the complexity that could result by allowing too many combinations of types and precisions,
we must choose a parsimonious subset that is both useful and reasonable to implement.

The rest of this chapter is organized as follows. Section 4.2 summarizes the designs goals and
decisions that guide our design, with details left to [42]. Section 4.3 summarizes the functions
supported in extended and mixed precision. This includes a discussion of the error bounds that
routines must satisfy. Section 4.4 summarizes the issues in our design of language bindings for
Fortran 95, Fortran 77 and C. Section 4.5 contains the detailed calling sequences for the subroutines
in the three languages. A complete justification of our design appears in [42].

4.2 Design Goals and Summary

Our proposal to have extended and mixed precision in the BLAS is motivated by the following
facts:

e A number of important linear algebra algorithms can become simpler, more accurate and
sometimes faster if internal computations carry more precision (and sometimes more range)
than is used for the input and output arguments. These include linear system solving, least
squares problems, and eigenvalue problems. Often the benefits of wider arithmetic cost only
a small fractional addition to the total work.

e For single precision input, the computer’s native double precision is a way to achieve these ben-
efits easily on all commercially significant computers, at least when only a few extra-precision
operations are needed. (Crays and their emulators implement 64-bit single in hardware and
much slower 128-bit double in software, so if a great many double precision operations are
needed, these machines will slow down significantly.)

e Intel and similar processors are designed to run fastest performing arithmetic to the full 80-
bit width, wider than double precision, of their internal registers. These computers confer

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.2. DESIGN GOALS AND SUMMARY 133

some benefits of wider arithmetic at little or no performance penalty. Some BLAS on these
computers already perform wider arithmetic internally but, without knowing this for sure,
programmers cannot exploit it.

e All computers can simulate quadruple precision or something like it in software at the cost of
arithmetic slower than double precision by at worst an order of magnitude. Less slowdown
is incurred for a rough double-double precision on machines (IBM RS/6000, PowerPC/Mac,
SGI/MIPS R8000,HP PA RISC 2.0) with special fused multiply-accumulate instructions.
Since some algorithms require very little extra precise arithmetic to get a large benefit, the
slowdown is practically negligible.

Given the variety of implementation techniques hinted at above, we need to carefully examine
the costs and benefits of exploiting various arithmetic features beyond the most basic ones, and
choose a parsimonious subset that

Goal 1: is reasonable to implement,

Goal 2: supports some if not all important application examples,
Goal 3: is easy to use,

Goal 4: encourages the writing of portable code, and

Goal 5: accommodates growth as we learn about new algorithms exploiting our arithmetic fea-
tures.

Here is an outline of our design decisions. These are discussed and justified in detail in [42].

1. We will not require that the user explicitly declare or use any new extended precision data
types, i.e. beyond the standard single and double precisions, since these are not supported
in a standard way by every language and compiler. Thus the only extended precision that
we mandate will be hidden inside the BLAS, and so can be implemented in any convenient
machine dependent way. This supports Goals 1, 3 and 4 above.

2. This internal extended precision will support most of the application examples listed in [42],
supporting Goal 2.

3. Since we cannot predict all the future applications of extended or mixed precision, we will
accommodate growth by making our proposal as orthogonal as possible to the rest of this
proposal, showing how to take any BLAS routine, determine whether extra precision is worth
using (since sometimes it is not), and define the extended precision version if it is. This
supports Goal 5.

4. Since the number of possible routines with mixed precision inputs is very large, we will specify
a small subset of mixed precision routines which seems to cover most foreseeable needs. This
supports Goals 1 and 2.

5. In order to easily estimate error bounds in code by running with different internal precisions
and then comparing the answers, (see Example 8 in [42]), we need to be able to specify
the extended precision at runtime; we will do this with a variable we will call PREC. This
supports Goal 2.

134 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

6. Since different machines may best support extended precision in different ways, PREC could
potentially take on many machine-dependent values. Instead we have chosen a parsimonious
subset that will be available on all machines, permitting the implementor to support others
if desired. This supports all the Goals 1 and 4 above.

7. Since the precision specified by one value of PREC can still have different implementations
and so different error bounds on different machines, we have specified environmental enquiries
for the user to be able to discover the actual machine precision (or over/underflow thresholds)
used at runtime. This lets the user pick appropriate stopping criteria for iterations, etc. This
supports Goals 3 and 4.

4.3 Functionality

This section describes the functionality of extended and mixed precision BLAS in a language in-
dependent way. Section 4.3.1 describes how extra precision is specified via the PREC argument.
Section 4.3.2 describes in general what kind of mixed precision operations will be supported. Sec-
tion 4.3.3 describes the error bounds that BLAS operations must satisfy; this is where the semantics
of “extra precision” are precisely specified. Finally, section 4.3.4 lists the functions that will be
supported in extra and/or mixed precision.

4.3.1 Specifying Extra Precision

The internal precision to be used by an extended precision routine will be specified by an argument
called PREC. Tt is not entirely straightforward to describe PREC because even on a single machine
there may be multiple ways of implementing wider-than-double-precision arithmetic (see [42]).

To encourage portability, we specify names for precisions that may map to different formats and
techniques on different machines. As discussed in section 1.6, historically the words “single” and
“double” have referred to very different formats on different architectures. Nonetheless, we all agree
on single precision as a word with a certain meaning, and double precision too, meaning twice or
more precision than single. The definitions below add two more precisions, whose implementation
details are discussed in [42].

PREC = Single . This means single precision, whatever single means on the particular machine,
language and compiler.

PREC = Double . This means double precision, again whatever that means on a particular
machine, language and compiler.

PREC = Indigenous . This means the widest hardware-supported format available. Its intention
is to let the machine run close to top speed, while being as accurate as possible. On some
machines this would be a 64-bit format (whether it is called single or double), but on Intel
machines and ones like them it means the 80-bit IEEE format of the floating point registers.

PREC = Extra . This means anything at least 1.5 times as accurate than double, and in partic-
ular wider than 80-bits (see section 4.3.3 for details). An existing quadruple precision format
could be used to implement this, but it can probably be implemented implemented more effi-
ciently using native double (or indigenous) operations in a technique called “double-double”,
described in [42, 46, 47]. It is possible to write a portable and reasonably efficient reference
implementation of all proposed routines using these techniques [42].

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.3. FUNCTIONALITY 135

The actual names for PREC values are specified in section A.3. Here are the rules for using
PREC:

1. The internal precision used must always be at least as high as the most precise input or output.
So if the user requests less internal precision than in the most precise input or output, then
the implementor must use more than requested.

2. The implementor may always use a higher precision than the one requested in the subroutine
call, if this is convenient or faster.

3. The precision actually used is available to the user via the environmental enquiry in sec-
tion 4.3.3.

4. PREC may take on other machine dependent values provided by the implementor, provided
these are documented via the environmental enquiry routine.

Advice to implementors: While it appears that as many as seven new implementations of each
routine are needed (four when the arguments are single, and three when the arguments are double),
in fact fewer are needed: Two exist already as the standard BLAS (single input/output with PREC
= Single, and double input/output when PREC = Double), Indigenous = Double or Indigenous =
Single on many machines, and wider precision than requested may be used. Thus the only really
new implementations may be single input/output with Double or Extra internal precision, and
double input/output with Extra internal precision. Of these, only Extra internal precision may
need arithmetic not already native to the machine. A reference implementation is described in [42].

4.3.2 Mixed Precision

Suppose a subroutine has several floating point arguments, some scalars and some arrays. Mixed
precision refers to permitting these arguments to have different mathematical types, meaning real
and complex, or different precisions, meaning single and double. Some BLAS in Chapter 2 are
naturally defined with arguments of mixed mathematical type (e.g. HERK), but most have a
single mathematical type; all are defined with the same precision for all arguments.

The permitted combinations of mathematical types and precisions are defined as follows. There
are two cases:

1. The mathematical types of the input/output floating point arguments are identical to the
BLAS as defined in Chapter 1. All scalar arguments and the output argument (scalar or
array) are double precision. At least one array argument must be single precision.

For example, suppose the function being implemented is matrix-matrix multiplication C' =
a-A-B+3-C, where a and 8 are scalars and A, B and C are arrays. Then the allowed types
are as follows (S = Single real, D = Double real, C = Single complex, Z = Double complex).

NNNJDUOUO|R

NQQU®»®»n
QONQ®UJ®nw
NNNJDUJI
NNNUDOUOUIOQ

136 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

2. The precision of all floating point arguments must be single, or all must be double. All scalar
arguments and the output argument (scalar or array) are complex (unless a scalar argument
must be real for mathematical reasons, like @ and § in HERK). At least one input array
argument must be real.

For example, suppose the function being implemented is matrix-matrix multiplication as
before. Then the allowed types are as follows:

NNNOQQOQIR
NSO Q®mw®x
ONOw®mAQw
NNNQQAQ®
NNNOQOQOQQ

Note that we specify only 16 versions of matrix-matrix multiplication (the 12 mixed ones above,
and 4 unmixed), in contrast to the maximum possible 4° = 1024.

4.3.3 Numerical Accuracy and Environmental Enquiries

The machine dependent interpretations of PREC require us to have a more complicated environ-
mental enquiry routine to describe the numerical behavior of the routine in this chapter than the
simpler FPINFO routine described in sections 1.6 and 2.7. While FPINFO should still be available
for the user to call to get basic properties of the single and double precision floating point types,
here we will specify an additional routine FPINFO_X that depends on PREC.

The calling sequence of this function is

result = FPINFO_X (CMACH, PREC)

Both arguments are input arguments, with the requested information returned as the integer value
of FPINFO_X. The exact input values depend on the language, and are described in section 4.4.
PREC has the same meaning as before. Input argument CMACH may take on the named constant
values below, which are a subset of those permitted by function FPINFO as described in section 2.7.
Ouly the first six values of CMACH from section 2.7 are permitted, because 1) they are sufficient
to define the remaining parameters by using the formulas in section 1.6, and 2) the values returned
by FPINFO_X are representable integer values, whereas the other possible return values, like the
overflow and underflow thresholds, may not be representable in any user-declarable format.

Floating Point | Description

parameter

BASE base of the machine

T number of (BASE) digits in the mantissa

RND 1 when “proper rounding” occurs in addition,
0 otherwise

IEEE 1 when rounding in addition occurs in “IEEE style”,
0 otherwise

EMIN minimum exponent before (gradual) underflow

EMAX largest exponent before overflow

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.3. FUNCTIONALITY 137

We will use the following notation to describe machine parameters derivable from the values
returned by FPINFO_X using the formulas in section 1.6:

EPREC 18 relative machine precision or machine epsilon of the internal precision specified by
PREC,

€, is the machine epsilon for the output precision,

OVpRrEc and UNpREq are the overflow and underflow thresholds for internal precision
PREC, and

OV, and UN, are the overflow and underflow thresholds for for the output precision.

Here are the error bounds satisfied by the extra precision routines, and how they depend on e.
There are two cases of interest.

1.

Suppose each component of the computed result is of the form

n

rtme:a-(Zai-bi)+ﬁ-c)

i=1

where all quantities are scalars. This covers the dot product, scaled vector addition and scaled
vector accumulation, all variants of matrix-vector and matrix-matrix products, and low-rank
updates (sometimes with o and (3 taking on special values like zero and one). In this case
the error bound, in the absence of over/underflow of any intermediate or output quantities,
should satisfy

n

|rcomputed - Ttrue' < 7(” + 2) : 6PREC(|O‘| : Z |ai : bi| + |ﬁ : CD + € - |7"true| .
=1

where v = 1 if all data is real and v = 21/2 if any data is complex.

Rationale: This accommodates all reasonable, non-Strassen based implementations, with real
or complex scalars (and conventional multiplication of complex scalars), that perform all
intermediate floating point operations with machine epsilon epgp, with or without a guard
digit, before rounding the final result to precision ¢,. Underflow is guaranteed to be absent
if no intermediate quantity stored in precision PREC is less than UNpRrp in magnitude
(unless its exact value is zero) and |reomputed| is not less than UN,, (unless its exact value is
zero). Similarly, overflow is guaranteed to be absent if no intermediate quantity in precision
PREC= exceeds OVpRE(in magnitude, and |rcomputeq| does not exceed OV,. We avoid
specifying what happens with underflow, because the implementor may reasonably choose to
compute 7 using a- (3 a; - b;), Yo(a-a;) - b; or 3 a;- (- b;) depending on dimensions, and the
error bounds in the presence of underflow can differ significantly in these three cases. See [42]
for implementation recommendations and detailed error bounds in the presence of underflow.

. Suppose the computed solution consists of one or more vectors z satisfying an n-by-n trian-

gular system of equations
Tr=ab

where « is a scalar, b is a vector (or vectors), and 7 is a triangular matrix. In this case the
computed solution, in the absence of over/underflow in intermediate or output quantities,
satisfies

(T + E) (xcomputed + e) = O4(b + f)

138 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

where |E;j| < pneprpc|Tijl; lei] < €olTcomputeasils 1fil < pnepryclbil, p = 1 if all data is
real, and p = 6 4+ 4+/2 if any data is complex.

Rationale: This accommodates all reasonable, substitution-based methods of solution, with
summations evaluated in any order, with all intermediate floating point operations done with
machine epsilon eprg; and with all intermediate quantities stored to the same precision. In
particular, this means that the entries of Zcomputeq must be temporarily stored with precision
epREC before being rounded to the output precision at the end. Overflow and underflow
are defined and treated as before. See [42] for implementation recommendations and detailed
error bounds in the presence of underflow.

The values of eppp must satisfy the following inequalities:
€DOUBLE < €3INGLE

1.5

€INDIGENOUS < €SINGLE
< €poUBLE

€EXTRA

The first inequality says that double precision is at least twice as accurate (has twice as many
significant digits) as single precision. The second inequality says that indigenous is at least as
accurate as single precision. The third inequality says that extra precision is at least 1.5 times as
accurate (has 1.5 times as many significant digits) as double precision.

Advice to implementors: This is only a lower bound on the number of significant digits in
extra precision; most reasonable implementations can get close to twice as many digits as double
precision [42]. The lower bound is intended to exclude the use of the 80-bit IEEE format as Extra
precision when Double is the 64-bit IEEE format. It is important that BASE, T, and RND are
chosen so that EPS defined by EPS = BASE'T if RND = 0 and EPS = .5+« BASE" T if
RND =1 can be used for error analysis. For example in the reference implementation of EXTRA
precision in [42], T' = 105 even though 106 bits are stored. Though we do not require this, the
simplest way to achieve the error bounds described above is for floating operations ® € {+, —, *, /}
to satisfy the following bounds in the absense of over/underflow: fl(a ®b) = (a ®b)(1+6) for some
|6| < EPS when a and b are real, fl(a £ b) = (a % b)(1 +) for some |§| < v/2- EPS when a and
b are complex, fi(a *b) = (a*b)(1 + &) for some |§| < 24/2- EPS when a and b are complex, and
fl(a/b) = (a/b)(1 + &) for some |§| < (6 + 44/2) - EPS when a and b are complex.

The semantics of overflow and underflow are discussed more carefully in [42]; they become more
complicated concepts when using implementation techniques like double-double for extra precision.
The important properties they should satisfy are

1. In any precision, a quantity greater than OV generates an exception, a oo symbol, or
otherwise somehow indicates its complete loss of precision.

2. In any precision, the error in a floating point operation that might underflow (during some part
of the calculation, if for example it is double-double) is described by fi(a®b) = (a®b)(146)+n,
for some |§| < EPS and || < UN if a and b are real, and for slighlty larger |4| and |n| if a
and b are complex.

We choose not to specify the overflow and underflow thresholds in more detail, in order not to
eliminate innovative ways of implementing extra precision.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.4. INTERFACE ISSUES

4.3.4 Function Tables

139

As discussed in [42], not all BLAS routines from Chapter 2 are worth converting to extra or mixed
precision, so we only include the subset that is worth converting.

Table 4.1 is a subset of Table 2.1 in Chapter 2, Reduction Operations.

Table 4.2 is a subset of Table 2.3 in Chapter 2, Vector Operations.
Table 4.3 is a subset of Table 2.5 in Chapter 2, Matrix-Vector Operations.
Table 4.4 is a subset of Table 2.7 in Chapter 2, Matrix Matrix Operations.

Dot product | r < Ar + az’Ty | DOT
Sum T A= Y T SUM

Table 4.1: Extra and Mixed Precision Reduction Operations

Scaled vector accumulation | y < az + Sy, | AXPBY
Scaled vector addition w4 azr + Py | WAXPBY

Table 4.2: Extra and Mixed Precision Vector Operations

Matrix vector product Yy aAz + By GE, GB, SY, SP, SB, | MV
HE, HP, HB
y+— aATz + By GE, GB MV
z 4 oTz, 4+ oTTx TR, TB, TP MV
Summed matrix vector multiplies | y + oAz + BBz GE SUM_MV
Triangular solve z 4+ ol 'z, £ < ol Tz | TR, TB, TP SV
Table 4.3: Extra and Mixed Precision Matrix Vector Operations
Matrix matrix product | C «+ aAB + C, C + aATB + C GE MM
C + aABT + BC, C < aATBT + pC
C <+ aAB+ pC, C < aBA+ pC SY, HE | MM
Triangular multiply B+ oT'B, B <+ aBT TR MM
B+ oT"B, B < aBTT
Triangular solve B+ ol 'B, B+ aBT! TR SM
B+ ol "B, B+ aBT "
Symmetric rank k & 2k | C + aAA”T + BC, C < aATA + BC SY, HE | RK
updates (C = C7T) C + (a¢A)BT + B(aA)T + BC SY, HE | R2K

Table 4.4: Extra and Mixed Precision Matrix Matrix Operations

4.4 |nterface Issues

This section describes the common issues for our three language bindings: Fortran 95, Fortran 77
and C. Here is a summary of the systematic way we take a subroutine name and its argument list,

140

CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

| Environmental Enquiry | machine epsilon, over/underflow thresholds |

Table 4.5: Environmental Enquiries for Extra and Mixed Precision Operations

and modify them to allow for extra or mixed precision:

1.

441
1.

Subroutine names and mixed precision inputs. If the language permits a subroutine
argument to have more than one type, because it can dispatch the right routine based on the
actual type at compile time (Fortran 95, but not Fortran 77 or C), then the subroutine name
does not have to change to accommodate mixed precision. Otherwise, a new subroutine name
is required, and will be created from the old one by appending characters indicating the types
of the arguments.

. Subroutine names and extended precision. If the language permits PREC to be an

optional argument (Fortran 95, but not Fortran 77 or C), then the same subroutine name as
for the non-extended precision version can be used without change. If a new name is required,
it will be formed by appending X (or x) to the existing name. If the name has already been
modified to accommodate mixed precision, X (or _x) should be added to the end of the new
name.

. Location of PREC in the calling sequence. The new calling sequence will consist of the

original calling sequence (for the BLAS routine without extra or mixed precision) with PREC
appended at the end.

. Type of PREC. It will be a derived type in Fortran 95, an integer in Fortran 77, and an

enumerated type in C. Standard names are listed below.

. Environmental enquiry function. Its output type is an integer. The input PREC is

specified as above.

Interface Issues for Fortran 95

Subroutine names and mixed precision inputs. No new subroutine names are needed
because we can exploit the optional argument interface of Fortran 95.

. Subroutine names and extended precision. No new subroutine names are needed by

letting PREC be an optional argument. The default in the case of no mixed precision is
the standard BLAS implementation. The default in the case of mixed precision is at the
discretion of the implementor, subject to the constraints of section 4.3.1.

. Type of PREC. PREC is a derived type, as defined in the module blas_operator_arguments

(see section A.4).

. Environmental enquiry function. fpinfo x(CMACH,PREC) returns an integer. PREC is

as specified above. CMACH is as defined in sections 1.6, 2.7, 4.3.3, and A 4.

. Error Handling. Error handling is as defined in section 2.4.6.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

47

48

4.4. INTERFACE ISSUES 141

4.42 Interface Issues for Fortran 77

As described in Chapter 2, this proposal violates the letter of the ANSI Fortran 77 standard by
having subroutine and variable names longer than 6 characters and with embedded underscores.

1. Subroutine names and mixed precision inputs. The unmodified subroutine name has
a character (S, D, C or Z) that specifies the floating point argument types. This will be the
type of the output argument. By applying the rules in Section 4.3.2, this also determines
the types of the scalar arguments. The possible types of the remaining array arguments are
listed in Section 4.3.2. The types of these arguments (written _S, D, _C or _Z) are appended
to the unmodified subroutine name, in the order in which they appear in the argument list.

For example, consider BLAS ZGEMM(«,A,B,3,C) (only the floating point arguments are
shown). The Z in BLAS_ ZGEMM means that C, @ and § are all double-complex. The
possible types of A and B, and the corresponding subroutine names, are:

Type of A | Type of B | Modified subroutine name
BLAS ZGEMM_C_C
BLAS_ZGEMM_C_Z
BLAS_ZGEMM_Z_C
BLAS_ZGEMM_D_D
BLAS_ZGEMM_D_Z
BLAS ZGEMM_Z_D

NQOgONOQQ
goNODaoaNO

2. Subroutine names and extended precision. To accommodate extended precision, PREC
is added as the last argument, and X is appended to the end of subroutine name (which may
already have been modified to accommodate mixed precision).

For example, double-complex matrix-matrix multiplication implemented with extended pre-
cision is named BLAS ZGEMM _X. Double-complex matrix-matrix multiplication where the
A and B arguments are single-complex is named BLAS_ ZGEMM_C_C_X.

3. Type of PREC. PREC is an integer (named constant), as defined in the include file
blas_namedconstants.h (see section A.5).

4. Environmental enquiry function. BLAS FPINFO_X(CMACH,PREC) returns an integer.
PREC is as specified above. CMACH is as defined in sections 1.6, 2.7, 4.3.3, and A.5.

5. Error Handling. Error handling is as defined in section 2.5.6.

To shorten the subroutine specifications in section 4.5, we will abbreviate the list of possible
subroutine names for GEMM to a single one: BLAS xGEMM{_a b}{ X} The prefix x may be S
(single), D (double), C (complex) or Z (double complex). Also, the subroutine name may optionally
be appended with _a_b, where a and b are the types of A and B respectively, and then optionally
be appended with X. At least one of _a_b or X must appear.

4.4.3 Interface Issues for C

1. Subroutine names and mixed precision inputs. The same scheme is used as in For-
tran 77, as described above, except that all characters in subroutine names are lower case.

142 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS
2. Subroutine names and extended precision. The same scheme is used as in Fortran 77,
as described above, except that all characters in subroutine names are lower case.

3. Type of PREC. PREC is an enumerated type, as defined in the include file blas_enum.h
(see section A.6).

4. Environmental enquiry function. BLAS fpinfo x(CMACH,PREC) returns an integer.
PREC is as specified above. CMACH is as defined in sections 1.6, 2.7, 4.3.3, and A.6.

5. Error Handling. Error handling is as defined in section 2.6.9.

4.5 Language Bindings

451 Overview

As in Chapter 2, each specification of a routine will correspond to an operation outlined in the
functionality tables. Operations are organized analogous to the order in which they are presented
in the functionality tables. The specification will have the form:

NAME (multi-word description of operation) < mathematical representation >

e Fortran 95 binding
e Fortran 77 binding
e C binding

Section 4.4 describes abbreviations we use below. For example,

SUBROUTINE BLAS_xDOT{_a_b}{_X}(N, ALPHA, X, INCX, BETA,
Y, INCY, R [, PREC])

means that the subroutine name may optionally be appended with _a_b, where a and b are the
types of X and Y, respectively, and also optionally appended with _X, in which case the parameter
PREC must also appear.

The routines specified here are

e Reduction Operations (section 4.5.2)

— DOT (Dot product)
— SUM (Sum)

e Vector Operations (section 4.5.3)

— AXPBY (Scaled vector accumulation)
— WAXPBY (Scaled vector addition)

e Matrix-Vector Operations (section 4.5.4)

— {GE,GB}MV (Matrix vector product)
— {SY,SB,SP}MV (Symmetric matrix vector product)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 143

— {HE,HB,HP}MV (Hermitian matrix vector product)
— {TR,TB,TP}MV (Triangular matrix vector product)
— GE_SUM_MV (Summed matrix vector multiplies)
— {TR,TB,TP}SV (Triangular solve)

e Matrix-Matrix Operations (section 4.5.5)

— GEMM (General Matrix Matrix product)
SYMM (Symmetric matrix matrix product)

HEMM (Hermitian matrix matrix product)

TRMM (Triangular matrix matrix multiply)
— TRSM (Triangular solve)

SYRK (Symmetric rank-k update)

— HERK (Hermitian rank-k update)

— SYR2K (Symmetric rank-2k update)

— HER2K (Hermitian rank-2k update)

45.2 Mixed and Extended Precision Reduction Operations

n—1
DOT (Dot Product) z,y € R",r + fr+ ar’y = Br+a Z ZTiYi
i=0
n—1 n—1
z,y €C™,r pr+ azly :,Br+a2xiyi or r < fr + azfy :ﬁT—I—aZ@-yi
i=0 i=0

The routine DOT adds the scaled dot product of two vectors z and y into a scaled scalar r. The
routine returns immediately if n is less than zero, or, if beta is equal to one and either alpha or n is
equal to zero. If alpha is equal to zero then x and y are not read. Similarly, if beta is equal to zero,
r is not read. As described in section 2.5.3, the value incx less than zero is permitted. However, if
incx is equal to zero, an error flag is set and passed to the error handler.

When z and y are complex vectors, the vector components z; are used unconjugated or conju-
gated as specified by the operator argument conj. If z and y are real vectors, the operator argument
conj has no effect.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE dot(x, y, r [, conjl [, alphal [, betal [, precl)
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (IN) :: y(:)
<type>(<wp>), INTENT (INOUT) :: r
TYPE (blas_conj_type), INTENT(IN), OPTIONAL :: conj
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
x and y have shape (n)

144

CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

The types of alpha, x, y, beta and r are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of x and y can optionally differ from that of r,
alpha and beta.

Fortran 77 binding:

SUBROUTINE BLAS_xDOT{_a_b}{_X}(CONJ, N, ALPHA, X, INCX, BETA, Y, INCY,

$ R, [, PREC])
INTEGER CONJ, INCX, INCY, N [, PREC]
<type> ALPHA, BETA, R

<type> X(*)

<type> Y(*)

The types of ALPHA, X, Y, BETA and R are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of X and _b is the type of Y. The suffix _X is present
if and only if PREC is present. One or both of the suffixes _a b and _X must be present.

C binding:

void BLAS_xdot{_a_b}{_x}(enum blas_conj_type conj, int n, SCALAR_IN alpha,
const ARRAY x, int incx, SCALAR_IN beta,
const ARRAY y, int incy, SCALAR_INOUT r,
[, enum blas_prec_type prec]l);

The types of alpha, x, y, beta and r are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of argument x and _b is the type of argument y. The
suffix x is present if and only if prec is present. One or both of the suffixes _a b and _x must
be present.

n—1
SUM (Sum) T Z x;
i=0

The routine SUM computes the sum of the entries of a vector z. If n is less than or equal to

zero, this routine returns immediately with the output scalar r set to zero. As described in section
2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error flag is
set and passed to the error handler.

Extended precision is permitted, but not mixed precision.
This routine has the same specification as in Chapter 2, except that extended precision is

permitted. Mixed precision is not permitted.

e Fortran 95 binding:

<type>(<wp>) FUNCTION sum(x, prec)
<type>(<wp>), INTENT (IN) :: x(:)
TYPE (blas_prec_type), INTENT (IN) :: prec
where
x has shape (n)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 145

The types of sum and x are identical.

e Fortran 77 binding:
<type> FUNCTION BLAS_xSUM_X(N, X, INCX, PREC)
INTEGER INCX, N, PREC
<type> X(%)
The types of BLAS xSUM X and argument X are both specified by the prefix x.
e C binding:

void BLAS_xsum_x(int n, const ARRAY x, int incx, SCALAR_INOUT sum,
enum blas_prec_type prec);

The types of arguments sum and x are both specified by the prefix x.

4.5.3 Mixed and Extended Precision Vector Operations

AXPBY (Scaled vector accumulation) Yy azr + Py

The routine AXPBY scales the vector by « and the vector y by 3, adds these two vectors to
one another and stores the result in the vector y. If n is less than or equal to zero, or if « is equal
to zero and (3 is equal to one, this routine returns immediately. As described in section 2.5.3, the
value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero, an
error flag is set and passed to the error handler.

Extended and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE axpby(x, y [, alphal [, betal [, prec])
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (INOUT) :: y(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
x and y have shape (n)

The default value for 5 is 1.0 and (1.0,0.0).

The types of x, y, alpha, and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the type of x can optionally differ from that of alpha,
beta and y.

e Fortran 77 binding:

146 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

SUBROUTINE BLAS_xAXPBY{_a}{_X}(N, ALPHA, X, INCX, BETA, Y, INCY

[, PREC])
INTEGER INCX, INCY, N [, PREC]
<type> ALPHA, BETA
<type> X(*)
<type> YO *)

The types of ALPHA, X, Y, and BETA are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of X. The suffix X is present if and only if PREC is
present. One or both of the suffixes _a and X must be present.

e C binding:

void BLAS_xaxpby{_a}{_x}(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY y, int incy,
[, enum blas_prec_type prec]l);

The types of alpha, x, y, and beta are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of argument x. The suffix x is present if and only if
prec is present. One or both of the suffixes _a and _x must be present.

WAXPBY (Scaled vector addition) w4 ar + Py

The routine WAXPBY scales the vector by « and the vector y by 3, adds these two vectors
to one another and stores the result in the vector w. If n is less than or equal to zero, this routine
returns immediately. As described in section 2.5.3, the value incx or incy or incw less than zero is
permitted. However, if either incx or incy or incw is equal to zero, an error flag is set and passed to
the error handler.

Extended and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE waxpby(x, y, w [, alphal [, betal [, prec]l)
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (IN) :: y(:)
<type>(<wp>), INTENT (OUT) :: w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
X, y and w have shape (n)

The default value for 5 is 1.0 and (1.0,0.0).

The types of x, y, w, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of x and y can optionally differ from that of w,
alpha and beta.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS

e Fortran 77 binding:

147

SUBROUTINE BLAS_xWAXPBY{_a_b}{_X}(N, ALPHA, X, INCX, BETA, Y, INCY,

$ W, INCW [, PREC])
INTEGER INCW, INCX, INCY, N [, PREC]
<type> ALPHA, BETA

<type> W(*)

<type> X(*)

<type> Y(*)

The types of X, Y, W, ALPHA and BETA are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of X and _b is the type of Y. The suffix X is present
if and only if PREC is present. One or both of the suffixes _a_b and _X must be present.

e C binding:

void BLAS_xwaxpby{_a_b}{_x}(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, const ARRAY y, int incy, ARRAY w,
int incw [, enum blas_prec_type prec]l);

The types of x, y, w, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of argument x and _b is the type of argument y. The
suffix _x is present if and only if prec is present. One or both of the suffixes _a_b and _x must

be present.

454 Mixed and Extended Precision Matrix-Vector Operations

{GE,GB}MV (Matrix vector product)

Yy Az + By, y — aATz + By or y «— aAfz 4+ py

The routines multiply a vector z by a general (or general band) matrix A or its transpose, or
its conjugate transpose, scales the resulting vector and adds it to the scaled vector operand y. If
m or n is less than or equal to zero or if beta is equal to one and alpha is equal to zero, this routine
returns immediately. As described in section 2.5.3, the value incx or incy less than zero is permitted.
However, if either incx or incy is equal to zero, an error flag is set and passed to the error handler.
For the routine GEMV, if Ida is less than one or Ida is less than m, an error flag is set and passed to
the error handler. For the routine GBMV, if kl or ku is less than zero, or if Ida is less than kl plus
ku plus one, an error flag is set and passed to the error handler.

Extended and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and

mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE gbmv(a, m, k1, x, y [, trans] [, alphal [, betal [, prec])

<type>(<wp>), INTENT(IN)

cal:,:), x(:)

148

CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

INTEGER, INTENT(IN) :: m, k1
<type>(<wp>), INTENT(INOUT) :: y(:)
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec
where
if trans = blas_no_trans then
x has shape (n)
y has shape (m)
else if trans =/ blas_no_trans then
x has shape (m)
y has shape (n)
end if

The functionality of gemv is covered by gemm.

Fortran 77 binding:

General:

SUBROUTINE BLAS_xGEMV{_a_b}{_X}(TRANS, M, N, ALPHA, A, LDA,

$ X, INCX, BETA, Y, INCY [, PREC])
General Band:

SUBROUTINE BLAS_xGBMV{_a_b}{_X}(TRANS, M, N, KL, KU, ALPHA, A,

$ LDA, X, INCX, BETA, Y, INCY [, PREC])
all:
INTEGER INCX, INCY, KL, KU, LDA, M, N, [PREC,] TRANS
<type> ALPHA, BETA
<type> A(C LDA, *)
<type> X(*)
<type> Y(%)

The types of ALPHA, A, X, Y, and BETA are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of A and _b is the type of X. The suffix _X is present
if and only if PREC is present. One or both of the suffixes _a b and _X must be present.

C binding:

General:
void BLAS_xgemv{_a_b}{_x}(enum blas_order_type order,
enum blas_trans_type trans, int m, int n,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta, ARRAY y,
int incy [, enum blas_prec_type prec]l);
General Band:
void BLAS_xgbmv{_a_b}{_x}(enum blas_order_type order,
enum blas_trans_type trans, int m, int n,
int k1, int ku, SCALAR_IN alpha,
const ARRAY a, int lda, const ARRAY x, int incx,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 149

SCALAR_IN beta, ARRAY y, int incy
[, enum blas_prec_type prec]);

The types of alpha, a, x, y and beta are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of argument a and _b is the type of argument x. The
suffix x is present if and only if prec is present. One or both of the suffixes _a_b and _x must
be present.

{SY,SB,SP}MV (Symmetric matrix vector multiply) y + aAz + By with A = AT

The routines multiply a vector z by a real or complex symmetric matrix A, scales the resulting
vector and adds it to the scaled vector operand y. If n is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine SYMV, if Ida is less than
one or Ida is less than n, an error flag is set and passed to the error handler. For the routine SBMV,
if Ida is less than k plus one, an error flag is set and passed to the error handler.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

Symmetric Band:
SUBROUTINE sbmv(a, x, y [, uplo] [, alphal [, betal [, prec])
Symmetric Packed:
SUBROUTINE spmv(ap, x, y [, uplo] [, alphal [, betal [, prec])
<type>(<wp>), INTENT(IN) :: <aa>
<type>(<wp>), INTENT(IN) :: x(:)
<type>(<wp>), INTENT(INOUT) :: y(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec
where
<aa> ::= a(:,:) or ap(:)
and
SB a has shape (k+1,n)
SP ap has shape (n*(n+1)/2)
x and y have shape (n)

The types of alpha, a or ap, x, beta, and y are governed by the rules of mixed precision
arguments set down in section 4.3: the types of a or ap and x can optionally differ from that
of y, alpha and beta.

The functionality of symv is covered by symm.

e Fortran 77 binding:

CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

Symmetric:
SUBROUTINE BLAS_xSYMV{_a_b}{_X}(UPLO, N, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY [, PREC])
Symmetric Band:
SUBROUTINE BLAS_xSBMV{_a_b}{_X}(UPLO, N, K, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY [, PREC])
Symmetric Packed:
SUBROUTINE BLAS_xSPMV{_a_b}{_X}(UPLO, N, ALPHA, AP, X, INCX, BETA,

$ Y, INCY [, PREC])
all:

INTEGER INCX, INCY, K, LDA, N, UPLO [, PREC]

<type> ALPHA, BETA

<type> A(C LDA, *) or AP(*)

<type> X(%)

<type> YO *)

The types of ALPHA, A or AP, X, Y and BETA are governed according to the rules of mixed
precision arguments set down in section 4.3. The prefix x is the floating point type of the
arguments, but if _a_b is present then _a is the type of A or AP, and _b is the type of X. The
suffix X is present if and only if PREC is present. One or both of the suffixes _a_ b and _X must
be present.

C binding:

Symmetric:

void BLAS_xsymv{_a_b}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY a, int 1lda,

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y,

int incy [, enum blas_prec_type prec]l);
Symmetric Band:

void BLAS_xsbmv{_a_b}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, SCALAR_IN alpha, const ARRAY a,

int lda, const ARRAY x, int incx, SCALAR_IN beta,

ARRAY y, int incy [, enum blas_prec_type prec]);
Symmetric Packed:

void BLAS_xspmv{_a_b}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY ap,
const ARRAY x, int incx, SCALAR_IN beta, ARRAY y,
int incy [, enum blas_prec_type prec]);

The types of alpha, a or ap, x, y, and beta are governed according to the rules of mixed
precision arguments set down in section 4.3. The prefix x is the floating point type of the
arguments, but if _a_b is present then _a is the type of argument a or ap and _b is the type of
argument x. The suffix _x is present if and only if prec is present. One or both of the suffixes
_a_b and _x must be present.

{HE,HB,HP}MV (Hermitian matrix vector product) y < oAz + By with A = AH

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 151

The routines multiply a vector by a Hermitian matrix A, scales the resulting vector and adds
it to the scaled vector operand y. If n is less than or equal to zero or if beta is equal to one and alpha
is equal to zero, this routine returns immediately. The imaginary part of the diagonal entries of
the matrix operand are supposed to be zero and should not be referenced. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine HEMV, if Ida is less than
one or Ida is less than n, an error flag is set and passed to the error handler. For the routine HBMV,
if Ida is less than k plus one, an error flag is set and passed to the error handler.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

Hermitian Band:
SUBROUTINE hbmv{_a}{_x}(a, x, y [, uplo]l [, alpha] [, betal [, prec])
Hermitian Packed:
SUBROUTINE hpmv{_a}{_x}(ap, x, y [, uplol [, alphal [, betal [, prec]l)
COMPLEX (<wp>) , INTENT(IN) :: <aa>
COMPLEX (<wp>), INTENT(IN) :: x(:)
COMPLEX (<wp>) , INTENT(INOUT) :: y(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
COMPLEX (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec
where
<aa> ::= a(:,:) or ap(:)
and
HB a has shape (k+1,n)
HP ap has shape (n*(n+1)/2)
x and y have shape (n)

The types of alpha, a or ap, x, beta, and y are governed by the rules of mixed precision
arguments set down in section 4.3: the types of a or ap and x can optionally differ from that
of y, alpha and beta.

The functionality of hemv is covered by hemm.

e Fortran 77 binding:

Hermitian:
SUBROUTINE BLAS_xHEMV{_a_b}{_X}(UPLO, N, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY [, PREC])
Hermitian Band:
SUBROUTINE BLAS_xHBMV{_a_b}{_X}(UPLO, N, K, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY [, PREC])
Hermitian Packed:
SUBROUTINE BLAS_xHPMV{_a_b}{_X}(UPLO, N, ALPHA, AP, X, INCX,
$ BETA, Y, INCY [, PREC])
all:

152 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

INTEGER INCX, INCY, K, LDA, N, UPLO [, PREC]
<ctype> ALPHA, BETA

<ctype> A(C LDA, *) or AP(*)

<ctype> X(*)

<ctype> YO *)

The types of ALPHA, A or AP, X, Y, and BETA are governed according to the rules of mixed
precision arguments set down in section 4.3. The prefix x is the floating point type of the
arguments, but if _a_b is present then _a is the type of A or AP and _b is the type of X. The
suffix X is present if and only if PREC is present. One or both of the suffixes _a_ b and _X must
be present.

e C binding:

Hermitian:

void BLAS_xhemv{_a_b}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,

int n, CSCALAR_IN alpha, const CARRAY a, int 1lda,

const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,

int incy [, enum blas_prec_type prec]);
Hermitian Band:

void BLAS_xhbmv{_a_b}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, CSCALAR_IN alpha, const CARRAY a,

int lda, const CARRAY x, int incx, CSCALAR_IN beta,

CARRAY y, int incy [, enum blas_prec_type prec]);
Hermitian Packed:

void BLAS_xhpmv{_a_b}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,

int n, CSCALAR_IN alpha, const CARRAY ap,

const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,

int incy [, enum blas_prec_type prec]l);

The types of alpha, a or ap, x, y, and beta are governed according to the rules of mixed
precision arguments set down in section 4.3. The prefix x is the floating point type of the
arguments, but if _a_b is present then _a is the type of argument a or ap and _b is the type of
argument x. The suffix _x is present if and only if prec is present. One or both of the suffixes
_a_b and _x must be present.

{TR,TB,TP}MV (Triangular matrix vector product) T+ alz,z+ aT Tz or v+ oTHz

The routines multiply a vector x by a general triangular matrix 7' or its transpose, or its
conjugate transpose, and copies the resulting vector in the vector operand z. If n is less than or
equal to zero, this routine returns immediately. As described in section 2.5.3, the value incx less
than zero is permitted. However, if incx is equal to zero, an error flag is set and passed to the error
handler. For the routine TRMV, if Idt is less than one or Idt is less than n, an error flag is set and
passed to the error handler. For the routine TBMV, if Idt is less than k plus one, an error flag is
set and passed to the error handler.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

10

11

12

13

14

15

18

19

20

22

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

4.5. LANGUAGE BINDINGS 153

e Fortran 95 binding:

Triangular Band:
SUBROUTINE tbmv(t, x [, uplo]l [, transt] [, diag]l [, alphal [, prec]l)
Triangular Packed:
SUBROUTINE tpmv(tp, x [, uplo]l [, transt] [, diag]l [, alphal] [, prec]l)
<type>(<wp>), INTENT(IN) :: <tt>
<type>(<wp>), INTENT(INOUT) :: x(:)
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec
where
<tt> = t(:,:) or tp(:)
and
x has shape (n)
TB t has shape (k+1,n)
TP tp has shape (n*(n+1)/2)
(k=band width)

The types of alpha, t or tp, and x are governed by the rules of mixed precision arguments
set down in section 4.3: the type of t or tp can optionally differ from that of x and alpha.

The functionality of trmv is covered by trmm.

e Fortran 77 binding:

Triangular:
SUBROUTINE BLAS_xTRMV{_a}{_X}(UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,
$ INCX [, PREC])

Triangular Band:
SUBROUTINE BLAS_xTBMV{_al}{_X}(UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,
$ X, INCX [, PREC])

Triangular Packed:
SUBROUTINE BLAS_xTPMV{_a}{_X}(UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX

$ [, PREC])
all:
INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO [, PREC]
<type> ALPHA
<type> T(LDT, *) or TP(*)
<type> X(%)

The types of ALPHA, T or TP, and X are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of T or TP. The suffix _X is present if and only if PREC
is present. One or both of the suffixes _a and _X must be present.

e C binding:

154 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

Triangular: !
void BLAS_xtrmv{_a}{_x}(enum blas_order_type order, enum blas_uplo_type uplo, 2
enum blas_trans_type trans, enum blas_diag_type diag, 3
int n, SCALAR_IN alpha, const ARRAY t, int 1dt, 4
ARRAY x, int incx [, enum blas_prec_type prec]l); 5
Triangular Band: 6

void BLAS_xtbmv{_a}{_x}(enum blas_order_type order, enum blas_uplo_type uplo, 7
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, SCALAR_IN alpha, const ARRAY t, int 1dt, °
ARRAY x, int incx [, enum blas_prec_type prec]l); 10
Triangular Packed: =
void BLAS_xtpmv{_a}{_x}(enum blas_order_type order, enum blas_uplo_type uplo, 12
enum blas_trans_type trans, enum blas_diag_type diag, **
int n, SCALAR_IN alpha, const ARRAY tp, 14

ARRAY x, int incx [, enum blas_prec_type prec]l); 15
16

®

The types of alpha, t or tp, and x are governed according to the rules of mixed precision 7

arguments set down in section 4.3. The prefix x is the floating point type of the arguments, 18

but if _a is present then _a is the type of argument t or tp. The suffix x is present if and 19

only if prec is present. One or both of the suffixes _a and _x must be present. 20

21

22

GE_SUM_MV (Summed matrix vector multiplies) y < aAz + Bz 2

24

This routine adds the product of two scaled matrix vector products. It can be used to compute 25
the residual of an approximate eigenvector and eigenvalue of the generalized eigenvalue problem 26
Axxz = AxBxz. If mor n is less than or equal to zero or if beta is equal to one and alpha is equal 27
to zero, this routine returns immediately. As described in section 2.5.3, the value incx or incy less 28
than zero is permitted. However, if incx or incy is equal to zero, an error flag is set and passed to 29
the error handler. If Ida is less than one or Ida is less than m, or Idb is less than one or Idb is less 30

than m, an error flag is set and passed to the error handler. 31
Extended precision and mixed precision are permitted. 32
This routine has the same specification as in Chapter 2, except that extended precision and 33

mixed precision are permitted. 34

35

e Fortran 95 binding: 36
37

SUBROUTINE ge_sum mv(a, x, b, y [, alphal] [, betal [, precl) 38
<type>(<wp>), INTENT (IN) :: a(:,:), b(:,:) 39
<type>(<wp>), INTENT (IN) :: x(:) 40
<type>(<wp>), INTENT (OUT) :: y(:) a1
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta 42
<type>(blas_prec_type), INTENT (IN), OPTIONAL :: prec 43
where 44
x has shape (n); 45
y has shape (m); 46

a and b have shape (m,n) for general matrices a7

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 155

The types of alpha, a, x, beta, b, and y are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from that of x,
y, alpha and beta. Arguments a and b must have the same type.

e Fortran 77 binding:

SUBROUTINE BLAS_xGE_SUM_MV{_a_b}{_X}(M, N, ALPHA, A, LDA, X, INCX,

$ BETA, B, LDB, Y, INCY
$ [, PREC])

INTEGER INCX, INCY, LDA, LDB, M, N [, PREC]
<type> ALPHA, BETA

<type> AC LDA, *), B(LDB, *)

<type> X(*)

<type> Y(*)

The types of ALPHA, A, X, BETA, B, and Y are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of A and B, and _b is the type of x. The suffix X is
present if and only if PREC is present. One or both of the suffixes _a_b and _X must be present.

e C binding:

void BLAS_xge_sum_mv{_a_b}{_x}(enum blas_order_type order, int m, int n,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta,
const ARRAY B, int 1db, ARRAY y, int incy
[, enum blas_prec_type precl);

The types of alpha, a, x, beta, b, and y are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of a and b, and b is the type of x. The suffix x is
present if and only if prec is present. One or both of the suffixes _a b and _x must be present.

{TR,TB,TP}SV (Triangular solve) T ol 'z, x4+ aT Tz

These functions solve one of the systems of equations z < o7~z or y < oI~ 'z, where z and
y are vectors and the matrix 7' is a unit, non-unit, upper or lower triangular (or triangular banded
or triangular packed) matrix. If n is less than or equal to zero, this function returns immediately.
As described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal
to zero, an error flag is set and passed to the error handler. If Idt is less than one or Idt is less than
n, an error flag is set and passed to the error handler.

Extended precision and mixed precision are permitted.

Adwvice to implementors. Note that no check for singularity, or near singularity is specified for
these triangular equation-solving functions. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver.

To implement this function when the internal precision requested is higher than the precision
of x, temporary workspace is needed to compute and store x internally to higher precision.
(End of advice to implementors.)

156

CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

Triangular Band:

Triangular Packed:

<type>(<wp>), INTENT(IN) :: <tt>

<type>(<wp>), INTENT(INOUT) :: x(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec

where

<tt> ::=t(:,:) or tp(:)

and

x has shape (n)
TB t has shape (k+1,n)
TP tp has shape (n*(n+1)/2)

(k=band width)

SUBROUTINE tbsv(t, x [, uplo] [, transt] [, diag] [, alphal [, prec])

SUBROUTINE tpsv(tp, x [, uplo]l [, trans] [, diag] [, alphal [, precl)

The types of alpha, t or tp, and x are governed by the rules of mixed precision arguments
set down in section 4.3: the type of t or tp can optionally differ from that of x and alpha.

The functionality of trsv is covered by trsm.

e Fortran 77 binding:

Triangular:

SUBROUTINE BLAS_xTRSV{_a}{_X}(UPLO, TRANS, DIAG, N,
$ X, INCX [, PREC])

Triangular Band:

SUBROUTINE BLAS_xTBSV{_a}{_X}(UPLO, TRANS, DIAG, N,
$ LDT, X, INCX [, PREC]

Triangular Packed:

all:

SUBROUTINE BLAS_xTPSV{_a}{_X}(UPLO, TRANS, DIAG, N,

$ INCX [, PREC])
INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO
<type> ALPHA

<type> T(LDT, *) or TP(*)

<type> X(*)

ALPHA, T, LDT,
K, ALPHA, T,
)

ALPHA, TP, X,

[, PREC]

The types of ALPHA, T or TP, and X are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of T or TP. The suffix _X is present if and only if PREC
is present. One or both of the suffixes _a and _X must be present.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 157

e C binding:

Triangular:

void BLAS_xtrsv{_a}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, SCALAR_IN alpha, const ARRAY t, int 1dt,
ARRAY x, int incx [, enum blas_prec_type prec]l);

Triangular Band:

void BLAS_xtbsv{_a}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, SCALAR_IN alpha, const ARRAY t, int 1dt,
ARRAY x, int incx [, enum blas_prec_type prec]l);

Triangular Packed:

void BLAS_xtpsv{_a}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, SCALAR_IN alpha, const ARRAY tp, ARRAY x,
int incx [, enum blas_prec_type prec]);

The types of alpha, t or tp, and x are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of argument t or tp. The suffix x is present if and
only if prec is present. One or both of the suffixes _a and _x must be present.

455 Mixed and Extended Precision Matrix-Matrix Operations

In the following section, op(X) denotes X, or X© or X# where X is a matrix.
GEMM (General Matrix Matrix Product) C <+ aop(A)op(B) + pC

The routine performs a general matrix matrix multiply C' < aop(A)op(B) + BC where « and
B are scalars, and A, B, and C are general matrices. This routine returns immediately if m or n or
k is less than or equal to zero. If Ida is less than one or less than m, or if Idb is less than one or less
than k, or if Idc is less than one or less than m, an error flag is set and passed to the error handler.

This interface encompasses the Legacy BLAS routine xGEMM.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE gemm(a, b, ¢ [, transal [, tramnsb] [, alphal] [, betal &
[, prec])
<type>(<wp>), INTENT(IN) :: <aa>
<type>(<wp>), INTENT(IN) :: <bb>
<type>(<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa, transb
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

158 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where
<aa> ::= a(:,:) or a(:)
<bb> ::=b(:,:) or b(:)
<cc> =c(:,:) or c(:)
and

c, rank 2, has shape (m,n)
a has shape (m,k) if transa = blas_no_trans (the default)
(k,m) if transa /= blas_no_trans
(m) if rank 1
b has shape (k,n) if transb = blas_no_trans (the default)
(n,k) if transb /= blas_no_trans
(n) if rank 1
c, rank 1, has shape (m)
a has shape (m,n) if transa = blas_no_trans (the default)
(n,m) if transa /= blas_no_trans
b has shape (n)

Rank a | Rank b | Rank ¢ | transa | transb | Operation Arguments
2 2 2 N N C + aAB + pC real or complex
2 2 2 N T C < aABT + C real or complex
2 2 2 N H C « aAB" + gC complex
2 2 2 T N C + aAT"B + pC real or complex
2 2 2 T T C « aAT"B + pC real or complex
2 2 2 H N C + aAB + BC complex
2 2 2 H H C + aA®BH + BC | complex
2 1 1 N - ¢+ aAb+ (e real or complex
2 1 1 T - ¢+ aATb+ Be real or complex
2 1 1 H - ¢+ aAb+ Be complex
1 1 2 - - C + aab” + BC real or complex
1 1 2 - H C + aab® + BC complex

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xGEMYV is also covered by this generic procedure.

The types of a, b, c, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from that of c,
alpha and beta.

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGEMM{_a_b}{_X}(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,
$ B, LDB, BETA, C, LDC [, PREC])
INTEGER K, LDA, LDB, LDC, M, N, TRANSA, TRANSB [, PREC]
<type> ALPHA, BETA

<type> A(C LDA, *)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 159

<type> B(LDB,
<type> c(LDC,

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of A and _b is the type of B. The suffix _X is present
if and only if PREC is present. One or both of the suffixes _a b and _X must be present.

e C binding:

void BLAS_xgemm{_a_b}{_x}(enum blas_order_type order,
enum blas_trans_type transa,
enum blas_trans_type transb, int m, int n, int k,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY b, int 1db,
SCALAR_IN beta, ARRAY c, int ldc
[, enum blas_prec_type prec]l);

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of argument a and _b is the type of argument b. The
suffix x is present if and only if prec is present. One or both of the suffixes _a b and _x must
be present.

SYMM (Symmetric Matrix Matrix Product) C <+ aAB +pBC or C < aBA+ C

This routine performs one of the symmetric matrix matrix operations C' < aAB + SC or
C < aBA + BC where « and 8 are scalars, A is a symmetric matrix, and B and C' are general
matrices. This routine returns immediately if m or n is less than or equal to zero. For side equal to
blas_left_side, and if Ida is less than one or less than m, or if Idb is less than one or less than m, or
if Idc is less than one or less than m, an error flag is set and passed to the error handler. For side
equal to blas_right_side, and if Ida is less than one or less than n, or if Idb is less than one or less
than n, or if Idc is less than one or less than n, an error flag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xSYMM with added functionality for com-
plex symmetric matrices.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE symm(a, b, ¢ [, side] [, uplo] [, alphal [, betal [, prec]l)
<type>(<wp>), INTENT(IN) :: a(:,:)
<type>(<wp>), INTENT(IN) :: <bb>
<type>(<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

160

CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where
<bb> = b(:,:) or b(:)
<cc> =c¢(:,:) or c(:)
and

¢, rank 2, has shape (m,n), b same shape as ¢
SY a has shape (m,m) if side = blas_left_side (the default)
a has shape (n,n) if side /= blas_left_side
c, rank 1, has shape (m), b same shape as c
SY a has shape (m,m)

Rank b | Rank ¢ | side | Operation
2 2 L |C+ aAB+pC
2 2 R | C+ aBA+pBC
1 1 - c+ aAb+ Bc

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xSYMYV is covered by symm.

The types of a, b, ¢, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from that of c,
alpha and beta.

Fortran 77 binding:

SUBROUTINE BLAS_xSYMM{_a_b}{_X}(SIDE, UPLO, M, N, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC])
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO [, PREC]
<type> ALPHA, BETA

<type> AC LDA, *)

<type> B(LDB, *)

<type> C(LDC, *)

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of A and _b is the type of B. The suffix _X is present
if and only if PREC is present. One or both of the suffixes _a_ b and _X must be present.

C binding:

void BLAS_xsymm{_a_b}{_x}(enum blas_order_type order,
enum blas_side_type side,
enum blas_uplo_type uplo, int m, int n,
SCALAR_IN alpha, const ARRAY a, int 1da,
const ARRAY b, int 1db, SCALAR_IN beta, ARRAY c,
int 1dc [, enum blas_prec_type prec]);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 161

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of argument a, and _b is the type of argument b.
The suffix _x is present if and only if prec is present. One or both of the suffixes _a_b and x
must be present.

HEMM (Hermitian Matrix Matrix Product) C <+ aAB + pBC or C < aBA+ C

This routine performs one of the Hermitian matrix matrix operations C <+ aAB + BC or
C < aBA + BC where a and B are scalars, A is a Hermitian matrix, and B and C are general
matrices. This routine returns immediately if m or n is less than or equal to zero. For side equal to
blas_left_side, and if Ida is less than one or less than m, or if Idb is less than one or less than m, or
if Idc is less than one or less than m, an error flag is set and passed to the error handler. For side
equal to blas_right_side, and if Ida is less than one or less than n, or if Idb is less than one or less
than n, or if Idc is less than one or less than n, an error flag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xHEMM.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

Hermitian:
SUBROUTINE hemm(a, b, ¢ [, side] [, uplo] [, alpha] [, betal] [, prec])
COMPLEX (<wp>), INTENT(IN) :: a(:,:)
COMPLEX (<wp>), INTENT(IN) :: <bb>
COMPLEX (<wp>), INTENT(INQUT) :: <cc>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where
<bb> = b(:,:) or b(:)
<cc> =c¢(:,:) or c(:)
and

¢, rank 2, has shape (m,n), b same shape as ¢
HE a has shape (m,m) if "side" = blas_left_side (the default)
a has shape (n,n) if "side" /= blas_left_side
c, rank 1, has shape (m), b same shape as ¢
HE a has shape (m,m)

Rank b | Rank ¢ | side | Operation
2 2 L |C<+ aAB+pC
2 2 R | C <« aBA+pBC
1 1 - c+ aAb+ (e

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

162 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

The functionality of xHEMYV is covered by hemm. 1

The types of a, b, ¢, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from that of c,
alpha and beta.

e Fortran 77 binding: 6
7

SUBROUTINE BLAS_xHEMM{_a_b}{_X}(SIDE, UPLO, M, N, ALPHA, A, LDA, 8

$ B, LDB, BETA, C, LDC [, PREC]) 9
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO [, PREC] 10
<ctype> ALPHA, BETA 11
<ctype> AC LDA, *) 12
<ctype> B(LDB, *) 13
<ctype> c(LDC, *) 14

15

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision 16

arguments set down in section 4.3. The prefix x is the floating point type of the arguments, 17
but if _a_b is present then _a is the type of A and _b is the type of B. The suffix _X is present 18
if and only if PREC is present. One or both of the suffixes _a_b and _X must be present. 19
20

e C binding:

21

22

void BLAS_xhemm{_a_b}{_x}(enum blas_order_type order,
enum blas_side_type side,
enum blas_uplo_type uplo, int m, int n,
CSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY b, int 1db, CSCALAR_IN beta, CARRAY c,
int 1dc [, enum blas_prec_type prec]);

23
24
25
26
27
28

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision *

arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of argument a, and _b is the type of argument b.
The suffix _x is present if and only if prec is present. One or both of the suffixes _.a b and x
must be present.

30

TRMM (Triangular Matrix Matrix Multiply) B+ aop(T)B or B < aBop(T) *

These routines perform one of the matrix-matrix operations B < aop(T)B or B < aBop(T)
where « is a scalar, B is a general matrix, and 7' is a unit, or non-unit, upper or lower triangular
matrix. This routine returns immediately if m or n is less than or equal to zero. For side equal to 40
blas_left_side, and if Idt is less than one or less than m, or if Idb is less than one or less than m, an 4
error flag is set and passed to the error handler. For side equal to blas_right_side, and if Idt is less 42
than one or less than n, or if Idb is less than one or less than m, an error flag is set and passed to 43

the error handler. 44
These interfaces encompass the Legacy BLAS routine xTRMM. 45
Extended precision and mixed precision are permitted. 46

This routine has the same specification as in Chapter 2, except that extended precision and 47
mixed precision are permitted. 48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 163

e Fortran 95 binding:

SUBROUTINE trmm(t, b [, side] [, uplo] [, transt] [, diag] &
[, alphal [, prec])
<type>(<wp>), INTENT(IN) :: t(:,:)
<type>(<wp>), INTENT(INOUT) :: <bb>
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
<bb> ::=b(:,:) or b(:)
and
b, rank 2, has shape (m,n)
TR t has shape (m,m) if side = blas_left_side (the default)
t has shape (n,n) if side /= blas_left_side
b, rank 1, has shape (m)
TR t has shape (m,m)

Rank b | transa | side | Operation
2 N L | B+ alB
2 T L | B« aT™B
2 H L |B+aT"B
2 N R | B+« aBT
2 T R | B+ aBTT
2 H R | B+ aBTH
1 N - b+ oaTh
1 T - | b+—aT™d
1 H - | b+« aTHp

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xXTRMYV is covered by trmm.

The types of alpha, t, and b are governed according to the rules of mixed precision arguments
set down in section 4.3: the type of t can optionally differ from that of b and alpha.

e Fortran 77 binding:

SUBROUTINE BLAS_xTRMM{_a}{_X3}(SIDE, UPLO, TRANST, DIAG, M, N,

$ ALPHA, T, LDT, B, LDB [, PREC])
INTEGER DIAG, LDT, LDB, M, N, SIDE, TRANST, UPLO

$ [, PREC]

<type> ALPHA

<type> T(LDT, *)

<type> B(LDB, *)

164 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

The types of ALPHA, T, and B are governed according to the rules of mixed precision arguments !
set down in section 4.3. The prefix x is the floating point type of the arguments, but if _a is 2
present then _a is the type of T. The suffix _X is present if and only if PREC is present. One or 3
both of the suffixes _a and _X must be present. 4
5

e C binding: 6
7

void BLAS_xtrmm{_a}{_x}(enum blas_order_type order, enum blas_side_type side, 8
enum blas_uplo_type uplo, enum blas_trans_type transa, o

enum blas_diag_type diag, int m, int n, 10

SCALAR_IN alpha, const ARRAY t, int 1dt, ARRAY b, 11

int 1db [, enum blas_prec_type prec]); 12

13

The types of alpha, t, and b are governed according to the rules of mixed precision arguments 14

set down in section 4.3. The prefix x is the floating point type of the arguments, but if _a 15
is present then _a is the type of argument t. The suffix _x is present if and only if prec is 16
present. One or both of the suffixes _a and _x must be present. 17

18

19

TRSM (Triangular Solve) B+ aop(T~')B or B «+ aBop(T™!)
21
This routine solves one of the matrix equations B + aop(T !)B or B <+ aBop(T ') where « is
a scalar, B is a general matrix, and T is a unit, or non-unit, upper or lower triangular matrix. This
routine returns immediately if m or n is less than or equal to zero. For side equal to blas_left_side,
and if Idt is less than one or less than m, or if Idb is less than one or less than m, an error flag is set
and passed to the error handler. For side equal to blas_right_side, and if Idt is less than one or less
than n, or if Idb is less than one or less than m, an error flag is set and passed to the error handler.
These interfaces encompass the Legacy BLAS routine xTRSM.
Extended precision and mixed precision are permitted.

22
23

24

Adwvice to implementors. Note that no check for singularity, or near singularity is specified for
these triangular equation-solving functions. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver.

33
34
To implement this function when the internal precision requested is higher than the precision 35

of B, temporary workspace is needed to compute and store B internally to higher precision. 36
(End of advice to implementors.) a7

38

This routine has the same specification as in Chapter 2, except that extended precision and 39
mixed precision are permitted. 40
41

e Fortran 95 binding: 2

43

SUBROUTINE trsm(t, b [, side] [, uplo] [, transt] [, diag] & 44
[, alphal [, precl) a5

<type>(<wp>), INTENT(IN) :: t(:,:) 46
<type>(<wp>), INTENT(INOUT) :: <bb> a

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side 48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 165

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
<bb> ::=b(:,:) or b(:)
and
b, rank 2, has shape (m,n)
TR t has shape (m,m) if side = blas_left_side (the default)
t has shape (n,n) if side /= blas_left_side
b, rank 1, has shape (m)
TR t has shape (m,m)

Rank b | transa | side | Operation
2 N L | B+ ol 'B
2 T L |B+aol'B
2 H L |B«+ ol HB
2 N R | B+ aBT !
2 T R | B+ aBT T
2 H R | B+ aBT H
1 N - | b+aT™ b
1 T - b+ aT "h
1 H - | b+aT My

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xXTRSV is covered by trsm.

The types of t, x and alpha are governed according to the rules of mixed precision arguments
set down in section 4.3: the type of t can optionally differ from that of x and alpha.

Fortran 77 binding:

SUBROUTINE BLAS_xTRSM{_al}{_X}(SIDE, UPLO, TRANST, DIAG, M, N,

$ ALPHA, T, LDT, B, LDB [, PREC])
INTEGER DIAG, LDT, LDB, M, N, SIDE, TRANST, UPLO

$ [, PREC]

<type> ALPHA

<type> T(LDT, *)

<type> B(LDB, *)

The types of ALPHA, T, and B are governed according to the rules of mixed precision arguments
set down in section 4.3. The prefix x is the floating point type of the arguments, but if _a is
present then _a is the type of T. The suffix X is present if and only if PREC is present. One or
both of the suffixes _a and _X must be present.

e C binding:

166 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

void BLAS_xtrsm{_a}{_x}(enum blas_order_type order, enum blas_side_type side,

enum blas_uplo_type uplo, enum blas_trans_type transt,

enum blas_diag_type diag, int m, int n,
SCALAR_IN alpha, const ARRAY t, int 1dt, ARRAY b,
int 1db [, enum blas_prec_type prec]);

The types of alpha, t, and b are governed according to the rules of mixed precision arguments
set down in section 4.3. The prefix x is the floating point type of the arguments, but if _a
is present then _a is the type of argument t. The suffix x is present if and only if prec is
present. One or both of the suffixes _a and _x must be present.

SYRK (Symmetric Rank K update) C + aAAT +BC, C + aATA+ BC

This routine performs one of the symmetric rank k operations C < aAA”T + BC or C
aAT A + BC where o and f are scalars, C' is a symmetric matrix, and A is a general matrix. This
routine returns immediately if n or k is less than or equal to zero. If Idc is less than one or less
than n, an error flag is set and passed to the error handler. For trans equal to blas_no_trans, and if
Ida is less than one or less than n, an error flag is set and passed to the error handler. For trans
equal to blas_trans, and if Ida is less than one or less than k, an error flag is set and passed to the
error handler.

These interfaces encompass the Legacy BLAS routine xSYRK with added functionality for
complex symmetric matrices.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE syrk(a, c¢ [, uplo] [, trans] [, alphal] [, betal] &
[, precl)
<type>(<wp>), INTENT(IN) :: <aa>
<type>(<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
<aa> ::= a(:,:) or a(:)
and
¢ has shape (n,n)
a has shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | trans | Operation
2 N | C « adAT +8C
2 T | C+ aATA+pC
1 - C + aaa” + pC

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS

167

The table defining the operation as a function of the operator arguments is identical to

Chapter 2.

The types of alpha, a, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3: the type of a can optionally differ from those of ¢, alpha

and beta.

e Fortran 77 binding:

SUBROUTINE BLAS_xSYRK{_al}{_X}(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,

$
INTEGER
<type>
<type>
<type>

K, LDA, LDC,

ALPHA, BETA
A(C LDA, *)
c(LDC, *)

C, LDC [, PREC])
N, TRANS, UPLO [, PREC]

The types of ALPHA, A, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of A. The suffix X is present if and only if PREC is
present. One or both of the suffixes _a and _X must be present.

e C binding:

void BLAS_xsyrk{_a}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,

SCALAR_IN alpha, const ARRAY a, int 1lda,

SCALAR_IN beta, ARRAY c, int 1ldc

[, enum blas_prec_type prec]l);

The types of alpha, a, beta and c¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of argument a. The suffix _x is present if and only if
prec is present. One or both of the suffixes _a and _x must be present.

HERK (Hermitian Rank K update)

C + aAA" + BC, C + aAP A+ pC

This routine performs one of the Hermitian rank k operations C' <+ aAdA® + BC or C «+
aAf A + BC where a and 3 are scalars, C is a Hermitian matrix, and A is a general matrix. This
routine returns immediately if n or k is less than or equal to zero. If Idc is less than one or less
than n, an error flag is set and passed to the error handler. For trans equal to blas_no_trans, and if
Ida is less than one or less than n, an error flag is set and passed to the error handler. For trans
equal to blas_trans, and if Ida is less than one or less than k, an error flag is set and passed to the

error handler.

These interfaces encompass the Legacy BLAS routine xHERK.
Extended precision and mixed precision are permitted.
This routine has the same specification as in Chapter 2, except that extended precision and

mixed precision are permitted.

e Fortran 95 binding:

168

CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

SUBROUTINE herk(a, ¢ [, uplo] [, trans] [, alpha] [, beta] &
[, precl)
COMPLEX (<wp>), INTENT(IN) :: <aa>
COMPLEX (<wp>), INTENT(INQUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
REAL(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
<aa> ::= a(:,:) or a(:)
and
¢ has shape (n,n)
a has shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | trans | Operation
2 N | C+ adA” +8C
2 T C + aA® A+ BC
1 - C + aad® + BC

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The types of alpha, a, beta and c¢ are governed according to the rules of mixed precision
arguments set down in section 4.3: the type of a can optionally differ from those of ¢, alpha
and beta.

Fortran 77 binding:

SUBROUTINE BLAS_xHERK{_a}{_X}(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,

$ C, LDC [, PREC])
INTEGER K, LDA, LDC, N, TRANS, UPLO [, PREC]
<rtype> ALPHA, BETA

<ctype> AC LDA, *)

<ctype> C(LDC, *)

The types of ALPHA, A, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of A. The suffix X is present if and only if PREC is
present. One or both of the suffixes _a and X must be present.

C binding:

void BLAS_xherk{_a}{_x}(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
RSCALAR_IN alpha, const CARRAY a, int 1lda,
RSCALAR_IN beta, CARRAY ¢, int 1ldc
[, enum blas_prec_type prec]);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 169

The types of alpha, a, beta and c¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of argument a. The suffix _x is present if and only if
prec is present. One or both of the suffixes _a and _x must be present.

SYR2K (Symmetric rank 2k update) C + (aA)BT + B(aA)T + pC
C + (e¢A)TB + BT (aA) + BC

These routines perform the symmetric rank 2k operation C' + (aA)BT + B(aA)T + BC or
C + (aA)TB + BT (aA) + BC where a and j are scalars, C is a symmetric matrix, and A and B
are general matrices. This routine returns immediately if n or k is less than or equal to zero. If Idc
is less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_no_trans, and if Ida is less than one or less than n, or if Idb is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less
than one or less than k, or if Idb is less than one or less than k, an error flag is set and passed to
the error handler.

These interfaces encompass the Legacy BLAS routine xSYR2K with added functionality for
complex symmetric matrices.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE syr2k(a, b, ¢ [, uplo]l [, trans] [, alphal [, betal
[, prec]l)
<type>(<wp>), INTENT(IN) :: <aa>
<type>(<wp>), INTENT(IN) :: <bb>
<type>(<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where
<aa> ::= a(:,:) or a(:)
<bb> = b(:,:) or b(:)
and

¢ has shape (n,n)
if trans = blas_no_trans (the default)
a has shape (n,k)
b has shape (n,k)
if trans /= blas_no_trans
a has shape (k,n)
b has shape (k,n)

Rank a | Rank b | trans | Operation
2 2 N C < aABT + oBAT + BC
2 2 T C <+ aATB + aBTA + BC
1 1 - C + aab” + aba” + BC

170 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from those of c,
alpha and beta.

e Fortran 77 binding:

SUBROUTINE BLAS_xSYR2K{_a_b}{_X}(UPLO, TRANS, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC])
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO [, PREC]
<type> ALPHA, BETA

<type> A(C LDA, *)

<type> B(LDB, *)

<type> C(LDC, *)

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of A and b is the type of B. The suffix X is present
if and only if PREC is present. One or both of the suffixes _a_ b and _X must be present.

e C binding:

void BLAS_xsyr2k{_a_b}{_x}(enum blas_order_type order,
enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY b, int 1db,
SCALAR_IN beta, ARRAY c, int 1ldc
[, enum blas_prec_type prec]);

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of argument a and _b is the type of argument b. The
suffix x is present if and only if prec is present. One or both of the suffixes _a b and _x must
be present.

HER2K (Hermitian rank 2k update) C « (aA)BH + B(aA)H + BC
C « (aA)2B + BH(aA) + BC

These routines perform the Hermitian rank 2k operation C + (ad)BY + B(aA)® + BC or
C <« (aA) B + BH (aA) 4 BC where o and 8 are scalars, C is a Hermitian matrix, and A and B
are general matrices. This routine returns immediately if n or k is less than or equal to zero. If Idc
is less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_no_trans, and if Ida is less than one or less than n, or if Idb is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less
than one or less than k, or if Idb is less than one or less than k, an error flag is set and passed to
the error handler.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 171

These interfaces encompass the Legacy BLAS routine xHER2K.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

SUBROUTINE her2k(a, b, ¢ [, uplo] [, trans] [, alphal [, betal
[, precl)
COMPLEX (<wp>) , INTENT(IN) :: <aa>
COMPLEX (<wp>), INTENT(IN) :: <bb>
COMPLEX (<wp>), INTENT(INQUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>), INTENT(IN), OPTIONAL :: alpha
REAL(<wp>), INTENT(IN), OPTIONAL :: beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where
<aa> ::= a(:,:) or a(:)
<bb> = b(:,:) or b(:)
and

¢ has shape (n,n)

a and b have shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | Rank b | trans | Operation
2 2 N | C < aABY + aBAY +BC
2 2 T | C+ aA"B+aB"A+BC
1 1 - C <+ aab® + aba? + pC

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from those of c,
alpha and beta.

e Fortran 77 binding:

SUBROUTINE BLAS_xHER2K{_a_b}{_X}(UPLO, TRANS, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC])
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO [, PREC]
<ctype> ALPHA

<rtype> BETA

<ctype> A(C LDA, *)

<ctype> B(LDB, *)

<ctype> c(LDC, *)

172 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of A and _b is the type of B. The suffix _X is present
if and only if PREC is present. One or both of the suffixes _a_b and _X must be present.

e C binding:

void BLAS_xher2k{_a_b}{_x}(enum blas_order_type order,
enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
CSCALAR_IN alpha, const CARRAY A, int 1lda,
const CARRAY b, int 1db,
RSCALAR_IN beta, CARRAY c, int 1ldc
[, enum blas_prec_type prec]l);

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of argument a and _b is the type of argument b. The
suffix x is present if and only if prec is present. One or both of the suffixes _a_b and _x must
be present.

45.6 Environmental Enquiry

FPINFO_X (Environmental enquiry)
This routine queries for machine-specific floating point characteristics.

e Fortran 95 binding:

INTEGER FUNCTION fpinfo_x(cmach, prec)
TYPE (blas_cmach_type), INTENT (IN) :: cmach
TYPE (blas_prec_type), INTENT (IN) :: prec

e Fortran 77 binding:

INTEGER FUNCTION BLAS_FPINFO_X(cmach, prec)
INTEGER cmach, prec

e C binding:

int BLAS_fpinfo_x(enum blas_cmach_type cmach,
enum blas_prec_type prec);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex A
Appendix

This appendix contains overall notation, definitions, and implementation details for the chapters
of the BLAS Technical Forum Standard.

A.1 Vector Norms

There are a variety of ways to define the norm of a vector, in particular for vectors of complex
numbers, several of which have been used in the existing Level 1 BLAS and in various LAPACK
auxiliary routines. Our definitions include all of these in a systematic way.

Data Type | Name Notation | Definition
Real one-norm Iz |1 il
two-norm 1z ||2 /> 2
infinity-norm |z|loo | max; |z
Complex | one-norm |1 >l
= 3 (Re(z;)? + ITm(x;)?) /2
real one-norm lzlhir | (| Re(x:)| + [Im(z;))

two-norm ||$||2 V2o |ﬂvz|2

= (Xi(Re(:)? + Im(z;)%))"/?

infinity-norm |z|loo | max; |z
= max;(Re(z;)? + Im(z)?)'/?
real infinity-norm | ||z|lcor | max;(|Re(z;)| + |[Im(x;)]|)

Table A.1: Vector Norms

Rationale. The reason for the two extra norms of complex vectors, the real one-norm and
real infinity-norm, is to avoid the expense of up to n square roots, where n is the length of
the vector . The two-norm only requires one square root, so a real version is not needed.
The infinity norm only requires one square root in principle, but this would require tests and
branches, making it more complicated and slower than the real infinity-norm. When z is real,
the one-norm and real one-norm are identical, as are the infinity-norm and real infinity-norm.
We note that the Level 1 BLAS routine ICAMAX, which finds the largest entry of a complex
vector, finds the largest value of |Re(x;)| + [Im(xz;)|. (End of rationale.)

174 ANNEX A. APPENDIX

Computing the two-norm or Frobenius-norm of a vector is equivalent. However, this is not the
case for computing matrix norms. For consistency of notation between vector and matrix norms,
both norms are available.

A.2 Matrix Norms

Analogously to vector norms as discussed in Section A.1, there are a variety of ways to define the
norm of a matrix, in particular for matrices of complex numbers. Our definitions include all of
these in a systematic way.

Data Type | Name Notation | Definition
Real one-norm IlA]l1 max; y_; |ajl

Frobenius-norm |AlF Vi X e
infinity-norm |Allo | max; 3=, [ag]
max-norm |A|lmax | max; max; |as;|

Complex | one-norm | A|l1 max; Y, |aij|

= max; 3, (Re(ay)” + Im(aij)*)"/?

real one-norm |Allir | max; Y, (|Re(aij)| + [Im(as;)))

Frobenius-norm [AllF | /2 2 |ai]?

= (X X;(Re(aij)? + Im(a;;)?))"/?
infinity-norm lAlloo | max; 37 |aijl

= max; Y, (Re(ai;)? + Im(ai;)?)"/?
real infinity-norm | |[[Alleor | max; 35 ;(| Re(aij)| + [Im(aij)|)

max-norm |A||max | max; max; |a;;]
= max; maxj(Re(aij)2 + Im(aij)Q)l/2
real max-norm | Allmax r | = max; max;(|Re(ai;)| + |[Im(aij)|)

Table A.2: Matrix Norms

In contrast to computing vector norms, computing the two-norm and Frobenius-norm of a
matrix are not equivalent. If the user asks for the two-norm of a matrix, where the matrix is 2-by-2
or larger, an error flag is raised. The one exception occurs when the matrix is a single column or
a single row. In this case, the two-norm is requested and the Frobenius-norm is returned.

A.3 Operator Arguments

The following table lists the operator arguments and their associated named constants. For com-
plete details of the meanings of the operator prec, refer to section 4.3.1.

Example: Consider the matrix-vector products z = Az, = ATz and z = A¥z. Tt is convenient
to use the trans operator and define op(A) as being A, AT or A¥ depending on the value of the
trans operator argument. Again, the specification of the type and the valid values such an operator
should have will be defined in the language-dependent section and may vary from one language
binding to another.

It is worthwhile noticing that in some rare cases, the meaning of the trans operator argument
is extended to a function of the matrix to which it applies. Consider for example the symmetric

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. OPERATOR ARGUMENTS 175

operator argument | named constant meaning
norm blas_one_norm 1-norm
blas_real one_norm real 1-norm
blas_two_norm 2-norm
blas_frobenius_ norm | Frobenius-norm
blas_inf norm infinity-norm
blas_real_inf norm real infinity-norm
blas_max_norm max-norm
blas real max norm | real max-norm
sort blas_increasing order | sort in increasing order
blas_decreasing_order | sort in decreasing order
side blas_left_side operate on the left-hand side
blas_right _side operate on the right-hand side
uplo blas_upper reference upper triangle only
blas_lower reference lower triangle only
transz blas_no_trans operate with z
blas_trans operate with zT
blas_conj_trans operate with zf
conj blas_conj operate with z
blas_no_conj operate with z
diag blas_non_unit_diag non-unit triangular
blas_unit_diag unit triangular
jrot blas_jrot_inner inner rotation ¢ > %
blas_jrot_outer outer rotation 0 < ¢ < %
blas_jrot_sorted sorted rotation abs(a) > abs(b)
order blas_colmajor assume column-major ordering
blas_rowmajor assume row-major ordering
index_base blas_zero_base assumes zero-based indexing
blas_one_base assumes one-based indexing
prec blas_prec_single internal computation performed
in single precision
blas_prec_double internal computation performed
in double precision
blas_prec_indigenous | internal computation performed
in the widest hardware-supported
format available
blas_prec_extra internal computation performed
in format wider than 80-bits

Table A.3: Operator Arguments

rank-k update operations, C < C + AA” and C « C + AT A where C is a symmetric matrix.
The value of the trans operator refers to the product AA”. Tt follows that these operations can be
specified by C < C + op(AAT) where op(AAT) is AAT or AT A depending on the input value of
the trans argument.

All possible values of the operator argument trans are not always meaningful. For example, in

176 ANNEX A. APPENDIX

the symmetric rank-k update operations defined above, when the matrix C' is complex symmetric,
the only valid values of op(AAT) are AAT or AT A. Similarly, when the matrix C is complex
Hermitian, the only valid values of op(AA¥) are AA” or A® A. Such restrictions are detailed for
each dense and banded BLAS function to which they apply.

Some BLAS routines have more than one trans operator argument because such an argument
is needed for each matrix to which it applies. For example, a general matrix-multiply operation
can be specified as C' < op(A)op(B) where A, B and C are general matrices. A trans argument is
needed for each of the input matrices A and B; by convention we denote those formal arguments
transA and transB.

Rationale. As mentioned above, section (1.4) does not specify how the objects manipu-
lated by the BLAS routines are stored. This important aspect of the interface specification is
deferred to the language-dependent specification sections. In particular, the operator argu-
ments do not indicate whether only half or all entries of triangular, symmetric and Hermitian
matrices are stored, or even how these entries are stored. The intent is to provide each lan-
guage binding with the opportunity to choose the appropriate data structures for each object.
Note that a given language binding specification may provide multiple functions performing
the same operation on operands stored differently. For example, triangular matrices may be
stored within conventional two-dimensional arrays or in packed storage, where the triangle
may be packed by rows or columns. Consequently, a BLAS routine specified in the function-
ality tables may induce multiple functions in a particular language binding, say for instance,
to provide the user with the same operation on objects that are stored differently. (End of
rationale.)

It follows that, in general, a mathematical operation involving a matrix A, where A could be
general or banded, triangular, symmetric or Hermitian, induces the language-independent speci-
fication of multiple routines. However, this language-independent section ignores the fact that a
given language binding may choose to provide multiple storage schemes for some specific classes of
matrices, such as triangular matrices.

A.4 Fortran 95 Modules

Several Fortran 95 modules are provided, allowing for the flexible inclusion of only select portions
of the document. The modules blas_dense, blas_sparse, and blas_extended, are provided for
Chapters 2, 3, and 4, respectively.

http://www.netlib.org/blas/blast-forum/blas_dense.f90
http://www.netlib.org/blas/blast-forum/blas_sparse.f90
http://www.netlib.org/blas/blast-forum/blas_extended.f90

Each of these modules in turn contains a USE statement to include the module of operator arguments
(blas_operator_arguments for Chapters 2 and 4, and blas_sparse namedconstants for Chapter
3), and the respective module(s) of explicit interfaces for that chapter.

For Chapters 2 and 4, one derived type is specified for each category of operator arguments (such
as trans) and some parameters are defined of this type (for the different settings). For consistency,
the suffix _type is used to name all of the derived types. This suffix is needed in some cases to
differentiate between the type and one of the parameters (for example, blas_trans_type is a type
and blas_trans is a parameter of this type). The Sparse BLAS chapter represents its operator
arguments and a list of matrix properties (see section 3.5.1) as named constants.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN 95 MODULES 177

Advice to implementors. For Chapter 2, all the entities (derived types, named constants and
BLAS procedures) must be accessible to the user via the module blas_dense.

There are many ways to create this module. However the following three conditions MUST
be adhered to:

¢ all entities can be accessed by the module
e the generic names must be the same as in the Fortran 95 bindings

e the specific name must be standard. The standard that we recommend is “suffix _d, _z,
_s and _¢” for double precision, double complex, real and complex.

For example the Fortran 95 bindings gives the generic name gemm. This is a generic procedure
for the following 12 specific procedures:

gemm_d corresponds to BLAS_ DGEMM (legacy DGEMM)
gemm z corresponds to BLAS_ZGEMM (legacy ZGEMM)
gemm s corresponds to BLAS_SGEMM (legacy SGEMM)
gemm c corresponds to BLAS_CGEMM (legacy CGEMM)
gemv_d corresponds to BLAS_ DGEMYV (legacy DGEMYV)
gemv_z corresponds to BLAS_ ZGEMYV (legacy ZGEMV)
gemv_s corresponds to BLAS_ SGEMV (legacy SGEMYV)
gemv_c corresponds to BLAS_ CGEMYV (legacy CGEMYV)

ger.d corresponds to BLAS_DGER (legacy DGER)

ger.z corresponds to BLAS_ZGER (legacy SGER)

ger_s corresponds to BLAS_SGER (legacy ZGERU, ZGERC)
ger.c corresponds to BLAS_CGER (legacy CGERU, CGERC)

A specific procedure could be an external procedure or a module procedure.

One approach for creating the module blas_dense is to:

e create one file for each procedure
e create the interface blocks for the generic names using one or more modules

e create the module blas_dense from the modules in the last step and other modules such
as blas_operator_arguments

Assuming we are using external procedures, the following files could be used as templates to
create the module blas_dense. The interface blocks are grouped according to the grouping
in section 2.8.1. The files are:

e http://www.netlib.org/blas/blast-forum/blas_operator_arguments.f90
file containing the module blas_operator_arguments

e http://www.netlib.org/blas/blast-forum/blas precision.f90
file containing the module used to specify the precision (not visible to the user)

e http://www.netlib.org/blas/blast-forum/blas dense red_op.f90
file containing the interface blocks for the reduction operations (section 2.8.2)

e http://www.netlib.org/blas/blast-forum/blas. dense_gen trans.f90
file containing the interface blocks for the generate transformations procedures (sec-
tion 2.8.3)

178 ANNEX A. APPENDIX

e http://www.netlib.org/blas/blast-forum/blas dense_vec_op.f90
file containing the interface blocks for the vector operations (section 2.8.4)

e http://www.netlib.org/blas/blast-forum/blas_dense _vec_mov.f90
file containing the interface blocks for the data movement with vectors (section 2.8.5)

e http://www.netlib.org/blas/blast-forum/blas dense mat_vec_op.f90
file containing the interface blocks for the matrix_vector operations (section 2.8.6)

e http://www.netlib.org/blas/blast-forum/blas_dense mat_op.f90
file containing the interface blocks for the matrix operations (section 2.8.7)

e http://www.netlib.org/blas/blast-forum/blas_dense mat_mat_op.f90
file containing the interface blocks for the matrix_matrix operations (section 2.8.8)

e http://www.netlib.org/blas/blast-forum/blas_ dense mat _mov.f90
file containing the interface blocks for the data movement with matrices (section 2.8.9)

e http://www.netlib.org/blas/blast-forum/blas.dense fpinfo.f90
file containing the interface blocks for the environmental enquiry (section 2.8.10)

e http://www.netlib.org/blas/blast-forum/blas.dense.f90
file containing the module blas_dense that imports the information from all other mod-
ules and makes them available.

The specifications for all specific procedures MUST be as they appear in the above files. The
only change is the way that the precision is specified. (End of advice to implementors.)

A.5 Fortran 77 Include File

One Fortran 77 include file is provided, blas namedconstants.h. This include file contains the
values of all named constants, and applies to Chapters 2, 3, and 4.

http://www.netlib.org/blas/blast-forum/blas namedconstants.h

Operator arguments norm, sort, side, uplo, trans, conj, diag, jrot, index_base, and prec are rep-
resented in the Fortran 77 interface as INTEGERs. These operator arguments assume the named
constant values as defined in section A.3. The Sparse BLAS chapter defines a list of matrix prop-
erties (see section 3.5.1) that must also be defined.

Advice to implementors. This specification is a deviation from the Legacy BLAS, where
these operator arguments were defined as CHARACTER*1. (End of advice to implementors.)

A.6 C Include Files

Several C include files are provided, allowing for the flexible inclusion of only select portions of the
document. The file blas.h contains the enumerated types and all prototypes for Chapters 2, 3,
and 4. The files blas dense.h, blas sparse.h, and blas_extended.h, include the values of the
operator arguments (enumerated types) and the function prototypes for the respective chapter.

http://www.netlib.org/blas/blast-forum/blas.h
http://www.netlib.org/blas/blast-forum/blas dense.h
http://www.netlib.org/blas/blast-forum/blas sparse.h
http://www.netlib.org/blas/blast-forum/blas_extended.h

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.6. CINCLUDE FILES 179

The file blas_enum.h contains the values of all enumerated types, applying to all chapters. The files
blas_dense_proto.h, blas_sparse_proto.h, and blas_extended proto.h, contain the respective
function prototypes for Chapters 2, 3, and 4.

http://www.netlib.org/blas/blast-forum/blas_enum.h
http://www.netlib.org/blas/blast-forum/blas_dense _proto.h
http://www.netlib.org/blas/blast-forum/blas_sparse_proto.h
http://www.netlib.org/blas/blast-forum/blas extended proto.h

All operator arguments are handled by enumerated types in the C interface. This allows for
tighter error checking, and provides less opportunity for user error. In addition to the operator
arguments of norm, sort, side, uplo, trans, conj, diag, jrot, index_base, and prec, this interface adds
another such argument to all routines involving two dimensional arrays, order. order designates if
the array elements are stored in row-major or column-major ordering. Refer to section 2.6.6 for
further details. The Sparse BLAS chapter defines a list of matrix properties (see section 3.5.1) that
must also be defined.

Annex B

Legacy BLAS

B.1 Introduction

This chapter addresses additional language bindings for the original Level 1, 2, and 3 BLAS. The
Level 1, 2, and 3 BLAS will hereafter be referred to as the Legacy BLAS.

B.2 C interface to the Legacy BLAS

This section gives a detailed discussion of the proposed C interface to the legacy BLAS. Every
mention of “BLAS” in this chapter should be taken to mean the legacy BLAS. Each interface
decision is discussed in its own section. Each section also contains a Considered methods subsection,
where other solutions to that particular problem are discussed, along with the reasons why those
options were not chosen. These Considered methods subsections are indented and italicized in order
to distinguish them from the rest of the text.

It is largely agreed among the group (and unanimous among the vendors) that user demand
for a C interface to the BLAS is insufficient to motivate vendors to support a completely separate
standard. This proposal therefore confines itself to an interface which can be readily supported on
top of the already existing Fortran 77 callable BLAS (i.e., the legacy BLAS).

The interface is expressed in terms of ANSI/ISO C. Very few platforms fail to provide ANSI/ISO
C compilers at this time, and for those platforms, free ANSI/ISO C compilers are almost always
available (eg., gcc).

B.2.1 Naming scheme

The naming scheme consists of taking the Fortran 77 routine name, making it lower case, and
adding the prefix cblas_. Therefore, the routine DGEMM becomes cblas_dgemm.

Considered methods

Various other naming schemes have been proposed, such as adding C_ or c_ to the
name. Most of these schemes accomplish the requirement of separating the Fortran 77
and C name spaces. It was argued, however, that the addition of the blas prefix unifies
the naming scheme in a logical and useful way (making it easy to search for BLAS use
in a code, for instance), while not placing too great a burden on the typist. The letter ¢
is used to distinguish this language interface from possible future interfaces.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 181

B.2.2 Indices and |_ AMAX

The Fortran 77 BLAS return indices in the range 1 < I < N (where N is the number of entries
in the dimension in question, and I is the index), in accordance with Fortran 77 array indexing
conventions. This allows functions returning indices to be directly used to index standard arrays.
The C interface therefore returns indices in the range 0 < I < N for the same reason.

The only BLAS routine which returns an index is the function I_AMAX. This function is declared
to be of type CBLAS_INDEX, which is guaranteed to be an integer type (i.e., no cast is required when
assigning to any integer type). CBLAS_INDEX will usually correspond to size_t to ensure any array
can be indexed, but implementors might choose the integer type which matches their Fortran 77
INTEGER, for instance. It is defined that zero is returned as the index for a zero length vector (eg.,
For N = 0, I_AMAX will always return zero).

B.2.3 Character arguments

All arguments which were characters in the Fortran 77 interface are handled by enumerated types
in the C interface. This allows for tighter error checking, and provides less opportunity for user
error. The character arguments present in the Fortran 77 interface are: SIDE, UPLO, TRANSPOSE,
and DIAG. This interface adds another such argument to all routines involving two dimensional
arrays, ORDER. The standard dictates the following enumerated types:

enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};

enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};
enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};

enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};

enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};

Considered methods

The other two most commonly suggested methods were accepting these arguments as
either char * or char. It was noted that both of these options require twice as many
comparisons as normally required to branch (so that the character may be either upper
or lower case). Both methods also suffered from ambiguity (what does it mean to have
DIAG="H’, for instance). If char was chosen, the words could not be written out as they
can for the Fortran 77 interface (you couldn’t write ”NoTranspose”). If char * were
used, some compilers might fail to optimize string constant use, causing unnecessary
memory usage.

The main advantage of enumerated data types, however, is that much of the error
checking can be done at compile time, rather than at runtime (i.e., if the user fails to
pass one of the valid options, the compiler can issue the error).

There was much discussion as to whether the integer values should be specified, or
whether only the enumerated names should be so specified. The group could find no
substansive way in which specifying the integer values would restrict an implementor,
and specifying the integer values was seen as an aid to inter-language calls.

B.2.4 Handling of complex data types

All complex arguments are accepted as void *. A complex element consists of two consecutive
memory locations of the underlying data type (i.e., float or double), where the first location
contains the real component, and the second contains the imaginary part of the number.

182 ANNEX B. LEGACY BLAS

In practice, programmers’ methods of handling complex types in C vary. Some use various data
structures (some examples are discussed below). Others accept complex numbers as arrays of the
underlying type.

Complex numbers are accepted as void pointers so that widespread type casting will not be
required to avoid warning or errors during compilation of complex code.

An ANSI/ISO committee is presently working on an extension to ANSI/ISO C which defines
complex data types. The definition of a complex element is the same as given above, and so the
handling of complex types by this interface will not need to be changed when ANSI/ISO C standard
is extended.

Considered methods

Probably the most strongly advocated alternative was defining complex numbers via
a structure such as
struct NON_PORTABLE COMPLEX {float r; float i;}; The main problem with this
solution is the lack of portability. By the ANSI/ISO C standard, elements in a structure
are not guaranteed to be contiguous. With the above structure, padding between elements
has been experimentally observed (on the CRAY T3D), so this problem is not purely
theoretical.

To get around padding problems within the structure, a structure such as
struct NON_PORTABLE COMPLEX {float v[21;}; has been suggested. With this struc-
ture there will obviously be no padding between the real and imaginary parts. However,
there still exists the possibility of padding between elements within an array. More im-
portantly, this structure does not lend itself nearly as well as the first to code clarity.

A final proposal is to define a structure which may be addressed the same as the
one above (i.e., ptr->r, ptr->i), but whose actual definition is platform dependent.
Then, hopefully, various vendors will either use the above structure and ensure via
their compilers its contiguousness, or they will create a different structure which can be
accessed in the same way.

This requires vendors to support something which is not in the ANSI C standard,
and so there is no way to ensure this would take place. More to the point, use of such a
structure turns out to not offer much in the way of real advantage, as discussed in the
following section.

All of these approaches require the programmer to either use the specified data type
throughout the code which will call the BLAS, or to perform type casting on each BLAS
call. When complex numbers are accepted as void pointers, no type casting or data type
is dictated, with the only restriction being that a complexr number have the definition
given above.

B.2.5 Return values of complex functions

BLAS routines which return complex values in Fortran 77 are instead recast as subroutines in the
C interface, with the return value being an output parameter added to the end of the argument
list. This allows the output parameter to be accepted as void pointers, as discussed above.
Further, the name is suffixed by _sub. There are two main reasons for this name change.
First, the change from a function to a subroutine is a significant change, and thus the name should
reflect this. More importantly, the “traditional” name space is specifically reserved for use when the
forthcoming ANSI/ISO C extension is finalized. When this is done, this C interface will be extended

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 183

to include functions using the “traditional” names which utilize the new ANSI/ISO complex type
to return the values.

Considered methods

This is the area where use of a structure is most desired. Again, the most common
suggestion is a structure such as struct NON_PORTABLE_COMPLEX {float r; float i;};.
If one is willing to use this structure throughout one’s code, then this provides a
natural and convenient mechanism. If, however, the programmer has utilized a different
structure for complez, this ease of use breaks down. Then, something like the following

code fragment is required:

NON_PORTABLE_COMPLEX ctmp;
float cdot[2];

ctmp = cblas_cdotc(n, x, 1, y, 1);
cdot[0] = ctmp.r;
cdot[1] = ctmp.i;

which is certainly much less convenient than: cblas_cdotc_sub(n, x, 1, y, 1, cdot).

It should also be noted that the primary reason for having a function instead of a
subroutine is already invalidated by C’s lack of a standard complex type. Functions
are most useful when the result may be used directly as part of an in-line computation.
However, since ANSI/ISO C lacks support for complex arithmetic primitives or operator
overloading, complex functions cannot be standardly used in this way. Since the function
cannot be used as a part of a larger expression, nothing is lost by recasting it as a
subroutine; indeed a slight performance win may be obtained.

B.2.6 Array arguments

Arrays are constrained to being contiguous in memory. They are accepted as pointers, not as arrays
of pointers.

All BLAS routines which take one or more two dimensional arrays as arguments receive one
extra parameter as their first argument. This argument is of the enumerated type
enum CBLAS ORDER {CblasRowMajor=101, CblasColMajor=102};.
If this parameter is set to CblasRowMajor, it is assumed that elements within a row of the array(s)
are contiguous in memory, while elements within array columns are separated by a constant stride
given in the stride parameter (this parameter corresponds to the leading dimension [e.g. LDA] in
the Fortran 77 interface).

If the order is given as CblasColMajor, elements within array columns are assumed to be
contiguous, with elements within array rows separated by stride memory elements.

Note that there is only one CBLAS_ORDER parameter to a given routine: all array operands are
required to use the same ordering.

Considered methods

This solution comes after much discussion. C users appear to split roughly into two
camps. Those people who have a history of mizing C and Fortran 77 (in particular
making use of the Fortran 77 BLAS from C), tend to use column-magor arrays in order
to allow ease of inter-language operations. Because of the flexibility of pointers, this is

184

ANNEX B. LEGACY BLAS

not appreciably harder than using row-major arrays, even though C “natively” possesses
TOW-MAJoT Arrays.

The second camp of C users are not interested in overt C/Fortran 77 interoperability,
and wish to have arrays which are row-major, in accordance with standard C conven-
tions. The idea that they must recast their row-oriented algorithms to column-magjor
algorithms 1is unacceptable; many in this camp would probably not utilize any BLAS
which enforced a column-major constraint.

Because both camps are fairly widely represented within the target audience, it is
impossible to choose one solution to the exclusion of the other.

Column-major array storage can obuviously be supported directly on top of the legacy
Fortran 77 BLAS. Recent work, particularly code provided by D.P. Manley of DEC, has
shown that row-major array storage may also be supported in this way with little cost.
Appendiz B.2.12 discusses this issue in detail. To preview it here, we can say the level
1 and 8 BLAS require no extra operations or storage to support row-major operations
on top of the legacy BLAS. Level 2 real routines also require mo extra operations or
storage. Some complex level 2 routines involving the conjugate transpose will require
extra storage and operations in order to form explicit conjugates. However, this will
always involve vectors, not the matriz. In the worst case, we will need n extra storage,
and 3n sign changes.

One proposal was to accept arrays as arrays of pointers, instead of as a single pointer.
The problems with this approach are manifold. First, the existing Fortran 77 BLAS
could not be used, since they demand contiguous (though strided) storage. Second, this
approach requires users of standard C 2D arrays or 1D arrays to allocate and assign the
appropriate pointer array.

Beyond this, many of the vectors used in level 1 and level 2 BLAS come from rows
or columns of two dimensional arrays. Elements within columns of row-major arrays
are not uniformly strided, which means that a n-element column vector would need n
pointers to represent it. This then leads to vectors being accepted as arrays of pointers
as well.

Now, assuming both our one and two dimensional arrays are accepted as arrays of
pointers, we have a problem when we wish to perform sub-array access. If we wish to
pass an m X n subsection of a this array of pointers, starting at row ¢ and column j, we
must allocate m pointers, and assign them in a section of code such as:

float **A, **subA;

subA = malloc(m*sizeof (floatx*));
for (k=0; k != m; k++) subA[k] = A[i+k] + j;
cblas_rout(... subA ...);

The same operation must be done if we wish to use a row or column as a vector.
This is not only an inconvenience, but can add up to a non-negligible performance loss
as well.

A fiz for these problems is that one and two dimensional arrays be passed as arrays
of pointers, and then indices are passed in to indicate the sub-portion to access. Thus
you have a call that looks like: cblas_rout(... A, i, j, ...);. This solution still
requires some additional tweaks to allow using two dimensional array rows and columns
as vectors. Users presently using C 2D arrays or 1D arrays would have to malloc the

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 185

array of pointers as shown in the preceding example in order to use this kind of interface.
At any rate, a library accepting pointers to pointers cannot be supported on top of the
Fortran 77 BLAS, while one supporting simple pointers can.

If the programmer is utilizing the pointer to pointer style of array indexing, it is still
possible to use this library providing that the user ensures that the operand matriz is
contiguous, and that the rows are constantly strided. If this is the case, the user may
pass the operand matriz to the library in precicely the same way as with a 2D C array:
cblas_rout(... &A[i1[j] ...);.

Example 1: making a library call with a C 2D array:

double A[50]1[25]; /* standard C 2D array */

cblas_rout(CblasRowMajor, ... &A[i]l[jl1, 25, ...);

Example 2: Legal use of pointer to pointer style programming and the
CBLAS

double **A, *p;

A = malloc(M);
p = malloc (M*N*sizeof (double));
for (i=0; i < M; i++) A[i] = &pl[i*N];

cblas_rout(CblasRowMajor, ... &A[il[j]l, N, ...);

Example 3: Illegal use of pointer to pointer style programming and the
CBLAS

double **A, *p;

A = malloc(M);
p = malloc (M*N*sizeof (double));
for (i=0; i < M; i++) A[i] = malloc(N*sizeof (double));

cblas_rout(CblasRowMajor, ... &A[i]l[j]1, N, ...);

Note that Example 3 is illegal because the rows of A have no guaranteed stride.

B.2.7 Aliasing of arguments

Unless specified otherwise, only input-only arguments (specified with the const qualifier), may be
legally aliased on a call to the C interface to the BLAS.

Considered methods

The ANSI C standard allows for the aliasing of output arguments. However, allowing this often
carries a substantial performance penalty. This, along with the fact that Fortran 77 (which we
hope to call for optimized libraries) does not allow aliasing of output arguments, led us to make
this restriction.

186 ANNEX B. LEGACY BLAS

B.2.8 C interface include file

The C interface to the BLAS will have a standard include file, called ¢cblas.h, which minimally
contains the definition of the CBLAS types and ANSI/ISO C prototypes for all BLAS routines.
It is not an error to include this file multiple times. Refer to section B.2.11 for an example of a
minimal cblas.h.
ADVICE TO THE IMPLEMENTOR:

Note that the vendor is not constrained to using precisely this include file; only the enumerated type
definitions are fully specified. The implementor is free to make any other changes which are not
apparent to the user. For instance, all matriz dimensions might be accepted as size_t instead of
int, or the implementor might choose to make some routines inline.

B.2.9 Error checking

The C interface to the legacy BLAS must supply error checking corresponding to that provided by
the reference Fortran 77 BLAS implementation.

B.2.10 Rules for obtaining the C interface from the Fortran 77

e The Fortran 77 routine name is changed to lower case, and prefixed by cblas_.

e All routines which accept two dimensional arrays (i.e., level 2 and 3), acquire a new parameter
of type CBLAS_ORDER as their first argument, which determines if the two dimensional arrays
are row or column major.

o Character arguments are replaced by the appropriate enumerated type, as shown in Sec-
tion B.2.3.

o Input arguments are declared with the const modifier.

o Non-complex scalar input arguments are passed by value. This allows the user to put in
constants when desired (eg., passing 10 on the command line for N).

o Complex scalar input arguments are passed as void pointers, since they do not exist as a

predefined data type in ANSI/ISO C.
e Array arguments are passed by address.
o Qutput scalar arguments are passed by address.

o Complez functions become subroutines which return the result via a void pointer, added as
the last parameter. The name is suffixed with _sub.

B.2.11 cblas.h include file

The cblas.h include file can be found on the BLAS Technical Forum webpage:

http://www.netlib.org/blas/blast-forum/cblas.h

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 187

B.2.12 Using Fortran 77 BLAS to support row-major BLAS operations

This section is not part of the standard per se. Rather, it exists as an advice to the implementor
on how row-major BLAS operations may be implemented using column-major BLAS. This allows
vendors to leverage years of Fortran 77 BLAS developement in producing the C BLAS.

Before this issue is examined in detail, a few general observations on array storage are helpful.
We must distinguish between the matrix and the array which is used to store the matrix. The
matrix, and its rows and columns, have mathematical meaning. The array is simply the method of
storing the matrix, and its rows and columns are significant only for memory addressing.

Thus we see we can store the columns of a matrix in the rows of an array, for instance. When
this occurs in the BLAS, the matrix is said to be stored in transposed form.

A row-major array stores elements along a row in contiguous storage, and separates the column
elements by some constant stride (often the actual length of a row). Column-major arrays have
contiguous columns, and strided rows. The importance of this is to note that a row-major array
storing a matrix in the natural way, is a transposed column-major array (i.e., it can be thought of
as a column-major array where the rows of the matrix are stored in the columns of the array).

Similarly, an upper triangular row-major array corresponds to a transposed lower triangular
column-major array (the same is true in reverse [i.e., lower-to-upper|, obviously). To see this,
simply think of what a upper triangular matrix stored in a row-major array looks like. The first n
entries contain the first matrix row, followed by a non-negative gap, followed by the second matrix
row.

If this same array is viewed as column-major, the first n entries are a column, instead of a row,
so that the columns of the array store the rows of the matrix (i.e., it is transposed). This means
that if we wish to use the Fortran 77 (column-major) BLAS with triangular matrices coming from
C (possibly row-major), we will be reversing the setting of UPLO, while simultaneously reversing
the setting of TRANS (this gets slightly more complicated when the conjugate transpose is involved,
as we will see).

Finally, note that if a matrix is symmetric or Hermitian, its rows are the same as its columns,
so we may merely switch UPLO, without bothering with TRANS.

In the BLAS, there are two separate cases of importance. one dimensional arrays (storage for
vectors) have the same meaning in both C and Fortran 77, so if we are solving a linear algebra
problem who’s answer is a vector, we will need to solve the same problem for both languages.
However, if the answer is a matrix, in terms of calling routines which use column-major storage
from one using row-major storage, we will want to solve the transpose of the problem.

To get an idea of what this means, consider a contrived example. Say we have routines for
simple matrix-matrix and matrix-vector multiply. The vector operation is y < A X z, and the
matrix operation is C < A x B. Now say we are implementing these as calls from row-major
array storage to column-major storage. Since the matrix-vector multiply’s answer is a vector, the
problem we are solving is remains the same, but we must remember that our C array A is a Fortran
77 AT. On the other hand, the matrix-matrix multiply has a matrix for a result, so when the
differing array storage is taken into account, the problem we want to solve is C7 < BT x AT

This last example demonstrates another general result. Some level 3 BLAS contain a SIDE
parameter, determining which side a matrix is applied on. In general, if we are solving the transpose
of this operation, the side parameter will be reversed.

With these general principles, it is possible to show that all that row-major level 3 BLAS can
be expressed in terms of column-major BLAS without any extra array storage or extra operations.
In the level 2 BLAS, no extra storage or array accesses are required for the real routines. Complex
routines involving the conjugate transpose, however, may require a n-element temporary, and up

188 ANNEX B. LEGACY BLAS

to 3n more operations (vendors may avoid all extra workspace and operations by overloading the
TRANS option for the level 2 BLAS: letting it also allow conjugation without doing the transpose).
The level 1 BLAS, which deal exclusively with vectors, are unaffected by this storage issue.

With these ideas in mind, we will now show how to support a row-major BLAS on top of a
column major BLAS. This information will be presented in tabular form. For brevity, row-major
storage will be referred to as coming from C (even though column-major arrays can also come from
C), while column-major storage will be referred to as F77.

Each table will show a BLLAS invocation coming from C, the operation that the BLAS should
perform, the operation required once F77 storage is taken into account (if this changes), and the call
to the appropriate F77 BLAS. Not every possible combination of parameters is shown, since many
are simply reflections of another (i.e., when we are applying the Upper, NoTranspose becomes
Lower, Transpose rule, we will show it for only the upper case. In order to make the notation
more concise, let us define Z to be conj(z).

Level 2 BLAS
GEMV

C call cblas_cgemv(CblasRowMajor, CblasNoTrans, m, n, «, A, lda, x, incx, 3, y, incy)
op y aAx + By
F77 call CGEMV(’T’, n, m, «, A, 1lda, x, incx, §, y, incy)

C call cblas_cgemv(CblasRowMajor, CblasTrans, m, n, «, A, lda, x, incx, f, y, incy)
op y — aATx + By
F77 call CGEMV(’N’, n, m, a, A, lda, x, incx, f, y, incy)

C call cblas_cgemv(CblasRowMajor, CblasConjTrans, m, n, a, A, 1lda, x, incx, 3, y, incy)
op y «— oAz + By = (7 « @ATT + BYy) _
F77 call CGEMV(’N’, n, m, @, A, 1da, T, 1, 3, ¥, incy)

Note that we switch the value of transpose to handle the row/column major ordering difference.
In the last case, we will require n elements of workspace so that we may store the conjugated vector
. Then, we set y = 7, and make the call. This gives us the conjugate of the answer, so we once
again set y = 7. Therefore, we see that to support the conjugate transpose, we will need to allocate
an n-element vector, and perform 2m + n extra operations.

SYMV

SYMYV requires no extra workspace or operations.
C call cblas_csymv(CblasRowMajor, CblasUpper, n, «, A, 1da, x, incx, 3, y, incy)
op y <+ oAz + By =y + aATz + By
F77 call CSYMV(’L’, n, a, A, 1da, x, incx, (3, y, incy)

HEMV

HEMYV routine requires 3n conjugations, and n extra storage.
C call cblas_chemv(CblasRowMajor, CblasUpper, n, «, A, lda, x, incx, 3, y, incy)
op y <+ adz + By =y + oAz + By = (y « aATz + By)
F77 call CHEMV(’L’, n, @, A, 1da, T, incx, B3, ¥, incy)

10

11

12

13

14

15

16

17

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 189

TRMV/TRSV

C call cblas_ctrmv(CblasRowMajor, CblasUpper, CblasNoTrans, diag, n, A, 1lda, x, incx)
op T+ Az
F77 call CTRMV(’L’, ’T’, diag, n, A, 1lda, x, incx)

C call cblas_ctrmv(CblasRowMajor, CblasUpper, CblasTrans, diag, n, A, lda, x, incx)
op z+— ATz
F77 call CTRMV(’L’, ’N’, diag, n, A, 1lda, x, incx)

C call cblas_ctrmv(CblasRowMajor, CblasUpper, CblasConjTrans, diag, n, A, lda, x, incx)
op z+ Aflz = (z = AT7)
F77 call CTRMV(’L’, ’N’, diag, n, A, lda, T, incx)

Again, we see that we will need some extra operations when we are handling the conjugate
transpose. We conjugate x before the call, giving us the conjugate of the answer we seek. We then
conjugate this again to return the correct answer. This routine therefore needs 2n extra operations
for the complex conjugate case.

The calls with the C array being Lower are merely the reflection of these calls, and thus are
not shown. The analysis for TRMYV is the same, since it involves the same principle of what a
transpose of a triangular matrix is.

GER/GERU

This is our first routine that has a matrix as the solution. Recalling that this means we solve the
transpose of the original problem, we get:

C call cblas_cgeru(CblasRowMajor, m, n, &, x, incx, y, incy, A, 1lda)

Cop A+ azyT + A

F77op AT « ayaT + AT

F77 call CGERU(n, m, a, y, incy, x, incx, A, 1lda)

No extra storage or operations are required.

GERC

C call cblas cgerc(CblasRowMajor, m, n, «, x, incx, y, incy, A, 1lda)
Cop Aoyl + 4

F77op AT « a(zy®)T + AT = oz + AT

F77 call CGERU(n, m, a, ¥, incy, x, incx, A, 1lda)

Note that we need to allocate n-element workspace to hold the conjugated y, and we call GERU,
not GERC.

HER

C call cblas_cher (CblasRowMajor, CblasUpper, n, «, x, incx, A, lda)
Cop Aoz + A

Fr7op AT « azaT + AT

F77 call CHER(C’L’, n, o, T, 1, A, 1da)

Again, we have an n-element workspace and n extra operations.

190

HER2

C call
Cop
F77 op
F77 call

ANNEX B. LEGACY BLAS

cblas_cher2(CblasRowMajor, CblasUpper, n, «, x, incx, y, incy, A, 1lda)
A azyf + y(az)? + A

AT — aga” +amy” + AT = ay(@) " +z(am)T + AT

CHER2(’L’, n, «, ¥, 1, T, 1, A, 1lda)

So we need 2n extra workspace and operations to form the conjugates of x and y.

SYR

C call
Cop
F77 op
F77 call

cblas_ssyr(CblasRowMajor, CblasUpper, n, a, x, incx, A, 1lda)
Aoz’ + A

AT azz™ 4+ AT

SSYR(’L’, n, «, x, incx, A, 1lda)

No extra storage or operations required.

SYR2

C call
C op
F77 op
F77 call

cblas_ssyr2(CblasRowMajor, CblasUpper, n, a, x, incx, y, incy, A, lda)
A+ azyT +ayzT + A

AT — ayxT + axy™ + AT

SSYR2(’L’, n, «, y, incy, x, incx, A, 1lda)

No extra storage or operations required.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 191

Level 3 BLAS

GEMM

C call cblas_cgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, «, A, 1lda, B, 1db, 8, C, 1ldc)
C op C < aAB+ 8C

F77op CT « aBTAT +8CT

F77 call CGEMM(°N’, °N’, n, m, k, «, B, 1db, A, lda, ﬂ, C, 1ldc)

C call cblas_cgemm(CblasRowMajor, CblasNoTrans, CblasTrans, m, n, k, «, A, lda, B, 1db, 3, C, 1ldc)
C op C « aABT + 8C

F77op CT «+ aBAT +pC”

F77 call CGEMM(’T’, °N’, n, m, k, «, B, 1db, A, lda, ﬂ, C, 1ldc)

C call cblas_cgemm(CblasRowMajor, CblasNoTrans, CblasConjTrans, m, n, k, «, A, lda, B, 1db, £, C, 1ldc)
C op C « aABY® + BC

F77op CT « aBAT +8C7

F77 call CGEMM(°C’, ’N’, n, m, k, «, B, 1db, A, 1da, B3, C, 1dc)

C call cblas_cgemm(CblasRowMajor, CblasTrans, CblasNoTrans, m, n, k, «, A, lda, B, 1db, 3, C, 1ldc)
C op C + aATB + 8C

F77op CT «aBTA+8CT

F77 call CGEMM(°N’, ’T’, n, m, k, «, B, 1db, A, 1da, B, C, 1ldc)

C call cblas_cgemm(CblasRowMajor, CblasTrans, CblasTrans, m, n, k, a, A, lda, B, 1db, 3, C, 1ldc)

C op C + aATBT + 8C

F77op CT < aBA+BCT

F77 call CGEMM(°T’, ’T’, n, m, k, «, B, 1db, A, 1da, B, C, 1ldc)

C call cblas_cgemm(CblasRowMajor, CblasTrans, CblasConjTrans, m, n, k, «, A, lda, B, 1db, 8, C, 1ldc)
Cop C + aA"BY +C

F77op CT « aBA+ BCT

F77 call CGEMM(’C’, ’T’, n, m, k, «, B, 1db, A, 1da, B3, C, ldc)

C call cblas_cgemm(CblasRowMajor, CblasConjTrans, CblasNoTrans, m, n, k, «, A, lda, B, 1db, £, C, 1ldc)
C op C «+ aA¥B +8C

F77op CT < aBTA+3CT

F77 call CGEMM(°N’, °’C’, n, m, k, «, B, 1db, A, 1da, B, C, 1ldc)

C call cblas_cgemm(CblasRowMajor, CblasConjTrans, CblasTrans, m, n, k, «, A, lda, B, 1db, 8, C, 1ldc)
C op C «+ aA"BT 4+ pC

F77op CT « aBA+ BCT

F77 call CGEMM(’T’, ’C’, n, m, k, o, B, 1db, A, 1da, B3, C, 1dc)

C call cblas_cgemm(CblasRowMajor, CblasConjTrans, CblasConjTrans, m, n, k, a, A, lda, B, 1db, 3, C, 1ldc)
C op C «+ aA¥BH 4 gC

F77op CT < aBA+ BCT

F77 call CGEMM(°C’, ’C’, n, m, k, «, B, 1db, A, 1da, B, C, 1dc)

192 ANNEX B. LEGACY BLAS

SYMM/HEMM !

2
C call cblas_chemm(CblasRowMajor, CblasLeft, CblasUpper, m, n, «, A, 1lda, B, 1db, §#, C, 1ldc)

3
Cop C <~ aAB + 8C
F77op CT « aBTAT + 8CT !
F77 call CHEMM(’R’, ’L’, n, m, «, A, 1da, B, 1db, 3, C, 1ldc) 5

6
C call cblas_chemm(CblasRowMajor, CblasRight, CblasUpper, m, n, «, A, 1da, B, 1db, 3, C, 1ldc)
Cop C «+ aBA+ C 8
F77op CT « aATBT 4+ pCT 0

F77 call CHEMM(’L’, ’L’, n, m, «, A, 1da, B, 1ldb, B, C, 1ldc) 10

11

12

SYRK 13
C call cblas_csyrk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, «a, A, 1lda, #, C, 1ldc) 14
Cop C + aAAT + 5C 15
F77op C7T « aAAT +8CT 16
F77 call CSYRK(’L’, ’T’, n, k, «, A, 1da, B, 1db, 3, C, 1ldc) 17

18
C call cblas_csyrk(CblasRowMajor, CblasUpper, CblasTrans, n, k, «, A, 1da, 3, C, 1ldc)

C op C « aATA+ BC
F77op CT « aATA+BCT
F77 call CSYRK(’L’, °N’, n, k, «, A, 1lda, B, 1db, ,B, C, 1ldc)

19
20
21
22

In reading the above descriptions, it is important to remember a few things. First, the symmetric *

matrix is C, and thus we change UPLO to accommodate the differing storage of C. TRANSPOSE is
then varied to handle the storage effects on A.

24

25

26

27

HERK 28
C call cblas_cherk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, «, A, 1da, 3, C, 1ldc) 29
C op C + aAAH + pC 30

F77op C7T « aAAT +8CT
F77 call CHERK(’L’, °C’, n, k, «a, A, 1da, B, 1db, 3, C, 1ldc)

31

32

C call cblas_cherk(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, a, A, 1da, 3, C, 1ldc) *

Cop C adlid{BC y
F77op CT « aATA+BCT 35
F77 call CHERK(’L’, °N’, n, k, «, A, 1da, B, 1db, B, C, 1ldc) 36
37

38

SYR2K 89

40
C call cblas_csyr2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, «, A, lda, B, 1db, 3, C, 1ldc)

C op C + aABT + aBAT + 8C
F77op C7 « aBAT + aAB” + 8CT = aAB” + aBAT + BC” 42
F77 call CSYR2K(’L’, °T’, n, k, o, A, 1lda, B, 1db, ﬂ, C, 1ldc) 43

41

44
C call cblas_csyr2k(CblasRowMajor, CblasUpper, CblasTrans, n, k, «, A, 1lda, B, 1db, [, C, 1ldc)

C op C + aATB+aBTA+ BC
F77op CT « aBTA+aA"B+8CT =aA"B+aBTA+pCT 46
F77 call CSYR2K(’L’, ’N’, n, k, o, A, 1da, B, 1db, ﬂ, C, 1ldc) a7

48

45

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 193

Note that we once again wind up with an operation that looks the same from C and Fortran
77, saving that the C operations wishes to form C”', instead of C. So once again we flip the setting
of UPLO to handle the difference in the storage of C. We then flip the setting of TRANS to handle
the storage effects for A and B.

HER2K
C call cblas_cher2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, «, A, lda, B, 1db, 3, C, 1ldc)
C op C + aAB® +aBA" + B8C

F77op C7T « aBAT +aABT + 8CT =aABT + aBAT + pC”
F77 call CHER2K(’L’, °C’, n, k, @, A, 1lda, B, 1db, 8, C, 1dc)

C call cblas_cher2k(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, «, A, lda, B, 1db, 3, C, 1ldc)
C op C+ aA"B+aB®A+BC

F77op CT < aBTA+aATB+B8CT =aATB +aBTA+ pC”

F77 call CHER2K(°L’, °N’, n, k, @, A, 1lda, B, 1db, £, C, 1ldc)

TRMM/TRSM

Because of their identical use of the SIDE, UPLO, and TRANSA parameters, TRMM and TRSM share
the same general analysis. Remember that A is a triangular matrix, and thus when we handle its
storage by flipping UPLO, we implicitly change its TRANS setting as well. With this in mind, we

have:
C call cblas_ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasNoTrans, diag, m, n, «, A, 1lda, B, 1ldb)

C op B + aAB
F77op BT < aBTAT
F77 call CTRMM(’R’, °L’, ’N’, diag, n, m, a, A, 1da, B, 1db)

C call cblas_ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasTrans, diag, m, n, «, A, lda, B, 1db)
Cop B+ aATB

F77op BT « aBTA

F77 call CTRMM(’R’, °L’, ’T’, diag, n, m, o, A, lda, B, 1db)

C call cblas_ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasConjTrans, diag, m, n, «, A, lda, B, 1db)
Cop B+ aA"B

F77op BT + aBTA

F77 call CTRMM(’R’>, °L’, °C’, diag, n, m, o, A, 1lda, B, 1db)

Banded routines

The above techniques can be used for the banded routines only if a C (row-major) banded array
has some sort of meaning when expanded as a Fortran banded array. It turns out that when this
is done, you get the transpose of the C array, just as in the dense case.

In Fortran 77, the banded array is an array whose rows correspond to the diagonals of the
matrix, and whose columns contain the selected portion of the matrix column. To rephrase this,
the diagonals of the matrix are stored in strided storage, and the relevant pieces of the columns of
the matrix are stored in contiguous memory. This makes sense: in a column-based algorithm, you
will want your columns to be contiguous for efficiency reasons.

In order to ensure our columns are contiguous, we will structure the banded array as shown
below. Notice that the first Ky rows of the array store the superdiagonals, appropriately spaced

194 ANNEX B. LEGACY BLAS

to line up correctly in the column direction with the main diagonal. The last K rows contain the
subdiagonals.

______ Super diagonal KU
——————————— Super diagonal 2
____________ Super diagonal 1
_____________ main diagonal (D)
____________ Sub diagonal 1
___________ Sub diagonal 2
______ Sub diagonal KL

If we have a row-major storage, and thus a row-oriented algorithm, we will similarly want our
rows to be contiguous in order to ensure efficiency. The storage scheme that is thus dictated is
shown below. Notice that the first K columns store the subdiagonals, appropriately padded to
line up with the main diagonal along rows.

KL KU
(I
(I
(I
|

D
I
I
I
I
I
I

Now, let us contrast these two storage schemes. Both store the diagonals of the matrix along
the non-contiguous dimension of the matrix. The column-major banded array stores the matrix
columns along the contiguous dimension, whereas the row-major banded array stores the matrix
rows along the contiguous storage.

This gives us our first hint as to what to do: rows stored where columns should be, indicated,
in the dense routines, that we needed to set a transpose parameter. We will see that we can do
this for the banded routines as well.

We can further note that in the column-major banded array, the first part of the non-contiguous
dimension (i.e. the first rows) store superdiagonals, whereas the first part of the non-contiguous
dimension of row-major arrays (i.e., the first columns) store the subdiagonals.

We now note that when you transpose a matrix, the superdiagonals of the matrix become the
subdiagonals of the matrix transpose (and vice versa).

Along the contiguous dimension, we note that we skip Ky elements before coming to our first
entry in a column-major banded array. The same happens in our row-major banded array, except
that the skipping factor is K.

All this leads to the idea that when we have a row-major banded array, we can consider it as
a transpose of the Fortran 77 column-major banded array, where we will swap not only m and n,
but also Ky and K7. An example should help demonstrate this principle. Let us say we have the

. 1 3 5 7
matrix A = l 9 4 6 8]
If we express this entire array in banded form (a fairly dumb thing to do, but good for
example purposes), we get Ky = 3, K = 1. In row-major banded storage this becomes:

X 135 7
C”_[2468X

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 195

So, we believe this should be the transpose if interpreted as a Fortran 77 banded array. The
matrix transpose, and its Fortran 77 banded storage is shown below:

Ly X 2
1 4

AT — gg ~F=| 3 6
S 5 8

7T X

Now we simply note that since Cy is row major, and F} is column-major, they are actually the
same array in memory.

With the idea that row-major banded matrices produce the transpose of the matrix when
interpreted as column-major banded matrices, we can use the same analysis for the banded BLAS
as we used for the dense BLAS, noting that we must also always swap Ky and Kj.

Packed routines

Packed routines are much simpler than banded. Here we have a triangular, symmetric or Hermitian
matrix which is packed so that only the relevant triangle is stored. Thus if we have an upper tri-
angular matrix stored in column-major packed storage, the first element holds the relevant portion
of the first column of the matrix, the next two elements hold the relevant portion of the second
column, etc.

With an upper triangular matrix stored in row-major packed storage, the first N elements hold
the first row of the matrix, the next N — 1 elements hold the next row, etc.

Thus we see in the Hermitian and symmetric cases, to get a row-major packed array correctly
interpreted by Fortran 77, we will simply switch the setting of UPLO. This will mean that the rows
of the matrix will be read in as the columns, but this is not a problem, as we have seen before.
In the symmetric case, since A = AT the column and rows are the same, so there is obviously no
problem. In the Hermitian case, we must be sure that the imaginary component of the diagonal is
not used, and it assumed to be zero. However, the diagonal element in a row when our matrix is
upper will correspond to the diagonal element in a column when our matrix is called lower, so this
is handled as well.

In the triangular cases, we will need to change both UPLO and TRANS, just as in the dense
routines.

With these ideas in mind, the analysis for the dense routines may be used unchanged for packed.

Annex C

Journal of Development

© o] N o w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.1. ENVIRONMENTAL ROUTINE FOR EFFECTIVE USE OF CACHE, PIPELINING AND REGISTERS197

C.1 Environmental Routine for Effective use of Cache, Pipelining and Registers

C.1.1 Introduction

It is well known that effective use of cache and registers can make a substantial difference in
the performance of codes written to do the core algorithms of linear algebra. Existing computer
languages could make it possible to write portable code without losing efficiency by providing a set
of functions to probe the system parameters. A user would then construct a program to use the
parameters to develop an optimal implementation on the target computer. With many optimizing
compilers, a preprocessor could be used to get much of these benefits. It would not be expected to
do as good a job, and would still require some selection of parameters for each new machine. The
ideas apply to PC’s, workstations, and to the code running on a single node of most new parallel
machines.

Computers have been evolving in such a way that arithmetic speeds far exceed the rate with
which operands from the main memory can be obtained for processing. Because it is cost effective
to do so, many new parallel machines are using microprocessors for which this is the case. Since it
is frequently the case that when something is used, it is going to be used again reasonably soon,
systems are designed to use one or more levels of cache, (i.e. fast memory) where data used recently
can be reused more quickly. This approach works quite well for most users, but when working with
large dense matrices, data is never in the cache when needed. This can easily cost a factor of two
or three in performance and in many cases significantly more.

We regard a computer’s registers as a special case of a very small cache, since operations done
on registers proceed more quickly than those using an operand that is in the fastest cache. (RISC
architectures require that operands be in the registers.) But the differences between registers and
cache memory require that different mechanisms be defined to make most effective use of both.

At every level of cache (including the registers), one wants to do as much computing as possible
before the data in the cache is flushed for other data references. There is great scope for cleverness
here in the design of algorithms. Since matrix multiplication is simple to understand we use it as
an example to clarify how the ideas presented here might be used.

We believe that with the kind of features described here, it would not be difficult for those
who know about such things to write compilers that would make it possible for those who know
about such things to write portable code with no significant loss of efficiency. In addition it would
be possible to write applications that can take advantage of these parameters and enhance the
performance on a wide range of applications.

The most notable effort to deal with these problems is the Level 3 BLAS,[24] (it should be
noted that we make no pretense to discussing all the factors that may be important to obtaining
high performance on modern processors.

C.1.2 Language Extensions for the Cache

The cache system of a computer can be characterized by the following:

We expect o, > or_1 and 7, > 7,1, L = 1,2,...,kache, where we adopt the convention
that Lo corresponds to these values for the registers. We define og4cpe to be the largest amount of
memory available, which in the case of virtual memory includes disk space. We make no further
reference to the 7’s, although there are certainly cases when such information might be of use.

In the case of Fortran, these values could be provided by environmental intrinsic functions,
which take an argument of the type for which space is desired. In the case of C, these could
be provided as part of the standard math.h header file. In the case of compilers being used in
environments with different cache characteristics, it would be useful to have some means to specify

198 ANNEX C. JOURNAL OF DEVELOPMENT

kache | The number of levels in the cache architecture.
ol The size of the L™ cache.
TL The access time to get data from the L cache divided by

the time to copy one floating point register to another.

wr, Number of consecutive items that get replaced when a new

item is fetched to cache L.

this information in a configuration file. Finally if this were done using a preprocessor, one would
provide the information for the system being used to the preprocessor.

Extensions that would allow one to gain the efficiency using the BLAS without writing machine
specific code.

C.1.3 For Efficient LA Software

There are at least two things that might be done. Provide information through an interface about
the cache structure of the machine, number of caches, their sizes, their access times, the size of the
cache line, issues connected with pipelining, etc. Allow the programmer to declare variables and
arrays (very small arrays, but still arrays) that are to be kept in registers. It is up to the compiler
to pick the size of the arrays, and to unwind loops that refer to such “register” arrays. The compiler
makes available the size of the arrays that it selects so that the programmer can reference them for
purposes of writing loops, or for any other purpose.

C.1.4 Advantages of this approach

Code need only be written once, no dependence on computer vendors, or when a machine first
comes out efficient implementations of important software will be available. If one has the stomach
for it, it should be possible to write algorithms exactly as you would like to have them. Thus for
example, one doesn’t have to organize things to use a matrix multiplication if that is not the most
effective way to do things.

C.1.5 Disadvantages of this approach

Code is significantly more difficult to write. It may require some cooperation from compiler vendors.
What is proposed here can be done by a preprocessor if one can supply it with the cache information
(probably not too hard) and the size that would be appropriate for the register arrays. This can
be determined on a machine by machine basis by trying a few possibilities.

Characterizing a Cache System

The number of levels in the cache architecture.

The size of the L cache.

The access time to get data from the L cache divided by the
time to copy one floating point register to another.

Number of consecutive items that get replaced when a new item is
fetched to cache L.
Cache mapping: set associatively, direct

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.1.

ENVIRONMENTAL ROUTINE FOR EFFECTIVE USE OF CACHE, PIPELINING AND REGISTERS19¢

Machine Characteristics ‘

Number of floating point registers

Number of floating point units

Number of caches

Cache size

Type of cache e.g. 2 way set associative, least recently used

Cache line size

Cycle time

Page size
Size of TLB (translation look-aside buffer)
Cycles for floating point operations, add, multiply, division

Number of processors
Fused floating point ops; multiply /add
Cycles from memory to stages in the cache

Pre-fetch and how many outstanding requests

Bandwidth from/to memory

Latency from memory/cache

Number of instructions issued per cycle

‘ Five Parameters Associated with Memory Hierarchy

Access Time: Time for the CPU to fetch a value from memory — including
delays through any intermediate levels.

Memory Size: The amount of memory of a given type in a system.

Cost Per Unit (byte): Cost per unit times size roughly equals total cost.

Transfer bandwidth: Units (bytes) per second transferred to the next level.

Unit of transfer: Number of units moved between adjacent levels in a single move.

Memory Hierarchy ‘

Desired - no cost, very fast, large non-volatile
Actual Registers, cache, DRAM, Disk, tape, CD, Flash & EPROM
Registers - fast, local, volatile, VERY expensive, very small

Cache - fast, expensive, volatile, small

DRAM - medium size & speed, volatile

Distributed memory

Disk - slow, low cost per byte, non-volatile

Tape - very slow, very low cost, durable, non-volatile

CD - slow, “read only”, good data density, non-volatile
Flash & EPROM - small, not as fast a DRAM, non-volatile

200 ANNEX C. JOURNAL OF DEVELOPMENT

C.2 Distributed-memory Dense BLAS

This document summarizes the discussions that took place during the meetings of the BLAS Tech-
nical Forum concerning the distributed-memory BLAS. The committee did not reach an agreement
on how to specify an interface for such a set of routines, however it was felt that this document
should keep a record of those discussions.

There has been much interest in the past few years in developing versions of the BLAS for
distributed-memory computers [50, 28, 3, 29, 13, 17, 15, 18, 8, 51]. Some of this research proposed
parallelizing the BLAS [45, 50, 17, 15, 11, 18, 49, 51], and some implemented a few important BLAS
routines [50, 43, 17, 15, 11, 18, 49, 51], such as matrix-matrix multiplication [31, 5, 36, 44, 4, 16, 52]
or triangular system solve [34, 40, 41, 10].

Based on this research work, it was agreed that an interface for the distributed-memory BLAS
should have the following features:

e The calling sequence definitions should be simple and similar in all targeted programming
languages.

e The interface should be effective for the developement of large and high-quality dense linear
algebra software for distributed-memory computers.

e The interface should permit broad functionality to enable, facilitate and encourage the devel-
opment of current and related research projects.

The main advantages of establishing a distributed-memory dense BLAS standard are portability
and ease-of-use. In a distributed-memory environment in which the higher level routines and/or
abstractions are built upon lower level message-passing and computational routines the benefits of
standardization are particularly apparent. Furthermore, the definition of distributed-memory dense
basic linear algebra subprograms provides vendors with a clearly defined base set of routines that
they can implement efficiently, or in some cases provide hardware support for, thereby enhancing
scalability.

The goal of the distributed-memory dense BLAS interface simply stated should be to develop
a widely used standard for writing message-passing programs performing dense basic linear alge-
bra operations. As such the interface should establish a practical, portable, efficient and flexible
standard for distributed-memory dense basic linear algebra operations.

A complete list of goals follows.

e Design an Application Programming Interface (API) (not necessarily for compilers or a sys-
tem implementation library) well suited for distributed-memory dense basic linear algebra
computations.

e Allow efficient communication and computation: minimizing communication startup overhead
and volume, while maximizing load balance and local computational performance.

e Allow for re-use of existing message-passing interface standard [30] as well as local basic linear
algebra computational kernels such as the de facto standard BLAS.

e Allow for implementations that can be used in a heterogeneous environment.

e Define an interface that is not too different from current practice and provide extensions that
allow greater flexibility.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.2. DISTRIBUTED-MEMORY DENSE BLAS 201

¢ Define an interface that can be implemented on many vendors’ platforms, with no significant
changes in the underlying system software.

e Semantics of the interface should be language-and data-distribution independent.
e The interface should be designed to allow for thread-safety.

Such a distribute-memory BLAS standard should be intended for use by all those who want
to write portable programs performing dense linear algebra operations in Fortran 77, Fortran 90,
High Performance Fortran (HPF), C or C++. This includes individual application programmers,
developers of dense linear algebra software designed to run on parallel machines, and creators of
computational environment and tools. In order to be attrac- tive to this wide audience, the standard
must provide a simple, easy-to-use interface for the basic user while not semantically precluding the
high-performance computation and communication operations available on advanced computers.

The attractiveness of the distributed-memory dense BLAS at least partially stems from its
wide portability as well as the common occurence of dense linear algebra operations in numerical
simulations. These programs may run on distributed-memory multiprocessors, networks or clusters
of workstations, and combinations of all of these. In addition, shared-memory implementations are
possible. The message passing paradigm will not be made obsolete by architectures combining the
shared- and distributed-memory views, or by increases in network speeds. It thus should be both
possible and useful to implement such a standard on a great variety of machines, including those
”machines”, parallel or not, connected by a communication network.

The distributed-memory dense BLAS interface should provide many features intended to im-
prove performance on scalable parallel computers with specialized interprocessor communication
hardware. Thus, we expect that native, high-performance implementations of this interface could
be provided on such machines. At the same time, implementations of such a standard on top
of MPI or PVM will provide portability to workstation clusters and heterogeneous networks of
workstations.

During the discussions it was agreed that the distributed-memory BLAS should include

e A set of basic dense linear algebra computational operations
e Data-redistribution operations
e Environmental management and inquiry

e Bindings for various widely used programming languages, including high level languages such
as High Performance Fortran (HPF)

The distributed-memory dense BLAS interface should specify routines that operate on in-core
dense matrices. On entry, these routines assume that the data has been distributed on the processors
according to a specific data decomposition scheme that dictates the local storage of the data when it
resides in the processors’ memory. The data layout information as well as the local storage scheme
for these different matrix operands is conveyed to the routines via a descriptor that could be a
simple array of integers. The standard could mandate that the first entry of this array identifies
the type of the descriptor, i.e., the data distribution scheme it describes. This allows to specify the
distributed-memory dense BLAS interface indepen- dently from the data distribution.

The distributed-memory dense BLAS are executed by processes, rather than physical processors.
In general there may be several processes running on a processor, in which case it is assumed that
the runtime system handles the scheduling of processes. In the absence of such a runtime system,
the distributed-memory dense BLAS assume one process per processor. A process is defined as a

202 ANNEX C. JOURNAL OF DEVELOPMENT

basic unit or thread of execution that minimally includes a stack, registers, and memory. Multiple
processes may share a physical processor. The term processor refers to the actual hardware. Each
process is treated as if it were a processor: a process executing a program or subprogram calling
the distributed-memory dense BLAS must exist for the lifetime of the program’s or subprogram’s
run. Its execution should affect other processes’ execution only through the use of message-passing
calls. With this in mind, the term process is used in all sections of this chapter unless otherwise
specified.

The distributed-memory dense BLAS are thus executed by a collection of processes, that are
enclosed in a communication context. Similarly, a communication context or simply context
is associated with every global matrix. The use of a context provides the ability to have separate
“universes” of message passing. This means that a collection of processes can safely communicate
even if other (possibly overlapping) sets of processes are also communicating. Thus, a context is
a powerful mechanism for avoiding unintentional nondeterminism in message passing and provides
support for the design of safe, modular software libraries. In MPI, this concept is referred to as a
communicator.

A context partitions the communication space. A message sent from one context cannot be
received in another context. The use of separate communication contexts by distinct libraries (or
distinct library routine invocations) insulates communication internal to a specific library routine
from external communication that may be going on within the user’s program.

In most respects, the terms process collection and contexrt can be used interchangeably. For
example, one may say that an operation is performed “in context X” or “in process collection
X”. The slight difference here is that the user may define two identical sets of processes (say, two
1 x 3 process grids, both of which use processes 0, 1, and 2), but each will be enclosed in its
own context, so that they are distinct in operation, even though they are indistinguishable from a
process collection standpoint.

Another example of the use of context might be to define a normal two-dimensional process
grid within which most computation takes place. However, in certain portions of the code it may
be more convenient to access the processes as a one-dimensional process grid, whereas at other
times one may wish, for instance, to share information among nearest neighbors. In such cases,
one will want each process to have access to three contexts: the two-dimensional process grid, the
one-dimensional process grid, and a small process grid that contains the process and its nearest
neighbors. Therefore, communication contexts allow one to

e create arbitrary groups of processes,
e create an indeterminate number of overlapping and/or disjoint collections of processes, and
e isolate a set of processes so that communication interference does not occur.

A distributed-memory dense BLAS function should create a grid of processes and its enclosing
context. This routine returns a context handle, which is a simple integer, assigned by the message-
passing library used by a given implementation of the distributed-memory dense BLAS to identify
the commu- nication context. Subsequent distributed-memory dense BLAS will be passed these
handles, which allow to determine from which context/process collec- tion a routine is being called.
The user should never alter or change these handles; they are opaque data objects that are only
meaningful for the distributed-memory dense BLAS routines.

A defined context consumes resources. It is therefore advisable to release contexts when they
are no longer needed. When the entire distributed-memory dense BLAS system is shut down, all
outstanding contexts are automatically freed.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.2. DISTRIBUTED-MEMORY DENSE BLAS 203

Some systems, such as MPI, supply their own version of context. For portability reasons, one
thus cannot assume that the communication contexts used by the user’s program are usable by the
distributed-memory dense BLAS. Therefore, the following interface allows to form a distributed-
memory dense BLAS context in reference to a user’s context.

The standard could mandate that the second entry of each descriptor is set to the value of the
communication context identifying the collection of processes onto which the data is distributed.

The routines of the distributed-memory dense BLAS could require that all global data (vectors
or matrices) be distributed across the processes prior to invoking the routines. The data layout
and local storage scheme are specified by a particular implementation, but are strictly speaking
not part of the standard. Global data is mapped to the local memories of processes assuming an
implementation-dependent data distribution scheme.

A descriptor is associated with each global array. This descriptor stores the information
required to establish the mapping between each global array entry and its corresponding process
and memory location. Array descriptors corresponding to distinct layouts are differentiated by
their first entry called the type of the descriptor. The data residing in the processes’ memory
is specified by a pointer. Splitting the local data from the layout’s description allows to specify
language-dependent interfaces for programming languages providing only simple data structures
such as Fortran 77 without affecting the functionality or ease-of-use of the interface.

Most of the distributed-memory dense BLAS should operate within the same communication
context, i.e., all distributed operands should be distributed on the same process grid. These oper-
ations are said to be intra-context operations. Only, very few distributed-memory dense BLAS
perform inter-context operations, in which case this feature should clearly be mentioned in the
procedure functionality.

Furthermore, all distributed operands involved in the operation should be distributed accord-
ingly to the same decomposition scheme. In other words, the type entry of each descriptor must
be equal.

All distributed-memory dense BLAS operations could be collective, that is, all processes in
the context need to invoke the procedure even if certain processes are not involved in the operation.
This situation may happen for example when some processes don’t own any data to be operated
on.

The distributed-memory dense BLAS manages system memory that is used for buffering
messages and for storing internal representations of various distributed-memory dense BLAS objects
such as communication contexts, local arrays of data, etc. This memory is not directly accessible
to the user, and objects stored there are either private or opaque: their size and shape is not
visible to the user. Opaque objects are accessed via handles, which exist in user space. Private
objects cannot be accessed by the user, and are allocated and released within the same routine.
distributed-memory dense BLAS that operate on opaque objects are passed handle arguments to
access these objects. In addition to their use by distributed-memory dense BLAS calls for object
access, handles can participate in assignment and comparisons.

In Fortran and C, all handles have type integer and correspond to the same objects. This means
that the user’s program can pass a C handle to a Fortran subprogram and conversely, such that in
both languages the handle refers to the same object.

Opaque objects are allocated and deallocated by calls that are specific to each object type.
These are listed in the sections where the object are described. The calls accept a handle argument
of matching type. In an allocate call this is an ouput argument that returns a valid reference to
the object. In a call to deallocate this is an input/output argument which returns with an “invalid
handle” constant for each object type. Comparisons to this constant are used to test for validity
of the handle.

204 ANNEX C. JOURNAL OF DEVELOPMENT

A call to deallocate invalidates the handle and marks the object for deallocation. The object
is not accesible to the user after the call. However, distributed-memory dense BLAS need not
deallocate the object immediately. Any operation pending (at the time of the deallocate) that
involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are significant only at the process where the object was created,
and cannot be transferred to another process.

This design hides the internal representation used for distributed-memory dense BLAS internal
data structures, thus allowing similar calls in C and Fortran. It also avoids conflicts with the
typing rules in these languages, and easily allows for future extensions of functionality. Note that
the objects handles defined in the distributed-memory dense BLAS are exclusively used by the
underlying message passing library. The user data itself remains directly accessible in the user’s
program.

The explicit separating of handles in user space, objects in system space, allows space-reclaiming,
deallocation calls to be made at appropriate points in the user program. If the opaque objects
were in user space, one would have to be very careful not to go out of scope before any pending
operation requiring that object completed. The specified design allows an object to be marked for
deallocation, the user program can then go out of scope, and the object itself still persists until any
pending operations are complete. Again such a design cannot be applied in general to the user’s
data.

The requirement that handles support assignment/comparison is made since such operations
are common. This restricts the domain of possible implementations. Moreover, such a design has
been adopted by most message passing library interfaces such as the MPIL.

The intended semantics of opaque objects is that each opaque object is separate from each
other; each call to allocate such an object copies copies all the information required for that object.
Implementations may avoid excessive copying by substituting referencing for copying. For example,
a derived datatype may contain references to its components, rather then copies of its components.
In such cases, the implementation must maintain reference counts, and allocate and deallocate
objects such that the visible is as if the objects were copied. Such a design is particularly suitable
for communication contexts, because the amount of data one has to keep track of is small. However,
applying the same concept to the user’s data forces the introduction of routines to manage logical
templates, adding complexity, and was therefore ruled out.

There are several important language bindings issues not addressed by this document. This
section does not discuss the interoperability of message passing between languages. It is fully
expected that many implementations should have such features.

A descriptor is associated with each distributed matrix. The entries of the descriptor uniquely
determine the mapping of the matrix entries onto the local processes’ memories. Since vectors
may be seen as a special case of distributed matrices or proper submatrices, the larger scheme just
defined encompasses their description as well.

The local storage convention of the distributed matrix operands in every process’s memory does
not need to be specified by the standard. It is however recommended that convenient data structure
are chosen by a given implementation allowing to rely on the sequential BLAS to perform the local
computations within a process.

The distributed-memory dense BLAS should not provide mechanisms for dealing with failures in
the communication and computation systems. If the distributed-memory dense BLAS is built on an
unreliable underlying mechanism, then it is the job of the implementor(s) of the distributed-memory
dense BLAS subsystem to insulate the user from this unreliability, or to reflect unrecoverable errors
as failures. Whenever possible, such failures will be reflected as errors in the relevant communication
or computation call.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.2. DISTRIBUTED-MEMORY DENSE BLAS 205

Of course, distributed-memory dense BLLAS programs can still be erroneous. A program error
can occur when a distributed-memory dense BLAS routine is called with an invalid value for any
of its arguments. The routine must report this fact and terminate the execution of the program.
Each routine, on detecting an error, should call a common error-handling routine, passing to it
the current communication context, the name of the routine and the number of the first argument
that is in error. For efficiency purposes, the distributed-memory dense BLAS only perform a local
validity check of their argument list. If an error is detected in at least one process of the current
context, the program execution is stopped.

A global validity check of the input arguments passed to a distributed-memory dense BLAS
routine must be performed in the user-level calling procedure. To demonstrate the need and cost
of global checking, as well as the reason why this type of checking should not be performed in
the distributed-memory dense BLAS, consider the following example: the value of a global input
argument is legal but differs from one process to another. The results are unpredictable. In order
to detect this kind of error situation, a synchronization point would be necessary, which may result
in a significant performance degradation. Since every process must call the same routine to perform
the desired operation successfully, it is natural and safe to restrict somewhat the amount of checking
operations performed in the distributed-memory dense BLAS routines.

Specialized implementations may call system-specific exception-handling facilities, either via an
auxiliary routine or directly from the routine. In addition, the testing programs can take advantage
of this exception-handling mechanism by simulating specific erroneous input argument lists and then
verifying that particular errors are correctly detected.

Resource errors can also occur when a program exceeds the amount of available system resources.
The occurence of this type of error depends on the amount of available resources in the system
and the resource allocation mechanism used; this may differ from system to system. A high-
quality implementation will provide generous limits on the important resources so as to alleviate
the portability problem this represents.

206 ANNEX C. JOURNAL OF DEVELOPMENT

C.3 Fortran 95 Thin BLAS

C.3.1 Introduction

This paper presents a proposal for a specification of Fortran 95 thin BLAS.

A preliminary version of the F90 Blas proposal has been circulated informally (but not very
widely) for about 4 years, and code which implements that version has been available in the
Fortran 90 software repository maintained by NAG Ltd (http://www.nag.co.uk).

This proposal is designed to cover — as far as seems sensible — roughly the same functionality
as the original Level 1, 2 and 3 (Fortran 77) BLAS. It does not address sparse matrices or vectors,
nor does it explicitly address issues of parallel computation.

Many of the Fortran 77 Level 1 BLAS can be replaced by simple array expressions and assign-
ments in Fortran 95, without loss of convenience or performance (assuming a reasonable degree of
optimisation by the compiler). Fortran 95 also allows groups of related Level 2 and Level 3 BLAS
to be merged together, each group being covered by a single interface.

C.3.2 Design of Fortran 95 Interfaces

Our proposed design utilizes the following features of the Fortran 95 language.

Generic interfaces: all routines are accessed through generic interfaces. A single generic name
covers several specific instances whose arguments may differ in the following properties:

data type (real or complex). However, the relevant arguments must be either all real or all
complex. (We do not, for example, cater for multiplying a real matrix by a complex
matrix, though this functionality could easily be added to the design if there was a need
for it.)

precision (or equivalently, kind-value). However, all real or complex arguments must have
the same precision.

rank Some arguments may either have rank 2 (to store a matrix) or rank 1 (to store a vector).

different argument list Some of the arguments may not appear in a specific instance. In
this case a pre-defined value or a pre-defined action is assumed. The following table
contains the pre-defined value or action for the argument that may not be used. Some
of these arguments are key arguments that will be described later.

argument | value or action if the argument is not used

alpha 1.0 or (1.0,0.0)
beta 0.0 or (0.0,0.0)
op_X operate with x
lower reference upper triangle only

right_side | operate on the left-hand side
unit_diag | non-unit triangular

Assumed-shape arrays: all array arguments are assumed-shape arrays, which must have the ex-
act shape required to store the corresponding matrix or vector. Hence arguments to specify
array-dimensions or problem-dimensions are not required. The routines assume that the sup-
plied arrays have valid and consistent shapes (see Section C.3.5). Zero dimensions (implying
empty arrays) are allowed.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

C.3. FORTRAN 95 THIN BLAS

207

Key arguments: in the Fortran 77 BLAS, we use character arguments to specify different options
for the operation to be performed. In this proposal we suggest using key arguments. A key
argument is a dummy argument whose actual argument must be a named constant defined
by BLAS. The following table lists the key arguments, the related BLAS named constants
and the equivalent F77 BLAS values.

dummy argument

named constant

meaning

F77 argument

opXx

lower
right_side

unit_diag

C33

not used
blas_trans
blas_conj
blas_conj_trans
not used
blas_lower

not used
blas_right

not used
blas_unit_diag

Interfaces for Real Data

operate with x

operate with transpose x

operate with conjugate x

operate with conjugate-transpose x
reference upper triangle only
reference lower triangle only
operate on the left-hand side
operate on the right-hand side
non-unit triangular

unit triangular

TRANSx = 'N’
TRANSx ="T"
TRANSx ='C’
TRANSx = "H’
UPLO ="U’
UPLO ="L’
SIDE = 'L’
SIDE = 'R’
DIAG ='N’
DIAG ="U’

The primary aim of this paper is to convey the flavour of the different generic interfaces.
Therefore we first describe the interfaces as they apply to real data. The extra complications

which arise when they apply to complex data will be considered in Section C.3.4.

We summarize each interface in the form of a subroutine statement (or in one case a function
statement), in which all the arguments might appear. (This is a convenient way to think of the
interface, although such a statement using the generic interface name never appears in the code.)
Arguments which need not be supplied are enclosed in square brackets, for example:

subroutine trmm([alpha,] a, [op_a,] b, [lower,] [right_side,] [unit_diag])

This is followed by a table which lists the different variants of the operation, depending either
on the ranks of some of the arguments or on the key arguments.
The following table shows the values used in the tables and the related named constant for the

key arguments.

dummy argument ‘ value in table ‘ named constant

op_x T’ blas_trans

'C blas_conj

'C/ T blas_conj_trans
right_side 'R’ blas_right

Routines using conventional storage for matrices

By conventional storage, we mean storing a matrix in a 2-dimensional array,

subroutine gemm([alpha,] a, [op_a,] b, [op_bl, [beta,] c)

208

ANNEX C. JOURNAL OF DEVELOPMENT

rank of a | rank of b | rank of ¢ | op_a | op_b | operation F77 BLAS
2 2 2 C <+ aAB + 8C _GEMM
2 2 2 T’ | C + aABT + BC | _GEMM
2 2 2 T’ C+ aAT"B+BC | _GEMM
2 2 2 T | T | C <+ aATBT + BC | _GEMM
2 1 1 ¢+ aAb+ e _GEMV
2 1 1 T c <+ aATb+ Be _GEMV
1 1 2 C « aab” + pC _GER_
subroutine symm([alpha,] a, b, [beta,] c, [lower,] [right_side])
subroutine hemm([alpha,] a, b, [beta,] c, [lower,] [right_side])
rank of b ‘ rank of ¢ ‘ right_side ‘ operation ‘ F77 BLAS
2 2 C < aAB + BC | SYmM
2 2 'R’ C < aBA+ BC | SYMM
1 1 ¢+ aAb+ Bc _SYmv
where A is a symmetric matrix.
subroutine syrk([alpha,] a, [op_a,] [beta,] c, [lower])
subroutine herk([alpha,] a, [op_a,] [beta,] c, [lower])
rank of a ‘ op_-a ‘ operation ‘ F77 BLAS
2 C + aAAT + BC | _SYRK
2 'T? | C + aATA+ BC | _SYRK
1 C + aaa” + C | SYR1
where C is a symmetric matrix.
subroutine syr2k([alpha,] a, [op_a,] b, [beta,] c, [lower])
subroutine he2rk([alpha,] a, [op_a,] b, [beta,] c, [lower])
rank of a ‘ rank of b ‘ op_a ‘ operation ‘ F77 BLAS
2 2 C + aABT + aBAT + BC | _SYR2K
2 2 'T" | C+ aATB+ aBTA+ BC | _SYR2K
1 1 C « aab” + aba™ + BC _SYR2

where C is a symmetric matrix.

subroutine trmm([alpha,] a, [op_a,] b, [lower,] [right_side,] [unit_diag])

rank of b | op_a | right_side | operation F77 BLAS
2 B < aAB _TRMM
2 T B+ aATB | _TRMM
2 'R’ B+ aBA | -TRMM
2 T 'R’ B+ aBAT | _TRMM
1 b+ aAb _TRMV
1 T b+ oAb | _TRMV

subroutine trsm([alpha,] a, [op_a,] b, [lower,] [right_

side,] [unit_diag])

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.3. FORTRAN 95 THIN BLAS 209
rank of b | op_a | right_side | operation F77 BLAS
2 B+ aA~'B | _TRSM
2 T’ B+ aA~"B | _TRSM
2 'R’ B+ aBA~! | _TRSM
2 T’ 'R’ B+ aBA~" | _TRSM
1 b+ aA™lb _TRSV
1 T b+ aA™Tb | _TRSV

Routines using packed storage for matrices

By packed storage, we mean storing the upper or lower triangle of a symmetric or triangular matrix

in a 1-dimensional array (i.e. a vector).

subroutine spmv([alpha,] a, b, [beta,] c, [lower])
subroutine hpmv([alpha,] a, b, [beta,] c, [lower])

operation

| F77 BLAS

¢+ aAb+ fc ‘ _SPMV

where A is a symmetric matrix.

subroutine spri([alpha,] a, [beta,] c, [lower])
subroutine hpri([alpha,] a, [beta,] c, [lower])

operation

| F77 BLAS

C + aaa” + pC ‘ _SPR1

where C is a symmetric matrix.

subroutine syr2([alpha,] a, b, [beta,] c, [lower])
subroutine he2r([alpha,] a, b, [beta,] c, [lower])

operation

| F77 BLAS

C < aab” + aba™ + BC ‘ _SYR2

where C is a symmetric matrix.

subroutine tpmv([alpha,] a, [op_a,] b, [lower,] [unit_diag])

op.a ‘ operation ‘ F77 BLAS

’T’

where A is a triangular matrix.

b+ aAb
b+ aATb

_TPMV
_TPMV

subroutine tpsv([alpha,] a, [op_a,] b, [lower,] [unit_diag])

op-a ‘ operation

| F77 BLAS

’T, ‘

where A is a triangular matrix.

b+ aA~ b | _TPSV
b+ aAd Th

_TPSV

210 ANNEX C. JOURNAL OF DEVELOPMENT

Routines for band matrices

subroutine gbmv([alpha,] a, [op_a,] b, [beta,] c, kd)

op-a ‘ operation ‘ F77 BLAS
C < aAb+ Bc | GBMV
T | C « aATb+ Bc | _GBMV

where A is a general band matrix with kd superdiagonals supplied.

subroutine sbmv([alpha,] a, b, [beta,] c, [lower])
subroutine hbmv([alpha,] a, b, [beta,] ¢, [lower])

operation ‘ F77 BLAS

¢ < aAb+ Bc | _SPMV

where A is a symmetric band matrix.

subroutine tbmv([alpha,] a, [op_a,] , [lower,] [unit_diag])

op-a ‘ operation ‘ F77 BLAS

b+ aAb
T | b+ aATd

where A is a triangular band matrix.

subroutine tpsv([alpha,] a, [op_a,] , [lower,] [unit_diag])

_TBMV
_TBMV

op.a ‘ operation ‘ F77 BLAS ‘
b« aA~'b | _TBSV
T | b+ aA~Th | TBSV

where A is a triangular band matrix.

Level 1 routines

function nrm2(x)
Operation: return ||z||2.

subroutine swap(x, y)
Operation: x < y.

subroutine rot(x, y, ¢, s)

subroutine rotg(a, b, ¢, s)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.3. FORTRAN 95 THIN BLAS 211

C.3.4 Interfaces for Complex Data

In this section we show the subroutine gemm for complex arguments. The generic interface is that
described for real arguments.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

rank of a | rank of b | rank of ¢ | op_.a | op_b | operation F77 BLAS
2 2 2 C < aAB + C _GEMM
2 2 2 T’ | C+ aABT + BC | _GEMM
2 2 2 'C/T’ | C + aABH + 8C | GEMM
2 2 2 T C «+ aATB +BC | _GEMM
2 2 2 v T | C+ aATBT + pC | _GEMM
2 2 2 T | 'C/T" | C + «ATBY + BC | _GEMM
2 2 2 'C/T’ C+ aA¥B+BC | _GEMM
2 2 2 'C/T | "T° | C+ aA"BT + BC | GEMM
2 2 2 'C/T" | 'C/T’ | C + aA"BY 4+ BC | _GEMM
2 1 1 ¢+ aAb+ Be _GEMV
2 1 1 T ¢+ aATb + e _GEMV
2 1 1 'C/T’ ¢+ aAfb+ Be _GEMV
1 1 2 C + aab” + pC _GERU
1 1 2 'C’ | C <+ aab® + pC _GERC

C.3.5 Error checking

We propose that the Fortran 95 thin BLAS perform no checks on their arguments.

C.3.6 Comparison with the Fortran 77 BLAS

We consider in more detail each Level of BLAS in turn.
performed by the BLAS, we use the traditional BLAS names, except that we omit the initial letter
(S, D, C, Z) which indicates the data type — for example, SWAP. The resulting names are also the

generic names which we propose for the Fortran 95 interfaces.

Level 1

We include in this proposal only the following:

SWAP
ROT

NRM2
ROTG

ROT and ROTG have been extended to cover complex rotations.

Level 2

We propose to combine many of the Level 2 BLAS with the corresponding Level 3 BLAS in a single
generic interface, the different instances being distinguished by the ranks of some of the arguments.
In order to do this, we propose to remove some minor inconsistencies between the specifications of

the Level 2 and Level 3 routines:

We propose adding one new routine:

In referring to particular operations

212 ANNEX C. JOURNAL OF DEVELOPMENT

REFG

to generate an elementary reflector (that is, a Householder matrix), following the same specifi-
cation as the LAPACK auxiliary routine xLARTG.

The scope of the proposed BLAS has been extended slightly compared with the Fortran 77
BLAS: for example, we propose Level 1 BLAS for generating an elementary reflector (Householder
matrix), and for generating and applying complex plane rotations; we also propose Level 2 BLAS
for complex symmetric matrices. On the other hand, many of the Fortran 77 Level 1 BLAS can be
replaced in Fortran 95 by simple array constructs, and they have been omitted.

For the thin BLAS we propose that the code does not do any checks on the arguments.

We propose generic interfaces that cover — wherever relevant — both Level 2 and Level 3 BLAS
(for example, xXTRSV and xTRSM), and have modified the specification of some Level 2 BLAS to
make them more consistent with the Level 3 BLAS (for example, xTRSV now has an argument
alpha).

For each procedure we specify a number of arguments that must be supplied and another set of
arguments that need not be supplied. We specify a value or action for each argument which need
not be supplied.

We propose that the thin BLAS contain a specific instance for each possible case and no checks
or branching is used within the code.

We propose that the early implementations for the thin BLAS will contain simple calls to the
reliable and tested F77 BLAS.

For example, the generic gemm will consist of the following specific procedures:

e 36 specific procedures each of which calls the F77 BLAS procedure ZGEMM (3 settings for each
of op_a and op_b, and 2 settings for each of alpha and beta).

e 12 specific procedures each of which calls the F77 BLAS procedure ZGEMV (3 settings for op_a,
and 2 settings for each of alpha and beta).

e 4 specific procedures each of which calls the F77 BLAS procedure ZGERU (2 settings for each
of alpha and beta).

e 4 specific procedures each of which calls the F77 BLAS procedure ZGERC (2 settings for each
of alpha and beta).

e 36 specific procedures each of which calls the F77 BLAS procedure DGEMM (3 settings for each
of op_a and op_b, and 2 settings for each of alpha and beta). Only 16 procedures are needed,
but we allow for op_.a = blas_conj_trans for similarity with the complex case.

¢ 12 specific procedures each of which calls the F77 BLAS procedure DGEMV (3 settings for op_a,
and 2 settings for each of alpha and beta). Only 8 procedures are needed, but we allow for
op.a = blas_conj_trans for similarity with the complex case.

e 4 specific procedures each of which calls the F77 BLAS procedure DGER (2 settings for each
of alpha and beta).

e 4 specific procedures each of which calls the F77 BLAS procedure DGER (2 settings for each of
alpha and beta). These are similar to the previous case but have been added to allow op_b
= blas_conj (as in the complex case for ZGERC).

Appendix C.3.8 contains a list of these specific procedures (only double precision procedures
are listed).
A proposed document for this procedure is given in a separate document.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.3. FORTRAN 95 THIN BLAS 213

C.3.7 Conclusion

Our principal purpose in presenting this specification at this meeting is to provide additional input
to the discussion about different levels of genericity in the interface to linear algebra routines. The
thin BLAS are designed principally as building-blocks for software developers and for the BLAS
itself.

214

ANNEX C. JOURNAL OF DEVELOPMENT

C.3.8 Further Details: Specific procedures for gemm

This appendix contains a list of the specific procedures for the generic procedure gemm.

36 procedures each calls the F77 BLAS subroutine ZGEMM
a, b and ¢ are rank-2

1
1

1

!

! alpha op_a a op_b b beta ¢
1

! zgemm_301 (alpha,blas_conj_trans,a,blas_conj_trans,b,beta,c)
! zgemm_302 (alpha,blas_conj_trans,a,blas_conj_trans,b, c)
! zgemm_303 (alpha,blas_conj_trans,a,blas_trans ,b,beta,c)
! zgemm_304 (alpha,blas_conj_trans,a,blas_trans ,b, c)
! zgemm_305 (alpha,blas_conj_trans,a, b,beta,c)
! zgemm_306 (alpha,blas_conj_trans,a, b, c)
! zgemm_307 (alpha,blas_trans ,a,blas_conj_trans,b,beta,c)
! zgemm_308 (alpha,blas_trans ,a,blas_conj_trans,b, c)
! zgemm_309 (alpha,blas_trans ,a,blas_trans ,b,beta,c)
! zgemm_310 (alpha,blas_trans ,a,blas_trans ,b, c)
! zgemm_311 (alpha,blas_trans ,a, b,beta,c)
! zgemm_312 (alpha,blas_trans ,a, b, c)
! zgemm_313 (alpha, a,blas_conj_trans,b,beta,c)
! zgemm_314 (alpha, a,blas_conj_trans,b, c)
! zgemm_315 (alpha, a,blas_trans ,b,beta,c)
! zgemm_316 (alpha, a,blas_trans ,b, c)
! zgemm_317 (alpha, a, b,beta,c)
! zgemm_318 (alpha, a, b, c)
! zgemm_319 (blas_conj_trans,a,blas_conj_trans,b,beta,c)
! zgemm_320 (blas_conj_trans,a,blas_conj_trans,b, c)
! zgemm_321 (blas_conj_trans,a,blas_trans ,b,beta,c)
! zgemm_322 (blas_conj_trans,a,blas_trans ,b, c)
! zgemm_323 (blas_conj_trans,a, b,beta,c)
! zgemm_324 (blas_conj_trans,a, b, c)
! zgemm_325 (blas_trans ,a,blas_conj_trans,b,beta,c)
! zgemm_326 (blas_trans ,a,blas_conj_trans,b, c)
! zgemm_327 (blas_trans ,a,blas_trans ,b,beta,c)
! zgemm_328 (blas_trans ,a,blas_trans ,b, c)
! zgemm_329 (blas_trans ,a, b,beta,c)
! zgemm_330 (blas_trans ,a, b, c)
! zgemm_331 (a,blas_conj_trans,b,beta,c)
! zgemm_332 (a,blas_conj_trans,b, c)
! zgemm_333 (a,blas_trans ,b,beta,c)
! zgemm_334 (a,blas_trans ,b, c)
! zgemm_335 (a, b,beta,c)
! zgemm_336 (a, b, c)
1

1

! 12 procedures each calls the F77 BLAS subroutine ZGEMV

! a is rank-2, and b and ¢ are rank-1

1

! alpha op_a a op_b b beta ¢
1

! zgemv_201 (alpha,blas_conj_trans,a, b,beta,c)
! zgemv_202 (alpha,blas_conj_trans,a, b, c)
! zgemv_203 (alpha,blas_trans -N b,beta,c)
! zgemv_204 (alpha,blas_trans ,a, b, c)
! zgemv_205 (alpha, a, b,beta,c)
! zgemv_206 (alpha, a, b, c)
! zgemv_207 (blas_conj_trans,a, b,beta,c)
! zgemv_208 (blas_conj_trans,a, b, c)
! zgemv_209 (blas_trans ,a, b,beta,c)
! zgemv_200 (blas_trans ,a, b, c)
! zgemv_211 (a, b,beta,c)
! zgemv_212 (a, b, c)
1

1

1

4 procedures each calls the F77 BLAS subroutine ZGERU

operation

alpha A(H) B(H) + beta
alpha A(H) B(H) + C
alpha A(H) B(T) + beta
alpha A(H) B(T) + C
alpha A(H) B + beta C
alpha A(H) B + C

alpha A(T) B(H) + beta
alpha A(T) B(H) + C
alpha A(T) B(T) + beta
alpha A(T) B(T) + C
alpha A(T) B + beta C
alpha A(T) B + C

alpha A B(H) + beta C
alpha A B(H) + C
alpha A B(T) + beta C
alpha A B(T) + C
alpha A B + beta C
alpha A B
A(H) B(H)
A(H) B(H) + C

A(H) B(T) + beta C
A(H) B(T) + C

A(H) B + beta C
A(H) B+ C

A(T) B(H) + beta C
A(T) B(H) + C

A(T) B(T) + beta C
A(T) B(T) + C

A(T) B + beta C
A(T) B+ C

A B(H) + beta C
B(H) + C

B(T) beta C
B(T) + C

B + beta C

B+ C

¢

+
+ beta C
+
+

+
+
+
+

AANAAANAANAANANANAANANANAANANAANANAANANAANANAANANANANANAANANANANAANANANANANAANANNAN

e RN NN e R R K e o e R o o K e Ko e o o o e o Ko Ko o e o o o K2 e Ko Ko e
= e e e

operation

alpha A(H)
alpha A(H)
alpha A(T) beta ¢
alpha A(T) b + ¢
alpha A b + beta c
alpha A b + ¢

A(H) b + beta ¢

A(H) b + ¢

A(T) b + beta c

A(T) b + ¢

A b + beta ¢

Ab+c

+ beta ¢
+ c
+

o o o o

o o0 o0 000000000
AANAANANAANANAANANANAANANANAN

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.3. FORTRAN 95 THIN BLAS

¢ is rank-2, and a and b are rank-1

zgeru_201
zgeru_202
zgeru_203
zgeru_204

alpha op_a a op_b b beta
(alpha, a, b,beta,
(alpha, a, b,
(a, b,beta,
(a, b,

4 procedures each calls the F77 BLAS subroutine ZGERC
¢ is rank-2, and a and b are rank-1

zgerc_201
zgerc_202
zgerc_203
zgerc_204

alpha op_a a op_b b beta
(alpha,blas_conj a, b,beta,
(alpha,blas_conj a, b,
(blas_conj a, b,beta,
(blas_conj a, b,

36 procedures each calls the F77 BLAS subroutine DGEMM
a, b and ¢ are rank-2

dgemm_301
dgemm_302
dgemm_303

dgemm_334
dgemm_335
dgemm_336

alpha op_a a op_b b beta

[+

c)
c)
c)
c)

[+

c)
c)
c)
c)

[

(alpha,blas_conj_trans,a,blas_conj_trans,b,beta,c)

(alpha,blas_conj_trans,a,blas_conj_trans,b,
(alpha,blas_conj_trans,a,blas_trans ,b,beta,
(a,blas_trans ,b,
(a, b,beta,
(a, b,

12 procedures each calls the F77 BLAS subroutine DGEMV
a is rank-2, and b and ¢ are rank-1

dgemv_201
dgemv_202
dgemv_211
dgemv_212

alpha op_a a op_b b beta
(alpha,blas_conj_trans,a, b,beta,
(alpha,blas_conj_trans,a, b,
(a, b,beta,
(a, b,

8 procedures each calls the F77 BLAS subroutine DGER
¢ is rank-2, and a and b are rank-1

dger_201
dger_202
dger_203
dger_204
dger_205
dger_206
dger_207
dger_208

alpha op_a a op_b b beta
(alpha, a, b,beta,
(alpha, a, b,
(a, b,beta,
(a, b,
(alpha,blas_conj a, b,beta,
(alpha,blas_conj a, b,
(blas_conj a, b,beta,
(blas_conj a, b,

c)
c)

c)
c)
c)

[

c)
c)

c)
c)

[

c)
c)
c)
c)
c)
c)
c)
c)

operation

aaoaa

<
<
<
<

alpha a b(T) + beta C
alpha a b(T) + C

a b(T) + beta C

a b(T) + C

operation

aaoaaQ

<
<
<
<

alpha a b(H) + beta C
alpha a b(H) + C

a b(H) + beta C

a b(H) + C

operation

Q
A

Q
A

alpha A(H) B(H) + beta C
alpha A(H) B(H) + C
alpha A(H) B(T) + beta C

A B(T) + C
A B + beta C
AB+C

operation

c < alpha A(H) b + beta c
c < alpha A(H) b + ¢

[+
C

<
<

A b + beta ¢
Ab+c

operation

aaoaoaaoaaan

<
<
<
<
<
<
<
<

alpha a b(T) + beta C
alpha a b(T) + C

a b(T) + beta C

a b(T) + C

alpha a b(H) + beta C
alpha a b(H) + C

a b(H) + beta C

a b(H) + C

Procedure gemm

216

Description

gemm is a generic procedure which performs one of following operations:

ANNEX C. JOURNAL OF DEVELOPMENT

rank of a | rank of b | rank of c op-a op-b operation F77 BLAS

2 2 2 C < aAB + C _GEMM
2 2 2 T C « aABT + 8C _GEMM
2 2 2 'C/T’ | C«+ aABH +8C _GEMM
2 2 2 T C +«— aATB +BC _GEMM
2 2 2 T N C + aATBT + BC | GEMM
2 2 2 T C/T’ | C+ aATBY + BC | _GEMM
2 2 2 'C/T C « aAP B+ 8C _GEMM
2 2 2 c/T T C + aAHBT 4 BC | _GEMM
2 2 2 'C/T | ’C/T’ | C+ aAHBH + 8C | GEMM
2 1 1 ¢+ aAb+ Bce _GEMV
2 1 1 T ¢+ aATb + Bc _GEMV
2 1 1 C/T c— aAHb + Be _GEMV
1 1 2 C « aab” + 8C _GER_
1 1 2 '’ C + aab® +BC _GER._
— AT.)

(If A is real, then A7 =

Usage

CALL gemm([alphal, [op-al, a, [op-bl, b, [betal, c)

One or more of the arguments in square brakets can be dropped. The order of the supplied arguments must remain unchanged.

Interfaces

Distinct interfaces are provided for each of the combinations of the following cases:

Real / complex data

Real data:

alpha, a, b, beta and c are of type real(kind=wp).

Complex data: alpha, a, b, beta and ¢ are of type complex(kind=wp).

different ranks

f77_gemm: a, b and c are rank-2 arrays.

f77_gemv: a is a rank-2 array while b and ¢ are rank-1 arrays.

f77_ger:

Arguments

All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that
required by the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that

the array x must have exactly n elements.

The procedure derives the values of the following problem parameters from the shape of the supplied arrays.

m — the first dimension of ¢, if ¢ is rank-2 (m =SIZE(c,1)), or the size of ¢ if it is rank-1 (m =SIZE(c))

n — the second dimension of c if it is rank-2 (n =SIZE(c,2))

k — the intermediate dimension

Mandatory arguments

One or more of the arguments alpha, op-a, op-b and beta can be dropped. The order of the supplied arguments must remain

unchanged.

alpha — real(kind=wp)/ complex(kind=wp), intent(in)

Input: the value of « if different from one.

c is a rank-2 array while a and b are rank-1 arrays.

Note: if a is exactly one, you need not supply this argument.

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.3. FORTRAN 95 THIN BLAS 217

op_a — a “key” argument, intent(in)

Input: if op_a is supplied, it specifies whether the operation involves the transpose A7 or its conjugate-transpose A
(= AT if A is real). In this case op_a must have one of the following values (which are named constants, each of a
different derived type, defined by the BLAS, and accessible from the module blas):

blas_trans: if the operation involves the transpose AT rather than the matrix A;

blas_conj_trans: if the operation involves the conjugate-transpose A¥ rather than the matrix A.

Note: for real matrices, blas_conj_trans is equivalent to blas_trans.

Constraints: op_a must not be supplied if a is rank-1 or if the operation does not involve the transpose or the conjugate-
transpose of A.

a(m) / a(p,q) — real(kind=wp)/ complex(kind=wp), intent(in)

Input: the matrix A or vector a.
If a is rank-2 then:

if op_a is not supplied, the shape of a must be (m, k);
if op-a is supplied, the shape of a must be (k, m).

op_b — a “key” argument, intent(in)

Input: if op_b is supplied and b is rank-2, it specifies whether the operation involves the transpose BT or its conjugate-
transpose B (= BT if B is real). In this case op_b must have one of the following values (which are named constants,
each of a different derived type, defined by the BLAS, and accessible from the module blas):

blas_trans: if the operation involves the transpose BT rather than the matrix B;
blas_conj_trans: if the operation involves the conjugate-transpose BH rather than the matrix B.
If op_b is supplied and b is rank-1, it specifies that the operation involves the conjugate of ¥ (b¥) rather than 7. In

this case op_b must have be blas_conj (which is a named constant of a derived type, defined by the BLAS, and accessible
from the module blas).

Note: for real matrices, blas_conj_trans is equivalent to blas_trans. For real arrays blas_conj does not have any effect.

Constraints: op_b must not be supplied if the operation does not involve the conjugate of b, the transpose of B or the
conjugate-transpose of B.

b(r) / b(r,s) — real(kind=wp)/ complex(kind=wp), intent(in)

Input: the matrix B or vector b.
If b is rank-1 then:

if a is rank-1, the shape of b must be (m);

if a is rank-2, the shape of b must be SIZE(op-a(a),2).
If b is rank-2 then:

if op_b is not supplied, the shape of b must be (k,n);

if op_b is supplied, the shape of b must be (n, k).

beta — real(kind=wp)/ complex(kind=wp), intent(in)
Input: the value of g if different from zero.

Note: if g is exactly zero, you need not supply this argument.

c(m) / c(m,n) — real(kind=wp)/ complex(kind=wp), intent(inout)
Input: the matrix C or vector c. If beta is not supplied ¢ need not be initialized.

Output: the matrix C or vector ¢ after applying the operation.

Examples of usage

One or more of the arguments alpha, op-a, op-b and beta can be dropped. The order of the supplied arguments must remain
unchanged.

To perform C < aABH use the call:
CALL gemm (alpha,a,blas_conj_trans,b,c)

To perform C <— AB + BC use the call:

218

CALL gemm (a,b,beta,c)
To perform C < aAB + C use the call:

CALL gemm (alpha,a,b,beta,c)
To perform C + AT BH + BC use the call:

CALL gemm (blas_trans,a,blas_her,b,beta,c)
To perform ¢ < aATb + Bc use the call:

CALL gemm (alpha,blas_trans,a,b,beta,c)
To perform C «+ ab® + BC use the call:

CALL gemm (a,b,blas_conj,beta,c)

ANNEX C. JOURNAL OF DEVELOPMENT

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 219

C.4 Interval BLAS

C.4.1 Introduction

Interval computation refers to performing computations with intervals. Computing with intervals
guarantees that interval results contain the set of all possible correct answers. Valid implemen-
tations of interval arithmetic produce correct bounds on the set of all possible correct answers,
including the efficts of accumulated roundoff errors. Recent advances in interval algorithms have
generated interest in using these methods in increasing numbers of applications. This motivates us
to establish the standard for interval BLAS described in this chapter.

Intervals

A nonempty mathematical interval [a,b] is the set {z € R|a < z < b} where a < b. A machine
interval [a*, b*] is a mathematical interval whose endpoints are machine representable numbers. We
say that [a*,b*] is a machine representation of [a, b] if [a*, b*] contains [a,b] i.e. a* < a and b < b*.
We say that the machine interval [a*, b*] is a tight representation of a mathematical interval [a, b]
if and only if a* is the greatest machine representable number which is less than or equal to a, and
b* is the least machine representable number which is greater than or equal to b.

The empty interval), which does not contain any real number, is required in the interval BLAS.
For machines in compliance with the IEEE-standard, we recommend the use of [NaN_empty,
NaN_empty] to represent the empty interval, where NaN_empty is a unique non-default quiet not-
a-number that is used to represent the empty interval only.

interval.

Notation

Both scalar (floating point number) and interval arguments are used for the specification of routines
in this chapter. Interval vectors and interval matrices are vectors and matrices whose entries are
intervals. The notation used in this chapter is consistent with other chapters, but we use boldface
letters to specify interval arguments. We also use overline and underline to specify the greatest
lower bound and the least upper bound of an interval variable, respectively. For example, if x is
an interval vector, then x = [z, Z].

Interval arithmetic

Interval arithmetic on mathematical intervals is defined as follows.

Let a and b be two mathematical intervals. Let op be one of the arithmetic opera-
tions +,—,x,+. Thenaop b = {aop b:a € a,b € b}, provided that 0 ¢ b if op
represents .

Advice to users: The above definition of division implies that the user is responsible to
trapping and dealing with any division by an interval containing zero.

Table C.1 gives explicit implementations of these four basic interval arithmetic operations and
other operations on mathematical intervals used in this chapter. We use the notation a = [a,d]
and b = [b, b].

All operations in the interval BLAS are necessarily performed on machine intervals. Arithmetic on
machine intervals must satisfy the following property:

220 ANNEX C. JOURNAL OF DEVELOPMENT

Operation aZ(0andb#() or/and b = ()

a=

Addition a + b [a+b,a+b] 0
Subtractiona—b | [a —b,a — b 0
Multiplication a * b | [min{ab, ab,ab, @b}, max{ab, ab, ab, ab}] 0
Cancellation a&b | [a — b, E if (a—b)<(a- b); Otherwise, § | 0
0

b

0

s:l °"'

IS
@

o a
Division B,(O Z b) [mln % E Rk , Nax }H

Convex Hull a,b [min{a, b}, max{a, b}]
Intersection anNb [max{a, b}, min{a, b}] if max{a,b} < min{a, b};
Otherwise,)

|c~| Q
ISlIRSIE

a4
b’ b’

0‘@

ifa=0;oraifb=10

Disjoint True if aNb = (); False, otherwise True

Absolute value |a| | max{|al,|a|} NaN_empty
Midpoint a (a+7a)/2 NaN_empty
Width a a—a NaN_empty

Table C.1: Elementary interval operations

Containment Condition: Let a = [a,a@] and b = [b, b] be intervals. Let ¢ = [c,¢] be the
interval result of computing a op b where op is defined in Table C.1. If ¢ is nonempty,
then ¢ must contain the exact mathematical interval a op b.

In other words, interval arithmetic on nonempty machine intervals requires that we round down the
lower bound and round up the upper bound to guarantee that the machine interval result contains
the true mathematical interval result. This is needed to propagate guaranteed error bounds. A
good implementation will round down and round up to the nearest possible floating point numbers,
in order to get the narrowest possible machine intervals. But coarser rounding is enough to get a
correct implementation. For more information on interval arithmetic specifications, one may refer

o [14].

Advice to implementors: In implementations of interval BLAS, a warning message
should be provided to users whenever there is no finite machine interval that satisfies
the containment condition during computations.

With interval arithmetic, one may automatically bound truncation error, round-off error, and even
error in the original data to obtain machine intervals that are guaranteed to contain the true
mathematical result of a computation. However, simply changing floating point numbers in an
algorithm into intervals and all floating point operations into interval operations may result in such
wide intervals that the output is useless in practice. For example, [—100,200] is a correct but
probably useless bound for a true result of 3.1416. To apply the interval BLAS routines effectively,
appropriate algorithms should be used that attempt to keep interval widths narrow. Many such
algorithms are available in the literature. Readers may find a list of reference books, websites,
software packages, and applications in [2, 12, 1].

C.4.2 Functionality

This chapter defines the functionality and language bindings for both the interval BLAS routines,
and for selected mathematical operations on: intervals; interval vectors; and, dense, banded, and
triangular interval matricies. Neither sparse data structures, nor complex intervals are treated.

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 221

Sections C.4.2 — (C.4.2 outline the functionality of the proposed routines in tabular form. Sections
C.2-C.4.5 present the language bindings for the proposed routines in the functionality tables.
Interval Vector Operations

Table C.2 lists interval vector reduction operations. Table C.3 lists interval vector operations. Table
C.4 lists interval vector operations which involve only data movement.

Dot product r— fr+axly DOT1I
Vector norms r < ||x[|]1,7 < ||x]|2

T ||%]|oc NORM_I
Sum < Y,X; SUM.I

Max magnitude & location k,xy; k = arg max;{|z;|,|Z;|} | AMAX_VAL.I
Min absolute value & location | k,xx; k = arg min;{|z;|,|Z;|} | AMIN_VAL.I
Sum of squares (a,b) < ¥;x7,a-b?> =3, x? | SUMSQ.I

Table C.2: Reduction Operations

Reciprocal scale X X/ RSCALEI
Scaled interval vector accumulation | y < ax + fy | AXPBY.I
Scaled interval vector accumulation | w + ax + 8y | WAXPBY_I
Scaled interval vector cancellation |y <+ ax© fy | CANCEL.I
Scaled interval vector cancellation | w + ax© 8y | WCANCEL.

Table C.3: Interval Vector Operations

Copy y < x | COPYI
Swap y & x SWAP_
Permute vector | x +— Px | PERMUTE._

Table C.4: Data Movement with Interval Vector Operations

222 ANNEX C. JOURNAL OF DEVELOPMENT

Interval Matrix-Vector Operations

Table C.5 lists interval matrix-vector operations.

Matrix vector product | y + aAx+ Sy GE,GB,SY,SB,SP | MV 1
y « aATx + By GE,GB MV_I
x + Tx,x + TTx TR, TB, TP MV

Triangular solve x + aT 'x,x + oT Tx | TR, TB, TP SV1

Rank one updates A « axy” + BA GE,SY,SP R1

Table C.5: Interval Matrix-vector Operations

Interval Matrix Operations

Table C.6 lists single interval matrix operations and interval matrix operations that involve O(n?)
floating point operations. The matrix T represents an upper or lower triangular interval matrix.
D represents a diagonal interval matrix. Table C.7 lists the interval matrix-matrix operations that
involve O(n?) floating point operations and Table C.8 lists those operations that involve only data
movement.

Matrix norms r < |[|Al|1, 7 < ||AllF, GE,GB,SY,SB, | NORM_
7 < ||Allco, 7 < ||A||lmax | SP,TR,TB,TP
Diagonal scaling A+~ DA A+~ AD GE, GB _DIAG_SCALE_I
Two sided diagonal scaling | A + D;AD, GE, GB LRSCALE.I
Two sided diagonal scaling | A < DAD SY, SB, SP LRSCALE.I
A+~ A+BD GE, GB
Matrix acc and scale B + aA + (B, GE,GB,SY,SB, | _LACC1
B« aAT + B SP,TR,TB,TP
Matrix add and scale C<+ oA+ 5B GE,GB,SY,SB, | _ADD_I
SP,TR,TB,TP

Table C.6: Matrix Operations — O(n?) floating point operations

Matrix matrix product | C « a«AB + 8C, C + aATB + C, | GE,GB,SY,SB | MM_I
C + aABT + 8C, C + a«ATBT + 5C
C+ oBA +3C,C+ oBTA +5C, |GB MM_I
C « oBAT + 8C, C + oaBTAT + 5C

Triangular multiply B <+ oTB, B < aBT TR, TB MM_1
B+ oT™'B, B « oBTT

Triangular solve B+ oT !B, B+ oBT™! TR, TB SM_I
B+ oT'B,B + aBT 7T

Table C.7: Matrix Operations — O(n?) floating point operations

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

223

Matrix copy B+ A GE,GB,SY,SB,SP,TR,TB,TP
B« AT GE, GB

Matrix transpose | A « AT GE

Permute matrix | A+ PA,A + AP | GE

COPY
COPYI
_TRANS1I
_PERMUTE_1

Table C.8: Data Movement with Interval Matrices

Set Operations Involving Interval Vectors

Table C.9 lists set operations for interval vectors.

Enclosed xisenclosediny ifx Cy ENCV.
Interior x is enclosed in the interior of y | INTERIORV 1
Disjoint x and y are disjoint if x Ny =@ | DISJVI

Intersection | y <+ xNy,z<+ xNy

INTERV.1, WINTERV 1
Hull the convex hull of x and y HULLV.I, WHULLV 1

Table C.9: Set Operations for Interval Vectors

Set Operations Involving Interval Matrices

Table C.10 lists set operations for interval matrices.

Enclosed A isenclosedin Bif A CB GE,GB,SY,SB, | _.ENCM_I
SP, TR,TB,TP

Interior A is enclosed in the interior of B | GE,GB,SY,SB, | INTERIORM_I
SP, TR,TB,TP

Disjoint A and B are disjoint if ANB =0 | GE,GB,SY,SB, | _DISJM_I
SP,TR,TB,TP

Intersection | B+ ANB,C+ ANB GE,GB,SY,SB, | INTERM_I,
SP,TR,TB, TP | _WINTERM_I

Hull the convex hull of A and B GE,GB,SY,SB, | . HULLMI,
SP,TR,TB, TP | WHULLM_I

Table C.10: Set Operations for Interval Matrices

Utility Functions Involving Interval Vectors

Table C.11 lists some utility operations for interval vectors.

Utility Functions Involving Interval Matrices

Table C.12 lists some utility operations for interval matrices.

224

ANNEX C. JOURNAL OF DEVELOPMENT

Empty element
Left endpoint
Right endpoint
Midpoint
Width
Construct

kif x; = 0; or —1
VT

VT

v (z+7)/2
VT —ZI

X < U,V

EMPTYELEV 1

INFV1
SUPV_
MIDV 1
WIDTHV_I

CONSTRUCTV.I

Table C.11: Utility Operations for Interval Vectors

Empty element | if A has an empty interval element | GE,GB,SY,SB, | EMPTYELEM_I
SP,TR,TB,TP

Left endpoint C+ A GE,GB,SY,SB, | . INFM_I
SP,TR,TB,TP

Right endpoint | C' + A GE,GB,SY,SB, | SUPM.I
SP, TR, TB,TP

Midpoint C+ (A+A)/2 GE,GB,SY,SB, | _MIDM_I
SP, TR,TB,TP

Width C+—A-A GE,GB,SY,SB, | WIDTHM_I

Construct A+ B, C GE,GB,SY,SB, | . CONSTRUCTM_I
SP,TR,TB,TP

Table C.12: Utility Operations
C.4.3 Interface Issues

Naming Conventions

The naming conventions are the same as described in section 2.3.1 except that the suffix I (or _i)

is added to indicate an interval BLAS routine.

Interface Issues for Fortran 95

Design of the Fortran 95 Interfaces

The Fortran 95 binding is defined in a module. The specific interfaces in this module should declare

the default interval data type as TYPE(INTERVAL) .

Advice to implementors: In the Fortran 95 interfaces, it is assumed that INTERVAL is

a derived type.

However, in compilers that support an intrinsic interval type, it is

recommended that an alternate module that contains appropriately modified declara-

tions also be supplied. For example, TYPE(INTERVAL), INTENT(IN) ::
become INTERVAL, INTENT(IN) ::

The Fortran 95 interval BLAS routines are consistent with regard to generic interfaces, precision,
rank, assumed-shape arrays, derived types, operator arguments and CMACH values, and error han-
dling as described in section 2.4 of this document. However, in the interval BLAS, « and f are

intervals; and their default values are alpha = [1,1], beta = [0,0].
Error handling is as defined in section 2.4.6.

ALPHA could

ALPHA in a recommended alternate module.

© oo N o w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 225

Format of the Fortran 95 bindings

Each interface is summarized in the form of a SUBROUTINE statement (or in few cases a FUNCTION
statement), in which all of the potential arguments appear. Arguments which need not be supplied
are grouped after the mandatory arguments and enclosed in square brackets, for example:

SUBROUTINE axpby_i(x, y [, alphal] [, betal)
TYPE (INTERVAL) (<wp>), INTENT (IN) :: x (:)
TYPE (INTERVAL) (<wp>), INTENT (INOUT) :: y (:)
TYPE (INTERVAL) (<wp>), INTENT (IN), OPTIONAL :: alpha, beta

Variables in interval BLAS routines should be specified as INTEGER, REAL, TYPE(INTERVAL) or
types defined in MODULE blas_operator_arguments. The precision of a real or interval variable is
denoted by <wp> where

<wp> ::= KIND(1.0) | KIND(1.0DO)

Interface Issues for Fortran 77

The interval BLAS Fortran 77 binding is consistent with ANSI standard Fortran 77 except the
following:

e Subroutine names are not limited to six significant characters.
e Subroutine names contain one or more underscores.

e Subroutines may use the INCLUDE statement for include files.

In interval BLAS Fortran 77 binding, @ and f are intervals and their default values are:

ALPHA = [1.0, 1.0] and BETA = [0.0, 0.0]. Without assuming an intrinsic interval data type,
an interval, say «, will be declared as REAL or DOUBLE PRECISION ALPHA(2); an interval vector
will be stored as REAL or DOUBLE PRECISION X(2,*); and a general interval matrix will be defined
as REAL or DOUBLE PRECISION A(2,LDA, x*).

Advice to implementors: On Fortran 77 compilers that have an intrinsic interval data
type, an interval vector will be stored as INTERVAL X(*), and a general interval matrix
will be defined as INTERVAL A(LDA, *).

The Fortran 77 interval BLAS routines are consistent with regard to indexing of vector and matrix
operands, operator arguments and CMACH values, array arguments, matrix storage schemes, and
error handling as described in section 2.5 of this document but with interval variables.

Error handling is as defined in section 2.5.6.

Format of the Fortran 77 bindings

Each interface is summarized in the form of a SUBROUTINE statement (or a FUNCTION statement).
For example:

SUBROUTINE BLAS_xAXPBY_I(N, ALPHA, X, INCX, BETA, Y, INCY)
INTEGER INCX, INCY, N
<type> ALPHA(2), BETA(2)
<type> X(2,%), Y(2,%)

Floating point variables are denoted by the keyword <type> which may be REAL or DOUBLE
PRECISION, and should agree with the x letter in the naming convention of the routine.

226 ANNEX C. JOURNAL OF DEVELOPMENT

Interface Issues for C

The interface is expressed in terms of ANSI/ISO C. All interval arguments are accepted as float *
or double *. An interval element consists of two consecutive memory locations of the underlying
data type (i.e., float or double), where the first location contains the lower bound of the interval,
and the second contains the upper bound of the interval.

The C interval BLAS routines are consistent with regard to indexing of vector and matrix operands,
operator arguments and CMACH values, array arguments, matrix storage schemes, and error handling
that described in section 2.6 of this document but with interval variables. The default value for
intervals alpha and beta are alpha = [1.0,1.0] and beta = [0.0,0.0].

Error handling is as defined in section 2.6.9.

Format of the C bindings

Each interval BLAS routine is summarized in the form of an ANSI/ISO C prototype. For example:

void BLAS_xapry_i(int n, <interval> alpha, const <interval_array> x,
int incx, <interval> beta, <interval_array> vy,
int incy)

In the C binding, we use the keywords <interval> and <interval_array> to indicate if an argu-
ment is a single interval or an interval vector/matrix. In fact, <interval> and <interval array>
can be float * or double *. A real number, not an interval, will be indicated by the keyword
SCALAR. A vector/matrix of real numbers, not intervals, will be specified by RARRAY. The precisions
of SCALAR, RARRAY can be float or double. They will agree with the x letter in the naming conven-
tion of the routine. However, in some routines, not all floating point variables will be the same type.
If this is the case, then a variable may be denoted by the keywords SCALAR_IN or SCALAR_INOUT.
SCALAR_IN can be float or double; and SCALAR_INOUT and RARRAY can be float * or double *.

C.4.4 Numerical Accuracy and Environmental Enquiry

The semantics of interval arithmetic require us to have another environmental enquiry function to
supplement the routine FPINFO described in sections 1.6 and 2.7. Here we will specify the addi-
tional routine FPINFO_I to determine how tightly the containment property of interval arithmetic
is maintained.

To establish notation, let a = [a,a@] and b = [b,b] be machine intervals, let op be one of the
operations +, —, ©, X and +, let ¢ = [¢,¢] = a op b be the exact mathematical interval result
of a op b, and let ¢* = [¢*,¢*] = fl(a op b) be the machine interval computed containing c. Let
er > 0 be defined as the smallest number such that for all a, b and op where overflow and underflow
do not occur in computing c*, then

min{c*(1 + €1),c"(1 —€1)}

>
< max{Z*(1+¢),c(1—e)}

ol 10

In other words, e measures how much the exact mathematical interval bounds are rounded out
to get the machine interval result. When the machine interval is tight, i.e. as narrow as possible,
then ¢, = BASE'™T, where BASE and T are values returned by FPINFO. But €; could be larger
depending on the implementation, leading us to the following environmental enquiry:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N O w [w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

Value of CMACH

Name of value
returned by FPINFO_I

Description

blas_base
blas_t_i

blas_rnd_i

blas_eps_i

BASE
T1

RND._I

EPS1

base of the machine

effective number of base BASE digits,
such that e; = BASE~11

when interval arithmetic is implemented
with correct IEEE-style directed rounding
€r as defined above.

C.45 Language Bindings

227

Each specification of a routine will correspond to an operation outlined in the functionality tables.
Operations are organized analogous to the order in which they are presented in the functionality
tables. The format of the language bindings is as described in section 2.8.

Overview

¢ Reduction Operations (section C.4.5)

— DOT.I (Dot product)
— NORM.I (Interval vector norms)

— SUMLI (Sum)

— AMIN_VAL.I (Min absolute value & location)
— AMAX_VAL_I (Max absolute value & location)
— SUMSQI (Sum of squares)

e Interval Vector Operations (section C.4.5)

— RSCALE.I (Reciprocal Scale)

— AXPBY.I (Scaled vector accumulation)

— WAXPBY.I (Scaled vector addition)
— CANCEL.I (Scaled cancellation)

— WCANCELI

(Scaled cancellation)

e Data Movement with Interval Vectors (section C.4.5)

— COPY.I (Interval vector copy)
— SWAPI (Interval vector swap)

— PERMUTE.I (Permute interval vector)

e Interval Matrix-Vector Operations (section C.4.5)

— {GE,GB}MV_I (Interval matrix vector product)

— {SY,SB,SP}MV_I (Interval symmetric matrix vector product)
— {TR,TB,TP}MV_I (Interval triangular matrix vector product)
— {TR,TB,TP}SV_.I (Interval triangular solve)

— GER. (Rank one update)

228

ANNEX C. JOURNAL OF DEVELOPMENT

— {SY,SP}R I (Symmetric rank one update)
e Interval Matrix Operations (section C.4.5)

- {GE,GB,SY,SB,SP,TR,TB,TP} NORM_I (Interval matrix norms)

— {GE,GB}_.DIAG_SCALE I (Diagonal scaling)

— {GE,GB}_.LRSCALE I (Two-sided diagonal scaling)

— {SY,SB,SP}_ LRSCALE_I (Two-sided diagonal scaling of a symmetric interval matrix)
- {GE,GB,SY,SB,SP,TR,TB,TP}_ACC_I (Matrix accumulation and scale)

- {GE,GB,SY,SB,SP,TR,TB,TP}_ADD_I (Matrix add and scale)

e Interval Matrix-Matrix Operations (section C.4.5)

— GEMM.I (General interval Matrix Matrix product)

— SYMM._I (Symmetric interval matrix matrix product)
— TRMM_I (Triangular interval matrix matrix multiply)
— TRSM.I (Interval triangular solve)

e Data Movement with Interval Matrices (section C.4.5)

- {GE,GB,SY,SB,SP,TR,TB,TP}_COPY_I (Matrix copy)
— GE_TRANSI (Matrix transposition)
— GE_PERMUTE.I (Permute an interval matrix)

e Set Operations Involving Interval Vectors (section C.4.5)

— ENCV_I (Checks if an interval vector is enclosed in another interval vector)

— INTERIORV I (Checks if an interval vector is enclosed in the interior of another interval
vector)

— DISJV.I (Checks if two interval vectors are disjoint)

— INTERV I (Intersection of an interval vector with another)
— WINTERV_I (Intersection of two interval vectors)

— HULLV_I (Convex hull of an interval vector with another)
— WHULLV_I (Convex hull of two interval vectors)

e Set Operations Involving Interval Matrices (section C.4.5)

- {GE,GB,SY,SB,SP,TR,TB,TP}_ ENCM_I (Checks if an interval matrix is enclosed in
another interval matrix)

- {GE,GB,SY,SB,SP,TR,TB, TP} INTERIORM_I (Checks if an interval matrix is enclosed
in the interior of another interval matrix)

- {GE,GB,SY,SB,SP,TR,TB,TP}_DISIJM_I (Checks if two interval matrices are disjoint)

- {GE,GB,SY,SB,SP,TR,TB, TP} INTERM_I (Elementwise intersection of an interval ma-
trix with another)

- {GE,GB,SY,SB,SP,TR,TB, TP} WINTERM_I (Elementwise intersection of two interval
matrices)

© o] N o w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N o w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 229

- {GE,GB,SY,SB,SP,TR,TB, TP} HULLM_I (Convex hull of an interval matrix with an-
other)

- {GE,GB,SY,SB,SP,TR,TB, TP} WHULLV I (Convex hull of two interval matrices)
e Utility Functions Involving Interval Vectors (section C.4.5)

— EMPTYELEV I (Empty entry and location)

— INFV_I (The left endpoint of an interval vector)

— SUPV_I (The right endpoint of an interval vector)

— MIDV_I (The approximate midpoint of an interval vector)

— WIDTHV.I (The elementwise width of an interval vector)

— CONSTRUCTV I (Constructs an interval vector from two floating point vectors)

e Utility Functions Involving Interval Matrices (section C.4.5)

- {GE,GB,SY,SB,SP,TR,TB, TP} EMPTYELEM_I (Empty entry and location)

- {GE,GB,SY,SB,SP,TR,TB,TP} INFM_I (The left endpoint of an interval matrix)

- {GE,GB,SY,SB,SP,TR,TB,TP}_SUPM._I (The right endpoint of an interval matrix)

- {GE,GB,SY,SB,SP,TR,TB,TP} _MIDM I (The approximate midpoint of an interval ma-
trix)

- {GE,GB,SY,SB,SP,TR,TB, TP} WIDTHM I (Elementwise width of an interval matrix)

- {GE,GB,SY,SB,SP,TR,TB, TP} _ CONSTRUCTM._I (Constructs an interval matrix from
two given floating point matrices)

e Environmental Enquiry (section C.4.5)

— FPINFO.I (Environmental enquiry)

Reduction Operations

DOT.I (Dot Product) r+ fr+ax’y

The routine DOT_T adds the scaled dot product of two interval vectors x and y into a scaled interval
r. The routine returns immediately if n is less than zero, or, if beta is equal to [1,1] and either
alpha is equal to [0,0] or n is equal to zero. If alpha is equal to [0,0] then x and y are not read.
Similarly, if beta is equal to [0,0], r is not referenced. As described in section 2.5.3, the value incx
less than zero is permitted. However, if incx is equal to zero, an error flag is set and passed to the
error handler.

179, one.

e Fortran 95 binding:

SUBROUTINE dot_i(x, y, r [, alphal [,betal])
TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:), y(:)
TYPE (INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (INTERVAL) (<wp>), INTENT(INOUT) :: r
where
x and y have shape (n)

230 ANNEX C. JOURNAL OF DEVELOPMENT

e Fortran 77 binding:

SUBROUTINE BLAS_xDOT_I(N, ALPHA, X, INCX, BETA, Y, INCY, R)

INTEGER INCX, INCY, N
<type> ALPHA(C 2), BETA(2), R(2)
<type> X(C2,), Y(2,)

e C binding:

void BLAS_xdot_i(int n, const <interval> alpha, const <interval_array> x,
int incx, const <interval> beta, const <interval_array> y,
int incy, <interval> r);

Adwvice to users: The scaling parameters alpha and beta are intervals. If any one
of them is a real number in applications, the user needs to convert it into its interval
representation first, and then use the routine.

NORM.I (Interval vector norms) < [Ix|]1, |1x|[2, x|

The routine NORM_I computes the || - ||1, || - ||2, or || - [|o of & vector z depending on the value
passed as the norm operator argument.

If n is less than or equal to zero, this routine returns immediately with the output scalar r set to
zero. The resulting scalar r is always real and its value is as defined in section 2.1.1, provided that
[xi| = max{|z;], [Z[}-

As described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal
to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

REAL (<wp>) FUNCTION norm_i (x [, norm])
TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)
TYPE(blas_norm_type), INTENT(IN), OPTIONAL :: norm

where
x has shape (n)

e Fortran 77 binding:

<type> FUNCTION BLAS_xNORM_I(NORM, N, X, INCX)

INTEGER INCX, N, NORM
<type> X(2,)
¢ C binding:

void BLAS_xnorm_i(enum blas_norm_type norm, int n, const <interval_array> x,
int incx, SCALAR_INOUT r);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 231

Advice to implementors: In finite precision floating point arithmetic, an upper bound,
preferably the least machine representable upper bound, for the mathematical value
should be returned for the norms.

n—1
SUM.I (Sum the entries of an interval vector) r <+ Z X;
1=0

The routine SUM_I returns the sum of the entries of an interval vector x. If n is less than or equal
to zero, this routine returns immediately with the output interval r set to zero. As described in
section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error
flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE sum_i(x, r)
TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)
TYPE (INTERVAL) (<wp>) , INTENT(OUT) :: r
where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xSUM_I(N, INCX, X, R)

INTEGER INCX, N
<type> X(2, *)
<type> R(2)

e C binding:

void BLAS_xsum_i(int n, int incx, const <interval_array> x, <interval> r);

AMIN_VALI (ming<;<n{|z;], |Zi|} & location) k,r < min{|z.|, |Zk|} =7 = Oléliiiln{@ﬂ, |Z;|}
The routine AMIN VAL _T finds the index of the component of an interval vector such that the absolute
value of the lower or upper bounds of the component is the smallest among the absolute values
of the lower and upper bounds of all components of the interval vector. When the value of the n
argument is less than or equal to zero, the routine should initialize the output k to negative one
or zero, and r to zero. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE amin_val_i(x, k, r)
TYPE (INTERVAL) (<wp>), INTENT(IN) :: x(:)
INTEGER, INTENT(OUT) :: k
REAL (<wp>), INTENT(OUT) :: r
where
x has shape (n)

232 ANNEX C. JOURNAL OF DEVELOPMENT

e Fortran 77 binding:

SUBROUTINE BLAS_xAMIN_VAL_I(N, X, INCX, K, R)

INTEGER INCX, K, N
<type> X(2,)
<type> R

e C binding:

void BLAS_xamin_val_i(int n, const <interval_array> x, int incx, int k,
SCALAR_INOUT r);

AMAX_VAL.I (Max absolute value & location) k,r < max{|zy|, |Tk|} =7 = On<aia<xn{|§i|, |Z:| }
The routine AMAX_VAL_I finds the index of the component of an interval vector such that the
absolute value of the lower or upper bounds of the component has the largest value among the
absolute values of the lower and upper bounds of all components of the interval vector. When the
value of the n argument is less than or equal to zero, the routine should initialize the output k to
negative one or zero, and r to zero. As described in section 2.5.3, the value incx less than zero is
permitted. However, if incx is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE amax_val_i(x, k, r)
TYPE (INTERVAL) (<wp>) , INTENT(IN) :: x(:)
INTEGER, INTENT(OUT) :: k
REAL (<wp>), INTENT(OUT) :: r
where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_AMAX_VAL_I(N, X, INCX, K, R)

INTEGER INCX, K, N
<type> X(2: *)
<type> R

e C binding:

void BLAS_xamax_val_i(int n, const <interval_array> x, int incx, int Kk,
SCALAR_INOUT r);

SUMSQ.I (Sum of squares) (scl, 55q) < X x;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 233

The routine SUMSQ_I returns the intervals scl and ssq such that

n—1
scl? x ssq = scale? x sumsq + Z X
=0

2

:.

The value of sumsq is assumed to be at least unity and the value of ssq will then satisfy 1.0 <
ssq < (sumsq+ n). It is assumed that scale is to be non-negative, and scl returns the value

scl = Orélia<xn(scale, |%4])-

scale and sumsq must be supplied on entry in scl and ssq respectively. scl and ssq are overwritten
by scl and ssq respectively. If n is less than or equal to zero, this routine returns immediately with
scl and ssq unchanged. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE sumsq_i(x, ssq, scl)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)

TYPE (INTERVAL) (<wp>) , INTENT(INOUT) :: ssq, scl
where

x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xSUMSQ_I(N, X, INCX, SSQ, SCL)

INTEGER INCX, N

<type> X(2, *)

<type> SCL(2), SsQ(2)
e C binding:

void BLAS_xsumsq_i(int n, const <interval_array> x, int incx, <interval> ssq,
<interval> scl);

Interval Vector Operations

RSCALEI (Reciprocal Scale of an interval vector) X X/

The routine RSCALE_T updates the entries of an interval vector x by the scale interval 1/« provided
that 0 € a. If n is less than or equal to zero, this routine returns immediately. As described in
section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error
flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE rscale_i(alpha, x)
TYPE (INTERVAL) (<wp>) , INTENT(INOUT) :: x(:)
TYPE (INTERVAL) (<wp>) , INTENT(IN) :: alpha
where
x has shape (n)

234 ANNEX C. JOURNAL OF DEVELOPMENT

e Fortran 77 binding:

SUBROUTINE BLAS_xRSCALE_I(N, ALPHA, X, INCX)

INTEGER INCX, N

<type> ALPHA(2)

<type> X(2: *)
e C binding:

void BLAS_xrscale_i(int n, <interval> alpha, <interval_array> x, int incx);

AXPBY_I (Scaled vector accumulation) y « ax+ By

The routine AXPBY T scales the interval vector x by the interval a and the interval vector y by 3,
adds these two vectors to one another and stores the result in the vector y. If n is less than or
equal to zero, or if « is equal to [0,0] and 3 equal to [1,1], this routine returns immediately. As
described in section 2.5.3, the value incx or incy less than zero is permitted. However, if either incx
or incy is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE axpby_i(x, y [, alphal [, betal)

<type>(<wp>), INTENT (IN) :: x (:)

<type>(<wp>), INTENT (INOUT) :: y (:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
where

x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xAXPBY_I(N, ALPHA, X, INCX, BETA, Y, INCY)

INTEGER INCX, INCY, N

<type> ALPHA(C 2), BETA(2)

<type> X(2: *), Y(2’ *)
e C binding:

void BLAS_xapry_i(int n, <interval> alpha, <interval_array> x, int incx,
<interval> beta, <interval_array> y, int incy);

WAXPBY I (Scaled vector addition) w < ax + By

The routine WAXPBY_I scales the interval vector x by the interval « and the interval vector y by
B, adds these two vectors to one another and stores the result in the vector w. If n is less than or
equal to zero, this routine returns immediately. As described in section 2.5.3, the value incx or incy
or incw less than zero is permitted. However, if either incx or incy or incw is equal to zero, an error
flag is set and passed to the error handler.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 235

e Fortran 95 binding:

SUBROUTINE waxpby_i(x, y, w [, alphal [, betal])
<type>(<wp>), INTENT (IN) :: x(:), y(:)
<type>(<wp>), INTENT (OUT) :: w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
where
X, y and w have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xWAXPBY_I(N, ALPHA, X, INCX, BETA, Y, INCY, W,

$ INCW)
INTEGER INCW, INCX, INCY, N
<type> ALPHA(2), BETA(2)
<type> W(2’*)’ X(2:*): Y(2’*)
e C binding:

void BLAS_wxapry_i(int n, <interval> alpha, const <interval_array> x,
int incx, <interval> beta, const <interval_array> y,
int incy, <interval_array> w, int incw);

CANCEL (Scaled cancellation) y +— ax 6 fy
The operation cancel, ©, between two intervals a and b is defined as a© b = [a — b,@ — b] if
(a—b) < (@— b); Otherwise, (). The routine CANCEL_T scales the interval vector x by the interval a
and the interval vector y by 8, updates y; with ax; © By;, V0 < ¢ < n. If n is less than or equal to
zero, this routine returns immediately. As described in section 2.5.3, the value incx or incy less than
zero is permitted. However, if either incx or incy is equal to zero, an error flag is set and passed to
the error handler.

e Fortran 95 binding:

SUBROUTINE cancel_i(x, y [, alphal] [, betal])
<type>(<wp>), INTENT (IN) :: x (:)

<type>(<wp>), INTENT (INOUT) :: y (:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
where

x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xCANCEL_I(N, ALPHA, X, INCX, BETA, Y, INCY)
INTEGER INCX, INCY, N

<type> ALPHA(2), BETA(2)

<type> X(C2, *x), Y(2,)

236 ANNEX C. JOURNAL OF DEVELOPMENT
e C binding:

void BLAS_xcancel_i(int n, <interval> alpha, <interval_array> x, int incx,
<interval> beta, <interval_array> y, int incy);

WCANCEL.I (Scaled cancellation) W+ ax © By
The operation cancel, ©, between two intervals a and b is defined as a© b = [a — b,@ — b] if
(a —b) < (@ — b); Otherwise, (). The routine WCANCEL _I scales the interval vector x by the interval
a and the interval vector y by S, stores ax; © fy; in w; for 0 < ¢ < n. If n is less than or equal to
zero, this routine returns immediately. As described in section 2.5.3, the value incx or incy or incw
less than zero is permitted. However, if either incx or incy or incw is equal to zero, an error flag is
set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE wcancel_i(x, y, w [, alphal [, beta])
<type>(<wp>), INTENT (IN) :: x(:), y(:)
<type>(<wp>), INTENT (OUT) :: w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
X, y, and w have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xWCANCEL_I(N, ALPHA, X, INCX, BETA, Y, INCY, W,

$ INCW)
INTEGER INCW, INCX, INCY, N
<type> ALPHA(C 2), BETA(2)
<type> WC 2,), XC2,), Y(2,)
e C binding:

void BLAS_xwcancel_i(int n, <interval> alpha, <interval_array> x, int incx,
<interval> beta, <interval_array> y, int incy,
<interval_array> w, int incw);

Data Movement with Interval Vectors

COPY I (Interval vector copy) Yy x
The routine COPY_I copies the interval vector x into the interval vector y. If n is less than or equal
to zero, the routine returns immediately. As described in section 2.5.3, the value incx or incy less

than zero is permitted. However, if either incx or incy is equal to zero, an error flag is set and
passed to the error handler.

e Fortran 95 binding:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 237

SUBROUTINE copy_i(x, y)
TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)
TYPE(INTERVAL) (<wp>), INTENT(OUT) :: y(:)
where
x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xCOPY_I(N, X, INCX, Y, INCY)

INTEGER INCX, INCY, N
<type> X(C2,), Y(2,)
e C binding:

void BLAS_xcopy_i(int n, const <interval_array> x, int incx,
<interval_array> y, int incy);

SWAP_I (Interval vector swap) y & x

The routine SWAP_T interchanges the interval vectors x and y. If n is less than or equal to zero,
the routine returns immediately. As described in section 2.5.3, the value incx or incy less than zero
is permitted. However, if either incx or incy is equal to zero, an error flag is set and passed to the
error handler.

e Fortran 95 binding:

SUBROUTINE swap_i(x, y)

TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: x(:), y(:)
where

x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xSWAP_I(N, X, INCX, Y, INCY)

INTEGER INCX, INCY, N
<type> X(2: *), Y(2’ *)
¢ C binding:

void BLAS_xswap_i(int n, <interval_array> x, int incx, <interval_array> y,
int incy);

PERMUTEL.I (Permute interval vector) x + Px

The routine PERMUTE_I permutes the entries of an interval vector x according to the permutation
vector P. If n is less than or equal to zero, the routine returns immediately. As described in section
2.5.3, the value incx or incp less than zero is permitted. However, if either incx or incp is equal to
zero, an error flag is set and passed to the error handler.

238 ANNEX C. JOURNAL OF DEVELOPMENT

e Fortran 95 binding:

SUBROUTINE permute_i(x, p)

INTEGER, INTENT(IN) :: p(:)

TYPE (INTERVAL) (<wp>), INTENT(INOUT) :: x(:)
where

x and p have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xPERMUTE_I(N, P, INCP, X, INCX)

INTEGER INCP, INCX, N
INTEGER P(*)
<type> X(2, x)

e C binding:

void BLAS_xpermute_i(int n, const int *p, int incp, <interval_array> x,
int incx);

Interval Matrix-Vector Operations

{GE,GB}MV _I (Interval matrix-vector multiplication) y < aAx + By, y « aATx + By

The routines multiply the interval vector x by a general (or general band) interval matrix A or its
transpose, scales the resulting interval vector and adds it to the scaled interval vector operand y.
If m or n is less than or equal to zero or if beta is equal to [1,1] and alpha is equal to [0,0], the
routine returns immediately. As described in section 2.5.3, the value incx or incy less than zero is
permitted. However, if either incx or incy is equal to zero, an error flag is set and passed to the
error handler. For the routine GEMV_I, if |da is less than one or Ida is less than m, an error flag is
set and passed to the error handler. For the routine GBMV I, if kI or ku is less than zero, or if Ida
is less than kl plus ku plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

General:
SUBROUTINE gemv_i(a, x, y [, transal [, alphal [, betal])
General Band:
SUBROUTINE gbmv_i(a, m, k1, x, y [, transal [, alphal] [, beta])
all:
TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:), x(:)
TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: y(:)
INTEGER INTENT(IN) :: m, k1
TYPE(blas_trans_type), INTENT(IN), OPTIONAL :: transa
TYPE (INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
x and y have shape n if transa = blas_no_trans (the default}
m if transa /= blas_no_trans

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 239

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGEMV_I(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
$ Y, INCY)
General Band:
SUBROUTINE BLAS_xGBMV_I(TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,

$ BETA, Y, INCY)
all:
INTEGER INCX, INCY, KL, KU, LDA, M, N, TRANS
<type> ALPHA(2), BETA(2)
<type> AC 2, LDA, *), X(2,), Y(2, *)
e C binding:
General:

void BLAS_xgemv_i(enum blas_order_type order, enum blas_trans_type tramns,
int m, int n, <interval> alpha, const <interval_array> a,
int lda, const <interval_array> x, int incx, <interval> beta,
<interval_array> y, int incy);

General Band:

void BLAS_xgbmv_i(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, int k1, int ku, <interval> alpha,
const <interval_array> a, int lda, const <interval_array> x,
int incx, <interval> beta, <interval_array> y, int incy);

{SY,SB,SP}MV_I (Interval symmetric matrix vector product) y « aAx + fy with A = AT

The routines multiply an interval vector x by a symmetric interval matrix A, scales the resulting
interval vector and adds it to the scaled interval vector operand y. If n is less than or equal to
zero or if beta is equal to one and alpha is equal to zero, the routine returns immediately. The
operator argument uplo specifies if the matrix operand is an upper or lower triangular part of the
symmetric matrix. As described in section 2.5.3, the value incx or incy less than zero is permitted.
However, if either incx or incy is equal to zero, an error flag is set and passed to the error handler.
For the routine SYMV I, if Ida is less than one or Ida is less than n, an error flag is set and passed
to the error handler. For the routine SBMV_L, if Ida is less than k plus one, an error flag is set and
passed to the error handler.

e Fortran 95 binding:

Symmetric:

SUBROUTINE symv_i(a, x, y [, uplo] [, alphal [, betal)
Symmetric Band:

SUBROUTINE sbmv_i(a, x, y [, uplo] [, alphal [, betal)
Symmetric Packed:

SUBROUTINE spmv_i(ap, x, y [, uplo] [, alphal [, betal)

240

ANNEX C. JOURNAL OF DEVELOPMENT

all:
TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:), ap(:), x(:)
TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: y(:)
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x and y have shape (n)
SY a has shape (n,n)
SB a has shape (k+1,n), where k = band width
SP ap has shape (n*(n+1)/2)

e Fortran 77 binding:

Symmetric:
SUBROUTINE BLAS_xSYMV_I(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY)
Symmetric Band:
SUBROUTINE BLAS_xSBMV_I(UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA,
$ Y, INCY)
Symmetric Packed:
SUBROUTINE BLAS_xSPMV_I(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

all:
INTEGER INCX, INCY, K, LDA, N, UPLO
<type> ALPHA(2), BETA(2)
<type> AC 2, LDA, *) or AP(2, *), X(2, *),
$ Y(2, *)
C binding;:
Symmetric:

void BLAS_xsymv_i(enum blas_order_type order, enum blas_uplo_type uplo, int n,
<interval> alpha, const <interval_array> a, int 1lda,
const <interval_array> x, int incx, <interval> beta,
<interval_array> y, int incy);

Symmetric Band:

void BLAS_xsbmv_i(enum blas_order_type order, enum blas_uplo_type uplo, int n,
int k, <interval> alpha, const <interval_array> a, int lda,
const <interval_array> x, int incx, <interval> beta,
<interval_array> y, int incy);

Symmetric Packed:

void BLAS_xspmv_i(enum blas_order_type order, enum blas_uplo_type uplo, int n,
<interval> alpha, const <interval_array> ap,
const <interval_array> x, int incx, <interval> beta,
<interval_array> y, int incy);

{TR,TB,TP}MV_I (Interval triangular matrix vector product) x + aTx,x + oTTx

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 241

The routines multiply an interval vector x by a general triangular interval matrix T or its transpose,
and copies the resulting vector in the vector operand x. If n is less than or equal to zero, the routine
returns immediately. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler. For the routine
TRMV_L, if Idt is less than one or Idt is less than n, an error flag is set and passed to the error
handler. For the routine TBMV_I, if Idt is less than k plus one, an error flag is set and passed to
the error handler.

The operator argument uplo specifies whether the matrix operand is upper or lower triangular.
The operator argument diag specifies whether or not the matrix operand has unit diagonal entries.

e Fortran 95 binding:

Triangular:
SUBROUTINE trmv_i(t, x [, uplo] [, transt] [, diag]l [, alphal)
Triangular Band:
SUBROUTINE tbmv_i(t, x [, uplo]l [, tramst]l [, diagl [, alphal)
Triangular Packed:
SUBROUTINE tpmv_i(tp, x [, uplo]l [, tramst] [, diag] [, alphal)
all:
TYPE(INTERVAL) (<wp>), INTENT(IN) :: t(:,:), tp(:)
TYPE (INTERVAL) (<wp>), INTENT(INOUT) :: x(:)
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha
where
x has shape (n)
TR t has shape (n,n)
TB t has shape (k+1,n) where k = band width
TP tp has shape (n*(n+1)/2)

e Fortran 77 binding:

Triangular:
SUBROUTINE BLAS_xTRMV_I(UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,
$ INCX)
Triangular Band:
SUBROUTINE BLAS_xTBMV_I(UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT, X,
$ INCX)
Triangular Packed:
SUBROUTINE BLAS_xTPMV_I(UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX)

all:
INTEGER DIAG, INCX, K, LDA, N, TRANS, UPLO
<type> ALPHA(C 2)
<type> T(2, LDA, *) or TP(2, *), X(2, *)

e C binding:

242

Triangular:
void BLAS_xtrmv_i(enum blas_order_type order, enum blas_uplo_type

Triangular Band:
void BLAS_xtbmv_i(

Triangular Packed:
void BLAS_xtpmv_i(

ANNEX C. JOURNAL OF DEVELOPMENT

enum blas_trans_type trans, enum blas_diag_type
<interval> alpha, const <interval_array> t, int
<interval_array> x, int incx);

enum blas_order_type order, enum blas_uplo_type
enum blas_trans_type trans, enum blas_diag_type
<interval> alpha, const <interval_array> t, int
<interval_array> x, int incx);

enum blas_order_type order, enum blas_uplo_type
enum blas_trans_type trans, enum blas_diag_type
<interval> alpha, const <interval_array> tp,
<interval_array> x, int incx);

uplo,
diag,
1dt,

uplo,
diag,
1dt,

uplo,
diag,

int n,

int n,

int n,

{TR,TB,TP}SV_I (Interval triangular solve with a vector)

x +— aT 'x, x + oT Tx

These routines bound one of the systems of equations x < T 'x or x < aT~'x, where x is an
inverval vector and the matrix T is a upper or lower triangular (or triangular banded or triangular
packed) interval matrix. If n is less than or equal to zero, this function returns immediately. As
described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error flag is set and passed to the error handler. If Idt is less than one or Idt is less than n,
an error flag is set and passed to the error handler.

Advice to users and implementors: Checking for singularity, or near singularity is not
specified for these triangular solvers. Users should perform such a test before calling

the triangular solver if their applications require such a test.

e Fortran 95 binding:

Triangular:
SUBROUTINE trsv_i(t, x [, uplo] [, tramst] [, diag]l [, alphal)

Triangular Band:
Triangular Packed:

all:

SUBROUTINE tbsv_i(t, x [, uplo] [, tramnst] [, diag]l [, alphal)

SUBROUTINE tpsv_i(tp, x [, uplo] [, tramst] [, diag] [, alphal])

TYPE(INTERVAL) (<wp>), INTENT(IN) :: t(:,:), tp(:)
TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: x(:)
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE (INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha

where

x has shape (n)
TR t has shape (n,n)

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 243

TB t has shape (k+1,n) where k = band width
TP tp has shape (n*(n+1)/2)

e Fortran 77 binding:

Triangular:
SUBROUTINE BLAS_xTRSV_I(UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,
$ INCX)
Triangular Band:
SUBROUTINE BLAS_xTBSV_I(UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,
$ X, INCX)
Triangular Packed:
SUBROUTINE BLAS_xTPSV_I(UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX)

all:
INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO
<type> ALPHA(2)
<type> T(2, LDA, *) or TP(2, *), X(2, *)
e C binding:
Triangular:

void BLAS_xtrsv_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag, int n,
const <interval> alpha, const <interval_array> t, int 1dt,
<interval_array> x, int incx);

Triangular Band:

void BLAS_xtbsv_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag, int n,
int k, const <interval> alpha, const <interval_array> t,
int 1dt, <interval_array> x, int incx);

Triangular Packed:

void BLAS_xtpsv_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag, int n,
const <interval> alpha, const <interval_array> tp,
<interval_array> x, int incx);

GER.I (Rank one update) A — axy” +BA

This routine performs the operation A < axy’ + SA, where o and 8 are intervals, x and y are
interval vectors, and A is an interval matrix. This routine returns A immediately if @ = [0, 0] and
B =[1,1]. If m or n is less than or equal to zero, this function returns immediately. As described
in section 2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is
equal to zero, an error flag is set and passed to the error handler. If Ida is less than one or Ida is
less than m, an error flag is set and passed to the error handler.

e Fortran 95 binding:

244 ANNEX C. JOURNAL OF DEVELOPMENT

SUBROUTINE ger_i(a, x, y [, alpha] [, betal)
TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: a(:,:)

TYPE(INTERVAL) (<wp>), INTENT(IN) 1rox(:), y(2)
TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where

x and y have shape (n)
a has shape (n,n)

e Fortran 77 binding:

SUBROUTINE BLAS_xGER_I(M, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

INTEGER INCX, INCY, LDA, M, N

<type> ALPHA(C 2), BETA(2)

<type> AC 2, LDA, *), X(2, *x), Y(2,)
e C binding:

void BLAS_xger_i(int m, int n, <interval> alpha, const <interval_array> x,
int incx, const <interval_array> y, int incy, <interval> beta,
<interval_array> a, int lda);

{SY,SP}R.I (Symmetric rank one update) A «— axx” + BA with A = AT

This routine performs the symmetric update A < axy” + SA, where o and S are intervals, x is
an interval vector, and A is a symmetric interval matrix. This routine returns immediately if n is
less than or equal to zero. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler. If Ida is less
than one or Ida is less than n, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Symmetric:

SUBROUTINE syr_i(a, x [, uplo] [, alphal [, betal)
Symmetric Packed:

SUBROUTINE spr_i(ap, x [, uplo]l [, alphal [, betal)
all:

TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: a(:,:), ap(:)

TYPE(INTERVAL) (<wp>), INTENT(IN) irox(2)

TYPE(blas_uplo_type), OPTIONAL :: uplo

TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x has shape (n)

SY a has shape (n,n)

SP ap has shape (n*(n+1)/2)

e Fortran 77 binding:

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 245

Symmetric:

SUBROUTINE BLAS_xSYR_I(UPLO, N, ALPHA, X, INCX, BETA, A, LDA)
Symmetric Packed:

SUBROUTINE BLAS_xSPR_I(UPLO, N, ALPHA, X, INCX, BETA, AP)

all:
INTEGER INCX, LDA, N, UPLO
<type> ALPHA(C 2), BETA(2)
<type> AC 2, LDA, *) or AP(2, *), X(2, *)
e C binding:
Symmetric:

void BLAS_xsyr_i(enum blas_order_type order, enum blas_uplo_type uplo, int n,
<interval> alpha, const <interval_array> x, int incx,
<interval> beta, <interval_array> a, int lda);

Symmetric Packed:

void BLAS_xspr_i(enum blas_order_type order, enum blas_uplo_type uplo, int n,
<interval> alpha, const <interval_array> x, int incx,
<interval> beta, <interval_array> ap);

Interval Matrix Operations

{GE,GB,SY,SB,SP,TR,TB,TP} NORM_I (Interval matrix norms)
r < [|All, |[Allp, [[Alleo, or ||A|lmax

These routines compute the one-norm, Frobenius-norm, infinity-norm, or max-norm of a general
interval matrix A depending on the value passed as the norm operator argument. This routine
returns immediately with the output scalar r set to zero if m (for nonsymmetric matrices) or n is
less than or equal to zero. For the routine GE_LNORM._I, if Ida is less than one or Ida is less than m,
an error flag is set and passed to the error handler. For the routine GB_NORM I, if Ida is less than ki
plus ku plus one, an error flag is set and passed to the error handler. For the routines SY NORM_I
and TR_NORM_I, if Ida is less than one or Ida is less than n, an error flag is set and passed to the
error handler. For the routines SB_.NORM_| and TB_NORM_L, if Ida is less than k plus one, an error
flag is set and passed to the error handler.

e Fortran 95 binding:

General:

REAL (<wp>) FUNCTION ge_norm_i(a [, norm])
General Band:

REAL (<wp>) FUNCTION gb_norm_i(a, m, k1 [, norm])
Symmetric:

REAL (<wp>) FUNCTION sy_norm_i(a [, norm] [, uplo])
Symmetric Band:

REAL (<wp>) FUNCTION sb_norm_i(a [, norm] [, uplo])
Symmetric Packed:

REAL (<wp>) FUNCTION sp_norm_i(ap [, norm] [, uplo])

246

Triangular:

ANNEX C. JOURNAL OF DEVELOPMENT

REAL (<wp>) FUNCTION tr_norm_i(a [, norm] [, uplo] [, diag])
Triangular Band:

REAL (<wp>) FUNCTION tb_norm_i(a [, norm] [, uplo] [, diag])
Triangular Packed:

REAL (<wp>) FUNCTION tp_norm_i(ap [, norm] [, uplo] [, diag])

all:

TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:) | ap(:)

INTEGER,

INTENT(IN) :: m, k1l

TYPE(blas_norm_type), INTENT(IN), OPTIONAL :: norm
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag

where

a has shape (m,n) for general matrix

(1,n) for general banded matrix (1 > k1)

(n,n) for symmetric or triangular

(k+1,n) for symmetric banded, or triangular
banded (k=band width)

ap has shape (n*x(n+1)/2).

Fortran 77 binding:

General:
<type>

General Band:
<type>

Symmetric:
<type>

FUNCTION BLAS_xGE_NORM_I(NORM, M, N, A, LDA)
FUNCTION BLAS_xGB_NORM_I(NORM, M, N, KL, KU, A, LDA)

FUNCTION BLAS_xSY_NORM_I(NORM, UPLO, N, A, LDA)

Symmetric Band:

<type>

FUNCTION BLAS_xSB_NORM_I(NORM, UPLO, N, K, A, LDA)

Symmetric Packed:

<type>
Triangular:
<type>

FUNCTION BLAS_xSP_NORM_I(NORM, UPLO, N, AP)

FUNCTION BLAS_xTR_NORM_I(NORM, UPLO, DIAG, N, A, LDA)

Triangular Band:

<type>

FUNCTION BLAS_xTB_NORM_I(NORM, UPLO, DIAG, N, K, A, LDA)

Triangular Packed:

<type>
all:

INTEGER

<type>

C binding:

General:

void BLAS_xge_

FUNCTION BLAS_xTP_NORM_I(NORM, UPLO, DIAG, N, AP)

DIAG, K, KL, KU, LDA, M, N, NORM, UPLO
AC 2, LDA, *) or AP(2, *)

norm_i(enum blas_order_type order, enum blas_norm_type norm,
int m, int n, const <interval_array> a, int lda,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

General Band:
void BLAS_xgb_norm_i(

Symmetric:
void BLAS_xsy_norm_i(

Symmetric Band:
void BLAS_xsb_norm_i(

Symmetric Packed:
void BLAS_xsp_norm_i(

Triangular:
void BLAS_xtr_norm_i(

Triangular Band:
void BLAS_xtb_norm_i(

Triangular Packed:
void BLAS_xtp_norm_i(

247

SCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,

int m, int n, int k1, int ku, const <interval_array> a,

int 1da, SCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n,
const <interval_array> a, int lda, SCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, int k,
const <interval_array> a, int lda, SCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n,
const <interval_array> ap, SCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,
int n, const <interval_array> a, int lda,
SCALAR_INQOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,
int n, int k, const <interval_array> a, int 1lda,
SCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,
int n, const <interval_array> ap, SCALAR_INOUT r);

Advice to implementors: In finite precision floating point arithmetic, an upper bound,
preferably the least machine representable upper bound, for the mathematical value
should be returned for the norms.

{GE,GB}_DIAG_SCALE_I (Diagonal scaling an interval matrix)

e Fortran 95 binding:

These routines scale a general (or banded) interval matrix A on the left side or the right side by a
diagonal interval matrix D. This routine returns immediately if m or n is less than or equal to zero.
As described in section 2.5.3, the value incd less than zero is permitted. However, if incd is equal
to zero, an error flag is set and passed to the error handler. For the routine GE_DIAG_SCALE I, if
Ida is less than one or Ida is less than m, an error flag is set and passed to the error handler. For
the routine GB_DIAG_SCALE_L, if Ida is less than kl plus ku plus one, an error flag is set and passed
to the error handler.

A « DA, AD with D diagonal

248 ANNEX C. JOURNAL OF DEVELOPMENT

General:
SUBROUTINE ge_diag_scale_i(d, a [, side)
General Band:
SUBROUTINE gb_diag_scale_i(d, a, m, k1 [, side])
all:
TYPE(INTERVAL) (<wp>), INTENT (IN) :: d(:)
TYPE(INTERVAL) (<wp>), INTENT (INOUT) :: a(:,:)
INTEGER, INTENT(IN) :: m, k1
TYPE(blas_side_type), INTENT (IN), OPTIONAL :: side
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
d has shape (p) where p = m if side = blas_left_side
p = n if side = blas_right_side

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_DIAG_SCALE_I(SIDE, M, N, D, INCD, A, LDA)
General Band:

SUBROUTINE BLAS_xGB_DIAG_SCALE_I(SIDE, M, N, KL, KU, D, INCD, A,

$ LDA)
all:
INTEGER INCD, KL, KU, LDA, M, N, SIDE
<type> AC 2, LDA, *), D(2, *)
e C binding:
General:

void BLAS_xge_diag_scale_i(enum blas_order_type order,
enum blas_side_type side, int m, int n,
const <interval_array> d, int incd,
<interval_array> a, int lda);

General Band:

void BLAS_xgb_diag_scale_i(enum blas_order_type order,
enum blas_side_type side, int m, int n, int k1,
int ku, const <interval_array> d, int incd,
<interval_array> a, int 1lda);

{GE,GB}_LRSCALE_I (Two-sided diagonal scaling) A + D;ADg with Dy, Dg diagonal

These routines scale a general (or banded) interval matrix A on the left side by an interval diag-
onal matrix D;, and on the right side by an interval diagonal matrix Dp. This routine returns
immediately if m or n is less than or equal to zero. As described in section 2.5.3, the value incdl or
incdu less than zero is permitted. However, if either incdl or incdu is equal to zero, an error flag is
set and passed to the error handler. For the routine GE_LRSCALE_I, if Ida is less than one or Ida is

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 249

less than m, an error flag is set and passed to the error handler. For the routine GB_LRSCALE._L, if
Ida is less than k| plus ku plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

General:
SUBROUTINE ge_lrscale_i(dl1, dr, a)
General Band:
SUBROUTINE gb_lrscale_i(dl, dr, a, m, k1)
all:
TYPE(INTERVAL) (<wp>), INTENT(IN) :: d1l(:), dr(:)
TYPE (INTERVAL) (<wp>), INTENT(INOUT) :: a(:,:)
INTEGER, INTENT(IN) :: m, k1
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > kl)
dl has shape (m)
dr has shape (n)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_LRSCALE_I(M, N, DL, INCDL, DR, INCDR, A, LDA)
General Band:

SUBROUTINE BLAS_xGB_LRSCALE_I(M, N, KL, KU, DL, INCDL, DR, INCDR, A,

$ LDA)
all:
INTEGER INCDL, INCDR, KL, KU, LDA, M, N
<type> AC 2, LDA, *), DL(2, *), DR(2, *)
e C binding:
General:

void BLAS_xge_lrscale_i(enum blas_order_type order, int m, int n,
const <interval_array> dl, int incdl,
const <interval_array> dr, int incdr,
<interval_array> a, int 1da);

General Band:

void BLAS_xgb_lrscale_i(enum blas_order_type order, int m, int n,
int k1, int ku, const <interval_array> dl,
int incdl, const <interval_array> dr, int incdr,
<interval_array> a, int lda);

{SY,SB,SP} LRSCALE_I (Two-sided diagonal scaling) A « DAD with A = AT,

250 ANNEX C. JOURNAL OF DEVELOPMENT

These routines perform a two-sided scaling on a symmetric (or symmetric banded or symmetric
packed) interval matrix A by an interval diagonal matrix D. This routine returns immediately
if n is less than or equal to zero. As described in section 2.5.3, the value incd less than zero is
permitted. However, if incd is equal to zero, an error flag is set and passed to the error handler.
For the routines SY_LRSCALE | and SP_LRSCALE |, if Ida is less than one or Ida is less than n, an
error flag is set and passed to the error handler. For the routine SB_LRSCALE I, if Ida is less than
kl plus ku plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Symmetric:
SUBROUTINE sy_lrscale_i(d, a [, uplo])
Symmetric Band:
SUBROUTINE sb_lrscale_i(d, a [, uplo])
Symmetric Packed:
SUBROUTINE sp_lrscale_i(d, ap [, uplo])
all:
TYPE(INTERVAL) (<wp>), INTENT(IN) :: d(:)
TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: a(:,:) | ap(:)
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
where
a has shape (n,n) for symmetric
(k+1,n) for symmetric banded (k=band width)
ap has shape (n*(n+1)/2).
d has shape (n)

e Fortran 77 binding:

Symmetric:

SUBROUTINE BLAS_xSY_LRSCALE_I(UPLO, N, D, INCD, A, LDA)
Symmetric Band:

SUBROUTINE BLAS_xSB_LRSCALE_I(UPLO, N, K, D, INCD, A, LDA)
Symmetric Packed:

SUBROUTINE BLAS_xSP_LRSCALE_I(UPLO, N, D, INCD, AP)

all:
INTEGER INCD, K, LDA, N, UPLO
<type> AC 2, LDA, *) or AP(2, *), D(2, *)
e C binding:
Symmetric:

void BLAS_xsy_lrscale_i(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> d, int incd,
<interval_array> a, int lda);

Symmetric Band:

void BLAS_xsb_lrscale_i(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const <interval_array> d, int incd,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

C.4. INTERVAL BLAS 251

<interval_array> a, int 1lda);

Symmetric Packed:
void BLAS_xsp_lrscale_i(enum blas_order_type order, enum blas_uplo_type uplo,

int n, const <interval_array> d, int incd,
<interval_array> ap);

{GE,SY,SB,SP}_ACC_ (Matrix accumulation and scale) B «— aA + B,B « aAT + 8B.

These routines scale an interval matrix A (or its transpose) and scale an interval matrix B and
accumulate the result in the interval matrix B. Matrices A (or A7) and B have the same storage
format. This routine returns immediately if m (for nonsymmetric matrices) or n or k (for symmetric
band matrices) is less than or equal to zero. For the routine GE_ACC.|, if Ida is less than one or Ida
is less than m, an error flag is set and passed to the error handler. For the routine SY_ACC_I, if Ida
is less than one or Ida is less than n, an error flag is set and passed to the error handler. For the
routine SB_ACC._I, if Ida is less than kl plus ku plus one, an error flag is set and passed to the error

handler.

e Fortran 95 binding:

General:

SUBROUTINE ge_acc_i(a, b [, transal] [, alphal [, betal)
Symmetric:

SUBROUTINE sy_acc_i(a, b [, uplo], [, transal] [, alphal [, betal)
Symmetric Band:

SUBROUTINE sb_acc_i(a, b [, uplo]l, [, transal [, alphal [, betal)
Symmetric Packed:

SUBROUTINE sp_acc_i(ap, bp [, uplol, [, transal [, alphal [, betal)

all:

TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: b(:,:) | bp(:)
TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:) | ap(:)
TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE(blas_trans_type), INTENT(IN), OPTIONAL :: transa
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

where

GE

SY
SB
Sp

a and b have shape (m,n) if transa = blas_no_trans (the default)

a has shape (n,m) and b has shape (m,n) if transa /= blas_no_trans
a and b have shape (n,n)

a and b have shape (p+1,n) (p = band width)

ap and bp have shape (n*(n+1)/2)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_ACC_I(TRANS, M, N, ALPHA, A, LDA, BETA, B, LDB)
Symmetric:
SUBROUTINE BLAS_xSY_ACC_I(UPLO, TRANS, N, ALPHA, A, LDA, BETA, B,

252

ANNEX C. JOURNAL OF DEVELOPMENT

$ LDB)
Symmetric Band:
SUBROUTINE BLAS_xSB_ACC_I(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
$ B, LDB)
Symmetric Packed:
SUBROUTINE BLAS_xSP_ACC_I(UPLO, TRANS, N, ALPHA, AP, BETA, BP)

all:
INTEGER K, LDA, LDB, M, N, TRANS, UPLO
<type> ALPHA(C 2), BETA(2)
<type> AC 2, LDA, *) or AP(2, *), B(2, LDB, *)
$ or BP(2, *)
C binding:
General:

void BLAS_xge_acc_i(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, <interval> alpha, const <interval_array> a,
int lda, <interval> beta, <interval_array> b, int 1db);

Symmetric:

void BLAS_xsy_acc_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, <interval> alpha,
const <interval_array> a, int lda, <interval> beta,
<interval_array> b, int 1db);

Symmetric Band:

void BLAS_xsb_acc_i(enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k, <interval> alpha,

const <interval_array> a, int lda, <interval> beta,
<interval_array> b, int 1db);

Symmetric Packed:

void BLAS_xsp_acc_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, <interval> alpha,
const <interval_array> ap, <interval> beta,
<interval_array> bp) ;

{GB,TR,TB,TP}_ACC. (Matrix accumulation and scale) B < oA + (B.

These routines scale interval matrices A and B and accumulate the result in the matrix B. Matrices
A and B have the same storage format. This routine returns immediately if m or kl or ku (for general
band matrices) or n or k (for triangular band matrices) is less than or equal to zero. For the routine
GB_ACCLI, if Ida is less than kl plus ku plus one, an error flag is set and passed to the error handler.
For the routines TR_.ACC_I and TP_ACCL.I, if Ida is less than one or Ida is less than n, an error flag
is set and passed to the error handler. For the routine TB_ACCL_L, if Ida is less than k plus one, an
error flag is set and passed to the error handler.

e Fortran 95 binding:

General Band:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

31

32

33

34

35

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 253

SUBROUTINE gb_acc_i(a, m, k1, b [, alphal [, beta])
Triangular:

SUBROUTINE tr_acc_i(a, b [, uplo]l, [, diagl [, alpha] [, beta])
Triangular Band:

SUBROUTINE tb_acc_i(a, b [, uplo], [, diag]l [, alphal] [, beta])
Triangular Packed:

SUBROUTINE tp_acc_i(ap, bp [, uplol, [, diag]l [, alphal [, betal)
all:

TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:) | ap(:)
INTEGER, INTENT(IN) :: m, k1
TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: b(:,:) | bp(:)
TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag

where
a and b have shape (1,n) for general banded matrix (1 > k1)
a and b have shape (n,n) for triangular matrix
a and b have shape (p+1,n) for triangular banded matrix
ap and bp have shape (n*(n+1)/2)

e Fortran 77 binding:

General Band:
SUBROUTINE BLAS_xGB_ACC_I(M, N, KL, KU, ALPHA, A, LDA, BETA, B,

$ LDB)
Triangular:
SUBROUTINE BLAS_xTR_ACC_I(UPLO, DIAG, N, ALPHA, A, LDA, BETA, B,
$ LDB)

Triangular Band:
SUBROUTINE BLAS_xTB_ACC_I(UPLO, DIAG, N, K, ALPHA, A, LDA, BETA,
$ B, LDB)

Triangular Packed:
SUBROUTINE BLAS_xTP_ACC_I(UPLO, DIAG, N, ALPHA, AP, BETA, BP)

all:
INTEGER DIAG, K, KL, KU, LDA, LDB, M, N, UPLO
<type> ALPHA(2), BETA(2)
<type> AC 2, LDA, *) or AP(2, *), B(2, LDB, *)
$ or BP(2, *)
e C binding:

General Band:
void BLAS_xgb_acc_i(enum blas_order_type order, int m, int n, int kl, int ku,
<interval> alpha, <interval_array> a, int lda,
<interval> beta, <interval_array> b, int 1db);
Triangular:

254

ANNEX C. JOURNAL OF DEVELOPMENT

void BLAS_xtr_acc_i(enum blas_order_type order, enum blas_uplo_type uplo,

Triangular Band:

enum blas_diag_type diag, int n, <interval> alpha,
<interval_array> a, int lda, <interval> beta,
<interval_array> b, int 1ldb);

void BLAS_xtb_acc_i(enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_diag_type diag, int n, int k, <interval> alpha,
<interval_array> a, int lda, <interval> beta,
<interval_array> b, int 1db);

Triangular Packed:
void BLAS_xtp_acc_i(enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_diag_type diag, int n, <interval> alpha,
<interval_array> ap, <interval> beta,
<interval_array> bp);

{GE,GB,SY,SB,SP,TR,TB,TP}_ADD_I (Matrix add and scale) C < aA + 5B

These routines scale two interval matrices A and B and store the sum in the matrix C. Matrices
A, B, and C have the same storage format. This routine returns immediately if m or kl or ku (for
general band matrices) or n or k (for symmetric or triangular band matrices) is less than or equal
to zero. For the routine GE_ADD_I, if Ida is less than one or less than m, an error flag is set and
passed to the error handler. For the routine GB_ADD.I, if Ida is less than kl plus ku plus one, an
error flag is set and passed to the error handler. For the routines SY_ADD_I, TR_ADD_I, SP_ADD I,
and TP_ADD I, if Ida is less than one or Ida is less than n, an error flag is set and passed to the
error handler. For the routines SB_ADD_I and TB_ADD I, if Ida is less than k plus one, an error flag
is set and passed to the error handler.

e Fortran 95 binding:

General:
SUBROUTINE
General Band:
SUBROUTINE
Symmetric:
SUBROUTINE
Symmetric Band:
SUBROUTINE

Symmetric Packed:

SUBROUTINE
Triangular:

SUBROUTINE
Triangular Band:

SUBROUTINE

ge_add_i(a, b, ¢ [, alphal [, betal])

gb_add_i(a, m, k1, b, ¢ [, alphal [, betal])

sy_add_i(a, b, ¢ [, uplol, [, alphal [, betal)
sb_add_i(a, b, ¢ [, uplo]l, [, alpha] [, beta])
sp_add_i(ap, bp, cp [, uplol, [, alphal [, betal)
tr_add_i(a, b, ¢ [, uplo]l, [, diagl [, alphal] [, betal])

tb_add_i(a, b, ¢ [, uplol, [, diagl [, alphal [, betal)

Triangular Packed:

SUBROUTINE
all:

tp_add_i(ap, bp, cp [, uplol, [, diag]l [, alphal [, betal)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:) | ap(:), b(:,:) | bp(:)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 255

INTEGER, INTENT(IN) :: m, k1
TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: c(:,:) | cp(:)
TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag
where
assuming A, B and C all the same (general, banded or packed) with
the same size.
a, b and c have shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
(n,n) for symmetric or triangular
(k+1,n) for symmetric banded or triangular
banded (k=band width)
ap, bp and cp have shape (n*(n+1)/2).

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_ADD_I(M, N, ALPHA, A, LDA, BETA, B, LDB, C, LDC)
General Band:

SUBROUTINE BLAS_xGB_ADD_I(M, N, KL, KU, ALPHA, A, LDA, BETA, B, LDB,

$ C, LDC)
Symmetric:
SUBROUTINE BLAS_xSY_ADD_I(UPLO, N, ALPHA, A, LDA, BETA, B, LDB, C,
$ LDC)

Symmetric Band:
SUBROUTINE BLAS_xSB_ADD_I(UPLO, N, K, ALPHA, A, LDA, BETA, B, LDB,
$ C, LDC)
Symmetric Packed:
SUBROUTINE BLAS_xSP_ADD_I(UPLO, N, ALPHA, AP, BETA, BP, CP)
Triangular:
SUBROUTINE BLAS_xTR_ADD_I(UPLO, DIAG, N, ALPHA, A, LDA, BETA, B,
$ LDB, C, LDC)
Triangular Band:
SUBROUTINE BLAS_xTB_ADD_I(UPLO, DIAG, N, K, ALPHA, A, LDA, BETA, B,
$ LDB, C, LDC)
Triangular Packed:
SUBROUTINE BLAS_xTP_ADD_I(UPLO, DIAG, N, ALPHA, AP, BETA, BP, CP)

all:
INTEGER DIAG, K, KL, KU, LDA, LDB, M, N, TRANS, UPLO
<type> ALPHA(2), BETA(2)
<type> AC 2, LDA, *) or AP(2, *), B(2, LDB, *)
$ or BP(2, *), C(2, LDC, *) or CP(2, *)
e C binding:

General:

256

void BLAS_xge_add_i(

General Band:
void BLAS_xgb_add_i(

Symmetric:
void BLAS_xsy_add_i(

Symmetric Band:
void BLAS_xsb_add_i(

Symmetric Packed:
void BLAS_xsp_add_i(

Triangular:
void BLAS_xtr_add_i(

Triangular Band:
void BLAS_xtb_add_i(

Triangular Packed:
void BLAS_xtp_add_i(

ANNEX C. JOURNAL OF DEVELOPMENT

enum blas_order_type order, int m, int n, <interval> alpha,
const <interval_array> a, int lda, <interval> beta,

const <interval_array> b, int 1ldb, <interval_array> c,

int 1ldc);

enum blas_order_type order, int m, int n, int kl, int ku,
<interval> alpha, const <interval_array> a, int lda,
<interval> beta, const <interval_array> b, int 1ldb,
<interval_array> c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, <interval> alpha, const <interval_array> a,
int lda, <interval> beta, const <interval_array> b,
int 1db, <interval_array> c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, <interval> alpha, const <interval_array> a,
int lda, <interval> beta, const <interval_array> b,

int 1db, <interval_array> c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, <interval> alpha, const <interval_array> ap,
<interval> beta, const <interval_array> bp,
<interval_array> cp);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, <interval> alpha,
const <interval_array> a, int lda, <interval> beta,
const <interval_array> b, int 1ldb, <interval_array> c,
int 1dc);

enum blas_order_type order, enum blas_uplo_type uplo,

int n, enum blas_diag_type diag, int k, <interval> alpha,
const <interval_array> a, int lda, <interval> beta,

const <interval_array> b, int 1ldb, <interval_array> c,
int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, enum blas_diag_type diag, <interval> alpha,
const <interval_array> ap, <interval> beta,

const <interval_array> bp, <interval_array> cp);

Interval Matrix-Matrix Operations

In the following specifications,

op(X) denotes X or X7 where X is a matrix.

GEMM _I (General interval matrix matrix product) C + a op(A) op(B) + sC.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 257

This routine performs a general interval matrix matrix multiply C < « op(A) op(B)+3C, where «
and (3 are intervals, and A, B, and C are general interval matrices. This routine returns immediately
if m or n or k is less than or equal to zero. If Ida is less than one or less than m, or if Idb is less
than one or less than k, or if Idc is less than one or less than m, an error flag is set and passed to
the error handler.

e Fortran 95 binding:

SUBROUTINE gemm_i(a, b, ¢ [, transal] [, transb] [, alphal [, betal])

TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:), b(:,:)

TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: c(:,:)

TYPE(blas_trans_type), INTENT(IN), OPTIONAL :: transa, transb

TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

¢ has shape (m,n)

a has shape (m,k) if transa = blas_no_trans (the default)
(k,m) if transa /= blas_no_trans

b has shape (k,n) if transb = blas_no_trans (the default)
(n,k) if transb /= blas_no_trans

e Fortran 77 binding:

SUBROUTINE BLAS_xGEMM_I(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
<type> ALPHA(C 2), BETA(2)
<type> AC 2, LDA, *), B(2, LDB, *),
$ c(2, LDC, *)
e C binding:

void BLAS_xgemm_i(enum blas_order_type order, enum blas_trans_type transa,
enum blas_trans_type transb, int m, int n, int k,
<interval> alpha, const <interval_array> a, int lda,
const <interval_array> b, int 1ldb, <interval> beta,
<interval_array> c, int 1ldc);

SYMM_I (Symmetric interval matrix matrix product) C + aAB + 3C or C + aBA + gC.

These routines perform one of the symmetric interval matrix operations C < aAB + C or
C < aBA + 8C where « and S are intervals, A is a symmetric interval matrix, and B and C are
general interval matrices. This routine returns immediately if m or n is less than or equal to zero.
For side equal to blas_left_side, and if Ida is less than one or less than m, or if Idb is less than one
or less than m, or if Idc is less than one or less than m, an error flag is set and passed to the error
handler. For side equal to blas_right_side, and if Ida is less than one or less than n, or if Idb is less
than one or less than n, or if Idc is less than one or less than n, an error flag is set and passed to
the error handler.

258 ANNEX C. JOURNAL OF DEVELOPMENT

e Fortran 95 binding: 1
2

SUBROUTINE symm_i(a, b, ¢ [, side]l [, uplo] [, alphal] [, beta]) 8
TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: c(:,:) *
TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:), b(:,:) 5
TYPE(blas_side_type), INTENT(IN), OPTIONAL :: side é
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo !
TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta 8

where :

¢ has shape (m,n), b same shape as ¢ 10

SY a has shape (m,m) if side = blas_left_side (the default)
a has shape (n,n) if side /= blas_left_side

11
12
13
e Fortran 77 binding: 1:
16

SUBROUTINE BLAS_xSYMM_I(SIDE, UPLO, M, N, ALPHA, A, LDA, B,

17

$ LDB, BETA, C, LDC) s
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO Lo

<type> ALPHA(2), BETA(2) .

<type> AC 2, LDA, *), B(2, LDB, *), .

$ c(2, LDC, *) o

23

e C binding: 04
25

void BLAS_xsymm_i(enum blas_order_type order, enum blas_side_type side, 26
enum blas_uplo_type uplo, int m, int n, <interval> alpha, 27

const <interval_array> a, int lda, const <interval_array> b, s

int 1db, <interval> beta, <interval_array> c, int 1ldc); 29

30

31

TRMM.I (Triangular interval matrix matrix product) 32

33
B < oTB,B < aT”'B, B + aBT, or B + aBT7

34

These routines perform one of the interval matrix operations B < oTB,B «+ oTTB, B + aBT, 3

or B «+— aBTT, where « is an interval, T is a unit, or non-unit, upper or lower triangular interval
matrix, and B is a general interval matrix. This routine returns immediately if m or n is less than
or equal to zero. For side equal to blas_left_side, and if Idt is less than one or less than m, or if Idb
is less than one or less than m, an error flag is set and passed to the error handler. For side equal
to blas_right_side, and if Idt is less than one or less than n, or if Idb is less than one or less than m,
an error flag is set and passed to the error handler.

36

37

38

39

40

41

42

e Fortran 95 binding: 43
44

SUBROUTINE trmm_i(t, b [, side] [, uplo] [, transt] [, diag] & 45

[, alpha]) 46

TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: b(:,:) 47

TYPE(INTERVAL) (<wp>), INTENT(IN) :: t(:,:) 18

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 259

TYPE(blas_side_type), INTENT(IN), OPTIONAL :: side

TYPE(blas_trans_type), INTENT(IN), OPTIONAL :: transt

TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag

TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where

b has shape (m,n)

TR t has shape (m,m) if side = blas_left_side (the default)

t has shape (n,n) if side /= blas_left_side

e Fortran 77 binding:

SUBROUTINE BLAS_xTRMM_I(SIDE, UPLO, TRANST, DIAG, M, N, ALPHA,

$ T, LDT, B, LDB)
INTEGER DIAG, LDA, LDB, M, N, SIDE, TRANST, UPLO
<type> ALPHA(2)
<type> T(2, LDA, *), B(2, LDB, *)
e C binding:

void BLAS_xtrmm_i(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, enum blas_trans_type transt,
enum blas_diag_type diag, int m, int n, <interval> alpha,
const <interval_array> t, int 1ldt, <interval_array> b,
int 1db);

TRSM.I (Interval triangular solve)
B+ aT 'B,B+ o(T")"B,B + oBT ! or B + oB(T)T

These routines bound one of the matrix equations B <+ aT'B, B «+ a(T_l)TB, B «+ oBT!
or B + aB(T™ ') where « is an interval, B is a general interval matrix, and T is a a unit, or
non-unit, upper or lower triangular interval matrix. This routine returns immediately if m or n is
less than or equal to zero. For side equal to blas_left_side, and if IdT is less than one or less than
m, or if Idb is less than one or less than m, an error flag is set and passed to the error handler. For
side equal to blas_right_side, and if Idt is less than one or less than n, or if Idb is less than one or less
than m, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE trsm_i(t, b [, side] [, uplo]l [, transt] [, diag] [, alphal])
TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: b(:,:)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: t(:,:)

TYPE(blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE(blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

260 ANNEX C. JOURNAL OF DEVELOPMENT

TYPE(INTERVAL) (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
b has shape (m,n)
TR t has shape (m,m) if side = blas_left_side (the default)
t has shape (n,n) if side /= blas_left_side

e Fortran 77 binding:

SUBROUTINE BLAS_xTRSM_I(SIDE, UPLO, TRANST, DIAG, M, N, ALPHA,

$ ALPHA, T, LDT, B, LDB)
INTEGER DIAG, LDB, LDT, M, N, SIDE, TRANST, UPLO
<type> ALPHA(C 2)
<type> T(2, LDA, *), B(2, LDB, *)
e C binding:

void BLAS_xtrsm_i(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, enum blas_trans_type transt,
enum blas_diag_type diag, int m, int n, <interval> alpha,
const <interval_array> t, int 1dt, <interval_array> b,
int 1db);

Data Movement with Interval Matrices

{GE,GB,SY,SB,SP,TR,TB,TP}_COPY_I (Matrix copy) B+ A,B« AT

This routine copies an interval matrix (or its transpose) A and stores the result in an interval matrix
B. Matrices A (or AT) and B have the same storage format. This routine returns immediately if
m (for nonsymmetric matrices), n, k (for symmetric band matrices), or kl or ku (for general band
matrices), is less than or equal to zero. For the routine GE_COPY_L, if trans equal to blas_no_trans,
and if Ida is less than one or less than m, or if Idb is less than one or less than m, an error flag is
set and passed to the error handler. For the routine GE_COPY_I, if trans equal to blas_trans, and if
Ida is less than one or less than m, or if Idb is less than one or less than n, an error flag is set and
passed to the error handler. For the routine GB_COPYl, if Ida is less than kl plus ku plus one, or
if Idb is less than kl plus ku plus one, an error flag is set and passed to the error handler. For the
routines SY_COPY_l and TR_COPY I, if Ida is less than one or less than n, or if Idb is less than one
or less than n, an error flag is set and passed to the error handler. For the routines SB_.COPY | and
TB_COPY L, if Ida is less than k plus one, or if Idb is less than k plus one, an error flag is set and
passed to the error handler.

e Fortran 95 binding:

General:

SUBROUTINE ge_copy_i(a, b [, transa])
General Band:

SUBROUTINE gb_copy_i(a, k1, b [, transa])
Symmetric:

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 261

SUBROUTINE sy_copy_i(a, b [, uplo])
Symmetric Band:
SUBROUTINE sb_copy_i(a, b [, uplo])
Symmetric Packed:
SUBROUTINE sp_copy_i(ap, bp [, uplo]l)
Triangular:
SUBROUTINE tr_copy_i(a, b [, uplo], [, trans] [, diag])
Triangular Band:
SUBROUTINE tb_copy_i(a, b [, uplo], [, tramns] [, diag])
Triangular Packed:
SUBROUTINE tp_copy_i(ap, bp [, uplo]l, [, trans] [, diagl)
all:
TYPE(INTERVAL) (<wp>), INTENT(OUT) :: b(:,:) | bp(:)
TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:) | ap(:)
INTEGER, INTENT(IN) :: k1
TYPE(blas_trans_type) , INTENT(IN), OPTIONAL :: trans
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag
where
If trans = blas_no_trans (the default)
a, b have shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
(n,n) for symmetric or triangular
(k+1,n) for symmetric banded or triangular
banded (k=band width)
ap and bp have shape (n*(n+1)/2).

If trans \= blas_no_trans
a has shape (m,n) and b has shape (n,m) for general matrix
(1,n) and b has shape (1,m) for general banded matrix (1>kl1)
a and b have shape (n,n) for symmetric or triangular
(k+1,n) for symmetric banded or triangular
banded (k=band width)
ap and bp have shape (n*(n+1)/2).

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_COPY_I(TRANS, M, N, A, LDA, B, LDB)
General Band:

SUBROUTINE BLAS_xGB_COPY_I(TRANS, M, N, KL, KU, A, LDA, B, LDB)
Symmetric:

SUBROUTINE BLAS_xSY_COPY_I(UPLO, N, A, LDA, B, LDB)
Symmetric Band:

SUBROUTINE BLAS_xSB_COPY_I(UPLO, N, K, A, LDA, B, LDB)
Symmetric Packed:

SUBROUTINE BLAS_xSP_COPY_I(UPLO, N, AP, BP)
Triangular:

262

SUBROUTINE BLAS_

Triangular Band:

SUBROUTINE BLAS_

Triangular Packed:

SUBROUTINE BLAS_

all:
INTEGER
<type>
$

C binding;:

General:

void BLAS_xge_copy_i(enum blas_order_type order, enum blas_trans_type transa,

General Band:
void BLAS_xgb_copy_i(

Symmetric:
void BLAS_xsy_copy_i(

Symmetric Band:
void BLAS_xsb_copy_i(

Symmetric Packed:
void BLAS_xsp_copy_i(

Triangular:
void BLAS_xtr_copy_i(

Triangular Band:
void BLAS_xtb_copy_i(

Triangular Packed:
void BLAS_xtp_copy_i(

ANNEX C. JOURNAL OF DEVELOPMENT

xTR_COPY_I(UPLO, TRANS, DIAG, N, A, LDA, B, LDB)
xTB_COPY_I(UPLO, TRANS, DIAG, N, K, A, LDA, B, LDB)
xTP_COPY_I(UPLO, TRANS, DIAG, N, AP, BP)

DIAG, LDA, LDB, N, K, KL, KU, TRANS, UPLO

AC 2, LDA, *) or AP(2, *), B(2, LDB, *)
or BP(2, *)

int m, int n, const <interval_array> a, int lda,
<interval_array> b, int 1db);

enum blas_order_type order, enum blas_trans_type transa,
int m, int n, int kl, int ku, const <interval_array> a,

int lda, <interval_array> b, int 1ldb);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> a, int lda,
<interval_array> b, int 1db);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const <interval_array> a, int lda,

<interval_array> b, int 1ldb);

enum blas_order_type order, enum blas_uplo_type uplo,

int n, const <interval_array> ap, <interval_array> bp)

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const <interval_array> a, int lda,
<interval_array> b, int 1db);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, const <interval_array> a, int lda,
<interval_array> b, int 1ldb);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,

int n, const <interval_array> ap, <interval_array> bp)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 263

GE_TRANS_I (Matrix transposition) A« AT

This routine performs the transposition of a square interval matrix A and overwrites the matrix
A. This routine returns immediately if n is less than or equal to zero. If Ida is less than one or less
than n, an error flag is set and passed to the error handler.

e Fortran 95 binding:
SUBROUTINE ge_trans_i(a)
TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: a(:,:)
where
a has shape (n,n)

e Fortran 77 binding:

SUBROUTINE BLAS_xGE_TRANS_I(N, A, LDA)

INTEGER LDA, N
<type> AC 2, LDA, *)
e C binding:

void BLAS_xge_trans_i(int n, <interval_array> a, int lda);

GE_PERMUTEL.I (Permute an interval matrix) A+ PAor A+ AP

This routine permutes the rows or columns of an interval matrix A by the permutation matrix P.
This routine returns immediately if m or n is less than or equal to zero. As described in section
2.5.3, the value incp less than zero is permitted. However, if incp is equal to zero, an error flag is
set and passed to the error handler. If Ida is less than one or less than m, an error flag is set and
passed to the error handler.

e Fortran 95 binding:

SUBROUTINE ge_permute_i(p, a [, sidel])

TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: a(:,:)

INTEGER, INTENT(IN) :: p(:)

TYPE(blas_side_type), INTENT(IN), OPTIONAL :: side

where

a has shape (m,n)

p has shape (k) where k
k

blas_left_side
blas_right_side

m if side
n if side

e Fortran 77 binding:

SUBROUTINE BLAS_xGE_PERMUTE_I(SIDE, M, N, P, INCP, A, LDA)
INTEGER INCP, LDA, M, N, SIDE

INTEGER P(C *)

<type> AC 2, LDA, *)

264 ANNEX C. JOURNAL OF DEVELOPMENT

The value of INCP may be positive or negative. A negative value of INCP applies the permu-
tation in the opposite direction.

e C binding:

void BLAS_xge_permute_i(enum blas_order_type order, enum blas_side_type side,
int m, int n, const int *p, int incp,
<interval_array> a, int 1lda);

The value of incp may be positive or negative. A negative value of incp applies the permu-
tation in the opposite direction.

Set Operations Involving Interval Vectors

ENCV I (Checks if an interval vector is enclosed in another interval vector) Trueif x Cy
This routine checks if an interval vector x is enclosed in another interval vector y. We say that an
interval vector x is enclosed in y, denoted as x C y, if and only if y; < z; < Z; < ¥;Vi. This routine
returns immediately if n is less than or equal to zero. As described in section 2.5.3, the value incx

or incy less than zero is permitted. However, if incx or incy is equal to zero, an error flag is set and
passed to the error handler.

e Fortran 95 binding:

LOGICAL FUNCTION encv_i(x, y)

TYPE (INTERVAL) (<wp>), INTENT(IN) :: x(:), y(:)
where

x and y have shape (n)

e Fortran 77 binding:

LOGICAL FUNCTION BLAS_xENCV_I(N, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
<type> X(2: *)’ Y(2’ *)
e C binding:

int BLAS_xencv_i(int n, const <interval_array> x, int incx,
const <interval_array> y, int incy);

INTERIORV I (If an interval vector is in the interior of another interval vector) Trueifx Cy

This routine checks if an interval vector x is enclosed in the interior of another interval vector y.
We say that an interval vector x is enclosed in the interior of y, denoted as x C y, if and only
if y; < z; < T; < ¥;Vi. This routine returns immediately if n is less than or equal to zero. As
described in section 2.5.3, the value incx or incy less than zero is permitted. However, if incx or incy
is equal to zero, an error flag is set and passed to the error handler.

10

11

12

13

14

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 265
e Fortran 95 binding:

LOGICAL FUNCTION interiorv_i(x, y)

TYPE (INTERVAL) (<wp>), INTENT(IN) :: x(:), y(:)
where

x and y have shape (n)

e Fortran 77 binding:

LOGICAL FUNCTION BLAS_xINTERIORV_I(N, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
<type> X(2: *), Y(2’ *)
¢ C binding:

int BLAS_xinteriorv_i(int n, const <interval_array> x, int incx,
const <interval_array> y, int incy);

DISJV_I (Checks if two interval vectors disjoint) True ifxNy =0

This routine checks if two interval vectors x and y are disjoint, which means that x; Ny, = () for
some 7. This routine returns immediately if n is less than or equal to zero. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if incx or incy is equal to zero, an
error flag is set and passed to the error handler.

e Fortran 95 binding:

LOGICAL FUNCTION disjv_i(x, y)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:), y(:)
where

x and y have shape (n)

e Fortran 77 binding:

LOGICAL FUNCTION BLAS_xDISJV_I(N, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
<type> X(2: *), Y(2’ *)
e C binding:

int BLAS_xdisjv_i(int n, const <interval_array> x, int incx,
const <interval_array> y, int incy);

266 ANNEX C. JOURNAL OF DEVELOPMENT

INTERV I (Intersection of an interval vector with another) y+<xNy.

This routine finds the intersection of two interval vectors x and y, and stores the result in y. This
routine returns immediately if n is less than or equal to zero. As described in section 2.5.3, the
value incx or incy less than zero is permitted. However, if incx or incy is equal to zero, an error flag
is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE interv_i(x, y)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)

TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: y(:)
where

x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xINTERV_I(N, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
<type> X(2: *)’ Y(2’ *)
e C binding:

void BLAS_xinterv_i(int n, const <interval_array> x, int incx,
<interval_array> y, int incy);

WINTERV I (Intersection of two interval vectors) z— xNy.

This routine finds the intersection of two interval vectors x and y, and stores the result in another
interval vector z. This routine returns immediately if n is less than or equal to zero. As described
in section 2.5.3, the value incx or incy or incz less than zero is permitted. However, if incx, incy, or
incz is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE winterv_i(x, y, z)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:), y(:)

TYPE(INTERVAL) (<wp>), INTENT(OUT) :: z(:)
where

X, y and z have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xWINTERV_I(N, X, INCX, Y, INCY, Z, INCZ)
INTEGER SIDE, LDA, M, N

INTEGER N, INCX, INCY, INCZ

<type> XC2,), YC2,%), Z(2,)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 267
¢ C binding:

void BLAS_xwinterv_i(int n, const <interval_array> x, int incx,
const <interval_array> y, int incy,
<interval_array> z, int incz);

HULLV I (Convex hull of an interval vector with another) y < a convex set which contains x Uy

This routine computes a convex set which contains both interval vectors x and y, and overwrites
the input interval vector y with the result. This routine returns immediately if n is less than or
equal to zero. As described in section 2.5.3, the value incx or incy less than zero is permitted.
However, if incx or incy is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE hullv_i(x, y)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)

TYPE(INTERVAL) (<wp>), INTENT(INOUT) :: y(:)
where

x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xHULLV_I(N, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
<type> X(2: *), Y(2’ *)
e C binding:

void BLAS_xhullv_i(int n, const <interval_array> x, int incx,
<interval_array> y, int incy);

WHULLV I (Convex hull of two interval vectors) z < a convex set which contains x Uy.

This routine finds a convex hull of two interval vectors x and y, and stores the result in another
interval vector z. This routine returns immediately if n is less than or equal to zero. As described
in section 2.5.3, the value incx incy, or incz less than zero is permitted. However, if incx or incy or
incz is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE whullv_i(x, y, z)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:), y(:)

TYPE(INTERVAL) (<wp>), INTENT(OUT) :: z(:)
where

X, y and z have shape (n)

268 ANNEX C. JOURNAL OF DEVELOPMENT

e Fortran 77 binding:

SUBROUTINE BLAS_xWHULLV_I(N, X, INCX, Y, INCY, Z, INCZ)

INTEGER N, INCX, INCY, INCZ
<type> XC2, *), Y(2, x), Z(2, *)
e C binding:

void BLAS_xwhullv_i(int n, const <interval_array> x, int incx,
const <interval_array> y, int incy, <interval_array> z,
int incz);

Set Operations Involving Interval Matrices

{GE,GB,SY,SB,SP,TR,TB,TP} ENCM_I (If an interval matrix is enclosed in another) True if
ACB

This routine checks if an interval matrix A is enclosed in another interval matrix B. We say that
an interval matrix A is enclosed in another interval matrix B, denoted as A C B, if and only if
a; j; C b; ; Vi and Vj. Matrices A and B have the same storage format.

e Fortran 95 binding:

General:

LOGICAL FUNCTION ge_encm_i(a, b)
General Band:

LOGICAL FUNCTION gb_encm_i(a, m, k1, b)
Symmetric:

LOGICAL FUNCTION sy_encm_i(a, b [, uplo])
Symmetric Band:

LOGICAL FUNCTION sb_encm_i(a, b [, uplo])
Symmetric Packed:

LOGICAL FUNCTION sp_encm_i(ap, bp [, uplo])
Triangular:

LOGICAL FUNCTION tr_encm_i(a, b [, uplo] [, diag]l)
Triangular Band:

LOGICAL FUNCTION tb_encm_i(a, b [, uplo] [, diag]l)
Triangular Packed:

LOGICAL FUNCTION tp_encm_i(ap, bp [, uplol, [, diagl)
all:

TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:) | ap(:), b(:,:) | bp(:)

TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag

where
a and b have shape (m, n) for general matrix

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

(1, n) for general banded matrix (1 > k1)

(n, n) for symmetric or triangular

(p+1, n) for symmetric banded or triangular
banded (p = band width)

ap and bp have shape (n*(n+1)/2)

e Fortran 77 binding:

General:

LOGICAL FUNCTION BLAS_xGE_ENCM_I(M, N, A, LDA, B, LDB)

General Band:

LOGICAL FUNCTION BLAS_xGB_ENCM_I(M, N, KL, KU, A, LDA, B, LDB)

Symmetric:

LOGICAL FUNCTION BLAS_xSY_ENCM_I(N, A, LDA, B, LDB)

Symmetric Band:

LOGICAL FUNCTION BLAS_xSB_ENCM_I(N, K, A, LDA, B, LDB)

Symmetric Packed:

LOGICAL FUNCTION BLAS_xSP_ENCM_I(N, AP, BP)

Triangular:

LOGICAL FUNCTION BLAS_xTR_ENCM_I(N, A, LDA, B, LDB)

Triangular Band:

LOGICAL FUNCTION BLAS_xTB_ENCM_I(N, K, A, LDA, B, LDB)

Triangular Packed:

LOGICAL FUNCTION BLAS_xTP_ENCM_I(N, AP, BP)

all:
INTEGER
<type>
$

e C binding:

General:
int BLAS_xge_encm_i(

General Band:
int BLAS_xgb_encm_i(

Symmetric:
int BLAS_xsy_encm_i(

Symmetric Band:
int BLAS_xsb_encm_i(

UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, B, LDB
AC 2, LDA, *) or AP(2, *), B(2, LDA, *)
or BP(2, *)

enum blas_order_type order, int m, int n,
const <interval_array> a, int lda,
const <interval_array> b, int 1ldb);

enum blas_order_type order, int m, int n, int ki1,
int ku, const <interval_array> a, int lda,
const <interval_array> b, int 1ldb);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> a, int 1lda,
const <interval_array> b, int 1db);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const <interval_array> a, int lda,
const <interval_array> b, int 1db);

269

270 ANNEX C. JOURNAL OF DEVELOPMENT

Symmetric Packed:

int BLAS_xsp_encm_i(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> ap,
const <interval_array> bp);

Triangular:

int BLAS_xtr_encm_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,
const <interval_array> a, int lda,
const <interval_array> b, int 1db);

Triangular Band:

int BLAS_xtb_encm_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k,
const <interval_array> a, int lda,
const <interval_array> b, int 1db);

Triangular Packed:

int BLAS_xtp_encm_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,
const <interval_array> ap, <interval_array> bp);

{GE,GB,SY,SB,SP,TR,TB,TP} INTERIORM_I (If an interval matrix is in the interior of another
interval matrix) True if A C B

This routine checks if an interval matrix A is enclosed in the interior of another interval matrix B.
We say that an interval matrix A is enclosed in the interior of an interval vatrix B, if and only if
a; j C b; ; Vi and Vj. Matrices A and B have the same storage format.

e Fortran 95 binding:

General:

LOGICAL FUNCTION ge_interiorm_i(a, b)
General Band:

LOGICAL FUNCTION gb_interiorm_i(a, m, k1, b)
Symmetric:

LOGICAL FUNCTION sy_interiorm_i(a, b [, uplo])
Symmetric Band:

LOGICAL FUNCTION sb_interiorm_i(a, b [, uplo])
Symmetric Packed:

LOGICAL FUNCTION sp_interiorm_i(ap, bp [, uplo])
Triangular:

LOGICAL FUNCTION tr_interiorm_i(a, b [, uplo] [, diag]l)
Triangular Band:

LOGICAL FUNCTION tb_interiorm_i(a, b [, uplo] [, diag])
Triangular Packed:

LOGICAL FUNCTION tp_interiorm_i(ap, bp [, uplo], [, diag]l)
all:

TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:) | ap(:), b(:,:) | bp(:)

TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

271

TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag

where

a and b have shape (m, n) for general matrix

(1, n) for general banded matrix (1 > k1)

(n, n) for symmetric or triangular

(p+1, n) for symmetric banded or triangular
banded (p = band width)

ap and bp have shape (n*(n+1)/2)

e Fortran 77 binding:

General:

LOGICAL FUNCTION
General Band:

LOGICAL FUNCTION
Symmetric:

LOGICAL FUNCTION
Symmetric Band:

LOGICAL FUNCTION
Symmetric Packed:

LOGICAL FUNCTION
Triangular:

LOGICAL FUNCTION
Triangular Band:

LOGICAL FUNCTION
Triangular Packed:

LOGICAL FUNCTION
all:

INTEGER

<type>

$

e C binding:

General:

BLAS_xGE_INTERIORM_I(M, N, A, LDA, B, LDB)
BLAS_xGB_INTERIORM_I(M, N, KL, KU, A, LDA, B, LDB)
BLAS_xSY_INTERIORM_I(N, A, LDA, B, LDB)
BLAS_xSB_INTERIORM_I(N, K, A, LDA, B, LDB)
BLAS_xSP_INTERIORM_I(N, AP, BP)
BLAS_xTR_INTERIORM_I(N, A, LDA, B, LDB)
BLAS_xTB_INTERIORM_I(N, K, A, LDA, B, LDB)
BLAS_xTP_INTERIORM_I(N, AP, BP)

UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, B, LDB

AC 2, LDA, *) or AP(2, *), B(2, LDA, *)
or BP(2, *)

int BLAS_xge_interiorm_i(enum blas_order_type order, int m, int n,

General Band:

const <interval_array> a, int lda,
const <interval_array> b, int 1ldb);

int BLAS_xgb_interiorm_i(enum blas_order_type order, int m, int n, int ki1,

Symmetric:

int BLAS_xsy_interiorm_i(enum blas_order_type order, enum blas_uplo_type uplo,

Symmetric Band:

int ku, const <interval_array> a, int 1lda,
const <interval_array> b, int 1ldb);

int n, const <interval_array> a, int lda,
const <interval_array> b, int 1ldb);

272

int BLAS_xsb_interiorm_

Symmetric Packed:

int BLAS_xsp_interiorm_

Triangular:

int BLAS_xtr_interiorm_

Triangular Band:

int BLAS_xtb_interiorm_

Triangular Packed:

int BLAS_xtp_interiorm_

ANNEX C. JOURNAL OF DEVELOPMENT

i(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const <interval_array> a, int lda,
const <interval_array> b, int 1db);

i(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> ap,
const <interval_array> bp);

i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,
const <interval_array> a, int lda,
const <interval_array> b, int 1db);

i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k,
const <interval_array> a, int lda,
const <interval_array> b, int 1ldb);

i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,
const <interval_array> ap, <interval_array> bp)N

{GE,GB,SY,SB,SP,TR,TB, TP} _DISJM_I (If two interval matrices disjoint) Trueif ANB = ()

This routine checks if two interval matrices A and B disjoint, which means that if for some 1, j,
a; ;Nb;; = 0. Matrices A and B have the same storage format.

e Fortran 95 binding:

General:

LOGICAL FUNCTION
General Band:

LOGICAL FUNCTION
Symmetric:

LOGICAL FUNCTION
Symmetric Band:

LOGICAL FUNCTION
Symmetric Packed:

LOGICAL FUNCTION
Triangular:

LOGICAL FUNCTION
Triangular Band:

LOGICAL FUNCTION
Triangular Packed:

LOGICAL FUNCTION
all:

ge_disjm_i(a, b)

gb_disjm_i(a, m, k1, b)
sy_disjm_i(a, b [, uplo])
sb_disjm_i(a, b [, uplo])
sp_disjm_i(ap, bp [, uplo])
tr_disjm_i(a, b [, uplo] [, diag])
tb_disjm_i(a, b [, uplo] [, diag]l)

tp_disjm_i(ap, bp [, uplol, [, diagl)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:) | ap(:), b(:,:) | bp(:)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

TYPE(blas_uplo_t

TYPE(blas_diag_t
where

a and b have sh

ap and bp have
e Fortran 77 binding:

General:

LOGICAL FUNCTION
General Band:

LOGICAL FUNCTION
Symmetric:

LOGICAL FUNCTION
Symmetric Band:

LOGICAL FUNCTION
Symmetric Packed:

LOGICAL FUNCTION
Triangular:

LOGICAL FUNCTION
Triangular Band:

LOGICAL FUNCTION
Triangular Packed:

LOGICAL FUNCTION
all:

INTEGER

<type>

$

e C binding:

General:
int BLAS_xge_disjm_i(

General Band:
int BLAS_xgb_disjm_i(

Symmetric:
int BLAS_xsy_disjm_i(

273

ype), INTENT(IN), OPTIONAL :: uplo
ype), INTENT(IN), OPTIONAL :: diag

ape (m, n) for general matrix
(1, n) for general banded matrix (1 > k1)
(n, n) for symmetric or triangular
(pt1, n) for symmetric banded or triangular

banded (p = band width)
shape (n*x(n+1)/2)

BLAS_xGE_DISJM_I(M, N, A, LDA, B, LDB)
BLAS_xGB_DISJM_I(M, N, KL, KU, A, LDA, B, LDB)
BLAS_xSY_DISJM_I(N, A, LDA, B, LDB)
BLAS_xSB_DISJM_I(N, K, A, LDA, B, LDB)
BLAS_xSP_DISJM_I(N, AP, BP)
BLAS_xTR_DISJM_I(N, A, LDA, B, LDB)
BLAS_xTB_DISJM_I(N, K, A, LDA, B, LDB)
BLAS_xTP_DISJM_I(N, AP, BP)

UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, B, LDB

AC 2, LDA, *) or AP(2, *), B(2, LDA, *)
or BP(2, *)

enum blas_order_type order, int m, int n,
const <interval_array> a, int lda,
const <interval_array> b, int 1db);

enum blas_order_type order, int m, int n, int k1,
int ku, const <interval_array> a, int lda,
const <interval_array> b, int 1db);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> a, int lda,
const <interval_array> b, int 1db);

274 ANNEX C. JOURNAL OF DEVELOPMENT

Symmetric Band:

int BLAS_xsb_disjm_i(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const <interval_array> a, int lda,
const <interval_array> b, int 1db);

Symmetric Packed:

int BLAS_xsp_disjm_i(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> ap,
const <interval_array> bp);

Triangular:

int BLAS_xtr_disjm_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,
const <interval_array> a, int lda,
const <interval_array> b, int 1db);

Triangular Band:

int BLAS_xtb_disjm_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k,
const <interval_array> a, int lda,
const <interval_array> b, int 1db);

Triangular Packed:

int BLAS_xtp_disjm_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,
const <interval_array> ap, <interval_array> bp);

{GE,GB,SY,SB,SP,TR,TB,TP} INTERM I (Elementwise intersection of two interval matrices)
B+~ ANB

This routine finds the elementwise intersection of two interval matrices A and B, and stores the
result in B. Matrices A and B have the same storage format.

e Fortran 95 binding:

General:

SUBROUTINE ge_interm_i(a, b)
General Band:

SUBROUTINE gb_interm_i(a, m, k1, b)
Symmetric:

SUBROUTINE sy_interm_i(a, b [, uplo])
Symmetric Band:

SUBROUTINE sb_interm_i(a, b [, uplo])
Symmetric Packed:

SUBROUTINE sp_interm_i(ap, bp [, uplo])
Triangular:

SUBROUTINE tr_interm_i(a, b [, uplo] [, diag])
Triangular Band:

SUBROUTINE tb_interm_i(a, b [, uplo] [, diagl)
Triangular Packed:

SUBROUTINE tp_interm_i(ap, bp [, uplo]l, [, diag]l)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 275

all:

TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:) | ap(:), b(:,:) | bp(:)

TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag

where

a and b have shape (m, n) for general matrix
(1, n) for general banded matrix (1 > k1)
(n, n) for symmetric or triangular
(p+1, n) for symmetric banded or triangular

banded (p = band width)
ap and bp have shape (n*(n+1)/2)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_INTERM_I(M, N, A, LDA, B, LDB)
General Band:

SUBROUTINE BLAS_xGB_INTERM_I(M, N, KL, KU, A, LDA, B, LDB)
Symmetric:

SUBROUTINE BLAS_xSY_INTERM_I(N, A, LDA, B, LDB)
Symmetric Band:

SUBROUTINE BLAS_xSB_INTERM_I(N, K, A, LDA, B, LDB)
Symmetric Packed:

SUBROUTINE BLAS_xSP_INTERM_I(N, AP, BP)
Triangular:

SUBROUTINE BLAS_xTR_INTERM_I(N, A, LDA, B, LDB)
Triangular Band:

SUBROUTINE BLAS_xTB_INTERM_I(N, K, A, LDA, B, LDB)
Triangular Packed:

SUBROUTINE BLAS_xTP_INTERM_I(N, AP, BP)

all:
INTEGER UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, B, LDB
<type> AC 2, LDA, *) or AP(2, *), B(2, LDA, *)
$ or BP(2, *)
¢ C binding:
General:

void BLAS_xge_interm_i(enum blas_order_type order, int m, int n,
const <interval_array> a, int lda,
<interval_array> b, int 1db);
General Band:
void BLAS_xgb_interm_i(enum blas_order_type order, int m, int n, int kI,
int ku, const <interval_array> a, int lda,
<interval_array> b, int 1db);
Symmetric:
void BLAS_xsy_interm_i(enum blas_order_type order, enum blas_uplo_type uplo,

276 ANNEX C. JOURNAL OF DEVELOPMENT
int n, const <interval_array> a, int lda,
<interval_array> b, int 1ldb);

Symmetric Band:

void BLAS_xsb_interm_i(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const <interval_array> a, int lda,
<interval_array> b, int 1ldb);

Symmetric Packed:

void BLAS_xsp_interm_i(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> ap,
<interval_array> bp);

Triangular:

void BLAS_xtr_interm_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,
const <interval_array> a, int lda,
<interval_array> b, int 1db);

Triangular Band:

void BLAS_xtb_interm_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k,
const <interval_array> a, int lda,
<interval_array> b, int 1db);

Triangular Packed:

void BLAS_xtp_interm_i(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,
const <interval_array> ap, <interval_array> bp);

GE_WINTERM_I (Intersection of two interval matrices) C+~ANB

This routine finds the intersection of two interval matrices A and B, and stores the result in another
interval matrix C. Matrices A, B and C have the same storage format.

e Fortran 95 binding:

General:

SUBROUTINE ge_winterm_i(a, b, c)

General Band:

SUBROUTINE gb_winterm_i(a, m, k1, b, ¢)

Symmetric:

SUBROUTINE sy_winterm_i(a, b, ¢ [, uplo])

Symmetric Band:

SUBROUTINE sb_winterm_i(a, b, ¢ [, uplo])

Symmetric Packed:

SUBROUTINE sp_winterm_i(ap, bp, cp [, uplo])

Triangular:

SUBROUTINE tr_winterm_i(a, b, ¢ [, uplo] [, diag])

Triangular Band:

SUBROUTINE tb_winterm_i(a, b, ¢ [, uplo]l [, diagl)

Triangular Packed:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 277

SUBROUTINE tp_winterm_i(ap, bp, cp [, uplol, [, diagl)
all:
TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:), b(:,:),
c(:,:), ap(:), bp(:), cp(:)
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag
where
a, b and ¢ have shape (m, n) for general matrix
(1, n) for general banded matrix (1 > k1)
(n, n) for symmetric or triangular
(p+1, n) for symmetric banded or triangular
banded (p = band width)
ap, bp and cp have shape (n*(n+1)/2)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_WINTERM_I(M, N, A, LDA, B, LDB, C, LDC)
General Band:

SUBROUTINE BLAS_xGB_WINTERM_I(M, N, KL, KU, A, LDA, B, LDB,

$ C, LDC)
Symmetric:

SUBROUTINE BLAS_xSY_WINTERM_I(N, A, LDA, B, LDB, C, LDC)
Symmetric Band:

SUBROUTINE BLAS_xSB_WINTERM_I(N, K, A, LDA, B, LDB, C, LDC)
Symmetric Packed:

SUBROUTINE BLAS_xSP_WINTERM_I(N, AP, BP, CP)
Triangular:

SUBROUTINE BLAS_xTR_WINTERM_I(N, A, LDA, B, LDB, C, LDC)
Triangular Band:

SUBROUTINE BLAS_xTB_WINTERM_I(N, K, A, LDA, B, LDB, C, LDC)
Triangular Packed:

SUBROUTINE BLAS_xTP_WINTERM_I(N, AP, BP, CP)

all:
INTEGER UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, B, LDB,
$ C, LDC
<type> AC 2, LDA, *) or AP(2, *), B(2, LDA, %)
$ or BP(2,*), C(2, LDC, *) or CP(2,*)
e C binding:
General:

void BLAS_xge_winterm_i(enum blas_order_type order, int m, int n,
const <interval_array> a, int lda,
const <interval_array> b, int 1db,
<interval_array> c, int ldc);

General Band:

278

void BLAS_xgb_winterm_i(

Symmetric:
void BLAS_xsy_winterm_i(

Symmetric Band:
void BLAS_xsb_winterm_i(

Symmetric Packed:
void BLAS_xsp_winterm_i (

Triangular:

void BLAS_xtr_winterm_i(

Triangular Band:
void BLAS_xtb_winterm_i(

Triangular Packed:
void BLAS_xtp_winterm_i(

ANNEX C. JOURNAL OF DEVELOPMENT

enum blas_order_type order, int m, int n, int ki1,
int ku, const <interval_array> a, int lda,

const <interval_array> b, int 1ldb,
<interval_array> ¢, int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> a, int lda,

const <interval_array> b, int 1db,

<interval_array> c, int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const <interval_array> a, int lda,
const <interval_array> b, int 1db,

<interval_array> c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> ap,
const <interval_array> bp, <interval_array> cp);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,

const <interval_array> a, int lda,

const <interval_array> b, int 1db,

<interval_array> c, int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k,

const <interval_array> a, int lda,

const <interval_array> b, int 1ldb,

<interval_array> c¢, int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,

const <interval_array> ap, <interval_array> bp,
<interval_array> cp);

{GE,GB,SY,SB,SP,TR,TB,TP} HULLM_I (Convex hull of an interval matrix with another) B «
the convex hull contains A UB

This routine finds an interval matrix which contains both interval matrices A and B, and stores
the result in B. Matrices A and B have the same storage format.

e Fortran 95 binding:

General:

SUBROUTINE ge_hullm_i(a, b)

General Band:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

SUBROUTINE
Symmetric:

SUBROUTINE
Symmetric Band:

SUBROUTINE

Symmetric Packed:

SUBROUTINE
Triangular:

SUBROUTINE
Triangular Band:

SUBROUTINE

SUBROUTINE
all:

TYPE(INTERVAL) (<wp>),
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL ::
TYPE (blas_diag_type), INTENT(IN), OPTIONAL ::

where

gb_hullm i(a, m, k1, b)

sy_hullm_i(a, b [, uplo])

sb_hullm_i(a, b [, uplo])

sp_hullm_i(ap, bp [, uplo])

tr_hullm_i(a, b [, uplo] [, diag])

tb_hullm_i(a, b [, uplo] [, diag])
Triangular Packed:
tp_hullm_i(ap, bp [, uplol, [, diagl)

INTENT (IN)

:roa(:,:), b(:,:), ap(:), bp(:)

uplo
diag

a and b have shape (m, n) for general matrix

ap and bp

Fortran 77 binding:

General:
SUBROUTINE
General Band:
SUBROUTINE
Symmetric:
SUBROUTINE
Symmetric Band:
SUBROUTINE

Symmetric Packed:

SUBROUTINE
Triangular:

SUBROUTINE
Triangular Band:

SUBROUTINE

(1, n) for general banded matrix (1 > kl)

(n, n) for symmetric or triangular

(p+1, n) for symmetric banded or triangular

banded (p = band width)
have shape (n*(n+1)/2)

BLAS_xGE_HULLM_I(

BLAS_xGB_HULLM_I(

BLAS_xSY_HULLM_I(

BLAS_xSB_HULLM_I(

BLAS_xSP_HULLM_I(

BLAS_xTR_HULLM_I(

BLAS_xTB_HULLM_I(

Triangular Packed:
SUBROUTINE BLAS_xTP_HULLM_I(N, AP, BP)

all:
INTEGER
<type>
$

UPLO, TRANS,

N, A, LDA,
N, KL, KU,
A, LDA, B,
K, A, LDA,
AP, BP)

A, LDA, B,

K, A, LDA,

DIAG, M, N, K, KL, KU, LDA, B, LDB
AC 2, LDA, *) or AP(2, *), B(2, LDA, *)
or BP(2, *)

B, LDB)
A, LDA, B, LDB)
LDB)

B, LDB)

LDB)

B, LDB)

279

280

e C binding:
General:

void BLAS_xge_hullm_i(

General Band:
void BLAS_xgb_hullm_i(

Symmetric:
void BLAS_xsy_hullm_i(

Symmetric Band:
void BLAS_xsb_hullm_i(

Symmetric Packed:
void BLAS_xsp_hullm_i(

Triangular:
void BLAS_xtr_hullm_i(

Triangular Band:
void BLAS_xtb_hullm_i(

Triangular Packed:
void BLAS_xtp_hullm_i(

ANNEX C. JOURNAL OF DEVELOPMENT

enum blas_order_type order, int m, int n,
const <interval_array> a, int lda,
<interval_array> b, int 1db);

enum blas_order_type order, int m, int n, int ki1,
int ku, const <interval_array> a, int lda,
<interval_array> b, int 1db);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> a, int lda,
<interval_array> b, int 1db);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const <interval_array> a, int 1lda,
<interval_array> b, int 1db);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> ap,
<interval_array> bp) ;

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,

const <interval_array> a, int lda,

<interval_array> b, int 1db);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k,

const <interval_array> a, int lda,

<interval_array> b, int 1db);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,
const <interval_array> ap, <interval_array> bp);

{GE,GB,SY,SB,SP,TR,TB, TP} WHULLM_I (Convex hull of two interval matrices)

C < the convex hull contains A UB

This routine finds the convex set which contains both interval matrices A and B, and stores the
result in an interval matrix C. Matrices A, B and C have the same storage format.

e Fortran 95 binding:

General:

SUBROUTINE ge_whullm_i(a, b, c)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

General Band:

SUBROUTINE gb_whullm_i(a, m, k1, b, c)

Symmetric:

SUBROUTINE sy_whullm_i(a, b, c [,
Symmetric Band:

SUBROUTINE sb_whullm_i(a, b, ¢ [,
Symmetric Packed:

SUBROUTINE sp_whullm_i(ap, bp, cp
Triangular:

SUBROUTINE tr_whullm_i(a, b, c¢ [,
Triangular Band:

SUBROUTINE tb_whullm_i(a, b, c [,
Triangular Packed:

SUBROUTINE tp_whullm_i(ap, bp, cp
all:

TYPE(INTERVAL) (<wp>), INTENT(IN)

uplo])

uplo])

[, uplo])

uplo] [, diag]l)

uplo] [, diag]l)

[, uplol, [, diag])

::oa:,:), b(:,:)
c(:,:), ap(:), bp(:), cp(:)

TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag

where

a, b and ¢ have shape (m, n) for general matrix

(1, n) for general banded matrix (1 > k1)

(n, n) for symmetric or triangular

(p+1, n) for symmetric banded or triangular

banded (p = band width)
ap, bp and cp have shape (n*(n+1)/2)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_WHULLM_I(M, N,

General Band:

SUBROUTINE BLAS_xGB_WHULLM_I(M, N,

A, LDA, B, LDB,

KL, KU, A, LDA,

$ ¢, LDC)

Symmetric:

SUBROUTINE BLAS_xSY_WHULLM_I(N, A,

Symmetric Band:

SUBROUTINE BLAS_xSB_WHULLM_I(N, K,

Symmetric Packed:

LDA, B, LDB, C,

A, LDA, B, LDB,

SUBROUTINE BLAS_xSP_WHULLM_I(N, AP, BP, CP)

Triangular:

SUBROUTINE BLAS_xTR_WHULLM_I(N, A,

Triangular Band:

SUBROUTINE BLAS_xTB_WHULLM_I(N, K,

Triangular Packed:

LDA, B, LDB, C,

A, LDA, B, LDB,

SUBROUTINE BLAS_xTP_WHULLM_I(N, AP, BP, CP)

all:

INTEGER UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, B, LDB

C, LDC)

B, LDB,

LDC)

C, LDC)

LDC)

C, LDC)

281

282

$
<type>
$

e C binding:

General:
void BLAS_xge_whullm_i(

General Band:
void BLAS_xgb_whullm_i(

Symmetric:
void BLAS_xsy_whullm_i(

Symmetric Band:
void BLAS_xsb_whullm_i(

Symmetric Packed:
void BLAS_xsp_whullm_i(

Triangular:
void BLAS_xtr_whullm_i(

Triangular Band:
void BLAS_xtb_whullm_i(

Triangular Packed:
void BLAS_xtp_whullm_i(

ANNEX C. JOURNAL OF DEVELOPMENT

C, LDC
AC 2, LDA, *) or AP(2, *), B(2, LDA, *)
or BP(2,*), C(2, LDC, *) or CP(2,*)

enum blas_order_type order, int m, int n,
const <interval_array> a, int lda,

const <interval_array> b, int 1db,
<interval_array> c¢, int ldc);

enum blas_order_type order, int m, int n, int kl,
int ku, const <interval_array> a, int lda,

const <interval_array> b, int 1db,
<interval_array> c¢, int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> a, int lda,

const <interval_array> b, int 1ldb,

<interval_array> c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const <interval_array> a, int lda,
const <interval_array> b, int 1ldb,

<interval_array> c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> ap,
const <interval_array> bp, <interval_array> cp);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,

const <interval_array> a, int lda,

const <interval_array> b, int 1ldb,

<interval_array> c¢, int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k,

const <interval_array> a, int lda,

const <interval_array> b, int 1db,

<interval_array> c¢, int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n,

const <interval_array> ap, <interval_array> bp,
<interval_array> cp);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 283
Utility Functions Involving Interval Vectors
EMPTYELEV I (Empty entry & location) k+x=0; or —1

This routine checks if an interval vector, x, contains an empty interval entry.

If x contains

empty interval entries, then the routine returns the smallest offset or index k such that x; =

[NaN_empty, NaN_empty]. Otherwise, the routine returns —1.

e Fortran 95 binding:

INTEGER FUNCTION emptyelev_i(x)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)
where

x has shape (n)

e Fortran 77 binding:

INTEGER FUNCTION BLAS_xEMPTYELEV_I(N, X, INCX)

INTEGER N, INCX
<type> X(23 *)
¢ C binding:

int BLAS_xemptyelev_i(int n, const <interval_array> x, int incx);

INFV_I (The left endpoint of an interval vector)

This routine finds the real vector v such that v; = z; Vi.

e Fortran 95 binding:

SUBROUTINE infv_i(x, v)

REAL (<wp>), INTENT(OUT) :: v(:)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)
where

v and x have shape (n)

e Fortran 77 binding:
SUBROUTINE BLAS_xINFV_I(N, X, INCX, V)
INTEGER N, INCX

<type> XC2,), V(*)

e C binding:

VT

284 ANNEX C. JOURNAL OF DEVELOPMENT

void BLAS_xinfv_i(int n, const <interval_array> x, int incx, RARRAY v);

SUPV I (The right endpoint of an interval vector) V4T

This routine finds the real vector v such that v; = 7; Vi.

e Fortran 95 binding:

SUBROUTINE supv_i(x, v)

REAL (<wp>), INTENT(OUT) :: v(:)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)
where

v and x have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xSUPV_I(N, X, INCX, V)

INTEGER N, INCX
<type> XC2,), V(*x)
e C binding:

void BLAS_xsupv_i(int n, const <interval_array> x, int incx, RARRAY v);

MIDV_I (The approximate midpoint of an interval vector) v (T+z)/2
. . Ttz .
This routine finds the real vector v such that v; = — Vi.

e Fortran 95 binding:

SUBROUTINE midv_i(x, v)

REAL (<wp>), INTENT(OUT) :: v(:)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)
where

v and x have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xMIDV_I(N, X, INCX, V)
INTEGER N, INCX
<type> X(C2,), V(x)

e C binding:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 285

void BLAS_xmidv_i(int n, const <interval_array> x, int incx, RARRAY v);

WIDTHV I (The elementwise width of an interval vector) v

8
|
I8

This routine finds the real vector v such that v; = z; — z; Vi.

e Fortran 95 binding:

SUBROUTINE widthv_i(x, v)

REAL (<wp>), INTENT(OUT) :: v(:)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: x(:)
where

v and x have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xWIDTHV_I(N, X, INCX, V)

INTEGER N, INCX
<type> XC2,), V(*)
e C binding:

void BLAS_xwidthv_i(int n, const <interval_array> x, int incx, RARRAY v);

CONSTRUCTV.I (Constructs an interval vector from two floating point vectors)
X + [min{u,v}, max{u,v}]

This routine constructs an interval vector x from two floating point vectors u and v such that
x; contains the interval [min{u;, v;}, max{u;,v;}] Vi. By letting u = v, the routine constructs an
interval vector from a single floating point vector.

e Fortran 95 binding:

SUBROUTINE constructv_i(x, u, v)

REAL (<wp>), INTENT(IN) :: u(:), v(:)

TYPE(INTERVAL) (<wp>), INTENT(OUT) :: x(:)
where

u, v and x have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xCONSTRUCTV_I(N, U, INCU, V, INCV, X, INCX)

INTEGER N, INCU, INCV, INCX
<type> X(C2,), UC*), V(x)
¢ C binding:

void BLAS_xconstructv_i(int n, RARRAY u, int incu, RARRAY v, int incv,
<interval_array> x, int incx);

286

ANNEX C. JOURNAL OF DEVELOPMENT

Utility Functions Involving Interval Matrices

{GE,GB,SY,SB,SP,TR,TB,TP}_.EMPTYELEM.I (Empty entry & location) I+ a;; =0; or — 1

This routine checks if an interval matrix, A, contains an empty interval entry. If A contains empty
interval entries, then the routine returns the smallest offset or index [(according to the first index)

such that a; ; = [NaN_empty, NaN_empty]. Otherwise, it returns —1.

e Fortran 95 binding:

General:

INTEGER FUNCTION
General Band:

INTEGER FUNCTION
Symmetric:

INTEGER FUNCTION
Symmetric Band:

INTEGER FUNCTION
Symmetric Packed:

INTEGER FUNCTION
Triangular:

INTEGER FUNCTION
Triangular Band:

INTEGER FUNCTION
Triangular Packed:

INTEGER FUNCTION
all:

ge_emptyelem_i(
gb_emptyelem_i(
sy_emptyelem_i (
sb_emptyelem_i (
sp_emptyelem_i (
tr_emptyelem_i(
tb_emptyelem_i (

tp_emptyelem_i (

TYPE(INTERVAL) (<Wp>), INTENT (IN)
INTEGER, INTENT(OUT) :: i, j
INTEGER, INTENT(IN) :: k1
TYPE(blas_uplo_type), INTENT(IN),
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag

where

a)
a, m, k1)
a [, uplo]l)

a, k1 [, uplo]l)

ap [, uplo])

a [, uplol [, diagl)

a, k1 [, uplo] [, diag]l)
ap, cp [, uplol, [, diag]l)

:roa(:,:), ap(:)

OPTIONAL :: uplo

a has shape (m, n) for general matrix
(1, n) for general banded matrix (1 > k1)
(n, n) for symmetric or triangular
(p+1, n) for symmetric banded or triangular
banded (p = band width)
ap has shape (n*(n+1)/2)

e Fortran 77 binding:

General:

INTEGER FUNCTION BLAS_xGE_EMPTYELEM_I(M, N, A, LDA, B, LDB)

General Band:

INTEGER FUNCTION BLAS_xGB_EMPTYELEM_I(M, N, KL, KU, A, LDA)

Symmetric:

INTEGER FUNCTION BLAS_xSY_EMPTYELEM_I(UPLO, N, A, LDA)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS 287

! Symmetric Band:

2 INTEGER FUNCTION BLAS_xSB_EMPTYELEM_I(UPLO, N, K, A, LDA)

3 Symmetric Packed:

4 INTEGER FUNCTION BLAS_xSP_EMPTYELEM_I(UPLO, N, AP)

5 Triangular:

6 INTEGER FUNCTION BLAS_xTR_EMPTYELEM I(UPLO, TRANS, DIAG, N, A, LDA)

4 Triangular Band:

8 INTEGER FUNCTION BLAS_xTB_EMPTYELEM_I(UPLO, TRANS, DIAG, N, K, A, LDA)
K Triangular Packed:

10 INTEGER FUNCTION BLAS_xTP_EMPTYELEM_I(UPLO, TRANS, DIAG, N, AP)

= all:

12 INTEGER UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, I, J

13 <type> AC 2, LDA, *) or AP(2, *)

14

15 e C binding:

16

17 General:

18 int BLAS_xge_emptyelem_i(enum blas_order_type order, int m, int n,

19 const <interval_array> a, int lda);

20 General Band:

21 int BLAS_xgb_emptyelem_i(enum blas_order_type order, int m, int n, int k1,

22 int ku, const <interval_array> a, int lda, int i,

23 int j);

24 Symmetric:

25 int BLAS_xsy_emptyelem_i(enum blas_order_type order, enum blas_uplo_type uplo,
26 int n, const <interval_array> a, int 1lda);

27 Symmetric Band:

28 int BLAS_xsb_emptyelem_i(enum blas_order_type order, int n, int k,

29 const <interval_array> a, int 1lda);

30 Symmetric Packed:

31 int BLAS_xsp_emptyelem_i(enum blas_order_type order, int n,

32 const <interval_array> ap);

33 Triangular:

34 int BLAS_xtr_emptyelem_i(enum blas_order_type order, enum blas_uplo_type uplo,
35 enum blas_trans_type trans, enum blas_diag_type diag,
36 int n, const <interval_array> a, int lda);

37 Triangular Band:

38 int BLAS_xtb_emptyelem_i(enum blas_order_type order, enum blas_uplo_type uplo,
39 enum blas_trans_type trans, enum blas_diag_type diag,
40 int n, int k, const <interval_array> a, int lda);

41 Triangular Packed:

42 int BLAS_xtp_emptyelem_i(enum blas_order_type order, enum blas_uplo_type uplo,
43 enum blas_trans_type trans, enum blas_diag_type diag,
44 int n, const <interval_array> ap, int i, int j);

45
46

a7 {GE,GB,SY,SB,SP,TR,TB, TP} INFM_I (Left endpoint of an interval matrix) C+ A

48

288 ANNEX C. JOURNAL OF DEVELOPMENT

This routine finds the real matrix C' such that c; ; = g, ; Vi and Vj, where A = {a; ;} is a general (or
general banded, or symmetric, or symmetric banded, symmetric packed, or triangular, triangular
banded, triangular packed) interval matrix.

e Fortran 95 binding:

General:
SUBROUTINE ge_infm_i(a, c)
General Band:
SUBROUTINE gb_infm_i(a, m, k1, c)
Symmetric:
SUBROUTINE sy_infm_i(a, ¢ [, uplo])
Symmetric Band:
SUBROUTINE sb_infm_i(a, k1, ¢ [, uplo])
Symmetric Packed:
SUBROUTINE sp_infm_i(ap, cp [, uplo])
Triangular:
SUBROUTINE tr_infm_i(a, ¢ [, uplo] [, diagl)
Triangular Band:
SUBROUTINE tb_infm_i(a, k1, ¢ [, uplo]l [, diagl)
Triangular Packed:
SUBROUTINE tp_infm_i(ap, cp [, uplol, [, diag])
all:
TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:), ap(:)
REAL (<wp>), INTENT(OUT) :: c(:,:), cp(:)
INTEGER, INTENT(IN) :: k1
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag
where
a and c have shape
(m, n) for general matrix
(1, n) for general banded matrix (1 > k1)
(n, n) for symmetric or triangular
(p+1, n) for symmetric banded or triangular
banded (p = band width)
ap and cp have shape (n*(n+1)/2)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_INFM_I(M, N, A, LDA C, LDC)
General Band:

SUBROUTINE BLAS_xGB_INFM_I(M, N, KL, KU, A, LDA, C, LDC)
Symmetric:

SUBROUTINE BLAS_xSY_INFM_I(UPLO, N, A, LDA, C, LDC)
Symmetric Band:

SUBROUTINE BLAS_xSB_INFM_I(UPLO, N, K, A, LDA, C, LDC)
Symmetric Packed:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

C.4. INTERVAL BLAS

SUBROUTINE BLAS_

Triangular:

SUBROUTINE BLAS_

Triangular Band:

SUBROUTINE BLAS_

Triangular Packed:

SUBROUTINE BLAS_

all:
INTEGER
<type>

e C binding:

General:
void BLAS_xge_infm_i(

General Band:
void BLAS_xgb_infm_i(

Symmetric:
void BLAS_xsy_infm_i(
Symmetric Band:

void BLAS_xsb_infm_i(

Symmetric Packed:
void BLAS_xsp_infm_i(

Triangular:
void BLAS_xtr_infm_i(

Triangular Band:
void BLAS_xtb_infm_i(

Triangular Packed:
void BLAS_xtp_infm_i(

289

xSP_INFM_I(UPLO, N, AP, CP)

xTR_INFM_I(UPLO, TRANS, DIAG, N, A, LDA, C, LDC)
xTB_INFM_I(UPLO, TRANS, DIAG, N, K, A, LDA, C, LDC)
xTP_INFM_I(UPLO, TRANS, DIAG, N, AP, CP)

UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, LDC
AC 2, LDA, *) or AP(2, *), C(LDC, *) or CP(*)

enum blas_order_type order, int m, int n,
const <interval_array> a, int 1lda, RARRAY c, int 1ldc);

enum blas_order_type order, int m, int n, int k1, int ku,
const <interval_array> a, int 1lda, RARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> a, int lda,
RARRAY c, int 1ldc);

enum blas_order_type order, int n, int k,
const <interval_array> a, int 1lda, RARRAY c, int 1ldc);

enum blas_order_type order, int n,
const <interval_array> ap, RARRAY cp);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const <interval_array> a, int lda,

RARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, const <interval_array> a, int lda,
RARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const <interval_array> ap, RARRAY cp);

{GE,GB,SY,SB,SP,TR,TB,TP}_SUPM.I (Right endpoint of an interval matrix) C«4

290 ANNEX C. JOURNAL OF DEVELOPMENT

This routine finds the real matrix C such that ¢; ; = @; j Vi and Vj, where A = {a; ;} is a general (or
general banded, or symmetric, or symmetric banded, symmetric packed, or triangular, triangular
banded, triangular packed) interval matrix.

e Fortran 95 binding:

General:
SUBROUTINE ge_supm_i(a, c)
General Band:
SUBROUTINE gb_supm_i(a, m, k1, c)
Symmetric:
SUBROUTINE sy_supm_i(a, ¢ [, uplo])
Symmetric Band:
SUBROUTINE sb_supm_i(a, k1, ¢ [, uplo])
Symmetric Packed:
SUBROUTINE sp_supm_i(ap, cp [, uplo]l)
Triangular:
SUBROUTINE tr_supm_i(a, c¢ [, uplo] [, diagl)
Triangular Band:
SUBROUTINE tb_supm_i(a, k1, ¢ [, uplo]l [, diagl)
Triangular Packed:
SUBROUTINE tp_supm_i(ap, cp [, uplo]l, [, diag])
all:
TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:), ap(:)
REAL (<wp>), INTENT(OUT) :: c(:,:), cp(:)
INTEGER, INTENT(IN) :: k1
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag
where
a and c have shape
(m, n) for general matrix
(1, n) for general banded matrix (1 > k1)
(n, n) for symmetric or triangular
(p+1, n) for symmetric banded or triangular
banded (p = band width)
ap and cp have shape (n*(n+1)/2)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_SUPM_I(M, N, A, LDA, C, LDC)
General Band:

SUBROUTINE BLAS_xGB_SUPM_I(M, N, KL, KU, A, LDA, C, LDC)
Symmetric:

SUBROUTINE BLAS_xSY_SUPM_I(UPLO, N, A, LDA, C, LDC)
Symmetric Band:

SUBROUTINE BLAS_xSB_SUPM_I(UPLO, N, K, A, LDA, C, LDC)
Symmetric Packed:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

C.4. INTERVAL BLAS

SUBROUTINE BLAS_

Triangular:

SUBROUTINE BLAS_

Triangular Band:

SUBROUTINE BLAS_

Triangular Packed:

SUBROUTINE BLAS_

all:
INTEGER
<type>

e C binding:

General:
void BLAS_xge_supm_i(

General Band:
void BLAS_xgb_supm_i(

Symmetric:
void BLAS_xsy_supm_i(
Symmetric Band:

void BLAS_xsb_supm_i(

Symmetric Packed:
void BLAS_xsp_supm_i(

Triangular:
void BLAS_xtr_supm_i(

Triangular Band:
void BLAS_xtb_supm_i (

Triangular Packed:
void BLAS_xtp_supm_i(

291

xSP_SUPM_I(UPLO, N, AP, CP)

xTR_SUPM_I(UPLO, TRANS, DIAG, N, A, LDA, C, LDC)
xTB_SUPM_I(UPLO, TRANS, DIAG, N, K, A, LDA, C, LDC)
xTP_SUPM_I(UPLO, TRANS, DIAG, N, AP, CP)

UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, LDC
AC 2, LDA, *) or AP(2, *), C(LDC, *) or CP(*)

enum blas_order_type order, int m, int n,
const <interval_array> a, int 1lda, RARRAY c, int 1ldc);

enum blas_order_type order, int m, int n, int kl, int ku,
const <interval_array> a, int 1lda, RARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> a, int lda,
RARRAY c, int 1ldc);

enum blas_order_type order, int n, int k,
const <interval_array> a, int 1lda, RARRAY c, int 1ldc);

enum blas_order_type order, int n,
const <interval_array> ap, RARRAY cp);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const <interval_array> a, int lda,

RARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, const <interval_array> a, int lda,
RARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const <interval_array> ap, RARRAY cp);

{GE,GB,SY,SB,SP,TR,TB,TP}_MIDM._I (Midpoint matrix of an interval matrix) C < (A + B)/2

292

ANNEX C. JOURNAL OF DEVELOPMENT

a; ;i + ajj
This routine finds the real matrix C such that BLAS; ; = %m Vi and Vj, where A = {a; ;} is

a general (or general banded, or symmetric, or symmetric banded, symmetric packed, or triangular,
triangular banded, triangular packed) interval matrix.

e Fortran 95 binding:

General:
SUBROUTINE
General Band:
SUBROUTINE
Symmetric:
SUBROUTINE
Symmetric Band:
SUBROUTINE

Symmetric Packed:

SUBROUTINE
Triangular:

SUBROUTINE
Triangular Band:

SUBROUTINE

ge_midm_i (
gb_midm_i(
sy_midm_i (
sb_midm_i (
sp_midm_i(
tr_midm_i(

tb_midm_i(

Triangular Packed:

SUBROUTINE
all:

tp_midm_i(

a, c)

a, m, k1, ¢)

a, ¢ [, uplo])

a, k1, ¢ [, uplo])

ap, cp [, uplo])

a, ¢ [, uplo]l [, diag]l)

a, k1, c [, uplo] [, diag]l)

ap, cp [, uplol, [, diag]l)

TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:), ap(:)
REAL (<wp>), INTENT(OUT) :: c(:,:), cp(:)

INTEGER, INTENT(IN)

0kl

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag

where

a and c¢ have shape
(m, n) for general matrix
(1, n) for general banded matrix (1 > k1)
(n, n) for symmetric or triangular
(pt1, n) for symmetric banded or triangular
banded (p = band width)
ap and cp have shape (n*(n+1)/2)

Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_MIDM_I(M, N, A, LDA, C, LDC)

General Band:

SUBROUTINE BLAS_xGB_MIDM_I(M, N, KL, KU, A, LDA, C, LDC)

Symmetric:

SUBROUTINE BLAS_xSY_MIDM_I(UPLO, N, A, LDA, C, LDC)

Symmetric Band:

SUBROUTINE BLAS_xSB_MIDM_I(UPLO, N, K, A, LDA, C, LDC)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

Symmetric Packed:

SUBROUTINE BLAS_

Triangular:

SUBROUTINE BLAS_

Triangular Band:

SUBROUTINE BLAS_

Triangular Packed:

SUBROUTINE BLAS_

all:
INTEGER
<type>
$

e C binding:

General:
void BLAS_xge_midm_i(

General Band:
void BLAS_xgb_midm_i(

Symmetric:
void BLAS_xsy_midm_i(
Symmetric Band:

void BLAS_xsb_midm_i(

Symmetric Packed:
void BLAS_xsp_midm_i(

Triangular:
void BLAS_xtr_midm_i(

Triangular Band:
void BLAS_xtb_midm_i(

Triangular Packed:
void BLAS_xtp_midm_i(

293

xSP_MIDM_I(UPLO, N, AP, CP)

xTR_MIDM_I(UPLO, TRANS, DIAG, N, A, LDA, C, LDC)
xTB_MIDM_I(UPLO, TRANS, DIAG, N, K, A, LDA, C, LDC)
xTP_MIDM_I(UPLO, TRANS, DIAG, N, AP, CP)

UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, LDC
AC 2, LDA, *) or AP(2, *), C(2, LDA, *) or
CP(2, *)

enum blas_order_type order, int m, int n,
const <interval_array> a, int 1lda, RARRAY c, int 1ldc);

enum blas_order_type order, int m, int n, int k1, int ku,
const <interval_array> a, int 1lda, RARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> a, int lda, RARRAY c,
int 1ldc);

enum blas_order_type order, int n, int k,
const <interval_array> a, int lda, RARRAY c, int 1ldc);

enum blas_order_type order, int n,
const <interval_array> ap, RARRAY cp);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const <interval_array> a, int lda,

RARRAY c¢, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, const <interval_array> a, int lda,
RARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const <interval_array> ap, RARRAY cp);

294

ANNEX C. JOURNAL OF DEVELOPMENT

{GE,GB,SY,SB,SP,TR,TB,TP}_WIDTHM_I (Elementwise width of an interval matrix) C' < A—A

This routine finds the real matrix C such that c;; = @;; — @, ; Vi and Vj, where A = {a;;} is a
general (or general banded, or symmetric, or symmetric banded, symmetric packed, or triangular,
triangular banded, triangular packed) interval matrix.

e Fortran 95 binding:

General:

SUBROUTINE ge_widthm_i(a, c)

General Band:

SUBROUTINE gb_widthm_i(a, m, k1, c)

Symmetric:

SUBROUTINE sy_widthm_i(a, ¢ [, uplo])

Symmetric Band:

SUBROUTINE sb_widthm_i(a, k1, c¢ [, uplo])

Symmetric Packed:

SUBROUTINE sp_widthm_i(ap, cp [, uplo])

Triangular:

SUBROUTINE tr_widthm_i(a, ¢ [, uplo] [, diagl)

Triangular Band:

SUBROUTINE tb_widthm_i(a, k1, ¢ [, uplo] [, diagl)

Triangular Packed:

all:

SUBROUTINE tp_widthm_i(ap, cp [, uplol, [, diag])

TYPE(INTERVAL) (<wp>), INTENT(IN) :: a(:,:), ap(:)
REAL (<wp>), INTENT(QOUT) :: c(:,:), cp(:)

INTEGER, INTENT(IN) :: k1l

TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag

where

a and c have shape
(m, n) for general matrix
(1, n) for general banded matrix (1 > k1)
(n, n) for symmetric or triangular
(p+1, n) for symmetric banded or triangular
banded (p = band width)
ap and cp have shape (n*(n+1)/2)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_WIDTHM_I(M, N, A, LDA, C, LDC)

General Band:

SUBROUTINE BLAS_xGB_WIDTHM_I(M, N, KL, KU, A, LDA, C, LDC)

Symmetric:

SUBROUTINE BLAS_xSY_WIDTHM_I(UPLO, N, A, LDA, C, LDC)

Symmetric Band:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

295

SUBROUTINE BLAS_xSB_WIDTHM_I(UPLO, N, K, A, LDA, C, LDC)

Symmetric Packed:

SUBROUTINE BLAS_xSP_WIDTHM_I(UPLO, N, AP, CP)

Triangular:

SUBROUTINE BLAS_xTR_WIDTHM_I(UPLO, TRANS, DIAG, N, A, LDA, C, LDC)

Triangular Band:

SUBROUTINE BLAS_xTB_WIDTHM_I(UPLO, TRANS, DIAG, N, K, A, LDA, C, LDC)

Triangular Packed:

SUBROUTINE BLAS_xTP_WIDTHM_I(UPLO, TRANS, DIAG, N, AP, CP)

all:
INTEGER
<type>
$

e C binding:
General:

void BLAS_xge_widthm_i(

General Band:
void BLAS_xgb_widthm_i(

Symmetric:
void BLAS_xsy_widthm_i(

Symmetric Band:
void BLAS_xsb_widthm_i(

Symmetric Packed:
void BLAS_xsp_widthm_i (

Triangular:
void BLAS_xtr_widthm_i(

Triangular Band:
void BLAS_xtb_widthm_i(

Triangular Packed:
void BLAS_xtp_widthm_i(

UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, LDC
AC 2, LDA, *) or AP(2, *), C(LDC, *) or
CP(*)

enum blas_order_type order, int m, int n,
const <interval_array> a, int lda, RARRAY c,
int ldc);

enum blas_order_type order, int m, int n, int ki1,
int ku, const <interval_array> a, int 1lda, RARRAY c,
int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, const <interval_array> a, int lda,
RARRAY c, int 1ldc);

enum blas_order_type order, int n, int k,
const <interval_array> a, int lda, RARRAY c, int 1ldc);

enum blas_order_type order, int n,
const <interval_array> ap, RARRAY cp);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const <interval_array> a, int lda,

RARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, const <interval_array> a, int lda,
RARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const <interval_array> ap, RARRAY cp);

296 ANNEX C. JOURNAL OF DEVELOPMENT

{GE,GB,SY,SB,SP,TR,TB,TP}_CONSTRUCTM.I (Constructs an interval matrix from two float-
ing point matrices) ADB,C

This routine constructs an interval matrix from two floating point matrices B and C' such that
a;,; = [min{bi,j, BLASi,j}, ma,x{bi,j, BLASZ',]'}] Vi € {0, 1,---,m— 1} and Vj € {0, 1,---,n— 1}.
Both floating point matrices B and C have the same storage format.

e Fortran 95 binding:

10

11
General:

SUBROUTINE ge_constructm_i(a, b, ¢)
General Band:

SUBROUTINE gb_constructm_i(a, b, m, k1, c)
Symmetric:

SUBROUTINE sy_constructm_i(a, b, ¢ [, uplo])
Symmetric Band:

SUBROUTINE sb_constructm_i(a, b, k1, ¢ [, uplo])
Symmetric Packed:

SUBROUTINE sp_constructm_i(ap, bp, cp [, uplo])
Triangular:

SUBROUTINE tr_constructm_i(a, b, ¢ [, uplo] [, diagl)
Triangular Band:

SUBROUTINE tb_constructm_i(a, b, k1, ¢ [, uplo] [, diagl)
Triangular Packed:

SUBROUTINE tp_constructm_i(ap, bp, cp [, uplo]l, [, diag])

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
all: 28
TYPE(INTERVAL) (<wp>), INTENT(OUT) :: a(:,:), ap(:)
REAL (<wp>), INTENT(IN) :: b(:,:), c(:,:), cp(:)
INTEGER, INTENT(IN) :: k1
TYPE(blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE(blas_diag_type), INTENT(IN), OPTIONAL :: diag
where
a, b and c have shape
(m, n) for general matrix
(1, n) for general banded matrix (1 > k1)
(n, n) for symmetric or triangular
(p+1, n) for symmetric banded or triangular
banded (p = band width)
ap and cp have shape (n*(n+1)/2)

29
30
31
32
33
34
35
36
37
38
39
40
41
42
e Fortran 77 binding: 43

44

General: 15
SUBROUTINE BLAS_xGE_CONSTRUCTM_I(M, N, A, LDA, B, LDB, C, LDC) 46
General Band: 47

SUBROUTINE BLAS_xGB_CONSTRUCTM_I(M, N, KL, KU, A, LDA, B, LDB, C, LDC) s

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.4. INTERVAL BLAS

Symmetric:

297

SUBROUTINE BLAS_xSY_CONSTRUCTM_I(UPLO, N, A, LDA, B, LDB, C, LDC)

Symmetric Band:

SUBROUTINE BLAS_xSB_CONSTRUCTM_I(UPLO, N, K, A, LDA, B. LDB, C, LDC)

Symmetric Packed:

SUBROUTINE BLAS_xSP_CONSTRUCTM_I(UPLO, N, AP, BP, CP)

Triangular:

SUBROUTINE BLAS_xTR_CONSTRUCTM_I(UPLO, TRANS, DIAG, N, A, LDA,

$

Triangular Band:

B, LDB, C, LDC)

SUBROUTINE BLAS_xTB_CONSTRUCTM_I(UPLO, TRANS, DIAG, N, K, A, LDA,

$

Triangular Packed:

B, LDB, C, LDC)

SUBROUTINE BLAS_xTP_CONSTRUCTM_I(UPLO, TRANS, DIAG, N, AP, BP, CP)

all:
INTEGER UPLO, TRANS, DIAG, M, N, K, KL, KU, LDA, LDC
<type> AC 2, LDA, *) or AP(2, *), B(LDC, *)
$ or BP(*), C(LDC, *) or CP(*),
e C binding:
General:

void BLAS_xge_constructm_i(

General Band:
void BLAS_xgb_constructm_i(

Symmetric:
void BLAS_xsy_constructm_i(

Symmetric Band:
void BLAS_xsb_constructm_i(

Symmetric Packed:
void BLAS_xsp_constructm_i(

Triangular:
void BLAS_xtr_constructm_i(

enum blas_order_type order, int m, int n,
<interval_array> a, int lda, RARRAY b, int 1ldb
RARRAY ¢, int 1dc);

enum blas_order_type order, int m, int n, int k1,
int ku, <interval_array> a, int 1lda, RARRAY c,
int 1ldc);

enum blas_order_type order,

enum blas_uplo_type uplo, int n,
<interval_array> a, int lda, RARRAY b,
int 1db, RARRAY c, int ldc);

enum blas_order_type order, int n, int k,
<interval_array> a, int lda, RARRAY b, int 1db,
RARRAY c, int 1ldc);

enum blas_order_type order, int n,
<interval_array> ap, RARRAY bp, RARRAY cp);

enum blas_order_type order,

enum blas_uplo_type uplo,

enum blas_trans_type trans,

enum blas_diag_type diag, int n,
<interval_array> a, int lda, RARRAY b,
int 1db, RARRAY c, int 1ldc);

298 ANNEX C. JOURNAL OF DEVELOPMENT

Triangular Band:
void BLAS_xtb_constructm_i(enum blas_order_type order,
enum blas_uplo_type uplo,
enum blas_trans_type trans,
enum blas_diag_type diag, int n, int k,
<interval_array> a, int lda, RARRAY b,
int 1db, RARRAY c, int ldc);
Triangular Packed:
void BLAS_xtp_constructm_i(enum blas_order_type order,
enum blas_uplo_type uplo,
enum blas_trans_type trans,
enum blas_diag_type diag, int n,
<interval_array> ap, RARRAY bp, RARRAY cp);

Environmental Enquiry

FPINFO_I (Environmental enquiry)

This routine queries for machine-specific floating point characteristics. Refer to section 1.6 for a
list of all possible return values of this routine, and sections A.4, A.5, and A.6, for their respective

language dependent representations in Fortran 95, Fortran 77, and C.

e Fortran 95 binding:

REAL (<wp>) FUNCTION fpinfo_i(cmach, prec)
TYPE (blas_cmach_type), INTENT(IN) :: cmach
<type>(<wp>), INTENT(IN) :: prec

e Fortran 77 binding:

<rtype> FUNCTION BLAS_xFPINFO_I(CMACH)
INTEGER CMACH

e C binding:

<rtype> BLAS_xfpinfo_i(enum blas_cmach_type cmach);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] ~ [« S [w N -

BB A R A B A A W W W W W W W W W N N NN NN NN N R R R R R e s e s
N3 G A B oNom O ©® kN9 aA bRk = O ® ® N e oA BN R O © ® N O ;oA W N = O

'S
oo

Bibliography

[1]
2]
[3]

[10]

[11]

[12]

Global solutions. http://www.mscs.mu.edu/~globsol/.
Interval computations. http://cs.utep.edu/interval-comp/icompwww.html.

M. Aboelaze, N. Chrisochoides, and E. Houstis. The Parallelization of Level 2 and 3 BLAS
Operations on Distributed Memory Machines. Technical Report CSD-TR-91-007, Purdue
University, West Lafayette, IN, 1991.

R. Agarwal, S. Balle, F. Gustavson, M. Joshi, and P. Palkar. A Three-Dimensional Approach
to Parallel Matrix Multiplication. IBM Journal of Research and Development, 39(5):575-582,
1995.

R. Agarwal, F. Gustavson, and M. Zubair. A High Performance Matrix Multiplication Algo-
rithm on a Distributed-Memory Parallel Computer, Using Overlapped Communication. IBM
Journal of Research and Development, 38(6):673-681, 1994.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM,
Philadelphia, PA, USA, third edition, 1999. (Also available in Japanese, published by Maruzen,
Tokyo, translated by Dr Oguni).

ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arithmetic, Std 754-1985
edition, 1985.

P. Bangalore. The Data-Distribution-Independent Approach to Scalable Parallel Libraries.
Master’s thesis, Mississippi State University, 1995.

D. Bindel, J. Demmel, W. Kahan, and O. Marques. On computing givens rotations reliably
and efficiently. LAPACK Working Note No.148. Technical Report CS-00-449, Department of
Computer Science, University of Tennessee, 1122 Volunteer Boulevard, Knoxville, TN 37996-
3450, USA, 2000. URL: http://www.netlib.org/lapack/lawns/.

R. Bisseling and J. van der Vorst. Parallel Triangular System Solving on a mesh network of
Transputers. SIAM Journal on Scientific and Statistical Computing, 12:787-799, 1991.

L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. STAM, Philadelphia, PA, 1997.

G. Bohlender. Literature list on enclosure methods and related topics.
http://ma70.rz.uni-karlsruhe.de/~ael5/1litlist.html.

300 BIBLIOGRAPHY

[13] R. Brent and P. Strazdins. Implementation of BLAS Level 3 and LINPACK Benchmark on
the AP1000. Fujitsu Scientific and Technical Journal, 5(1):61-70, 1993.

[14] D. Chiriaev and G. W. Walster. Interval arithmetic specification.
http://www.mscs.mu.edu/~globsol/walster-papers.html.

[15] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley. A Proposal
for a Set of Parallel Basic Linear Algebra Subprograms. In J. Dongarra, K. Masden, and
J. Wasdniewski, editors, Applied Parallel Computing, pages 107-114. Springer Verlag, 1995.
(also LAPACK Working Note No.100).

[16] J. Choi, J. Dongarra, and D. Walker. PUMMA: Parallel Universal Matrix Multiplication Algo-
rithms on Distributed Memory Concurrent Computers. Concurrency: Practice and Ezxperience,
6(7):543-570, 1994. (also LAPACK Working Note No.57).

[17] J. Choi, J. Dongarra, and D. Walker. PB-BLAS: A Set of Parallel Block Basic Linear Algebra
Subroutines. Concurrency: Practice and Experience, 8(7):517-535, 1996.

[18] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt, and R. van de Geijn. Parallel Im-
plementation of BLAS: General Techniques for Level 3 BLAS. Technical Report TR95-49,
Department of Computer Sciences, UT-Austin, 1995. Submitted to Concurrency: Practice
and Experience.

[19] J. Demmel. Applied Numerical Linear Algebra. STAM, 1997.

[20] D. S. Dodson. Corrigendum: Remark on “Algorithm 539: Basic Linear Algebra Subroutines
for FORTRAN usage”. ACM Trans. Math. Software, 9:140, 1983. (See also [39] and [21]).

[21] D. S. Dodson and R. G. Grimes. Remark on algorithm 539: Basic Linear Algebra Subprograms
for Fortran usage. ACM Trans. Math. Software, 8:403-404, 1982. (See also [39] and [20]).

[22] D. S. Dodson, R. G. Grimes, and J. G. Lewis. Sparse extensions to the FORTRAN Basic
Linear Algebra Subprograms. ACM Trans. Math. Software, 17:253-272, 1991. (Algorithm
692).

[23] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’ Guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1979.

[24] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A proposal for a set of Level 3
Basic Linear Algebra Subprograms. In G. Rodrigue, editor, Parallel Processing for Scientific
Computing, pages 40-44. SIAM, Philadelphia, PA, USA, 1989. (Proceedings of the Third
STAM Conference).

[25] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Software, 16:1-28, 1990. (Algorithm 679).

[26] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FOR-
TRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Software, 14:1-32, 399, 1988.
(Algorithm 656).

[27] 1. S. Duff, M. Marrone, G. Radicati, and C. Vittoli. Level 3 Basic Linear Algebra Subprograms
for sparse matrics: A user-level interface. ACM Trans. Math. Software, 23:379-401, 1997.

© o] ~ [ot [w N =

[~ Lol - o - - - w w w w w w w w w w N [V M) [V M) [V [V N M) [- [— [- —- - —- - [
=~ (=] ot - w M) - o © oo ~ (=2 ot - w N - o © o] =~ [=2] ot -~ w N - o © 0o -~ (=2} ot - w M) - o

'
oo

© o] N o S [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

BIBLIOGRAPHY 301

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

A. Elster. Basic Matrix Subprograms for Distributed Memory Systems. In D. Walker and
Q. Stout, editors, Proceedings of the Fifth Distributed Memory Computing Conference, pages
311-316. IEEE Press, 1990.

R. Falgout, A. Skjellum, S. Smith, and C. Still. The Multicomputer Toolbox Approach to
Concurrent BLAS and LACS. In Proceedings of the Scalable High Performance Computing
Conference SHP(CC-92. IEEE Computer Society Press, 1992.

Message Passing Interface Forum. MPI: A Message Passing Interface Standard. International
Journal of Supercomputer Applications and High Performance Computing, 8(3-4), 1994.

G. Fox, S. Otto, and A. Hey. Matrix Algorithms on a Hypercube I: Matrix Multiplication.
Parallel Computing, 3:17-31, 1987.

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matriz Eigensystem Routines —
EISPACK Guide Eztension, volume 51 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1977.

G. Golub and C. van Loan. Matriz Computations. Johns-Hopkins, Baltimore, third edition,
1996.

M. Heath and C. Romine. Parallel Solution Triangular Systems on Distributed Memory Mul-
tiprocessors. SIAM Journal on Scientific and Statistical Computing, 9:558-588, 1988.

N. J. Higham. Accuracy and Stability of Numerical Algorithms. STAM, Philadelphia, PA, 1996.

S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang. Matrix Multiplication on the Intel
Touchstone DELTA. Concurrency: Practice and Ezperience, 6(7):571-594, 1994.

IEEE. ANSI/IEEE Standard for Binary Floating Point Arithmetic: Std 754-1985. IEEE Press,
New York, NY, USA, 1985.

ISO/IEC. C9X FCD Standard (Draft), x3j11/98-049, wgl4/n843 edition, 1998.
http:/ /http:/ /wwwold.dkuug.dk/JTC1/SC22/WG14/.

C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Algebra Subprograms
for FORTRAN usage. ACM Trans. Math. Software, 5:308-323, 1979. (Algorithm 539. See also
[21] and [20]).

G. Li and T. Coleman. A Parallel Triangular Solver for a Distributed-Memory Multiprocessor.
SIAM Journal on Scientific and Statistical Computing, 9(3):485-502, 1988.

G. Li and T. Coleman. A New Method for Solving Triangular Systems on Distributed-
Memory Message-Passing Multiprocessor. SIAM Journal on Scientific and Statistical Com-
puting, 10(2):382-396, 1989.

X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A. Kapur, M. Mar-
tin, T. Tung, and D. Yoo. Design, implementation and testing of extended and mixed
precision blas. Technical Report CS-00-451, Department of Computer Science, University
of Tennessee, 1122 Volunteer Boulevard, Knoxville, TN 37996-3450, USA, 2000. URL:
http://www.netlib.org/lapack/lawns/.

W. Lichtenstein and S. L. Johnsson. Block-Cyclic Dense Linear Algebra. SIAM Journal on
Scientific and Statistical Computing, 14(6):1259-1288, 1993.

302

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

BIBLIOGRAPHY

K. Mathur and S. L. Johnsson. Multiplication of Matrices of Arbitrary Shapes on a Data
Parallel Computer. Parallel Computing, 20:919-951, 1994.

O. McBryan and E. van de Velde. Matrix and Vector Operations on Hypercube Parallel
Processors. Parallel Computing, 5:117-126, 1987.

D. Priest. Algorithms for arbitrary precision floating point arithmetic. In P. Kornerup and
D. Matula, editors, Proceedings of the 10th Symposium on Computer Arithmetic, pages 132—
145, Grenoble, France, June 26-28 1991. IEEE Computer Society Press.

Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Ro-
bust Geometric Predicates. Technical Report CMU-CS-96-140, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996. to appear in Discrete &
Computational Geometry.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B.
Moler. Matriz Eigensystem Routines — EISPACK Guide, volume 6 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1976.

P. Strazdins. A High Performance, Portable Distributed BLAS Implementation. In Proceedings
of the Sizth Parallel Computing Workshop, Fujitsu Parallel Computing Center, 1996.

Thinking Machines Corporation. CMSSL for Fortran, 1990.

R. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, Cam-
bridge, Massachusetts, 1997.

R. van de Geijn and J. Watts. SUMMA: Scalable Universal Matrix Multiplication Algorithm.
Technical Report UT (CS-95-286, LAPACK Working Note No0.96, University of Tennessee,
1995.

© o] N o w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Index

AMAX_VAL, 9, 42
AMIN_VAL, 9, 40
APPLY_GROT, 9, 49
AXPBY, 9, 47
AXPBY a, 9, 145
AXPBY a X, 9, 145
AXPBY X, 9, 145
AXPY_DOT, 9, 49

COPY, 9, 50

DOT, 9, 38
DOT_ab, 9, 143
DOT.ab.X, 9, 143
DOT.X, 9, 143

FPINFO, 13, 103
FPINFO X, 13, 172

GB_ACC, 11, 79

GB_ADD, 11, 80
GB_COPY, 11, 98
GB_DIAG_SCALE, 11, 72
GB_DIAG_SCALE_ACC, 11, 76
GB_LRSCALE, 11, 73
GB_NORM, 11, 69

GBMV, 10, 53, 147
GBMV_a b, 10, 147
GBMV._a_b X, 10, 147
GBMV X, 10, 147

GE_ACC, 11, 77

GE_ADD, 11, 80
GE_COPY, 11, 98
GE_DIAG_SCALE, 11, 72
GE_DIAG_SCALE_ACC, 11, 76
GE_LRSCALE, 11, 73
GE_NORM, 11, 69
GE_PERMUTE, 11, 102
GE_SUM_MV, 10, 59
GE_SUM_MV_a_b, 10, 154
GE_SUM_MV_a_b.X, 10, 154

303

GE_SUM_MV X, 10, 154

GE_TRANS, 11, 101
GEMM, 11, 83
GEMM_ab, 11, 157
GEMM.a b_X, 11, 157
GEMM X, 11, 157
GEMV, 10, 53
GEMV_a_b, 10, 147
GEMV_a_b.X, 10, 147
GEMV_X, 10, 147
GEMVER, 10, 61
GEMVT, 10, 59
GEN_GROT, 9, 43
GEN_HOUSE, 9, 45
GEN_JROT, 9, 45
GER, 10, 64

HB_COPY, 11, 100
HB_LRSCALE, 11, 75
HB_NORM, 11, 69
HBMV, 10, 56
HBMV_a_b, 10, 150
HBMYV _a_b_X, 10, 150
HBMV_X, 10, 150
HE_COPY, 11, 100
HE_LRSCALE, 11, 75
HE_NORM, 11, 69

HE_TRIDIAG_R2K, 11, 97
HE_TRIDIAG_RK, 11, 92

HEMM, 85
HEMM_a._b, 11, 161
HEMM_a_b_X, 11, 161
HEMM X, 11, 161
HEMV, 10, 56
HEMV_a_b, 10, 150
HEMV_a_b_X, 10, 150
HEMV_X, 10, 150
HER, 10, 65

HERZ2, 10, 67
HER2K, 11, 94

304

HER2K a, 11, 170
HER2K_.a_X, 11, 170
HER2K X, 11, 170
HERK, 11, 90
HERK a, 11, 167
HERK a X, 11, 167
HERK X, 11, 167
HP_COPY, 11, 100
HP_LRSCALE, 11, 75
HP_NORM, 11, 69
HPMV, 10, 56
HPMV_a_b, 10, 150
HPMV _a_b_X, 10, 150
HPMV_X, 10, 150
HPR, 10, 65

HPR2, 10, 67

MAX_VAL, 9, 41
MIN_VAL, 9, 40

NORM, 9, 39
PERMUTE, 9, 53
RSCALE, 9, 47

SB_ACC, 11, 77
SB_ADD, 11, 80
SB_COPY, 11, 98
SB_.LRSCALE, 11, 74
SB_.NORM, 11, 69
SBMV, 10, 55
SBMV_a_b, 10, 149
SBMV_a_b_X, 10, 149
SBMV _X, 10, 149
SORT, 9, 51

SORTYV, 9, 52
SP_ACC, 11, 77
SP_ADD, 11, 80
SP_COPY, 11, 98
SP_LRSCALE, 11, 74
SP_NORM, 11, 69
SPMV, 10, 55
SPMV_a_b, 10, 149
SPMV_a_b_X, 10, 149
SPMV _X, 10, 149
SPR, 10, 64

SPR2, 10, 66

SUM, 9, 39

SUM X, 9, 144
SUMSQ, 9, 42
SWAP, 9, 51
SY_ACG, 11, 77
SY_ADD, 11, 80
SY_COPY, 11, 98
SY_LRSCALE, 11, 74
SY_NORM, 11, 69

SY_TRIDIAG_R2K, 11, 95
SY_TRIDIAG_RK, 11, 91

SYMM, 84
SYMM_a_b, 11, 159
SYMM.a b_X, 11, 159
SYMM_X, 11, 159
SYMV, 10, 55
SYMV_a_b, 10, 149
SYMV_a_b_X, 10, 149
SYMV _X, 10, 149
SYR, 10, 64

SYR2, 10, 66
SYR2K, 11, 93
SYR2K _a, 11, 169
SYR2K_ a X, 11, 169
SYR2K X, 11, 169
SYRK, 11, 89
SYRK a, 11, 166
SYRK_a X, 11, 166
SYRK X, 11, 166

TB_ACC, 11, 79
TB_ADD, 11, 80
TB_COPY, 11, 98
TB_NORM, 11, 69
TBMYV, 10, 57
TBMV _a, 10, 152
TBMV_a_X, 10, 152
TBMV_X, 10, 152
TBSV, 10, 62
TBSV_a, 10, 155
TBSV_a_X, 10, 155
TBSV_X, 10, 155
TP_ACC, 11, 79
TP_ADD, 11, 80
TP_COPY, 11, 98
TP_NORM, 11, 69
TPMV, 10, 57
TPMV _a, 10, 152
TPMV_a_X, 10, 152

© o] ~ [« (S [w N =

- o - - - w w w w w w w w w w N [M) [V M) N [V N M) [[[- - - - [- - [

'
oo

© o] ~ [« (S [w N -

BB A R A B A A W W W W W W W W W N N NN NN NN N R R R R R e s e s
I3 G A B oNoR O ©® kN9 aA b= O ® ® N e %A BN R O © ® N O ;oA W N = O

'S
oo

INDEX

TPMV X, 10, 152
TPSV, 10, 62

TPSV _a, 10, 155
TPSV_a.X, 10, 155
TPSV X, 10, 155
TR_ACC, 11, 79
TR_ADD, 11, 80
TR_COPY, 11, 98
TR.NORM, 11, 69
TRMM, 11, 86
TRMM_a, 11, 162
TRMM._a_X, 11, 162
TRMM_X, 11, 162
TRMV, 10, 57
TRMYV _a, 10, 152
TRMV_a_X, 10, 152
TRMV_X, 10, 152
TRMVT, 10, 60
TRSM, 11, 88
TRSM._a, 11, 164
TRSM_a X, 11, 164
TRSM_X, 11, 164
TRSV, 10, 62
TRSV _a, 10, 155
TRSV_a_X, 10, 155
TRSV_X, 10, 155

USAXPY, 9, 118
USCR_BEGIN, 123
USCR.BLOCK_BEGIN, 124
USCR.END, 129
USCR.INSERT_BLOCK, 128
USCR_INSERT_CLIQUE, 128
USCR._INSERT_COL, 126
USCR.INSERT_ENTRIES, 126
USCR_INSERT_ENTRY, 125
USCR.INSERT_ROW, 127
USDOT, 9, 117

USDS, 131

USGA, 9, 118

USGP, 130

USGZ, 9, 119

USMM, 11, 122

USMV, 10, 120

USSC, 9, 119

USSM, 11, 122

USSP, 130

USSV, 10, 121

WAXPBY, 9, 48
WAXPBY _a_b, 9, 146

WAXPBY.a_b_X, 9, 146

WAXPBY_X, 9, 146

305

