Basic Linear Algebra Subprograms Technical (BLAST) Forum
Standard

Basic Linear Algebra Subprograms Technical (BLAST) Forum

August 21, 2001

(©1996-2000 University of Tennessee, Knoxville, Tennessee. Permission to copy without fee all
or part of this material is granted, provided the University of Tennessee copyright notice and the
title of this document appear, and notice is given that copying is by permission of the University
of Tennessee.

10

11

12

13

14

15

16

17

18

19

20

21

22

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Contents

Acknowledgments

Suggestions for Reading

1 Introduction

2

1.1
1.2
1.3
1.4

1.5

1.6
1.7
1.8

2.1

2.2

Introduction L
Motivation L L e e e e e e
Organization of the Document
Nomenclature and Conventions e
1.4.1 Notation L o o e e e e e e
1.4.2 Operator Arguments Lo
1.4.3 Scalar Arguments L. L
1.44 Vector Operands o o it e e
1.4.5 Matrix Operands L
1.4.6 Naming Conventions ottt
Overall Functionality o e
1.5.1 Scalar and Vector Operations
1.5.2 Matrix-Vector Operations
1.5.3 Matrix Operations L L e e
Numerical Accuracy and Environmental Enquiry
Language Bindings L. e
Error Handling o e e
1.8.1 Return Codes oL e
1.8.2 FError Handlers e
Dense and Banded BLAS
Overview and Functionality
2.1.1 Scalar and Vector Operations o
2.1.2 Matrix-Vector Operations o
2.1.3 Matrix Operations o e
Matrix Storage Schemes L.
2.2.1 Conventional Storage Lo e
2.2.2 Packed Storage e
2.2.3 Band Storage e e e e e
2.2.4 Unit Triangular Matrices
2.2.5 Representation of a Householder Matrix
2.2.6 Representation of a Permutation Matrix oL,

viii

2.3 Imterface Issues L L e e e e 26
2.3.1 Naming Conventions o 26
2.3.2 Argument Aliasing oL L e e 26

2.4 Interface Issues for Fortran 95o oo oo 26
24.1 Fortran 95 Modules e 26
242 Indexing L e e e 26
2.4.3 Design of the Fortran 95 Interfaces 27
2.4.4 Matrix Storage Schemes Lo o e 28
2.4.5 Format of the Fortran 95 bindings 28
24.6 Error Handling e 29

2.5 Interface Issues for Fortran 77 Lo oL 30
2.5.1 Fortran 77 Include File oo 30
2.5.2 Indexing L e e e 30
253 Array Arguments L 30
2.5.4 Matrix Storage Schemes L. oL o 31
2.5.5 Format of the Fortran 77 bindings 31
2.5.6 Error Handling e 31

2.6 Interface Issues for C L L e 32
2.6.1 ClIncludeFile e 32
2.6.2 Indexing e e e 32
2.6.3 Handling of complex data typeso oo L. 32
2.6.4 Return values of complex functionso oo 32
2.6.5 Aliasing of arguments L. Lo 33
2.6.6 Array arguments oL e e e e e e e e e e 33
2.6.7 Matrix Storage Schemes L Lo e 33
2.6.8 Format of the C bindings 33
2.6.9 Error Handling 33

2.7 Numerical Accuracy and Environmental Enquiry 34

2.8 Language Bindings 35
2.8.1 Overview e e e e e e 36
2.8.2 Reduction Operations 38
2.8.3 Generate Transformations 43
2.8.4 Vector Operations i e e 47
2.8.5 Data Movement with Vectors L. 50
2.8.6 Matrix-Vector Operations oo e 53
2.8.7 Matrix Operations e 69
2.8.8 Matrix-Matrix Operations oo e 83
2.8.9 Data Movement with Matrices 98
2.8.10 Environmental Enquiry0 Lo e 103

3 Sparse BLAS 104

3.1 Overview oL e e e e e 104

3.2 Naming Conventions o e 105

3.3 Functionality o . 105
3.3.1 Scalar and Vector Operationso 106
3.3.2 Matrix-Vector Operations oo o e 106
3.3.3 Matrix-Matrix Operations oo e 106

3.4 Describing sparsityo oL e e e e e 107

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N o w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.4.1 Sparse Vectors e e e e 107

34.2 Indexbases e e e e e 107
3.4.3 Repeated Indices e 108
3.5 Sparse BLAS Matrices o . . 108
3.5.1 Creation Routines L 108
3.5.2 Specifying matrix properties.o Lo oo 109
3.5.3 Sparse Matrices: Inserting a Single Entry 109
3.5.4 Sparse Matrices: Inserting List of Entries 110
3.5.5 Sparse Matrices: Inserting Row and Column Vectors 111
3.5.6 Sparse Matrices: Inserting Cliques 111
3.6 Imterface Issues L e e 111
3.6.1 Interface Issues for Fortran 95. oL, 111
3.6.2 Interface Issues for Fortran 77 oL, 113
3.6.3 Interface Issuesfor C. 114
3.7 Numerical Accuracy and Environmental Enquiry 116
3.8 Language Bindings Lo 116
3.8.1 Overview L e e e e e e 116
3.8.2 Level 1 Computational Routines 117
3.8.3 Level 2 Computational Routines 120
3.8.4 Level 3 Computational Routines 122
3.8.5 Handle Management 123
3.8.6 Creation Routines L 123
3.8.7 Imsertion routines 125
3.8.8 Completion of construction routine 129
3.8.9 Matrix property routines Lo oo 130
3.8.10 Destruction routine.o Lo o 131
Extended and Mixed Precision BLAS 132
4.1 OVEIVIEW . . . o i i e e e e e e e e e e e 132
4.2 Design Goals and Summaryo o 132
4.3 Functionality 134
4.3.1 Specifying Extra Precision Lo 0oL 134
4.3.2 Mixed Precisiono 135
4.3.3 Numerical Accuracy and Environmental Enquiries 136
4.3.4 Function Tables. o 139
4.4 Interface Issues e e e e e e e e e 139
4.4.1 Interface Issues for Fortran 95. oo L. 140
4.4.2 Interface Issues for Fortran 77 L. 141
4.4.3 Interface Issuesfor C. o Lo 141
4.5 Language Bindings L L 142
4.5.1 OVervIEW o e e e e e e e e e e e e e e e 142
4.5.2 Mixed and Extended Precision Reduction Operations 143
4.5.3 Mixed and Extended Precision Vector Operations. 145
4.5.4 Mixed and Extended Precision Matrix-Vector Operations 147
4.5.5 Mixed and Extended Precision Matrix-Matrix Operations 157
4.5.6 Environmental Enquiry L o0 o oL 172

A Appendix 173

A1 Vector Norms o L 0o e e e 173
A2 Matrix Norms o L o e e e 174
A3 Operator Arguments Lo e e 174
A4 Fortran 95 Modules. o . 176
A5 Fortran 77 Include File. _ 178
A6 Clnclude Files o . o e 178
B Legacy BLAS 180
B.1 Imtroduction. e e 180
B.2 Cinterface to the Legacy BLAS o 180
B.2.1 Namingschemeo 180
B.2.2 Indices and ILAMAX o . . e 181
B.2.3 Character argumentso oo e e e 181
B.2.4 Handling of complex data types 181
B.2.5 Return values of complex functions oo oL 182
B.2.6 Array argumentsl 183
B.2.7 Aliasing of arguments oL oo Lo 185
B.2.8 Cinterface includefile Lo o o 186
B.2.9 Error checking Lo 186
B.2.10 Rules for obtaining the C interface from the Fortran 77 186
B.2.11 cblas.hinclude file Lo 186
B.2.12 Using Fortran 77 BLAS to support row-major BLAS operations 187

C Journal of Development 196
C.1 Environmental Routine for Effective use of Cache, Pipelining and Registers 197
C.1.1 Imtroduction e e e 197
C.1.2 Language Extensions for the Cache 197
C.1.3 For Efficient LA Software 198
C.1.4 Advantages of thisapproach 198
C.1.5 Disadvantages of this approach 198

C.2 Distributed-memory Dense BLAS oo 200
C.3 Fortran 95 Thin BLAS 206
C.3.1 Imtroduction e e e 206
C.3.2 Design of Fortran 95 Interfaces oo L. 206
C.3.3 Imterfaces for Real Data 207
C.3.4 Interfaces for Complex Data o L. 211
C.3.5 Error checking e 211
C.3.6 Comparison with the Fortran 77 BLAS 211
C.3.7 Conclusion e e e e 213
C.3.8 Further Details: Specific procedures for gemm 214

C.4 Imterval BLAS e e 219
C.4.1 Introduction L e e e 219
C.4.2 Functionality e 220
C.4.3 Imterface Issues L e 224
C.4.4 Numerical Accuracy and Environmental Enquiry 226
C.4.5 Language Bindings 227

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

-

w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

Index

299

303

Acknowledgments

The technical development was carried out by subgroups, whose work was reviewed by the full
committee. During the period of development of the Basic Linear Algebra Subprograms (BLAS)
Technical Forum Standard, many people served in positions of responsibility and are listed below.

Jack Dongarra and Sven Hammarling, Conveners and Meeting Chairs
Susan Blackford and Andrew Lumsdaine, Minutes

Susan Blackford, Editor

The primary chapter authors are the following:

Susan Blackford, Jack Dongarra, and Sven Hammarling, Chapter 1

Susan Blackford, Jack Dongarra, and Sven Hammarling, Linda Kaufman, Zohair Maany,
Antoine Petitet, Chapter 2

Tain Duff, Mike Heroux, Roldan Pozo, Karin Remington, Chapter 3

Jim Demmel, Greg Henry, Velvel Kahan, Xiaoye Li, Chapter 4

Clint Whaley, C Interface to the Legacy BLAS

Jack Dongarra, Fred Krogh, Journal of Development — Environmental routines
Antoine Petitet, Journal of Development — Distributed-Memory Dense BLAS

Sven Hammarling, Zohair Maany, Journal of Development — Fortran95 Thin BLAS

George Corliss, Chenyi Hu, Baker Kearfoot, Bill Walster, J. Wolff v. Gudenberg, Journal of
Development — Interval BLAS

We would like to thank the individuals from the following organizations who have written the
reference implementations: University of California, Berkeley, University of Houston, Downtown,
University of Notre Dame, University of Tennessee, HP /Convex, NAG, NIST, and CERFACS.

Specifically, we thank the following students at the University of California, Berkeley, for their
work on the reference implementations and proofreading of various versions of the document: Ben
Wanzo, Berkat Tung, Weihua Shen, Anil Kapur, Michael Martin, Jimmy Iskandar, Yozo Hida,
Teresa Tung, Yulin Li.

We would like to thank the following vendors and ISPs: Cray, Digital/Compaq, HP/Convex,

IBM,

Intel, NEC, SGI, Tera, NAG, and VNI.

We thank Paul McMahan of the University of Tennessee for preparing the commenting and
voting pages on the BLAS Technical Forum webpage.

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N o w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

We would like to thank the members of the global community who have posted comments,
suggestions, and proposals to the email reflector and the BLAS Technical Forum webpage.

And lastly, we would like to thank the attendees of the BLAS Technical Forum meetings:

Andy Anda, Ed Anderson, Zhaojun Bai, David Bailey, Satish Balay, Puri Bangalore, Claus
Bendtsen, Jesse Bennett, Mike Berry, Jeff Bilmes, Susan Blackford, Phil Bording, Clay Breshears,
Sandra Carney, Mimi Celis, Andrew Chapman, Samar Choudhary, Edmond Chow, Almadena
Chtchelkanova, Andrew Cleary, Isom Crawford, Michel Daydé, John Dempsey, Theresa Do, Dave
Dodson, Jack Dongarra, Craig Douglas, Paul Dressel, Jeremy Du Croz, lain Duff, Carter Ed-
wards, Salvatore Filippone, Rob Gjertsen, Roger Golliver, Cormac Garvey, lan Gladwell, Bruce
Greer, Bill Gropp, John Gunnels, Fred Gustavson, Sven Hammarling, Richard Hanson, Hidehiko
Hasegawa, Satomi Hasegawa, Greg Henry, Mike Heroux, Jeff Horner, Gary Howell, Mary Beth
Hribar, Chenyi Hu, Steve Huss-Lederman, Melody Ivory, Naoki Iwata, Bo Kagstrom, Velvel Kahan,
Chandrika Kamath, Linda Kaufman, David Kincaid, Jim Koehler, Vipin Kumar, Rich Lee, Steve
Lee, Guangye Li, Jin Li, Sherry Li, Hsin-Ying Lin, John Liu, Andew Lumsdaine, Dave Mackay,
Kristin Marshoffe, Kristi Maschhoff, Brian McCandless, Joan McComb, Noel Nachtigal, Jim Nagy,
Esmond Ng, Tom Oppe, Antoine Petitet, Roldan Pozo, Avi Purkayastha, Padma Raghavan, Karin
Remington, Yousef Saad, Majed Sidani, Jeremy Siek, Tony Skjellum, Barry Smith, Ken Stan-
ley, Pete Stewart, Shane Story, Chuck Swanson, Francoise Tisseur, Anne Trefethen, Anna Tsao,
Robert van de Geijn, Phuong Vu, Kevin Wadleigh, David Walker, Bob Ward, Jerzy Wasniewski,
Clint Whaley, Yuan-Jye Jason Wu, Chao Yang, and Guodong Zhang.

Suggestions for Reading

This document is divided into chapters, appendices, a journal of development, and an index of
routine names. It is large, and it is not necessary for a user to read it in its entirety. A user may
choose to not read certain chapters or sections within this document, depending upon his/her areas
of interest. Chapters 2—4 contain a functionality discussion and language bindings for dense and
band, sparse, and mixed and extended precision BLAS, respectively. Thus, these chapters may
be read independently, referring to Chapter 1 and the Appendix for notation and implemen-
tation details common to all chapters. Refer to section 1.3 for a more detailed description of the
organization of this document.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 1

Introduction

1.1 Introduction

This document defines the BLAS Technical Forum standard, a specification of a set of kernel
routines for linear algebra, historically called the Basic Linear Algebra Subprograms and commonly
known as the BLAS. In addition to this publication, the complete standard can be found on the
BLAS Technical Forum webpage (http://www.netlib.org/blas/blast-forum/).

Numerical linear algebra, particularly the solution of linear systems of equations, linear least
squares problems, eigenvalue problems and singular value problems, is fundamental to most calcu-
lations in scientific computing, and is often the computationally intense part of such calculations.
Designers of computer programs involving linear algebraic operations have frequently chosen to
implement certain low level operations, such as the dot product or the matrix vector product, as
separate subprograms. This may be observed both in many published codes and in codes written
for specific applications at many computer installations.

This approach encourages structured programming and improves the self-documenting quality
of the software by specifying basic building blocks and identifying these operations with unique
mnemonic names. Since a significant amount of execution time in complicated linear algebraic
programs may be spent in a few low level operations, reducing the execution time spent in these
operations leads to an overall reduction in the execution time of the program. The programming
of some of these low level operations involves algorithmic and implementation subtleties that need
care, and can be easily overlooked. If there is general agreement on standard names and parameter
lists for some of these basic operations, then portability and efficiency can also be achieved.

The first major concerted effort to achieve agreement on the specification of a set of linear algebra
kernels resulted in the Level 1 Basic Linear Algebra Subprograms (BLAS)! [39] and associated test
suite. The Level 1 BLAS are the specification and implementation in Fortran of subprograms for
scalar and vector operations. This was the result of a collaborative project in 1973-77. Following
the distribution of the initial version of the specifications to people active in the development of
numerical linear algebra software, a series of open meetings were held at conferences and, as a result,
extensive modifications were made in an effort to improve the design and make the subprograms
more robust. The Level 1 BLAS were extensively and successfully exploited by LINPACK [23],
a software package for the solution of dense and banded linear equations and linear least squares
problems.

With the advent of vector machines, hierarchical memory machines and shared memory parallel
machines, specifications for the Level 2 and 3 BLAS [26, 25|, concerned with matrix-vector and

! Originally known just as the BLAS, but in the light of subsequent developments now known as the Level 1 BLAS

2 CHAPTER 1. INTRODUCTION

matrix-matrix operations respectively, were drawn up in 1984-86 and 1987-88. These specifications
made it possible to construct new software to utilize the memory hierarchy of modern comput-
ers more effectively. In particular, the Level 3 BLAS allowed the construction of software based
upon block-partitioned algorithms, typified by the linear algebra software package LAPACK [6].
LAPACK is state-of-the-art software for the solution of dense and banded linear equations, linear
least squares, eigenvalue and singular value problems, makes extensive use of all levels of BLAS
and particularly utilizes the Level 2 and 3 BLAS for portable performance. LAPACK is widely
used in application software and is supported by a number of hardware and software vendors.

To a great extent, the user community embraced the BLAS, not only for performance reasons,
but also because developing software around a core of common routines like the BLAS is good
software engineering practice. Highly efficient machine-specific implementations of the BLAS are
available for most modern high-performance computers. The BLAS have enabled software to
achieve high performance with portable code.

The original BLAS concentrated on dense and banded operations, but many applications require
the solution of problems involving sparse matrices, and there have also been efforts to specify
computational kernels for sparse vector and matrix operations [22, 27].

In the spirit of the earlier BLAS meetings and the standardization efforts of the MPI and
HPF forums, a technical forum was established to consider expanding the BLAS in the light of
modern software, language, and hardware developments. The BLAS Technical Forum meetings
began with a workshop in November 1995 at the University of Tennessee. Meetings were hosted by
universities, government institutions, and software and hardware vendors. Detailed minutes were
taken for each of the meetings, and these minutes are available on the BLAS Technical Forum
webpage (http://www.netlib.org/blas/blast-forum/).

Various working groups within the Technical Forum were established to consider issues such
as the overall functionality, language interfaces, sparse BLAS, distributed-memory dense BLAS,
extended and mixed precision BLAS, interval BLAS, and extensions to the existing BLAS. The
rules of the forum were adopted from those used for the MPI and HPF forums. In other words,
final acceptance of each of the chapters in the BLAS Technical Forum standard were decided at the
meetings using Robert’s Rules. Drafts of the document were also available on the BLAS Technical
Forum webpage, and attendees were permitted to edit chapters, give comments, and vote on-line
in “virtual meetings”, as well as to conduct discussions on the email reflector. The efforts of these
working groups are summarized in this document. Most of these discussions resulted in definitive
proposals which led to the specifications given in Chapters 2 - 4. Not all of the discussions resulted
in definitive proposals, and such discussions are summarized in the Journal of Development in the
hope that they may encourage future efforts to take those discussions to a successful conclusion.

A major aim of the standards defined in this document is to enable linear algebra libraries
(both public domain and commercial) to interoperate efficiently, reliably and easily. We believe
that hardware and software vendors, higher level library writers and application programmers all
benefit from the efforts of this forum and are the intended end users of these standards.

The specification of the original BLAS was given in the form of Fortran 66 and subsequently
Fortran 77 subprograms. In this document we provide specifications for Fortran 952, Fortran 77 and
C. Reference implementations of the standard are provided on the BLAS Technical Forum webpage
(http://www.netlib.org/blas/blast-forum/). Alternative language bindings for C++ and Java
were also discussed during the meetings of the forum, but the specifications for these bindings were
postponed for a future series of meetings.

The remainder of this chapter is organized as follows. Section 1.2 provides motivation for the

2the current Fortran standard

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MOTIVATION 3

functionality. Section 1.3 outlines the organization of the document, and section 1.4 summarizes the
nomenclature and conventions used in the document. Section 1.5 presents tables of functionality
for the routines, and section 1.6 discusses issues concerning the numerical accuracy of the BLAS.
Section 1.7 briefly describes the presentation of the specifications for the routines, and section 1.8
details the error handling mechanisms utilized within the routines.

1.2 Motivation

The motivation for the kernel operations is proven functionality. Many of the new operations are
based upon auxiliary routines in LAPACK [6] (e.g., SUMSQ, GEN_GROT, GEN_HOUSE, SORT,
GE_NORM, GE_COPY). Only after the LAPACK project was begun was it realized that there
were operations like the matrix copy routine (GE_COPY), the computation of a norm of a matrix
(GE_NORM) and the generation of Householder transformations (GEN_HOUSE) that occurred so
often that it was wise to make separate routines for them.

A second group of these operations extended the functionality of some of the existing BLAS (e.g.,
AXPBY, WAXPBY, GER, SYR/HER, SPR/HPR, SYR2/HER2, SPR2/HPR2). For example, the
Level 3 BLAS for the rank k& update of a symmetric matrix only allows a positive update, which
means that it cannot be used for the reduction of a symmetric matrix to tridiagonal form (to
facilitate the computation of the eigensystem of a symmetric matrix), or for the factorization of a
symmetric indefinite matrix, or for a quasi-Newton update in an optimization routine.

Other extensions (e.g., AXPY_DOT, GE.SUM_MV, GEMVT, TRMVT, GEMVER) perform
two Level 1 BLAS (or Level 2 BLAS) routine calls simultaneously to increase performance by
reducing memory traffic.

One important feature of the new standard is the inclusion of sparse matrix computational
routines. Because there are many formats commonly used to represent sparse matrices, the Level 2
and Level 3 Sparse BLAS routines utilize an abstract representation, or handle, rather than a fixed
storage description (e.g. compressed row, or skyline storage). This handle-based representation
allows one to write portable numerical algorithms using the Sparse BLAS, independent of the matrix
storage implementation, and gives BLAS library developers the best opportunity for optimizing and
fine-tuning their kernels for specific architectures or application domains.

The original Level 2 BLAS included, as an appendix, the specification of extended precision
subprograms. With the widespread adoption of hardware supporting the IEEE extended arithmetic
format [37], as well as other forms of extended precision arithmetic, together with the increased
understanding of algorithms to successfully exploit such arithmetic, it was felt to be timely to
include a complete specification for a set of extra precise BLAS.

1.3 Organization of the Document

This document is divided into chapters, appendices, a journal of development, and an index. It
is large, and it is not necessary for a user to read it in its entirety. A user may choose to not
read certain chapters or sections within this document, depending upon his/her areas of interest.
Chapters 2—4 contain a functionality discussion and language bindings for dense and band, sparse,
and mixed and extended precision BLAS, respectively. The Journal of Development presents
areas of research that are not yet mature enough to be considered as chapters, but were nevertheless
discussed at the meetings of the forum. A Bibliography is also provided, as well as an Index of
routine names.

CHAPTER 1. INTRODUCTION

All users are encouraged to frequently refer to the list of notation denoted in sections 1.4, 2.3,
and 3.4.

1.4

Chapter 1: Introduction provides a brief overview of the background, motivation, and
history of the BLAS Technical Forum effort. It also outlines the structure of the document,
conventions in notation, and overall functionality contained in the chapters.

Chapter 2: Dense and Banded BLAS presents the functionality and language bind-
ings for proposed “new” dense and banded BLAS routines for serial and shared memory
computing.

Chapter 3: Sparse BLAS presents the functionality and language bindings for proposed
“new” sparse BLAS routines for serial and shared memory computing.

Chapter 4: Extended and Mixed Precision BLAS presents the functionality and lan-
guage bindings for proposed extended- precision and mixed-precision BLAS routines for serial
and shared memory computing.

Appendix contains pertinent definitions and implementation details for the chapters.

Legacy BLAS contains alternative language bindings for the legacy Level 1, 2, and 3 BLAS
for dense and band matrix computations.

Journal of Development contains separate proposals for environmental enquiry routines,
Distributed-memory dense BLAS, Fortran 95 Thin BLAS, and Interval BLAS.

Nomenclature and Conventions

This section addresses mathematical notation and definitions, as well as the numerical accuracy for
the BLAS routines. Language-independent issues are also presented.

1.4.1 Notation

The following notation is used throughout the document.

A, B, C — matrices

D, Dy, Dg — diagonal matrices

H - Householder matrix

J — symmetric tridiagonal matrix (including 2 x 2 blocked diagonal)
P — permutation matrix

T — triangular matrix

op(A) — denotes A, or AT or A” where A is a matrix.

transpose — denotes AT where A is a matrix.

conjugate-transpose — denotes A where A is a complex Hermitian matrix.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

1.4. NOMENCLATURE AND CONVENTIONS 5

u, v, w, T, Y, 2 — vectors

T — specifies the conjugate of the complex vector z

incu, 1ncy, incw, ince, incy, incz — stride between successive elements of the respective vector
Greek letters - scalars (but not exclusively Greek letters)

z; - an element of a one-dimensional array

Y|z — refers to the elements of y that have common indices with the sparse vector z.

€ - machine epsilon

< — assignment statement

< — swap (assignment) statement

|| - ||, — the p-norm of a vector or matrix

Additional notation for sparse matrices can be found in 3.4.

For the mathematical formulation of the operations, as well as their algorithmic presentation, we
have chosen to index the vector and matrix operands starting from zero. This decision was taken
to simplify the presentation of the document but has no impact on the convention a particular
language binding may choose.

1.4.2 Operator Arguments

Some BLAS routines take input-only arguments that are called “operator” arguments. These
arguments allow for the specification of multiple related operations to be performed by a single
function.

The operator arguments used in this document are norm, sort, side, uplo, trans, conj, diag, jrot,
order, index_base, and prec. Their possible meanings are defined as follows:

norm:

sort:

side:

uplo:

trans:

this argument is used by the routines computing the norm of a vector or matrix. Eight possible
distinct values are valid that specify the norm to be computed, namely the one-norm, real
one-norm, infinity-norm and real infinity norms for vectors and matrices, the 2-norm for
vectors, and the Frobenius-norm, max-norm and real max-norm for matrices.

this argument is used by the sorting routines. Two possible distinct values are valid that
specify whether the data should be sorted in increasing or decreasing order.

this argument is used only by functions computing the product of two matrices A and B.
Two possible distinct values are valid, that specify whether A-B or B- A should be computed.

this argument refers to triangular and symmetric (Hermitian) matrices. Two possible distinct
values are valid distinguishing whether the matrix, or its storage representation, is upper or
lower triangular.

this argument is used by the routines applying a matrix, say A, to another vector or another
matrix. Three possible distinct values are valid that specify whether the matrix A, its trans-
pose A or its conjugate transpose A¥ should be applied. We use the notation op(A) to refer
to A, AT or A¥ depending on the input value of the trans operator argument.

6 CHAPTER 1. INTRODUCTION

conj: this argument is used by the complex routines operating with Z or x.

diag: this argument refers exclusively to triangular matrices. Two possible distinct values are valid
distinguishing whether the triangular matrix has unit-diagonal or not.

jrot: this argument is used by the routine to generate Jacobi rotations. Three possible distinct
values are valid and specify whether the rotation is an inner rotation, an outer rotation, or a
sorted rotation.

order: this argument is used by the C bindings to specify if elements within a row of an array are
contiguous, or if elements within a column of an array are contiguous (see section 2.6.6).

index_base: this argument is used by Chapter 3 to specify either one-based or zero-based indexing (see

section 3.4.1).

prec: this argument is used in Chapter 4 and specifies the internal precision to be used by an
extended precision routine. Four distinct values are valid and specify whether the internal
precision is single precision, double precision, indigenous, or extra. Details on these settings
can be found in section 4.3.1.

All possible meanings for each operator are listed in section A.3. Their representation is defined
in the interface issues for the specific programming language: sections 2.4, 3.6.1, and 4.4.1 for
Fortran 95; sections 2.5, 3.6.2, and 4.4.2 for Fortran 77; and sections 2.6, 3.6.3, and 4.4.3 for C. The
values of the Fortran 95 derived types (for Chapters 2 and 4) are defined in the Fortran 95 module
blas_operator_arguments, and the values of the Fortran 95 named constants (for Chapter 3) are
defined in blas_sparse namedconstants, see section A.4. Similarly, the values of the Fortran 77
named constants are defined in the Fortran 77 include file blas namedconstants.h, in section A.5.
And finally, the values of the C enumerated types are defined in the C include file blas _enum.h, in
section A.6.

Rationale. The intent is to provide each language binding with the opportunity to choose
the most appropriate form these arguments should take. For example, in Fortran 95, derived
types with named constants have been selected for Chapters 2 and 4, whereas derived types
could not be used in Chapter 3 (see section 3.6.1 for details). In Fortran 77, integers with
named constants have been chosen. And finally, in C, operator arguments are represented by
enumerated types. (End of rationale.)

1.4.3 Scalar Arguments

Many scalar arguments are used in the specifications of the BLAS routines. For example, the size
of a vector or matrix operand is determined by the integer argument(s) m and/or n. Note that
it is permissible to call the routines with m or n equal to zero, in which case the routine exits
immediately without referencing its vector/matrix elements. Some routines return a displacement
denoted by the integer argument k. The scaling of a vector or matrix is often denoted by the
arguments alpha and beta.

The following symbols are used: a, b, c, d, r, s, t, alpha, beta and tau.

1.4.4 Vector Operands

A n-length vector operand z is specified by two arguments — x and incx. x is an array that contains
the entries of the n-length vector x. incx is the stride within x between two successive elements of
the vector .

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.4. NOMENCLATURE AND CONVENTIONS 7

The following lowercase letters are used to denote a vector: u, v, w, X, y, and z. The corre-
sponding strides are respectively denoted incu, incv, incw, incx, incy, and incz.

Advice to implementors. The increment arguments incu, incv, incw, incx, incy and incz may
not be zero. (End of advice to implementors.)

Example: The mathematical function returning the inner-product r of two real n-length vectors
z and y can be defined by:

n—1
T
r=aly=3 aw.
i=0

Rationale. The arguments incx, and incy do not play a role in the mathematical formulation
of the operation. These arguments allow for the specification of subvector operands in various
language bindings. Therefore, some of these arguments may not be present in all language-
dependent specifications. (End of rationale.)

1.4.5 Matrix Operands

A m-by-n matrix operand A is specified by the argument A. A is a language-dependent data
structure containing the entries of the matrix operand A. The representation of the matrix entry
a;j in A is denoted by A(i,j) for all (i,j) in the interval [0...m —1] x [0...n —1].

Capital letters are used to denote a matrix. The functions involving matrices use only four
symbols, namely A, B, C, and T.

1.4.6 Naming Conventions

Language bindings are specified for Fortran 95, Fortran 77, and C.

The Fortran 95 language bindings have routine names of the form <name>, where <name> is
in lowercase letters and indicates the computation performed. These bindings use generic interfaces
to manipulate the data type of the routine, and thus their names do not contain a letter to denote
the data type.

The Fortran 77 and C language bindings have routine names of the form
BLAS _x<name>, where the letter x, indicates the data type as follows:

Data type x | Fortran 77 x| C

s.p. real S | REAL s | float
d.p. real D | DOUBLE PRECISION d | double
s.p. complex | C | COMPLEX ¢ | float
d.p.complex | Z | COMPLEX*16 or DOUBLE COMPLEX | z | double

The suffix <name> in the routine name indicates the computation performed. In the matrix-
vector and matrix-matrix routines of Chapters 2 and 4 (and Appendix C.4), the type of the matrix
(or of the most significant matrix) is also specified as part of this <name> name of the routine.
Most of these matrix types apply to both real and complex matrices; a few apply specifically to one
or the other, as indicated below. Note that for Appendix C.4, these matrix types apply to interval
matrices.

8 CHAPTER 1. INTRODUCTION

GB general band

GE general (i.e., unsymmetric, in some cases rectangular)
HB (complex) Hermitian band

HE (complex) Hermitian

HP (complex) Hermitian, packed storage

SB (real) symmetric band

SP symmetric, packed storage

SY symmetric

TB triangular band

TP triangular, packed storage

TR triangular (or in some cases quasi-triangular)
US unstructured sparse

For Fortran 77, routine names are in uppercase letters; however, for the C interfaces all routine
names are in lowercase letters. To avoid possible name collisions, programmers are strongly advised
not to declare variables or functions with names beginning with these prefixes.

A detailed discussion of the format of the <name> naming convention is contained in each
respective chapter of the document.

1.5 Overall Functionality

This section summarizes, in tabular form, the functionality of the proposed routines. Issues such
as storage formats or data types are not addressed. The functionality of the existing Level 1, 2 and
3 BLAS [39, 22, 26, 25] is a subset of the functionality proposed in this document.

In the original BLAS, each level was categorized by the type of operation; Level 1 addressed
scalar and vector operations, Level 2 addressed matrix-vector operations, while Level 3 addressed
matrix-matrix operations. The functionality tables in this document are categorized in a similar
manner, with additional categories to cover operations which were not addressed in the original
BLAS.

Unless otherwise specified, the operations apply to both real and complex arguments. For the
sake of compactness the complex operators are omitted, so that whenever a transpose operation is
given the conjugate transpose should also be assumed for the complex case.

The last column of each table denotes in which chapter of this document the functionality
occurs. Specifically,

e “D” denotes dense and banded BLAS (Chapter 2),
e “S” denotes sparse BLAS (Chapter 3), and

e “E” denotes extended and mixed precision BLAS (Chapter 4).

1.5.1 Scalar and Vector Operations

This section lists scalar and vector operations. The functionality tables are organized as follows.
Table 1.1 lists the scalar and vector reduction operations, Table 1.2 lists the vector rotation opera-
tions, Table 1.3 lists the vector operations, and Table 1.4 lists those vector operations that involve
only data movement.

For the Sparse BLAS, z is a compressed sparse vector and y is a dense vector. Details of data
structures are in Section 3.4.1.

For further details of vector norm notation, refer to section 2.1.1.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.5. OVERALL FUNCTIONALITY

Dot product

Vector norms

Sum

Min value & location
Min abs value & location
Max value & location
Max abs value & location
Sum of squares

T fr+azly

rzly

r ||z,

r < ||z||1r,

r < |[|zl|2,

7 |[|2[oo;

7 < [|z|cors

T D T

k,xy,; k = arg min; x;

k,z, k = argmin;(|Re(z;)| + |[Im(z;)])
k,xk,; k = argmax; x;

by, b = arg max,(|Re(z:)| + Tm(:)))
(scl,ssq) + 32,

ssq-scl? =Y x?

=

wivivlviivivlolvlvlwlwlel 2w
&=

Table 1.1: Reduction Operations

Generate Givens rotation (¢,s,7) rot(a,b) D
Generate Jacobi rotation (a,b,c,s) « jrot(z,y,z) | D
Generate Householder transform | (o, z,7) < house(a, z), | D
H=1—- auu’
Table 1.2: Generate Transformations
Reciprocal Scale T+ z/a D
Scaled vector accumulation y < az + Py, D,E
y<—ar—+y S
Scaled vector addition w 4 az + Py D.E
W 4w — av
i D
Combined axpy & dot product { v 0Ty
Apply plane rotation (z y)«(z y)R

Table

1.3: Vector Operations

Copy
Swap
Sort vector

Permute vector
Sparse gather

Sparse scatter

Sort vector & return index vector

Sparse gather and zero

Yz

IREX"

x < sort(x)
(p,x) + sort(x)
z < Pz

T4 Yo

T 4 Ylo; Yle 0
Yo <

Nnnnggoggod

Table 1.4: Data Movement with Vectors

10 CHAPTER 1. INTRODUCTION

1.5.2 Matrix-Vector Operations

This section lists matrix-vector operations in table 1.5. The matrix arguments A, B and T are dense
or banded or sparse. In addition, where appropriate, the matrix A can be symmetric (Hermitian)
or triangular or general. The matrix T represents an upper or lower triangular matrix, which can
be unit or non-unit triangular. For the Sparse BLAS, the matrix A is sparse, the matrix T is sparse
triangular, and the vectors z and y are dense.

Details of the data structures are discussed in sections 2.2, and 3.4.1.

Matrix-vector product Yy oAz + By, y < aATz + py | D,S,.E
z 4 oTz, oIz D,E
Yy Az +y, y+ aATz+y S
Summed matrix-vector multiplies | y + a«Ax + SBx D,E
Multiple matrix-vector multiplies { z Ty D
w< Tz
{ z+ ATy + 2
D
w 4+ Az
Multiple matrix-vector mults
A A+ uo! + ugod
and low rank updates z— BATy + 2 D
w — adz
Triangular solve z— ol 'z, 2 ol Tz D,S,E
Rank one updates A« azyT +BA D
and symmetric (A = AT) A« azz? + A D
rank one & two updates A+ (az)y? +y(az)T + BA D

Table 1.5: Matrix-Vector Operations

1.5.3 Matrix Operations

This section lists a variety of matrix operations. The functionality tables are organized as follows.
Table 1.6 lists single matrix operations and matrix operations that involve O(n?) operations, Table
1.7 lists the O(n?) matrix-matrix operations and Table 1.8 lists those matrix operations that involve
only data movement. Where appropriate one or more of the matrices can also be symmetric
(Hermitian) or triangular or general. The matrix T represents an upper or lower triangular matrix,
which can be unit or non-unit triangular. D, Dr, and Dpg represent diagonal matrices, and J
represents a symmetric tridiagonal matrix (including 2 x 2 block diagonal).

Details of the data structures are discussed in sections 2.2, and 3.4.1.

For further details of matrix norm notation, refer to section 2.1.3.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.5. OVERALL FUNCTIONALITY

Matrix norms

Diagonal scaling

Matrix acc and scale

Matrix add and scale

r < |[All1,r < [|Alr

< |[Allr, T < [|A]loo, 7 < [|Alloor
7 || Allmaz, T < [|Allmazr

A+ DA, A< AD, A+ Dy ADp
A<+ DAD

A+ A+ BD

C + aA+ BB

B« aA+ BB, B + oA + 3B

Doogoououo

Table 1.6: Matrix Operations — O(n?) floating point operations

Matrix-matrix product | C < aAB + C, C < aATB + C D.E
C + aABT + BC, C «+ aATBT + BC | D,E
C < aAB + BC, C + aATB + BC S
Triangular multiply B+ oaT'B, B+ aBT D,E
B+ oTTB, B < aBT" D.E
Triangular solve B« aoT 'B, B+ oT 'B D,S,E
B¢+ aBT™ ', B+ aBT™ T D.E
Symmetric rank k & 2k | C + aAAT + BC, C + aATA + C D.E
updates (C = CT) C + aAJAT +BC, C + aATJA+BC | D
C « (aA)BT + B(aA)T + BC, D,E
C + («A)TB + BT (aA) + pC
C « (aAJ)BT + B(aAJ)T + BC, D
C « (aAJ)TB + BT (aAJ) + BC

Table 1.7: Matrix-Matrix Operations - O(n?®) floating point operations

Matrix copy
Matrix transpose
Permute Matrix

B« A B+ AT |D
A+ AT D
A+ PA, A+ AP |D

Table 1.8:

Data Movement with Matrices

11

12 CHAPTER 1. INTRODUCTION

1.6 Numerical Accuracy and Environmental Enquiry

To understand the numerical behavior of the routines proposed here, certain floating point pa-
rameters are necessary. Detailed error bounds and limitations due to overflow and underflow are
discussed in individual chapters (see sections 2.7, 3.7, 4.3.3, and C.4.4) but all of them depend on
details of how floating point numbers are represented. These details are available by calling an
environmental enquiry function called FPINFO.

Floating point numbers are represented in scientific notation as follows. This discussion follows
the IEEE Floating Point Arithmetic Standard 754 [7].3

z=+dd---d*x BASEF

where d.d---d is a number represented as a string of T significant digits in base BASE with the
“point” to the right of the leftmost digit, and E is an integer exponent. E ranges from EMIN up
to EMAX. This means that the largest representable number, which is also called the overflow
threshold or OV, is just less than BASEPMAX+1 This also means that the smallest positive “nor-
malized” representable number (i.e. where the leading digit of d.d - - - d is nonzero) is BASEEMIN
which is also called the underflow threshold or UN.

When overflow occurs (because a computed quantity exceeds OV in absolute value), the result is
typically +o0, or perhaps an error message. When underflow occurs (because a computed quantity
is less than UN in absolute magnitude) the returned result may be either 0 or a tiny number less
than UN in magnitude, with minimal exponent EMIN but with a leading zero (0.d - - - d). Such tiny
numbers are often called denormalized or subnormal, and floating point arithmetic which returns
them instead of 0 is said to support gradual underflow.

The relative machine precision (or machine epsilon) of a basic operation ® € {4, —,x,/} is
defined as the smallest EPS > 0 satisfying

flla®b) = (a ®b) * (1+ 6)for some|§| < EPS

for all arguments a¢ and b that do not cause underflow, overflow, division by zero, or an invalid
operation. When fl(a ® b) is a closest floating point number to the true result ¢ ® b (with ties
broken arbitrarily), then rounding is called “proper” and EPS = .5+ BASE'"T. Otherwise
typically EPS = BASE'~T, although it can sometimes be worse if arithmetic is not implemented
carefully. We further say that rounding is “IEEE style” if ties are broken by rounding to the nearest
number whose least significant digit is even (i.e. whose bottom bit is 0).

The function FPINFO returns the above floating point parameters, among others, to help the
user understand the accuracy to which results are computed. FPINFO can return the values for
either single precision or double precision. The way the precision is specified is language dependent,
as is the choice of floating point parameter to return, and described in section 2.7. The names single
and double may have different meanings on different machines: We have long been accustomed to
single precision meaning 32-bits on all IEEE and most other machines [7], except for Cray and
its emulators where single is 64-bits. And there are historical examples of 60-bit formats on some
old CDC machines, etc. Nonetheless, we all agree on single precision as a phrase with a certain
system-dependent meaning, and double precision too, meaning at least twice as many significant
digits as single.

3We ignore implementation details like “hidden bits”, as well as unusual representations like logarithmic arithmetic
and double-double.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.7. LANGUAGE BINDINGS 13

The values returned by FPINFO are as follows, including the values returned for IEEE single and
IEEE double, the most common cases. The floating point parameters in column 1 have analogous
meanings as the like-named character arguments of the LAPACK subroutine xLAMCH.*

Floating point | Description Value in Value in
parameter IEEE single IEEE double
BASE base of the machine 2 2
T number of digits 24 53
RND 1 when proper rounding 1 1

occurs in addition
0 otherwise

IEEE 1 when rounding in addition 1 1
is IEEE style
0 otherwise

EMIN minimum exponent before -126 -1022
(gradual) underflow

EMAX maximum exponent before 127 1023
overflow

EPS machine epsilon 272 x5 x 1078 2753 ~ 10716

= 5«xBASE!T if RND=1
= BASE!7T if RND=0

PREC EPS*BASE 272 2752

UN underflow threshold 27126 5 10738 | 271022 5 19308
— BASEEMIN

ov overflow threshold ~ 2128 1038 | ~ 21024 5 1308
= BASEFPMAX+L 4 (1-EPS)

SFMIN safe minimum, such that 27126 10738 | 271022 5 1 —308

1/SFMIN does not overflow
— UN if 1/OV<UN,
else (1+EPS)/OV

Table 1.9: Values returned by FPINFO

Chapter 4 defines an additional FPINFO-like function to supplement this one with additional
information needed for error bounds.

1.7 Language Bindings

Each specification of a routine corresponds to an operation outlined in the functionality tables.
Operations are organized analogous to the order in which they are presented in the functionality
tables. The specification has the form:

NAME (multi-word description of operation) < mathematical representation >

“Here are the differences: In xLAMCH, UN was called RMIN and OV was called RMAX. The value of IEEE was
computed by xLAMCH but not returned. xXLAMCH returned EMIN+1 and EMAX+1 instead of EMIN and EMAX,
respectively (this corresponds to a different choice of where to put the “point” in d.d---d * BASEE).

14 CHAPTER 1. INTRODUCTION

Optional brief textual description of the functionality including any restrictions that apply to all
language bindings.

e Fortran 95 binding
e Fortran 77 binding
e C binding

Alternative language bindings for C4++ and Java were also discussed during the meetings of the
forum, but the specifications for these bindings were postponed for a future series of meetings.

1.8 Error Handling

This document supports two types of error-handling capabilities: an error handler and error return
codes. Each chapter of this document, and thus each flavor of BLAS, has the choice of using either
capability, whichever is more appropriate. Chapters 2 and 4 rely on an error handler, and Chapter 3
provides error return codes.

One error handler, BLAS_ERROR, is defined. A series of error return codes are also defined.
Each function in this document determines when and if an error-handling mechanism is called, and
its function specification must document the conditions (if any) which trigger the error handling
mechanism.

1.8.1 Return Codes

Routines in the Sparse BLAS chapter utilize return codes since many of the operations need to
be recoverable. In Fortran 95 and 77, the error return code of a BLAS routine is returned in the
parameter istat, usually the last argument in the parameter list. In C, the error code is the return
value of the function. In either case, the value of the error code is the integer 0 if the operation
was successful. In the event of an error detection, a nonzero value is returned and control returns
back to the calling program, as usual. The application is not aborted or halted, and it is the
responsibility of the caller to check error status of these BLAS operations.

1.8.2 Error Handlers

The error handler defines some minimal scalar input argument checking.

Advice to implementors. A BLAS supplier is free to provide multiple interfaces to the
libraries, so that a second interface may perform no error checking. (End of advice to imple-
mentors.)

Additional error checking may be performed (for instance, checking that there are no zeros on the
diagonal of a triangular solve), but these kinds of tests are too implementation-constraining to be
mandated by the standard. Any additional error checking must not abort execution.

When any of the mandated scalar input argument checks fail, if the BLAS error handler is used,
it must use the API given below. The default behavior of the BLAS-compliant error handler is to
print an informative error message and abort execution. However, the API of this error handler is
mandated by this document specifically so that a user can override the default error handler with
a user-defined routine, so that this behavior can be changed. It is therefore necessary that the
implementor not assume that the error handler stops execution, but rather must return explicitly
before altering the routine’s operands in the event of an error.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1.8. ERROR HANDLING 15

The following are defined as errors by this standard. All Fortran 95, Fortran 77, and C routines
must perform the following error check.

e Any value of the operator arguments whose meaning is not specified in section A.3 is invalid.

Additionally, all Fortran 77 and C routines must perform the following error checks, unless otherwise
noted in the specification of the routine.

e Any problem dimension or bandwidth (eg., m, n, k, kl, ku) less than zero
e Any vector increment (eg., incw, incx, incy, incz) equal to zero
e Any leading dimension (eg. Ida, Idb, Idc, Idt) less than one

e Any leading dimension (eg. Ida, Idb, Idc, Idt) less than the relevant dimension of the problem.
The relevant dimension of the problem is:
— n, for a square, symmetric, or triangular matrix
— m, for a m X n general, non-transposed matrix

— n, for a m X n general, transposed matrix

kl + ku 4 1 for a m X n general band matrix

k + 1 for a n X n symmetric or triangular band matrix with k super- or subdiagonals

Each language binding possesses its own unique error handler. However, all error handlers
minimally pass three pieces of information:

1. RNAME, the name of the routine in which the error occurred.

2. IFLAG, an integer flag which, if negative, means that parameter number -IFLAG caused the
error, and if set to nonnegative, is an implementation-specific error code

3. IVAL, the value of parameter number -IFLAG.

Each language’s BLAS error handler should print an informative error message describing the error,
and halt execution. The APT of the error handler is explicitly spelled out in each section, so that if
this behavior is not desired by the user or higher level library provider, it may be changed by the
BLAS user, overriding the BLAS’s error handler with one which performs as required.

The API for each language binding is mandated in the following sections; as an advice to the
implementor, an example of a BLAS-2000 compliant error handler is included as well.

F95 error handler

The Fortran 95 BLAS do not need to test the option arguments, since these are derived types and
hence invalid arguments are flagged by the compiler. The only case where array dimensions are
arguments to the Fortran 95 BLAS are the nonsymmetric band routines where m and kl are passed
as arguments. The other array dimensions can be determined in the BLAS routines using the
intrinsic function SIZE, and arrays should be checked for conformance according to the operation
being performed. For example in the operation AB the second dimension of A must equal the first
dimension of B. Note that, for consistency, m is included in all of the nonsymmetric band routines
although in some cases it is redundant; in those cases it should be tested against the relevant array
dimension.
The mandated API of the routine is:

16

MODULE blas_error_handler
INTERFACE blas_error
SUBROUTINE blas_error(rname,iflag,ival)
INTEGER, INTENT (IN) :: iflag
INTEGER, OPTIONAL, INTENT (IN) :: ival
CHARACTER (%), INTENT (IN) :: rname
END SUBROUTINE blas_error
END INTERFACE
END MODULE blas_error_handler

A possible implementation would be:

SUBROUTINE blas_error(rname,iflag,ival)
! .. Scalar Arguments ..

CHAPTER 1. INTRODUCTION

! The optional argument ival must be present when iflag is in (-98,-1)

INTEGER, INTENT (IN) :: iflag
INTEGER, OPTIONAL, INTENT (IN) :: ival
CHARACTER (%), INTENT (IN) :: rname
|
SELECT CASE (iflag)
CASE (-99)

WRITE (*,1000) rname
CASE (-98:-1)

WRITE (*,2000) rname, -iflag, ival
CASE DEFAULT

WRITE (*,3000) iflag, rname
END SELECT

STOP

1000 FORMAT (°On entry to ’,A, &

’ two or more array argument sizes do not conform’)
2000 FORMAT (’0On entry to ’,A,’ argument number’,I3, &

> had the illegal value of ’,I5)

3000 FORMAT (’Unknown error code ’,I5,’ raised by routine ’,A)

END SUBROUTINE blas_error

F77 error handler
The mandated API of the routine is:

SUBROUTINE BLAS_ERROR(RNAME, IFLAG, IVAL)

CHARACTER* (*) RNAME
INTEGER IFLAG, IVAL

A possible implementation would be:

SUBROUTINE BLAS_ERROR(RNAME, IFLAG, IVAL)

CHARACTER* (*) RNAME

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.8. ERROR HANDLING

INTEGER IFLAG, IVAL

IF(IFLAG.LT.0) THEN
WRITE(*,1000) RNAME, -IFLAG, IVAL
ELSE
WRITE(*,2000) IFLAG, RNAME
END IF
STOP

1000 FORMAT(’On entry to ’,A, ’ parameter number’, I3,
$ > had the illegal value of’, I)

2000 FORMAT(’Unknown error code ’,I,’ raised by routine’,A)
END

C error handler

The mandated API of the routine is:
void BLAS_error(char *rname, int iflag, int ival, char *form, ...)
A possible implementation would be:

#include <stdio.h>
#include <stdarg.h>
void BLAS_error(char *rname, int iflag, int ival, char *form, ...)

{

va_list argptr;

va_start(argptr, form);
fprintf (stderr, "Error #)d from routine %s:\n", iflag, rname);
if (form) vfprintf(stderr, form, argptr);
else if (iflag < 0)

fprintf (stderr,

" Parameter number %d to routine %s had the illegal value %d\n"
-iflag, rname, ival);
else fprintf(stderr, " Unknown error code %d from routine %s\n",
iflag, rname);

exit(iflag);

17

