Chapter 2

Dense and Banded BLAS

2.1 Overview and Functionality

This chapter defines the functionality and language bindings for the dense and banded BLAS rou-
tines, addressing mathematical operations with scalars, vectors and dense, banded, and triangular
matrices but not sparse data structures.

The chapter is organized as follows. Sections 2.1.1, 2.1.2, and 2.1.3 list in tabular form the
functionality of the proposed routines. Unless otherwise specified, the operations apply to both
real and complex arguments. For the sake of compactness the complex operators are omitted, so
that whenever a transpose operation is given the conjugate transpose should also be assumed for
the complex case. Section 2.2 defines the matrix storage schemes. Section 2.3 discusses general
interface issues, and sections 2.4, 2.5, and 2.6 detail the interface issues for the respective language
bindings — Fortran 95, Fortran 77, and C. Section 2.7 discusses issues concerning the numerical
accuracy of the BLAS. And lastly, sections 2.8.2 — 2.8.10 present the language bindings for the
proposed routines.

2.1.1 Scalar and Vector Operations

This section lists scalar and vector operations. The functionality tables are organized as follows.
Table 2.1 lists the scalar and vector reduction operations, table 2.2 lists the rotation operations,
table 2.3 lists the vector operations, and table 2.4 lists vector operations involving only data move-
ment. Notation in the tables is defined in section 1.4, and details of the data structures are discussed
in section 2.2. Vector norms are defined in Appendix A.1. The language bindings are presented in
sections 2.8.2, 2.8.4, and 2.8.5.

2.1.2 Matrix-Vector Operations

This section lists the matrix-vectors operations in functionality table 2.5. Unless otherwise specified,
the operations apply to both real and complex arguments. For the sake of compactness the complex
operators are omitted, so that whenever a transpose operation is given both the conjugate and
conjugate transpose should also be assumed for the complex case.

The matrix T represents an upper or lower triangular matrix, which can be unit or non-unit
triangular. D represents a diagonal matrix. Notation in the tables is defined in section 1.4, and
details of the data structures are discussed in section 2.2. The language bindings are presented in
section 2.8.6.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.1. OVERVIEW AND FUNCTIONALITY

Dot product r ¢ Br+azly DOT
Vector norms r <« ||z||1, 7 < ||z||1R, NORM
7 ||2ll2,
7 |[zl[oo, 7 4 [|Zl|oor
Sum T4 Y T SUM
Min value & location k,xk,; k = arg min; x; MIN_VAL
Min abs value & location | k,z, k = arg min;(|Re(z;)| + |Im(z;)|) | AMIN_VAL
Max value & location k,xk,; k = arg max; x; MAX_VAL
Max abs value & location | k,z, k = arg max;(|Re(z;)| + [Im(z;)|) | AMAX_VAL
Sum of squares (ssq, scl) + 3 2, SUMSQ
8sq - scl? =Y x?
Table 2.1: Reduction Operations
Generate Givens rotation (¢,s,1) rot(a,b) GEN_GROT
Generate Jacobi rotation (a,b,c,s) « jrot(z,y,z) | GEN_JROT
Generate Householder transform | (o, z,7) < house(a, z), | GEN_HOUSE
H=1-auu”
Table 2.2: Generate Transformations
Reciprocal Scale T+ z/a RSCALE
Scaled vector accumulation Yy azx + By, AXPBY
Scaled vector addition w 4+ azx + By WAXPBY
Combined axpy & dot product { W EUT_ av AXPY_DOT
T Wy
Apply plane rotation (z y)«<(z y)R|APPLY_GROT
Table 2.3: Vector Operations
Copy YT COPY
Swap Yy SWAP
Sort vector x < sort(z) SORT
Sort vector & return index vector | (p,z) < sort(z) | SORTV
Permute vector T+ Px PERMUTE

Table

2.1.3 Matrix Operations

2.4: Data Movement with Vectors

19

This section lists single matrix operations, matrix-matrix operations, and matrix operations in-
volving data movement. The functionality tables are organized as follows. Table 2.6 lists single

matrix operations and matrix operations that involve O(n?) floating point operations, Table 2.7
lists the O(n?®) matrix-matrix floating point operations and Table 2.8 lists those matrix floating

point operations that involve only data movement. Unless otherwise specified, the operations apply
to both real and complex arguments. For the sake of compactness the complex operators are omit-

20 CHAPTER 2. DENSE AND BANDED BLAS

Matrix vector product Yy aAzx + By GE,GB,SY,HE, | MV !

SB,HB,SP,HP >

y <+ aATz + By GE,GB MV 3

z— alz, 4+ alTz TR, TB, TP MV 4

Summed matrix vector multiplies y + aAzx + Bz GE SUM_MV ¢p

. . - { T TTy e

Multiple matrix vector multiplies TR MVT .
w< Tz

8

{ z— BATYy + 2 GE MVT X

w <+ qAzx .

A A+ uv? + ugvd L

Multiple mv mults & low rank updates T4 ﬁATy + z GE MVER)

w aAz 3

Triangular solve z—aol 'z, z—aT T2 TR,TB,TP SV 4

Rank one updates A« azy’ + BA GE R 5

and symmetric (A = AT) A azz? + BA SY,HE,SP,HP | R 6

rank one & two updates A« (az)y” +y(az)T + BA | SY,HE,SP,HP | R2 7

Table 2.5: Matrix-Vector Operations

ted, so that whenever a transpose operation is given both the conjugate and conjugate transpose 22
should also be assumed for the complex case. The matrix T represents an upper or lower triangular 23
matrix, which can be unit or non-unit triangular. D, Dy, and Dpg represent diagonal matrices, and 24
J is a symmetric tridiagonal matrix. Notation in the tables is defined in section 1.4, and details of 25
the data structures are discussed in section 2.2. Matrix norms are defined in Appendix A.2. The 26

language bindings are listed in sections 2.8.6, 2.8.7, 2.8.8, and 2.8.9. 27
28
Matrix norms r <« ||Al|l1,r < ||A|lir,T < ||A||F, | GE,GB,SY,HE,SB,HB, | NORM 29
7 4 ||Alloos T < ||A]|cor, SP,HP,TR,TB,TP 30
< ||Allmaz, T < ||Al|lmazr 31
Diagonal scaling A<+ DA, A<~ AD GE,GB DIAG_SCALE;,
A<+ DL ADg GE,GB LRSCALE
A<+ DAD SY,HE,SB,HB,SP.HP | LRSCALE ,,

A+ A+ BD GE,GB DIAG_SCALE,ACC
Matrix acc and scale | B < aA + BB, B + aAT + B GE,GB,SY,SB, _ACC 36
SP,TR,TB,TP a7
Matrix add and scale | C' < aA + 6B GE,GB,SY,SB, _ADD 38
SP,TR,TB,TP 30

Table 2.6: Matrix Operations — O(n?) floating point operations i?
42
43
44
45
46
47

48

© o] ~ [« (S [w N -

B A R A B A A W W W W W W W W W N N NN NN NN N R R R R R e s e s
I3 G A B oNom O ©® kN aA b= O ® ® N G A BN R O © ® N O ;oA W N = O

'S
oo

2.1. OVERVIEW AND FUNCTIONALITY

21

Matrix matrix product | C « aAB + C, C + aATB + C GE MM
C « aABT + BC, C + aATBT + pC
C <+ aAB+ pC, C < aBA+ pC SY,HE | MM
Triangular multiply B+ oT'B, B <+ aBT TR MM
B+« oTTB, B + aBTT
Triangular solve B+ oT 'B, B+ aBT! TR SM
B+ ol' TB, B+ oBT T
Symmetric rank k & 2k | C < aAAT + BC, C < aATA + BC SY,HE | RK
updates (C = CT) C — aAJAT + BC, C <+ aATJA+ BC | SY,HE | _TRIDIAG_RK
C + (cA)BT + B(acA)T + BC, SY.HE | R2K
C + (aA)TB + BT (aA) + BC
C + (cAJ)BT + B(cAJ)T + BC, SY.HE | TRIDIAG_R2K
C + (aAJ)TB + BT (aAJ) + BC

Table 2.7: Matrix-Matrix Operations — O(n?) floating point operations

Matrix copy B+ A GE,GB,SY,HE,SB,HB,SP,HP,TR,TB, TP | _COPY
B« AT GE,GB _COPY

Matrix transpose | A «+ AT GE _TRANS

Permute Matrix | A« PA, A+ AP | GE _PERMUTE

Table 2.8: Data Movement with Matrices

22 CHAPTER 2. DENSE AND BANDED BLAS

2.2 Matrix Storage Schemes

The following matrix storage schemes are used:
e column-based and row-based storage in a contiguous array;
e packed storage for symmetric, Hermitian or triangular matrices;
e band storage for band matrices;

In the examples below, * indicates an array element that need not be set and is not referenced
by the BLAS routines. Elements that “need not be set” are never read, written to, or otherwise
accessed by the BLAS routines. The examples illustrate only the relevant part of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing
array arguments in C or Fortran.

2.2.1 Conventional Storage

The default scheme for storing matrices in the Fortran 95 and Fortran 77 interfaces is the one
described in subsection 2.5.3: a matrix A is stored in a two-dimensional array A, with matrix
element a;; stored in array element A(i, j), assuming one-based indexing.

For the C language interfaces, matrices may be stored column-wise or row-wise as described in
subsection 2.6.6: a matrix A is stored in a one-dimensional array A, with matrix element a;; stored
column-wise in array element A(i + j * [da) or row-wise in array element A(j + i * lda), assuming
zero-based indexing.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements
of the relevant triangle are accessed. The remaining elements of the array need not be set. Such
elements are indicated by * in the examples below. For example, assuming zero-based indexing and
n=3:

order uplo Triangular matrix A Storage in array A
app a1 @2
blas_colmajor | blas_upper ail aio agy * * agl a11 * Qg2 A1 4929
a22
apo @1 @02
blas_rowmajor | blas_upper ail a1 apo ap1 Qo2 * Q11 G12 * * A9
a2
apo
blas_colmajor | blas_lower alp a1 ago A1 A20 * Q11 Q21 * * 499

a0 a21 @22

aoo
blas_rowmajor | blas_lower ap a1 apgy * * a1p Q11 * Qa90 A21 429

a0 Q21 a2

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower
triangle of the matrix (as specified by uplo) to be stored in the corresponding elements of the array;
the remaining elements of the array need not be set. For example, when n = 3:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.2. MATRIX STORAGE SCHEMES 23

order uplo Hermitian matrix A Storage in array A

apo aor ap2
blas_colmajor | blas_upper apl @11 612 apgy * * agl A11 * Qg2 a12 A2

ag2 Q12 a2

app G@o1 Qo2
blas_rowmajor | blas_upper ag1 G611 @12 ago Gol Qg2 * @11 Q12 * * A9y
Go2 Q12 @22

ago @io G20
blas_colmajor | blas_lower a1y @11 G91 agy @10 @20 * G11 Qo1 * * @99
a0 Q21 Q22

ago @io G20
blas_rowmajor blas_lower alp a1 a21 agp * * aig a1l * agp a21 a2
a0 a1 a2

2.2.2 Packed Storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by uplo) is packed by columns or rows in a one-dimensional array. In the
BLAS, arrays that hold matrices in packed storage, have names ending in ‘P’. So, in the case of
zero-based addressing as in C, we have the following formulas (For one-based addressing, as in
Fortran, replace ¢ by i — 1 and j by j — 1 in these formulas).

e ifuplo = blas_upper then

— if order = blas_colmajor, a;; is stored in AP (i + j(j + 1)/2) for i < j;

— if order = blas_rowmajor, a;; is stored in AP(j 4+ ¢(2n —i —1)/2) for i < j;

e ifuplo = blas lower then

— if order = blas_colmajor, a;; is stored in AP(i + j(2n — j — 1)/2) for j <.

blas_rowmajor, a;; is stored in AP(j +i(i + 1)/2) for j <.

— if order

For example, assuming zero-based indexing;:

order uplo Triangular matrix A | Packed storage in array ap
apo Go1 @02
blas_colmajor | blas_upper a1l a2 ago Qo1 A11 Gg2 @12 a99
——— N ——
a2
app apr ap2
blas_rowmajor | blas_upper a1l a9 ago apl @o2 @11 G12 G922
—————— ———r
a2
ago
blas_colmajor blas_lower aig ai1 app a1p a20 A1l a1 a922
—— N —
a0 G21 @22
ano
blas_rowmajor | blas_lower alp a11 ago Q1o A11 G20 G21 A2
——— ———
a0 G21 G2

24 CHAPTER 2. DENSE AND BANDED BLAS

Note that for real or complex symmetric matrices, packing the upper triangle by columns is
equivalent to packing the lower triangle by rows; packing the lower triangle by columns is equivalent
to packing the upper triangle by rows. For complex Hermitian matrices, packing the upper triangle
by columns is equivalent to packing the conjugate of the lower triangle by rows; packing the lower
triangle by columns is equivalent to packing the conjugate of the upper triangle by rows.

2.2.3 Band Storage

For Fortran (column-major storage), an m-by-n band matrix with kl subdiagonals and ku super-
diagonals may be stored compactly in a two-dimensional array with kl+ku+1 rows and n columns.
Columns of the matrix are stored in corresponding columns (contiguous storage dimension) of the
array, and diagonals of the matrix are stored in rows (non-contiguous or strided dimension) of the
array. This storage scheme should be used in practice only if kl, ku < min(m,n), although BLAS
routines work correctly for all values of kI and ku. In the BLAS, arrays that hold matrices in band
storage have names ending in ‘B’.

To be precise, for column-major storage, a;; is stored in AB(ku + 14 — j, j) for max(0,j — ku) <
i < min(m — 1, j + kl). For row-major storage, a;; is stored in AB(i, kl + j — i) for max(0, j — ku) <
i < min(n — 1,7 + kl). For example, assuming column-major storage, when m =n =5, kl = 2 and
ku=1:

Band matrix A Band storage in array AB

apo ao1
aip a1 a2
a0 az1 G2 a3
az1r azz aszz as4
Q42 Q43 G44

¥ Go1 G612 G23 (34
app Qi1 a2 a3z a4
ajp G21 G32 0G43 %
azp azy a4z % *

The elements marked * in the upper left and lower right corners of the array AB need not be
set, and are not referenced by BLAS routines.

For C (row-major storage), order = blas rowmajor, the rows of the matrix are stored in
corresponding rows (contiguous storage dimension) of the array, and diagonals of the matrix are
stored in columns (non-contiguous or strided dimension) of the array. The m-by-n band matrix
with kl subdiagonals and ku superdiagonals is stored in a one-dimensional array with n rows and
kl+ku+1 columns, strided by lda. The padding with elements marked * is now shifted to ensure
that rows of the matrix are stored contiguously. Refer to section B.2.12 for full details.

Triangular band matrices are stored in the same format, with either kI = 0 if upper triangular,
or ku = 0 if lower triangular.

For Fortran 77, and symmetric or Hermitian band matrices with kd subdiagonals or superdiag-
onals, only the upper or lower triangle (as specified by uplo) need be stored:

e if uplo = blas_upper, a;; is stored in AB(kd + i — 7, j) for max(0,j — kd) < i < j;

e if uplo = blas_lower, a;; is stored in AB(i — j,7) for j < ¢ < min(n — 1,5 + kd).

For example, assuming zero-based indexing and n = 5 and kd = 2:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.2. MATRIX STORAGE SCHEMES 25

uplo Hermitian band matrix A Band storage in array AB
apo aop1 aop2
Go1 @11 @12 013 * ¥ Gp2 G13 a24
blas_upper Go2 Q12 G2 G23 G24 * ap1 @12 a3 G34
G13 G23 Q33 Qs34 Goo Q11 Q22 a3z G44

Q24 Q34 Q44
ago a1 Q20

a0 @11 G21 Qs3] apgy a11 G2 a33 Q44
blas_lower a0 Q921 Q92 Q32 G492 alg a21 a3y G43 %
a3l a3z asz Q43 a0 Azl Q43 * *

a42 @43 Q44

Similarly, for C (row-major storage), order = blas_rowmajor, the contiguous dimension (rows)
of the matrix is stored in the contiguous dimension (rows) of the array, strided by lda. And pictori-
ally, the one-dimensional array is the transpose of the AB storage as depicted above. The padding
with elements marked * is now shifted to ensure that rows of the matrix are stored contiguously.
Refer to section B.2.12 for full details.

2.2.4 Unit Triangular Matrices

Some BLAS routines have an option to handle unit triangular matrices (that is, triangular ma-
trices with diagonal elements = 1). This option is specified by an argument diag. If diag =
blas_unit_diag (Unit triangular)), the array elements corresponding to the diagonal elements of
the matrix are not referenced by the BLAS routines. The storage scheme for the matrix (whether
conventional, packed or band) remains unchanged, as described in subsection 2.2.1.

2.2.5 Representation of a Householder Matrix

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix
of the form
H=1-7vl (2.1)

where 7 is a scalar, and v is an n-vector, with |7|2||v||3 = 2Re(7); v is often referred to as the
Householder vector. Often v has several leading or trailing zero elements, but for the purpose
of this discussion assume that H has no such special structure.

This representation agrees with what is used in LAPACK [6] (which differs from those used in
LINPACK [23] or EISPACK [48, 32]) sets v; = 1; hence v; need not be stored. In real arithmetic,
1 <7 <2, except that 7 = 0 implies H = 1.

In complex arithmetic, 7 may be complex, and satisfies 1 < Re(7) < 2 and |7 — 1] < 1. Thus
a complex H is not Hermitian (as it is in other representations), but it is unitary, which is the
important property. The advantage of allowing 7 to be complex is that, given an arbitrary complex
vector z, H can be computed so that

with real 8. This is useful, for example, when reducing a complex Hermitian matrix to real sym-
metric tridiagonal matrix, or a complex rectangular matrix to real bidiagonal form.

26 CHAPTER 2. DENSE AND BANDED BLAS

2.2.6 Representation of a Permutation Matrix 1

An n-by-n permutation matrix P is represented as a product of at most n interchange permutations.
An interchange permutation F is a permutation obtained by swapping two rows of the identity ma-
trix. An efficient way to represent a general permutation matrix P is with an integer vector p of
length n. In other words, P = E,, ... F;1 and each Ej; is the identity with rows ¢ and p; interchanged.

Doi=0ton—1 or Doi=n—-1t00

<)) © x(())) x(i)) ¢ x(p(i)))
End do End do

11
12
13
2.3 Interface Issues 3
. . 15
2.3.1 Naming Conventions .

The naming conventions adopted for the routines are as defined in section 1.4.6. 17
18
2.3.2 Argument Aliasing 19
20
Correctness is only guaranteed if output arguments are not aliased with any other arguments. 91
22

2.4 Interface Issues for Fortran 95 23

24

Some of the functions in the tables of this chapter can be replaced by simple array expressions 25

and assignments in Fortran 95, without loss of convenience or performance (assuming a reasonable 26
degree of optimization by the compiler). Fortran 95 also allows groups of related functions to be 27
merged together, each group being covered by a single interface. 28

The following sections discuss the indexing base for vector and matrix operands, the features of 29
the Fortran 95 language that are used, the matrix storage schemes that are supported, and error 30

handling. 31
We strongly recommend that optional arguments be supplied by keyword, not by position, 32
since the order in which they are described may differ from the order in which they appear in the 33
argument list. 34
35

2.4.1 Fortran 95 Modules 36

37
Refer to Appendix A.4 for the Fortran 95 module blas_dense. The module blas_operator_arguments

contains the derived type values, and separate modules are supplied with explicit interfaces to the 30
routines. If the module blas _dense is accessed by a USE statement in any program which makes 20
calls to these BLAS routines, then those calls can be checked by the compiler for errors in the
numbers or types of arguments.

38

42
43

2.4.2 Indexing 1

The Fortran 95 interface returns indices in the range 1 < I < N (where N is the number of entries
in the dimension in question, and I is the index). This allows functions returning indices to be

directly used to index standard arrays. i

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

2.4. INTERFACE ISSUES FOR FORTRAN 95 27

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at one.

2.4.3 Design of the Fortran 95 Interfaces

The proposed design utilizes the following features of the Fortran 95 language.

Generic interfaces: all procedures are accessed through generic interfaces. A single generic name
covers several specific instances whose arguments may differ in the following properties:

data type (real or complex).

precision (or equivalently, kind type parameter “kind-value”). However, all real or complex
arguments must have the same precision. We allow both single and double precision.

rank Some arguments may either have rank 2 (to store a matrix) or rank 1 (to store a vector).
In other cases an argument may be either a rank 1 array or a scalar.

different argument lists Some of the arguments are optional. If one of these arguments
does not appear in the calling sequence, a predefined value or a predefined action is
assumed. Table 2.9 contains the predefined value or action for these arguments.

Assumed-shape arrays: all array arguments are assumed-shape arrays, which must have the
exact shape required to store the corresponding matrix or vector. Hence arguments to specify
array-dimensions or problem-dimensions are not required. The procedures assume that the
supplied arrays have valid and consistent shapes. Zero dimensions (implying empty arrays)
are allowed.

This means that, for a vector operand, the offset and stride are not needed as arguments.
The actual argument corresponding to a n-length vector dummy argument could be:

actual argument

comments

x(ix:ix+(n-1)*incx)
x(1:14(n-1)*incx)
x(0:(n-1)*incx)
x(ix:ix+n-1)
(1:

n)

X

ix# 1 and incx# 1

ix= 1 and incx# 1

ix= 0 and incx# 1

ix# 1 and incx= 1

ix= 1 and incx= 1

if x is declared with shape (n), i.e.

x(n)

where iz is an integer vector of n elements
containing valid indices of z

column j of a two-dimension array assuming
that it has n rows (SIZE(a,1) = n)

row 7 of a two-dimension array assuming
that it has n columns (SIZE(a,2) = n)

Derived types: In the Fortran 95 bindings, we use dummy arguments whose actual argument
must be a named constant of a derived type, which is defined within the BLAS module (and
accessible via the BLAS module).

28 CHAPTER 2. DENSE AND BANDED BLAS

2.4.4 Matrix Storage Schemes

The matrix storage schemes for the Fortran 95 interfaces are as described in section 2.2. As with
the Fortran 77 interfaces, only column-major storage is permitted. However, assumed-shape arrays
are used instead of assumed-size arrays.

For a general banded matrix, a, three arguments a, m and kI are used to define the matrix since
ku is defined from the shape of the matrix and kl (ku = SIZE(a,1) — kl — 1). For a symmetric
banded matrix, a Hermitian banded matrix or triangular banded matrix, a, only a is used as an
argument to define the matrix as the band width is defined from the shape of the matrix and is
equal to SIZE(a,1) —1 and m = n.

2.45 Format of the Fortran 95 bindings

Each interface is summarized in the form of a SUBROUTINE statement (or in few cases a FUNCTION
statement), in which all of the potential arguments appear. Arguments which need not be supplied
are grouped after the mandatory arguments and enclosed in square brackets, for example:

SUBROUTINE axpby(x, y [, alpha] [, betal)
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (INOUT) :: y(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

The default value for 3 is 1.0 or (1.0,0.0).
As generic interfaces are used, floating point variables that can be REAL or COMPLEX are denoted
by the keyword <type> which designates the data type for the operand

<type> ::= REAL | COMPLEX

In some routines, however, some of the floating point arguments must be of a specific data type. If
this is the case, then the argument type REAL or COMPLEX is used.
The precision of the floating point variable is denoted by <wp> (i.e., “working precision”) where

<wp> ::= KIND(1.0) | KIND(1.0DO)

and KIND(1.0) and KIND(1.0DO) represent single precision and double precision, respectively.
Some arguments may either have rank 2 (to store a matrix) or rank 1 (to store a vector). In
this case, the following notation is used:

<bb> ::= b(:,:) | b(:)
The same notation is used in the case of an argument that may either have rank 1 or is a scalar.
<bb> ::=b(:) | b

Fortran 95 bindings use assumed shape arrays. The actual arguments must have the correct
dimension. For all the procedures that contain array arguments the shape of the array arguments
is given in detail after the specification. For example the specification of the SUBROUTINE axpby
given above is followed by:

x and y have shape (n)

which indicates that both arrays x and y must be rank 1 with the same number of elements.

The calling sequence may be followed by a table which lists the different variants of the oper-
ation, depending either on the ranks of some of the arguments or on the optional arguments. The
scalar values alpha and beta take the defaults given in the following table:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.4. INTERFACE ISSUES FOR FORTRAN 95 29

Argument | default value in real case | default value in complex case
alpha 1.0 (1.0,0.0)
beta 0.0 OR 1.0 (0.0,0.0) OR (1.0,0.0)

Procedures that contain the optional scalar beta state the default value for beta only if it is
1.0 or (1.0,0.0), otherwise the default is assumed to be 0.0 or (0.0,0.0).

The following table shows the notation that is used for the values of optional arguments (since
alpha and beta are also optional, for example):

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Dummy | Notation in table Named constant Default value
argument
norm l-norm blas_one_norm blas_one norm
1R-norm blas_real_one norm
2-norm blas_two_norm
Frobenius-norm blas_frobenius norm
inf-norm blas_inf norm
real-inf-norm blas_real_inf norm
max-norm blas max_norm
real-max-norm blas_real max norm
sort sort in decreasing order | blas_decreasing order | blas_increasing order
sort in increasing order | blas_increasing order
side L blas_left_side blas_left
R blas_right_side
uplo U blas_upper blas_upper
L blas_lower
transz N blas no_trans blas no_trans
T blas_trans
H blas_conj_trans
conj blas no_conj blas no_conj
blas_conj
diag N blas non_unit_diag blas non_unit_diag
U blas_unit_diag
jrot inner rotation blas_jrot_inner blas_jrot_inner
outer rotation blas_jrot_outer
sorted rotation blas_jrot_sorted

Table 2.9: Default values of Operator Arguments

2.4.6 Error Handling

The Fortran 95 interface must supply an error-handling routine blas_error. The API for this
error-handling routine is defined in section 1.8. By default, this routine will print an error message
and stop execution. The user may modify the action performed by the error-handling routine, and
this modification must be documented.

The following values of arguments are invalid and will be flagged by the error-handling routine:

e Any value of the operator arguments whose meaning is not specified in the language-dependent
section is invalid;

30 CHAPTER 2. DENSE AND BANDED BLAS

Routine-specific error conditions are listed in the respective language bindings.

2.5 Interface Issues for Fortran 77

Unless explicitly stated, the Fortran 77 binding is consistent with ANSI standard Fortran 77. There
are several points where this standard diverges from the ANSI Fortran 77 standard. In particular:

e Subroutine names are not limited to six significant characters.
e Subroutine names contain an underscore.
e Subroutines may use the INCLUDE statement for include files.

Section 2.5.2 discusses the indexing of vector and matrix operands. Section A.5 defines the
operator arguments, section 2.5.3 defines array arguments, and section 2.2 lists the matrix storage
schemes that are supported. Section 2.5.5 details the format of the language binding, and section
2.5.6 discusses error handling.

25.1 Fortran 77 Include File

Refer to Appendix A.5 for details of the Fortran 77 include file blas_namedconstants.h.

2.5.2 Indexing

The Fortran 77 interface returns indices in the range 1 < I < N (where N is the number of entries
in the dimension in question, and I is the index). This allows functions returning indices to be
directly used to index standard arrays.

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at one.

2.5.3 Array Arguments

Vector arguments are permitted to have a storage spacing between elements. This spacing is
specified by an increment argument. For example, suppose a vector z having components z;,
i=1,...,N, is stored in an array X () with increment argument INCX. If INCX > 0 then z; is
stored in X (14 (1 —1)*INCX). If INCX < 0 then z; is stored in X (1+ (N —i) x|[INCX]|). This
method of indexing when INCX < 0 avoids negative indices in the array X () and thus permits
the subprograms to be written in Fortran 77. INCX = 0 is an illegal value.

Each two-dimensional array argument is immediately followed in the argument list by its leading
dimension, whose name has the form LD <array-name>. If a two-dimensional array A of dimension
(LDA,N) holds an m-by-n matrix A, then A(4,j) holds a;; fori =1,...,mand j =1,...,n (LDA
must be at least m). See Section 2.2 for more about storage of matrices.

Note that array arguments are usually declared in the software as assumed-size arrays (last
dimension *), for example:

REAL A(LDA, *)

although the documentation gives the dimensions as (LDA,N). The latter form is more informative
since it specifies the required minimum value of the last dimension. However an assumed-size array
declaration has been used in the software in order to overcome some limitations in the Fortran 77
standard. In particular it allows the routine to be called when the relevant dimension (N, in this

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.5. INTERFACE ISSUES FOR FORTRAN 77 31

case) is zero. However actual array dimensions in the calling program must be at least 1 (LDA in
this example).

254 Matrix Storage Schemes

The matrix storage schemes for the Fortran 77 interfaces are as described in section 2.2. Only
column-major storage is permitted, and all two-dimensional arrays are assumed-size arrays.

255 Format of the Fortran 77 bindings

Each interface is summarized in the form of a SUBROUTINE statement (or a FUNCTION statement).
The declarations of the arguments are listed in alphabetical order. For example,

SUBROUTINE BLAS_xAXPBY(N, ALPHA, X, INCX, BETA, Y, INCY)

INTEGER INCX, INCY, N
<type> ALPHA, BETA
<type> XC*), Y(*)

Floating point variables are denoted by the keyword <type> which designates the data type for
the operand (REAL, DOUBLE PRECISION, COMPLEX, or COMPLEX*16). This data type will agree with
the x letter in the naming convention of the routine. In some routines, however, not all floating
point variables will be of the same data type. If this is the case, then a variable may be denoted by
the keyword <ctype> to restrict the data type to COMPLEX or COMPLEX#*16, or <rtype> to restrict
the data type to REAL or DOUBLE PRECISION.

The language binding will be followed by any restrictions dictated for this interface.

2.5.6 Error Handling

The Fortran 77 interface supplies an error-handling routine BLAS_ERROR, as defined in section 1.8.
By default, this routine will print an error message and stop execution. The user may modify the
action performed by the error-handling routine, and this modification must be documented.

The following values of arguments are invalid and will be flagged by the error-handling routine:

e Any value of the operator arguments whose meaning is not specified in the language-dependent
section is invalid;

e incw=0 or incx=0 or incy=0 or incz=0;

e Ida, Idb, Idc, or Idt < 1;

e |da < m if the matrix is an m X n general matrix and trans = blas_no_trans;
e |da < n if the matrix is an m X n general matrix and trans = blas_trans;

e |da < n if the matrix is an n X n square, symmetric, or triangular matrix;

e |da < kl + ku + 1, if the matrix is an m X n general band matrix;

e |da < k+1, if the matrix is an n X n symmetric or triangular band matrix with k super- or
subdiagonals;

Routine-specific error conditions are listed in the respective language bindings.

32 CHAPTER 2. DENSE AND BANDED BLAS

2.6 Interface Issues for C

The interface is expressed in terms of ANSI/ISO C. Most platforms provide ANSI/ISO C compilers,
and if this is not the case, free ANSI/ISO C compilers are available (eg., gcc).

Section 2.6.2 discusses the indexing of vector and matrix operands. Section A.6 defines the
operator arguments, section 2.6.3 discusses the handling of complex data types, section 2.6.4 defines
return values of complex functions, and section 2.6.5 provides the rule for argument aliasing. Section
2.6.6 defines array arguments, and section 2.6.7 lists the matrix storage schemes that are supported.
Section 2.6.8 details the format of the language binding, and section 2.6.9 discusses error handling.

2.6.1 C Include File

The C interface to the BLAS has a standard include file, called blas_dense.h, which minimally
contains the values of the enumerated types and ANSI/ISO C prototypes for all BLAS routines.
Refer to Appendix A.6 for details of the C include files pertaining to Chapters 2 — 4.

Advice to implementors. Note that the vendor is not constrained to using precisely this
include file; only the enumerated type definitions are fully specified. The implementor is
free to make any other changes which are not apparent to the user. For instance, all matrix
dimensions might be accepted as size_t instead of int, or the implementor might choose to
make some routines in-line. (End of advice to implementors.)

2.6.2 Indexing

The C interface returns indices in the range 0 < I < N —1 (where N is the number of entries in the
dimension in question, and I is the index). This allows functions returning indices to be directly
used to index standard arrays.

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at zero.

2.6.3 Handling of complex data types

All complex arguments are accepted as void *. A complex element consists of two consecutive
memory locations of the underlying data type (i.e., float or double), where the first location
contains the real component, and the second contains the imaginary component.

An ISO/IEC committee (WG14/X3J11) [38] is presently working on an extension to ANSI/ISO
C which defines complex data types. This extension is one of several additions to the C language,
commonly referred to as the C9X standard. The definition of a complex element is the same as
given above, and so the handling of complex types by this interface will not need to be changed
when ANSI/ISO C standard is extended.

2.6.4 Return values of complex functions

BLAS routines which return complex values in Fortran 77 are instead recast as subroutines in the
C interface, with the return value being an output parameter added to the end of the argument
list. This allows the output parameter to be accepted as a void pointer, as discussed above.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.6. INTERFACE ISSUES FOR C 33

2.6.5 Aliasing of arguments

Unless specified otherwise, only input-only arguments (specified with the const qualifier), may be
legally aliased on a call to the C interface to the BLAS.

2.6.6 Array arguments

Arrays are constrained to being contiguous in memory. They are accepted as pointers, not as arrays
of pointers. Note that this means that two-dimensional array arguments in C are not permitted.

All BLAS routines which take one or more two dimensional arrays as arguments receive one
extra parameter as their first argument. This argument is an enumerated type (see Appendix A).
If this parameter is set to blas_rowmajor, it is assumed that elements within a row of the array(s)
are contiguous in memory, while elements within array columns are separated by a constant stride
given in the stride parameter (this parameter corresponds to the leading dimension [e.g. LDA] in
the Fortran 77 interface).

If the order is given as blas_colmajor, elements within array columns are assumed to be
contiguous, with elements within array rows separated by stride memory elements.

Note that there is only one blas_order_type parameter to a given routine: all array operands
are required to use the same ordering.

2.6.7 Matrix Storage Schemes

The matrix storage schemes for the C interfaces are as described in section 2.2. Column-major
storage and row-major storage in a contiguous array are permitted.

2.6.8 Format of the C bindings
Each routine is summarized in the form of an ANSI/ISO C prototype. For example:

void BLAS_xaxpby(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY y, int incy);

Floating point variables are denoted by the keywords SCALAR and ARRAY to denote scalar argu-
ments and array arguments respectively.

SCALAR_IN ARRAY or SCALAR_INQUT | operation
float or double | float * or double * real arithmetic
const void * void * complex arithmetic

This data type will agree with the x letter in the naming convention of the routine. In some
routines, however, not all floating point variables will be of the same data type. If this is the
case, then a variable may be denoted by the keyword RSCALAR_INQUT, CSCALAR_INQUT, RARRAY, or
CARRAY, to restrict the data type to real or complex arithmetic, respectively.

The language binding will be followed by any restrictions dictated for this interface.

2.6.9 Error Handling

The C interface must supply an error-handling routine BLAS error. This error-handling routine
will accept as input a character string, specifying the name of the routine where the error occurred.

34 CHAPTER 2. DENSE AND BANDED BLAS

By default, this routine will print an error message and stop execution. The user may modify the
action performed by the error-handling routine, and this modification must be documented.
The following values of arguments are invalid and will be flagged by the error-handling routine:

e Any value of the operator arguments whose meaning is not specified in the language-dependent
section is invalid;

e incw=0 or incx=0 or incy=0 or incz=0;

e |da, Idb, Idc, or Idt < 1;

e |da < m if the matrix is an m X n general matrix;

e |da < n if the matrix is an n X n square, symmetric, or triangular matrix;
e |da < kl + ku + 1, if the matrix is an m X n general band matrix;

e |da < k+1, if the matrix is an n X n symmetric or triangular band matrix with k super- or
subdiagonals;

Routine-specific error conditions are listed in the respective language bindings.

2.7 Numerical Accuracy and Environmental Enquiry

With a few exceptions that are explicitly described below, no particular computational order is
mandated by the function specifications. In other words, any algorithm that produces results “close
enough” to the usual algorithms presented in a standard book on matrix computations [33, 19, 35]
is acceptable. For example, Strassen’s algorithm may be used for matrix multiplication, even
though it can be significantly less accurate than conventional matrix multiplication for some pairs
of matrices [35]. Also, matrix multiplication may be implemented either as C' = (a-A)-B+ (8- C)
orC=a-(A-B)+(-C)or C=A-(a-B)+ (B C), whichever is convenient.

To use the error bounds in [33, 19, 35| and elsewhere, certain machine parameters are needed
to describe the accuracy of the arithmetic.

These are described in detail in section 1.6, and returned by function xFPINFO. Its calling
sequence in C or Fortran 77 is

result = xFPINFO(CMACH)
where x=S for single precision and x=D for double precision. In Fortran 95, its calling sequence is
result = FPINFO(CMACH, float)

where the “kind” of float (single or double) is used to determine the kind of the result. The
argument CMACH can take on the following named constant values (the exact representations
are language dependent, with CMACH available as a derived type in Fortran 95, named integer
constants in Fortran 77, and an enumerated type in C). The named constant values are defined in
sections A.4, A.5, and A.6. CMACH has the analogous meaning (see footnote 4 in section 1.6 for
a discussion) as the like-named character argument of the LAPACK auxiliary routine xLAMCH:

-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

© o] N O w [w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS

Value of CMACH | Name of floating point parameter
(see Table 1.9 in section 1.6 for details)

blas_base BASE

blas_t T

blas_rnd RND

blas_ieee IEEE

blas_emin EMIN

blas_emax EMAX

blas_eps EPS

blas_prec PREC

blas_underflow UN

blas_overflow ov

blas_sfmin SFMIN

35

Here are the exceptional routines where we ask for particularly careful implementations to avoid
unnecessary over/underflows, that could make the output unnecessarily inaccurate or unreliable.
The details of each routine are described with the language dependent calling sequences. Model
implementations that avoid unnecessary over/underflows are based on corresponding LAPACK
auxiliary routines, NAG routines, or cited reports.

1. Reduction Operations (Section 2.8.2)

e NORM (Vector norms)
¢ SUMSQ (Sum of squares)

2. Generate Transformations (Section 2.8.3)

¢ GEN_GROT (Generate Givens rotation)
e GEN_JROT (Generate Jacobi rotation)
¢ GEN_HOUSE (Generate Householder transform)

3. Vector Operations (Section 2.8.4)
¢ RSCALE (Reciprocal scale)
4. Matrix Operations (Section 2.8.7)

¢ {GE,GB,SY,HE,SB,SP,HP, TR, TB,TP} NORM (Matrix norms)

2.8 Language Bindings

Each specification of a routine will correspond to an operation outlined in the functionality tables.
Operations are organized analogous to the order in which they are presented in the functionality
tables. The specification will have the form:

NAME (multi-word description of operation) < mathematical representation >

Optional brief textual description of the functionality including any restrictions that apply to all
language bindings.

36 CHAPTER 2. DENSE AND BANDED BLAS

e Fortran 95 binding
e Fortran 77 binding
e C binding

2.8.1 Overview

e Reduction Operations (section 2.8.2)

DOT (Dot product)

— NORM (Vector norms)

SUM (Sum)

MIN_VAL (Min value & location)
AMIN_VAL (Min absolute value & location)
MAX_VAL (Max value & location)
AMAX_VAL (Max absolute value & location)
— SUMSQ (Sum of squares)

Generate Transformations (section 2.8.3)

— GEN_GROT (Generate Givens rotation)
— GEN_JROT (Generate Jacobi rotation)
— GEN_HOUSE (Generate Householder transform)

Vector Operations (section 2.8.4)

— RSCALE (Reciprocal Scale)

— AXPBY (Scaled vector accumulation)

— WAXPBY (Scaled vector addition)

— AXPY_DOT (Combined AXPY and DOT)
— APPLY_GROT (Apply plane rotation)

Data Movement with Vectors (section 2.8.5)

— COPY (Vector copy)

— SWAP (Swap)

— SORT (Sort vector)

— SORTYV (Sort vector & return index vector)
— PERMUTE (Permute vector)

Matrix-Vector Operations (section 2.8.6)

— {GE,GB}MV (Matrix vector product)
— {SY,SB,SP}MV (Symmetric matrix vector product)
— {HE,HB,HP}MV (Hermitian matrix vector product)

© o] -~ [« (S [w N =

[~ - - o - - -~ w w w w w w w w w w N [M) [M) N [V N N [[[- - - - - - - [
~ (=] ot - w M) - o © oo ~ » ot - w N - o © o] =~ [=2] ot > w N - o © 0o -~ (=2} ot - w M) - o

'
0o

© o] ~ [« (S [w N -

BB A R A B A A W W W W W W W W W N N NN NN NN N R R R R R e s e s
I3 G A B oNoR O ©® kN9 aA b= O ® ® N e %A BN R O © ® N O ;oA W N = O

'S
oo

2.8. LANGUAGE BINDINGS

— {TR,TB,TP}MV (Triangular matrix vector product)
— GE_.SUM_MV (Summed matrix vector multiplies)

— GEMVT (Combined matrix vector product)

— TRMVT (Combined triangular matrix vector product)
— GEMVER (Combined matrix vector product with a rank 2 update)
— {TR,TB,TP}SV (Triangular solve)

— GER (Rank one update)

— {SY,SP}R (Symmetric rank one update)

— {HE,HP}R (Hermitian rank one update)

— {SY,SP}R2 (Symmetric rank two update)

— {HE,HP}R2 (Hermitian rank two update)

e Matrix Operations (section 2.8.7)

— {GE,GB,SY,HE,SB,HB,SP,HP, TR, TB, TP} _NORM (Matrix norms)

— {GE,GB}_.DIAG_SCALE (Diagonal scaling)

— {GE,GB}_.LRSCALE (Two-sided diagonal scaling)

— {SY,SB,SP}_.LRSCALE (Two-sided diagonal scaling of a symmetric matrix)
— {HE,HB,HP} LRSCALE (Two-sided diagonal scaling of a Hermitian matrix)
— {GE,GB}_.DIAG_SCALE_ACC (Diagonal scaling and accumulation)

- {GE,GB,SY,SB,SP,TR,TB,TP}_ACC (Matrix accumulation and scale)

- {GE,GB,SY,SB,SP,TR,TB,TP}_ADD (Matrix add and scale)

e Matrix-Matrix Operations (section 2.8.8)

— GEMM (General Matrix Matrix product)
SYMM (Symmetric matrix matrix product)

HEMM (Hermitian matrix matrix product)

TRMM (Triangular matrix matrix multiply)

TRSM (Triangular solve)

SYRK (Symmetric rank-k update)

HERK (Hermitian rank-k update)

— SY_TRIDIAG_RK (Symmetric rank-k update with tridiagonal matrix)
— HE_TRIDIAG_RK (Hermitian rank-k update with tridiagonal matrix)

— SYR2K (Symmetric rank-2k update)

— HER2K (Hermitian rank-2k update)

— SY_TRIDIAG_R2K (Symmetric rank-2k update with tridiagonal matrix)
— HE_TRIDIAG_R2K (Hermitian rank-2k update with tridiagonal matrix)

e Data Movement with Matrices (section 2.8.9)

- {GE,GB,SY,SB,SP,TR,TB,TP}_COPY (Matrix copy)

37

38 CHAPTER 2. DENSE AND BANDED BLAS

— {HE,HB,HP} COPY (Matrix copy)
— {GE}_TRANS (Matrix transposition)
— {GE}.PERMUTE (Permute matrix)

¢ Environmental Enquiry (section 2.8.10)

— FPINFO (Environmental enquiry)

2.8.2 Reduction Operations

n—1
DOT (Dot Product) z,y € R",r + pr+ arzly = Br+« Z TiY;
i=0
n—1 n—1
z,y €C™,r + fr+az’y =Br+a2x,~yi or r + Br + azfly =ﬁr+a2x}yi
i=0 i=0

The routine DOT adds the scaled dot product of two vectors z and y into a scaled scalar r. The
routine returns immediately if n is less than zero, or, if beta is equal to one and either alpha or n
is equal to zero. If alpha is equal to zero then z and y are not read. Similarly, if beta is equal to
zero, r is not read. As described in section 2.5.3, the value incx or incy less than zero is permitted.
However, if incx or incy is equal to zero, an error flag is set and passed to the error handler.

When z and y are complex vectors, the vector components z; are used unconjugated or conju-
gated as specified by the operator argument conj. If z and y are real vectors, the operator argument
conj has no effect.

e Fortran 95 binding:

SUBROUTINE dot(x, y, r [, conj]l [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: x(:), y(:)
<type>(<wp>), INTENT (INOUT) :: r
TYPE (blas_conj_type), INTENT(IN), OPTIONAL :: conj
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xDOT(CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)

INTEGER CONJ, INCX, INCY, N
<type> ALPHA, BETA, R
<type> XC*), Y(*)

e C binding:

void BLAS_xdot(enum blas_conj_type conj, int n, SCALAR_IN alpha,
const ARRAY x, int incx, SCALAR_IN beta, const ARRAY vy,
int incy, SCALAR_INQOUT r);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 39

NORM (Vector norms) r < ||z||1, [|Z]|1r, l|Z|l2, ||Z||co, OF ||Z||lcor

The routine NORM computes the ||-||1, || |1, || - |l2, || - [|oos OF || - ||cor Of a vector z depending
on the value passed as the norm operator argument.

If norm = blas_frobenius norm, an error flag is not raised, and the two-norm is returned to
the user. If n is less than or equal to zero, this routine returns immediately with the output scalar
r set to zero. The resulting scalar r is always real and its value is as defined in section 2.1.1. As
described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

REAL (<wp>) FUNCTION norm(x [, norm])

<type>(<wp>), INTENT (IN) :: x(:)

TYPE (blas_norm_type), INTENT (IN), OPTIONAL :: norm
where

x has shape (n)

e Fortran 77 binding:

<rtype> FUNCTION BLAS_xNORM(NORM, N, X, INCX)

INTEGER INCX, N, NORM
<type> X(*)
e C binding:

void BLAS_xnorm(enum blas_norm_type norm, int n, const ARRAY x,
int incx, RSCALAR_INOUT r);

n—1
SUM (Sum) T Z x;
i=0

The routine SUM computes the sum of the entries of a vector z. If n is less than or equal to
zero, this routine returns immediately with the output scalar r set to zero. As described in section
2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error flag is
set and passed to the error handler.

e Fortran 95 binding:

<type>(<wp>) FUNCTION sum(x)
<type>(<wp>), INTENT (IN) :: x(:)
where
x has shape (n)

This is the same as the Fortran 95 intrinsic function SUM.

e Fortran 77 binding:

40 CHAPTER 2. DENSE AND BANDED BLAS

<type> FUNCTION BLAS_xSUM(N, X, INCX)

INTEGER INCX, N
<type> X(*)
e C binding:

void BLAS_xsum(int n, const ARRAY x, int incx, SCALAR_INQUT sum);

MIN_VAL (Min value & location) k,zy such that k = arg Ogl.in Z;
<i<n
The routine MIN_VAL finds the smallest component of a real vector z and determines the
smallest offset or index k£ such that x; = ogl'i? z;. This value z is returned by the routine and
<i<n

denoted by arg Oréljg z; below. When the value of the n argument is less than or equal to zero, the
<<n

routine should initialize the output scalars k to the largest invalid index or offset value (negative
one or zero) and r to zero. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

Advice to users. The routine MIN_VAL strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

e Fortran 95 binding:

SUBROUTINE min_val(x, k, r)
REAL (<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL(<wp>), INTENT (OUT) :: r

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xMIN_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<rtype> X(*)

e C binding:

void BLAS_xmin_val(int n, const RARRAY x, int incx, int k,
RSCALAR_INOUT r);

AMIN_VAL (Min absolute value & location) k,zj such that k = arg 0I<n_i<n (|Re(zi)| + [Im(z;)])
<i<n

The routine AMIN_VAL finds the offset or index of the smallest component of a vector x and
also returns the smallest component of the vector z with respect to the absolute value. When the
value of the n argument is less than or equal to zero, the routine should initialize the output scalars
k to the largest invalid index or offset value (negative one or zero) and r to zero. The resulting
scalar r is always real. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 41

e Fortran 95 binding:

SUBROUTINE amin_val(x, k, r)
<type>(<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL (<wp>), INTENT (OUT) :: r

where
x has shape (n)

A Fortran 95 interface was defined for this routine since it would have been too expensive
using Fortran 95 intrinsics.

e Fortran 77 binding:

SUBROUTINE BLAS_xAMIN_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<type> X(%)

¢ C binding:

void BLAS_xamin_val(int n, const ARRAY x, int incx, int k,
RSCALAR_INOUT r);

MAX_VAL (Max value & location) k,zy such that k = arg [nax i
<i<n
The routine MAX_VAL finds the largest component of a real vector £ and determines the smallest

offset or index k such that z; = 01£1a<x z;. This value zj is returned by the routine and denoted
<<n

by arg [nax i below. When the value of the n argument is less than or equal to zero, the routine
<z<n

should initialize the output scalars k to the largest invalid index or offset value (negative one or zero)

and r to zero. As described in section 2.5.3, the value incx less than zero is permitted. However, if

incx is equal to zero, an error flag is set and passed to the error handler.

Advice to users. The routine MAX_VAL strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

e Fortran 95 binding:

SUBROUTINE max_val(x, k, r)
REAL (<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL (<wp>), INTENT (OUT) :: r

where
x has shape (n)

e Fortran 77 binding:

42 CHAPTER 2. DENSE AND BANDED BLAS

SUBROUTINE BLAS_xMAX_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<rtype> X(*)

¢ C binding:

void BLAS_xmax_val(int n, const RARRAY x, int incx, int k,
RSCALAR_INOUT r);

AMAX_VAL (Max absolute value & location) k,zj such that k = arg [max (|Re(zs)| + [Tm(z;)])
<i<n

The routine AMAX_VAL finds the offset or index of the largest component of a vector x and also
returns the largest component of the vector with respect to the absolute value. When the value
of the n argument is less than or equal to zero, the routine should initialize the output scalars k to
the largest invalid index or offset value (negative one or zero) and r to zero. The resulting scalar r
is always real. As described in section 2.5.3, the value incx less than zero is permitted. However, if
incx is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE amax_val(x, k, r)
<type>(<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL (<wp>), INTENT (OUT) :: r

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xAMAX_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<type> X(%)

e C binding:

void BLAS_xamax_val(int n, const ARRAY x, int incx, int k,
RSCALAR_INOUT r);

SUMSQ (Sum of squares) (scl, ssq) + ¥ x2,

The routine SUMSQ returns the values scl and ssq such that

n—1
scl® x ssq = scale® x sumsq + Z(Re(mi)2 + Im(z;)?),
1=0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2.8. LANGUAGE BINDINGS 43

The value of sumsq is assumed to be at least unity and the value of ssq will then satisfy 1.0 <
ssq < (sumsq + n) when z is a real vector and 1.0 < ssq < (sumsq + 2n) when z is a complex
vector. scale is assumed to be non-negative and scl returns the value

scl = max (scale,abs(Re(x;)), abs(Im(z;))).
0<i<n

scale and sumsq must be supplied on entry in scl and ssq respectively. scl and ssq are overwritten
by scl and ssq respectively. The arguments scl and ssq are therefore always real scalars. If scl is
less than zero or ssq is less than one, an error flag is set and passed to the error handler. If n is less
than or equal to zero, this routine returns immediately with scl and ssq unchanged. As described
in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error
flag is set and passed to the error handler.

Advice to implementors. High-quality implementations of this routine SUMSQ should be
accurate. The subroutine SLASSQ of the LAPACK [6] software library is an example of such
an accurate implementation. High-quality implementations should document the accuracy of
the algorithms used in this routine so as to alleviate the portability problems this represents.
(End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE sumsq(x, ssq, scl)
<type>(<wp>), INTENT (IN) :: x(:)
REAL (<wp>), INTENT (INOUT) :: ssq, scl
where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xSUMSQ(N, X, INCX, SSQ, SCL)

INTEGER INCX, N
<rtype> SCL, SSQ
<type> X(*)

e C binding:

void BLAS_xsumsq(int n, const ARRAY x, int incx, RSCALAR_INOUT ssq,
RSCALAR_INOUT scl);

2.8.3 Generate Transformations

GEN_GROT (Generate Givens rotation) (¢,8,7) < rot(a,b)

The routine GEN_GROT constructs a Givens plane rotation so that

(50 ()-(5),

44 CHAPTER 2. DENSE AND BANDED BLAS

where c is always a real scalar and ¢ + |s|? is equal to one. The scalars a and b are unchanged on

exit. ¢, s and r are defined precisely as follows, where we use the function

. /|| fxz#0
51gn(w)z{ 1/| | e 0

Defining Givens rotations:
if b = 0 (includes the case a = b = 0)

c=1
s=0
r=a
elseif a = 0 (b must be nonzero)
c=0
s = sign(b)
r = [b]

else (a and b both nonzero)
¢ = la|/v/|a]? + [b]?
s = sign(a)b//[a” + [b]?
r = sign(a)v/]al* + [b]?

endif
When @ and b are real, b may be replaced by b.

Advice to implementors. High-quality implementations of this routine GEN_GROT should
be accurate. We recommend one of the implementations described in [9]. We note that
the above definition of Givens rotations matches the one in the subroutine CLARTG of the
LAPACK [6] software library, but differs slightly from the definitions used in LAPACK rou-
tines SLARTG, SLARGV and CLARGV. LAPACK routines using these slightly different Givens
rotations continue to function correctly [9]. (End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE gen_grot(a, b, c, s, r)
<type>(<wp>), INTENT (IN) :: a, b
REAL(<wp>), INTENT (OUT) :: c
<type>(<wp>), INTENT (OUT) :: s, r

e Fortran 77 binding:

SUBROUTINE BLAS_xGEN_GROT(A, B, C, S, R)

<rtype> C
<type> A, B, R, 8
e C binding:

void BLAS_xgen_grot(SCALAR_IN a, SCALAR_IN b, RSCALAR_INOUT c,
SCALAR_INOUT s, SCALAR_INOUT r);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 45

GEN_JROT (Generate Jacobi rotation) (a,b,c,8) « jrot(z,y, z)

The routine GEN_JROT constructs a Jacobi rotation so that

a 0\ c s T Yy c —3
0 b)) \ —-s ¢ 7y 2z s ¢ |’
If JROT = blas_inner rotation, then the rotation is chosen so that ¢ > %
If JROT = blas_outer_rotation, then the rotation is chosen so that 0 < ¢ < LQ
If JROT = blas_sorted_rotation, then the rotation is chosen so that abs(a) > abs(b).
On entry, the argument x contains the value z, and on exit it contains the value a. On entry,
the argument y contains the value y. On entry, the argument z contains the value z, and on exit

it contains the value b. The arguments x and z are real scalars, and argument c is always a real
scalar and c? + |s|? is equal to one.

Advice to implementors. High-quality implementations of this routine GEN_JROT should
document the accuracy of the algorithms used in those functions so as to alleviate the porta-
bility problems this represents. (See NAG routine FO6BEF). (End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE gen_jrot(x, y, 2z, ¢, s [, jrot])
REAL(<wp>), INTENT (INOUT) :: x, =z
<type>(<wp>), INTENT (IN) :: y
REAL (<wp>), INTENT (OUT) :: ¢
<type>(<wp>), INTENT (OUT) :: s
TYPE (blas_jrot_type), INTENT(IN), OPTIONAL :: jrot

e Fortran 77 binding:

SUBROUTINE BLAS_xGEN_JROT(JROT, X, Y, Z, C, S)

INTEGER JROT
<rtype> C, X, Z
<type> S, Y

e C binding:

void BLAS_xgen_jrot(enum blas_jrot_type jrot, RSCALAR_INOUT x,
SCALAR_IN y, RSCALAR_INOUT =z, RSCALAR_INOUT c,
SCALAR_INOUT s);

GEN_HOUSE (Generate Householder transform) (a, z,T) < house(a, x),

The routine GEN_HOUSE generates an elementary reflector H of order n, such that

Y (Pyand HFH =T,

H(z 0

46 CHAPTER 2. DENSE AND BANDED BLAS

where « and (3 are scalars, and z is an (n — 1)-element vector. [is always a real scalar. H is
represented in the form

H=I-7()(1 o),

where 7 is a scalar and v is a (n — 1)-element vector. 7 is called the Householder scalar and

the Householder vector. Note that when z is a complex vector, H is not Hermitian. If the elements
of x are zero, and « is real, then 7 is equal to zero and H is taken to be the unit matrix. Otherwise,
the real part of 7 is greater than or equal to one and less than or equal to two. Moreover, the
absolute value of the quantity 7 — 1 is less than or equal to one.

On exit, the scalar argument alpha is overwritten with the value of the scalar 8. Similarly, the
vector argument x is overwritten with the vector v. If n is less than or equal to zero, this function
returns immediately with the output scalar tau set to zero. As described in section 2.5.3, the value
incx less than zero is permitted. However, if incx is equal to zero, an error flag is set and passed to
the error handler.

Advice to implementors. High-quality implementations of this routine GEN_HOUSE should
be accurate. The subroutines SLARFG and CLARFG of the LAPACK [6] software library are
examples of such an accurate implementation. High-quality implementations should docu-
ment the accuracy of the algorithms used in those functions so as to alleviate the portability
problems this represents. (End of advice to implementors.)

Advice to users. Routines to apply Householder transformations are not provided. The sub-
routines xORMyy of the LAPACK [6] software library are examples of such implementations.
(End of adwvice to users.)

e Fortran 95 binding:

SUBROUTINE gen_house(alpha, x, tau)
<type>(<wp>), INTENT (INOUT) :: alpha
<type>(<wp>), INTENT (INOUT) :: x(:)
<type>(<wp>), INTENT (OUT) :: tau

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xGEN_HOUSE(N, ALPHA, X, INCX, TAU)

INTEGER INCX, N
<type> ALPHA, TAU
<type> X(*)

e C binding:

void BLAS_xgen_house(int n, SCALAR_INOUT alpha, ARRAY x, int incx,
SCALAR_INOUT tau);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 47

2.8.4 Vector Operations
RSCALE (Reciprocal Scale) Tz

The routine RSCALE scales the entries of a vector z by the real scalar 1/a. The scalar « is
always real and supposed to be nonzero. This should be done without overflow or underflow as
long as the final result z/a does not overflow or underflow. If n is less than or equal to zero,
this routine returns immediately. As described in section 2.5.3, the value incx less than zero is
permitted. However, if incx is equal to zero or if alpha is equal to zero, an error flag is set and
passed to the error handler.

Advice to implementors. High-quality implementations of this routine RSCALE should be
accurate. The subroutine xRSCL of the LAPACK [6] software library is an example of such an
accurate implementation. High-quality implementations should document the accuracy of the
algorithms used in those functions so as to alleviate the portability problems this represents.
(End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE rscale(alpha, x)
REAL(<wp>), INTENT (IN) :: alpha
<type>(<wp>), INTENT (INOUT) :: x(:)

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xRSCALE(N, ALPHA, X, INCX)

INTEGER INCX, N

<rtype> ALPHA

<type> X(%)
e C binding:

void BLAS_xrscale(int n, RSCALAR_IN alpha, ARRAY x, int incx);

AXPBY (Scaled vector accumulation) Y+ ar+ By

The routine AXPBY scales the vector z by a and the vector y by 3, adds these two vectors to
one another and stores the result in the vector y. If n is less than or equal to zero, or if « is equal
to zero and f is equal to one, this routine returns immediately. As described in section 2.5.3, the
value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero, an
error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE axpby(x, y [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: x(:)

48 CHAPTER 2. DENSE AND BANDED BLAS

<type>(<wp>), INTENT (INOUT) :: y(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
where

x and y have shape (n)

The default value for g is 1.0 or (1.0,0.0).

e Fortran 77 binding:

SUBROUTINE BLAS_xAXPBY(N, ALPHA, X, INCX, BETA, Y, INCY)

INTEGER INCX, INCY, N

<type> ALPHA, BETA

<type> XC*x), YO *)
e C binding:

void BLAS_xaxpby(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY y, int incy);

WAXPBY (Scaled vector addition) w 4 ax + By

The routine WAXPBY scales the vector by « and the vector y by 3, adds these two vectors
to one another and stores the result in the vector w. If n is less than or equal to zero, this routine
returns immediately. As described in section 2.5.3, the value incx or incy or incw less than zero is
permitted. However, if either incx or incy or incw is equal to zero, an error flag is set and passed to
the error handler.

e Fortran 95 binding:

SUBROUTINE waxpby(x, y, w [, alphal [, betal])
<type>(<wp>), INTENT (IN) :: x(:), y(:)
<type>(<wp>), INTENT (OUT) :: w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
X, y and w have shape (n)

The default value for g is 1.0 or (1.0,0.0).

e Fortran 77 binding:

SUBROUTINE BLAS_xWAXPBY(N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

INTEGER INCW, INCX, INCY, N
<type> ALPHA, BETA
<type> WC*), XC*), Y(C *)

e C binding:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 49

void BLAS_xwaxpby(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, const ARRAY y, int incy, ARRAY w,
int incw);

AXPY_DOT (Combined AXPY and DOT) W w— av,r + 0l u

The routine combines an axpy and a dot product. w is decremented by a multiple of v. A dot
product is then computed with the decremented w.

Advice to implementors. Note that ® may be used to update r before it is written back
to memory. This optimization, which accelerates algorithms like modified Gram-Schmidt
orthogonalization, is the justification for AXPY_DOT, which could otherwise be implemented
by calls to AXPBY and DOT. (End of advice to implementors.)

If n is less than or equal to zero, this routine returns immediately. As described in section 2.5.3,
the value incw or incv or incu less than zero is permitted. However, if either incw or incv or incu is
equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE axpy_dot(w, v, u, r [, alpha])
<type>(<wp>), INTENT (IN) :: v(:), u(:)
<type>(<wp>), INTENT (INOUT) :: w(:)
<type>(<wp>), INTENT (OUT) :: r
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha

where
u, v and w have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xAXPY_DOT(N, ALPHA, W, INCW, V, INCV, U, INCU,

$ R)
INTEGER INCW, INCV, INCU, N
<type> ALPHA, R
<type> WC*), VOx*x), UC *)
¢ C binding:

void BLAS_xaxpy_dot(int n, SCALAR_IN alpha, ARRAY w, int incw,
const ARRAY v, int incv, const ARRAY u, int incu,
SCALAR_INQUT r);

APPLY_GROT (Apply plane rotation) (z y)«(z y)R

50 CHAPTER 2. DENSE AND BANDED BLAS

The routine APPLY_GROT applies a plane rotation to the vectors z and y. When the vectors z
and y are real vectors, the scalars ¢ and s are real scalars. When the vectors z and y are complex
vectors, ¢ is a real scalar and s is a complex scalar. This routine computes

e (2= (5 0)(2),

If n is less than or equal to zero or if ¢ is one and s is zero, the routine APPLY_GROT returns
immediately. As described in section 2.5.3, the value of incx or incy less than zero is permitted.
However, if incx or incy is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE apply_grot(c, s, X, y)
REAL(<wp>), INTENT (IN) :: c
<type>(<wp>), INTENT (IN) :: s
<type>(<wp>), INTENT (INOUT) :: x(:), y(:)
where
x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xAPPLY_GROT(N, C, S, X, INCX, Y, INCY)

INTEGER INCX, INCY, N

<rtype> C

<type> S

<type> XC*x), YO *)
¢ C binding:

void BLAS_xapply_grot(int n, RSCALAR_IN c, SCALAR_IN s, ARRAY x, int incx,
ARRAY y, int incy);

2.8.5 Data Movement with Vectors
COPY (Vector copy) Yz

The routine COPY copies the vector x into the vector y. If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incy less than zero is
permitted. However, if either incx or incy is equal to zero, an error flag is set and passed to the
error handler.

e Fortran 95 binding:

SUBROUTINE copy(x, y)
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (OUT) :: y(:)

where
x and y have shape (n)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 51

This is similar to the Fortran 95 assignment y=z.

e Fortran 77 binding:

SUBROUTINE BLAS_xCOPY(N, X, INCX, Y, INCY)

INTEGER INCX, INCY, N
<type> XC*), Y(C*x)
e C binding:

void BLAS_xcopy(int n, const ARRAY x, int incx, ARRAY y, int incy);

SWAP (Swap) Yy

The routine SWAP interchanges the vectors z and y. If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incy less than zero is
permitted. However, if either incx or incy is equal to zero, an error flag is set and passed to the
error handler.

e Fortran 95 binding:

SUBROUTINE swap(x, y)

<type>(<wp>), INTENT (INOUT) :: x(:), y(:)
where

x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xSWAP(N, X, INCX, Y, INCY)

INTEGER INCX, INCY, N
<type> XC*), Y(C*x)
e C binding:

void BLAS_xswap(int n, ARRAY x, int incx, ARRAY y, int incy);

SORT (Sort vector) x + sort(x)

The routine SORT sorts the entries of a real vector z in increasing or decreasing order and
overwrites this vector z with the sorted vector. If n is less than or equal to zero, the function
returns immediately. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

Advice to users. The routine SORT strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

Advice to implementors. The subroutine xLASRT of the LAPACK [6] software library is an
example of such a routine. (End of advice to implementors.)

52 CHAPTER 2. DENSE AND BANDED BLAS

e Fortran 95 binding: Refer to SORTYV specification

e Fortran 77 binding:

SUBROUTINE BLAS_xSORT(SORT, N, X, INCX)

INTEGER INCX, N, SORT
<rtype> X(*)
¢ C binding:

void BLAS_xsort(enum blas_sort_type sort, int n, RARRAY x, int incx);

SORTYV (Sort vector & return index vector) (p, x) «+ sort(x)

The routine SORTV sorts the entries of a real vector z in increasing or decreasing order and
overwrites this vector z with the sorted vector (z = P * z). If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incp less than zero is
permitted. However, if either incx or incp is equal to zero, an error flag is set and passed to the
error handler.

The representation of the permutation vector p is described in section 2.2.6.

Advice to users. The routine SORTYV strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

e Fortran 95 binding:

SUBROUTINE sortv(x [, sort]l [, pl)
REAL(<wp>), INTENT (INOUT) :: x(:)
TYPE (blas_sort_type), INTENT (IN), OPTIONAL :: sort
INTEGER, INTENT (OUT), OPTIONAL :: p(:)
where
x and p have shape (n)

The functionality of SORT is covered by SORTV.

e Fortran 77 binding:

SUBROUTINE BLAS_xSORTV(SORT, N, X, INCX, P, INCP)

INTEGER INCP, INCX, N, SORT
INTEGER P(*)
<rtype> X(*)

e C binding:

void BLAS_xsortv(enum blas_sort_type sort, int n, RARRAY x, int incx,
int *p, int incp);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 53

PERMUTE (Permute vector) z + Pz

The routine PERMUTE permutes the entries of a vector z according to the permutation vector
p. If n is less than or equal to zero, the routine returns immediately. As described in section 2.5.3,
the value incx or incp less than zero is permitted. However, if either incx or incp is equal to zero,
an error flag is set and passed to the error handler.

The encoding of the permutation P in the vector p follows the same conventions as the ones
described above for the routine SORTV. Refer to section 2.2.6 for complete details.

e Fortran 95 binding:
SUBROUTINE permute(x, p)
<type>(<wp>), INTENT (INOUT) :: x(:)
INTEGER, INTENT (IN) :: p(:)

where
x and p have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xPERMUTE(N, P, INCP, X, INCX)

INTEGER INCP, INCX, N
INTEGER P(*)
<type> X(*)

The value of INCP may be positive or negative. A negative value of INCP applies the permu-
tation in the opposite direction.

¢ C binding:
void BLAS_xpermute(int n, const int *p, int incp, ARRAY x, int incx);

The value of incp may be positive or negative. A negative value of incp applies the permu-
tation in the opposite direction.

2.8.6 Matrix-Vector Operations

In the following section, op(X) denotes X, or X7 or X where X is a matrix.
{GE,GB}MV (Matrix vector product) y < aop(A)z + By

The routines perform a matrix vector multiply y < aop(A)z + By where a and 8 are scalars,
and A is a general (or general band) matrix. If m or n is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine GEMV, if Ida is less than
one, or trans = blas_no_trans and Ida is less than m, or trans = blas_trans and lda is less than
n, an error flag is set and passed to the error handler. For the C bindings of GEMV, if order =
blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and passed to the

o4 CHAPTER 2. DENSE AND BANDED BLAS

error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than m, an error
flag is set and passed to the error handler. For the routine GBMV, if kl or ku is less than zero, or
if Ida is less than kl plus ku plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE gbmv(a, m, k1, x, y [, trans] [, alphal] [, betal])
<type>(<wp>), INTENT(IN) :: a(:,:), x(:)
INTEGER, INTENT(IN) :: m, k1
<type>(<wp>), INTENT(INOUT) :: y(:)
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
if trans = blas_no_trans then
x has shape (n)
y has shape (m)
else if trans =/ blas_no_trans then
x has shape (m)
y has shape (n)
end if

The functionality of gemv is covered by gemm.

Fortran 77 binding:

General:
SUBROUTINE BLAS_xGEMV(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
$ Y, INCY)

General Band:
SUBROUTINE BLAS_xGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA, X,

$ INCX, BETA, Y, INCY)
all:
INTEGER INCX, INCY, KL, KU, LDA, M, N, TRANS
<type> ALPHA, BETA
<type> ACLDA, *), X(*), Y(x)
C binding;:
General:

void BLAS_xgemv(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy);
General Band:
void BLAS_xgbmv(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, int k1, int ku, SCALAR_IN alpha, const ARRAY a,
int lda, const ARRAY x, int incx, SCALAR_IN beta,
ARRAY y, int incy);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 55

{SY,SB,SP}MV (Symmetric matrix vector product) y < Az + By with A = AT

The routines multiply a vector z by a real or complex symmetric matrix A, scales the resulting
vector and adds it to the scaled vector operand y. If n or k is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine SYMV, if Ida is less than
one or Ida is less than n, an error flag is set and passed to the error handler. For the routine SBMV,
if Ida is less than k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Symmetric Band:
SUBROUTINE sbmv(a, x, y [, uplo] [, alphal [, betal)
Symmetric Packed:
SUBROUTINE spmv(ap, x, y [, uplo] [, alphal [, betal)
all:
<type>(<wp>), INTENT(IN) :: <aa>, x(:)
<type>(<wp>), INTENT(INOUT) :: y(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
<aa> ::= a(:,:) or ap(:)
and
SB a has shape (k+1,n)
SP ap has shape (n*(n+1)/2)
x and y have shape (n)
(k=band width)

The funtionality of symv is covered by symm.

e Fortran 77 binding:

Symmetric:
SUBROUTINE BLAS_xSYMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY)
Symmetric Band:
SUBROUTINE BLAS_xSBMV(UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY)
Symmetric Packed:
SUBROUTINE BLAS_xSPMV(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

all:
INTEGER INCX, INCY, K, LDA, N, UPLO
<type> ALPHA, BETA
<type> AC LDA, *) or AP(*), X(*), Y(%)

e C binding:

56 CHAPTER 2. DENSE AND BANDED BLAS

Symmetric: !
void BLAS_xsymv(enum blas_order_type order, enum blas_uplo_type uplo, 2

int n, SCALAR_IN alpha, const ARRAY a, int 1lda, 3

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy); 4

Symmetric Band: 5
void BLAS_xsbmv(enum blas_order_type order, enum blas_uplo_type uplo, 6

int n, int k, SCALAR_IN alpha, const ARRAY a, int lda, 7

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy); 8

Symmetric Packed: 9
void BLAS_xspmv(enum blas_order_type order, enum blas_uplo_type uplo, int n, 10
SCALAR_IN alpha, const ARRAY ap, const ARRAY x, int incx, 1

SCALAR_IN beta, ARRAY y, int incy); 12

13

14

{HE,HB,HP}MV (Hermitian matrix vector product) y < aAz + By with A = A# 15
16

The routines multiply a vector z by a Hermitian matrix A, scales the resulting vector and adds 7

it to the scaled vector operand y. If n is less than or equal to zero or if beta is equal to one and alpha 18

is equal to zero, this routine returns immediately. The imaginary part of the diagonal entries of 19
the matrix operand are supposed to be zero and should not be referenced. As described in section 20
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to 2
zero, an error flag is set and passed to the error handler. For the routine HEMV, if Ida is less than 22

one or |da is less than n, an error flag is set and passed to the error handler. For the routine HBMV, 23
if Ida is less than k plus one, an error flag is set and passed to the error handler. 24
25

e Fortran 95 binding: 26
27

Hermitian Band: 28
SUBROUTINE hbmv(a, x, y [, uplo]l [, alphal [, betal) 29
Hermitian Packed: 30
SUBROUTINE hpmv(ap, x, y [, uplo] [, alphal [, betal]) 31

all: 32
COMPLEX (<wp>) , INTENT(IN) :: <aa>, x(:) 33

COMPLEX (<wp>), INTENT(INOUT) :: y(:) 34

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo 35

COMPLEX (<wp>), INTENT(IN), OPTIONAL :: alpha, beta 36

where 37

<aa> ::= a(:,:) or ap(:) 38

and 39

HB a has shape (k+1,n) 40

HP ap has shape (n*(n+1)/2) 41

x and y have shape (n) 42

(k=band width) 43

44

The funtionality of hemv is covered by hemm. 45

46

e Fortran 77 binding:

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS o7

Hermitian:
SUBROUTINE BLAS_xHEMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY)
Hermitian Band:
SUBROUTINE BLAS_xHBMV(UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA,
$ Y, INCY)
Hermitian Packed:
SUBROUTINE BLAS_xHPMV(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

all:
INTEGER INCX, INCY, K, LDA, N, UPLO
<ctype> ALPHA, BETA
<ctype> ACLDA, *) or AP(*), X(*), Y(*)
e C binding:
Hermitian:

void BLAS_xhemv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,
int incy);

Hermitian Band:

void BLAS_xhbmv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, CSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,
int incy);

Hermitian Packed:

void BLAS_xhpmv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY ap, const CARRAY x,
int incx, CSCALAR_IN beta, CARRAY y, int incy);

{TR,TB,TP}MV (Triangular matrix vector product) z 4+ oz, z + ol z or z < oTHz

The routines multiply a vector z by a general triangular matrix 7' or its transpose, or its
conjugate transpose, and copies the resulting vector in the vector operand z. If n is less than or
equal to zero, this routine returns immediately. As described in section 2.5.3, the value incx less
than zero is permitted. However, if incx is equal to zero, an error flag is set and passed to the error
handler. For the routine TRMV, if Idt is less than one or Idt is less than n, an error flag is set and
passed to the error handler. For the routine TBMV, if Idt is less than k plus one, an error flag is
set and passed to the error handler.

e Fortran 95 binding:

Triangular Band:

SUBROUTINE tbmv(t, x [, uplo]l [, trans] [, diag] [, alphal)
Triangular Packed:

SUBROUTINE tpmv(tp, x [, uplo]l [, trans] [, diag] [, alphal)
all:

o8

CHAPTER 2. DENSE AND BANDED BLAS

<type>(<wp>), INTENT(IN) :: <tt>
<type>(<wp>), INTENT(INOUT) :: x(:)
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
where
<tt> ::=t(:,:) or tp(:)
and
TB t has shape (k+1,n)
TP tp has shape (n*(n+1)/2)
x has shape (n)
(k=band width)

The funtionality of trmv is covered by trmm.

Fortran 77 binding:

Triangular:
SUBROUTINE BLAS_xTRMV(UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,
$ INCX)

Triangular Band:
SUBROUTINE BLAS_xTBMV(UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,
$ X, INCX)

Triangular Packed:

SUBROUTINE BLAS_xTPMV(UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX
all:

INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO

<type> ALPHA

<type> T(LDT, *) or TP(*), X(*)
C binding;:
Triangular:

void BLAS_xtrmv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
SCALAR_IN alpha, const ARRAY t, int 1dt, ARRAY x, int

Triangular Band:

void BLAS_xtbmv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int k, SCALAR_IN alpha, const ARRAY t, int 1dt, ARRAY
int incx);

Triangular Packed:

void BLAS_xtpmv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
SCALAR_IN alpha, const ARRAY tp, ARRAY x, int incx);

)

int n,
incx);

int n,

int n,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 59

GE_SUM_MV (Summed matrix vector multiplies) y < aAz + Bz

This routine adds the product of two scaled matrix vector products. It can be used to compute
the residual of an approximate eigenvector and eigenvalue of the generalized eigenvalue problem
Axx =A*Bxx. If mor n is less than or equal to zero, then this routine returns immediately.
As described in section 2.5.3, the value incx or incy less than zero is permitted. However, if incx
or incy is equal to zero, an error flag is set and passed to the error handler. If Ida is less than one
or Ida is less than m, or Idb is less than one or Idb is less than m, an error flag is set and passed
to the error handler. For the C bindings for GE_.SUM_MV, if order = blas_rowmajor and if Ida is
less than one or Ida is less than n, or if Idb is less than one or Idb is less than n, an error flag is set
and passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less
than m, or if Idb is less than one or Idb is less than m, an error flag is set and passed to the error
handler.

e Fortran 95 binding:

SUBROUTINE ge_sum_mv(a, x, b, y [, alphal [, beta])
<type>(<wp>), INTENT (IN) :: a(:,:), b(:,:)
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (OUT) :: y(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
x has shape (n);

y has shape (m);
a and b have shape (m,n) for general matrices

e Fortran 77 binding:

SUBROUTINE BLAS_xGE_SUM_MV(M, N, ALPHA, A, LDA, X, INCX, BETA,

$ B, LDB, Y, INCY)
INTEGER INCX, INCY, LDA, LDB, M, N
<type> ALPHA, BETA
<type> AC LDA, *), BCLDB, *), X(*), Y(*)
e C binding:

void BLAS_xge_sum_mv(enum blas_order_type order, int m, int n,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta,
const ARRAY B, int 1db, ARRAY y, int incy);

GEMVT (Multiple matrix vector multiplies) z + BATY + z,w < Az

The routine combines a matrix vector and a transposed matrix vector multiply. It multiplies a
vector y by a general matrix A, scales the resulting vector and adds the result to z, storing the
result in the vector operand z. It then multiplies the matrix A by z, scales the resulting vector
and stores it in the vector operand w.

60 CHAPTER 2. DENSE AND BANDED BLAS

Advice to implementors. Note that x and w may be computed while passing A through the
top of the memory just once. This optimization, which accelerates algorithms like reducing a
symmetric matrix to tridiagonal form, is the justification for GEMVT, which could otherwise
be implemented by two calls to GEMV. (End of advice to implementors.)

If m or n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error flag is set and passed to the error handler. If Ida is less than
one or Ida is less than m, an error flag is set and passed to the error handler. For the C bindings,
if order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler; if order = blas _colmajor and if Ida is less than one or Ida is less than
m, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE gemvt(a, x, y, w, z [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: a(:,:)
<type>(<wp>), INTENT (IN) :: y(:), z(:)
<type>(<wp>), INTENT (OUT) :: x(:), w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
where
w and y have shape (m);
x and z have shape (n);
a has shape (m,n) for general matrix

e Fortran 77 binding:

SUBROUTINE BLAS_xGEMVT(M, N, ALPHA, A, LDA, X, INCX, Y, INCY,

$ BETA, W, INCW, Z, INCZ)
INTEGER INCW, INCX, INCY, INCZ, LDA, M, N
<type> ALPHA, BETA
<type> ACLDA, *), XC *), YC*), W(C*), Z()
e C binding:

void BLAS_xgemvt(enum blas_order_type order, int m, int n, SCALAR_IN alpha,
const ARRAY a, int 1lda, ARRAY x, int incx, const ARRAY y,
int incy, SCALAR_IN beta, ARRAY w, int incw, const ARRAY z,
int incz);

TRMVT (Multiple triangular matrix vector product) z+ TTy and w < Tz

The routine combines a matrix vector and a transposed matrix vector multiply. It multiplies
a vector y by a triangular matrix 77, storing the result as z. It also multiplies the matrix by the
vector z, storing the result as w.

Advice to implementors. Note that £ and w may be computed while passing T' through the
top of the memory just once. This optimization, which accelerates algorithms like reducing a
symmetric matrix to tridiagonal form, is the justification for TRMVT, which could otherwise
be implemented by two calls to TRMV. (End of advice to implementors.)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 61

If n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error flag is set and passed to the error handler. If Idt is less than
one or Idt is less than n, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE trmvt(t, x, y, w, z [, uplo])
<type>(<wp>), INTENT (IN) :: t(:,:)
<type>(<wp>), INTENT (IN) :: y(:), z(:)
<type>(<wp>), INTENT (OUT) :: x(:), w(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
where
W, X, y and z have shape (n);
t has shape (n,n).

e Fortran 77 binding:

SUBROUTINE BLAS_xTRMVT(UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW,

$ Z, INCZ)
INTEGER INCW, INCX, INCY, INCZ, LDT, N, UPLO
<type> T(C LDT, *), WC *), XC *), Y(C *x), Z(*)
e C binding:

void BLAS_xtrmvt(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY t, int 1dt, ARRAY x, int incx,
const ARRAY y, int incy, ARRAY w, int incw, const ARRAY z,
int incz);

GEMVER (Multiple matrix vector multiply with a rank 2 update)
A« A+uvl +ugvd and z — BATy + z and w + aAz

The routine precedes a combined matrix vector and a transposed matrix vector multiply by a
rank two update. A matrix A is updated by uyv? and uyvl . The transpose of the updated matrix
is multiplied by a vector y. The resulting vector is scaled and added to the vector operand z, and
stored in z . The operand z is multiplied by the updated matrix A. The resulting vector is scaled
and stored as w.

Advice to implementors. Note that /1, z and w may be computed while passing A through the
top of the memory just once. This optimization, which accelerates algorithms like reducing
a general matrix to bidiagonal form, is the justification for GEMVER, which could otherwise
be implemented by calls to other BLAS routines. (End of advice to implementors.)

If m or n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error flag is set and passed to the error handler. If Ida is less than

62 CHAPTER 2. DENSE AND BANDED BLAS

one or Ida is less than m, an error flag is set and passed to the error handler. For the C bindings,
if order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than
m, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE gemver(a, ul, vi, u2, v2, x, y, z, w [, alphal [, betal])
<type>(<wp>), INTENT (IN) :: ul(:), u2(:), vi(:), v2(:), y(:), z(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:), x(:)
<type>(<wp>), INTENT (OUT) :: w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
ul, u2, w and y have shape (m);

vl, v2, x and z have shape (n);
a has shape (m,n).

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGEMVER(M, N, A, LDA, U1, Vi, U2, V2, ALPHA, X,
$ INCX, Y, INCY, BETA, W, INCW, Z, INCZ)
INTEGER INCW, INCX, INCY, INCZ, LDA, M, N
<type> ALPHA, BETA
<type> U1(>), Vi(=), U2(*), V2(*)
<type> ACLDA, *), WC *), XC*), Y(*), Z(*)
e C binding:
General:

void BLAS_xgemver(enum blas_order_type order, int m, int n, ARRAY a,
int lda, const ARRAY ul, const ARRAY vi,
const ARRAY u2, const ARRAY v2, SCALAR_IN alpha,
ARRAY x, int incx, const ARRAY y, int incy, ARRAY w,
int incw, SCALAR_IN beta, const ARRAY z, int incz);

{TR,TB,TP}SV (Triangular solve) ol 'z, 2+ T Tz

These routines solve one of the systems of equations z < oT 'z or z + aT Tz, where z is
a vector and the matrix 7" is a unit, non-unit, upper or lower triangular (or triangular banded or
triangular packed) matrix. If n is less than or equal to zero, this function returns immediately. As
described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error flag is set and passed to the error handler. For TRSV, if Idt is less than one or Idt is
less than n, an error flag is set and passed to the error handler. For TBSV, if Idt is less than one or
Idt is less than k plus one, an error flag is set and passed to the error handler.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 63

Advice to implementors. Note that no check for singularity, or near singularity is specified
for these triangular equation-solving routines. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver. (End of advice to implementors.)

e Fortran 95 binding:

Triangular Band:
SUBROUTINE tbsv(t, x [, uplo] [, trans] [, diagl [, alphal])
Triangular Packed:
SUBROUTINE tpsv(tp, x [, uplo]l [, trans] [, diag] [, alphal)
all:
<type>(<wp>), INTENT(IN) :: <tt>
<type>(<wp>), INTENT(INOUT) :: x(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
where
<tt> = t(:,:) or tp(:)
and
x has shape (n)
TB t has shape (k+1,n)
TP tp has shape (n*(n+1)/2)
(k=band width)

The funtionality of trsv is covered by trsm.

e Fortran 77 binding:

Triangular:
SUBROUTINE BLAS_xTRSV(UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,
$ INCX)
Triangular Band:
SUBROUTINE BLAS_xTBSV(UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,
$ X, INCX)
Triangular Packed:
SUBROUTINE BLAS_xTPSV(UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX)

all:
INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO
<type> ALPHA
<type> T(LDT, *) or TP(*), X(*)
¢ C binding:
Triangular:

void BLAS_xtrsv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, SCALAR_IN alpha, const ARRAY t, int 1dt,

64 CHAPTER 2. DENSE AND BANDED BLAS

ARRAY x, int incx);

Triangular Band:

void BLAS_xtbsv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, SCALAR_IN alpha, const ARRAY t, int 1dt,
ARRAY x, int incx);

Triangular Packed:

void BLAS_xtpsv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, SCALAR_IN alpha, const ARRAY tp, ARRAY x,
int incx);

GER (Rank one update) A € IR"Q, A—azy" +BA A E@’”z, A azy” + A or A+ azy® + pA

This routine performs the rank 1 operation A < azy” + SA where a and f are scalars, and
y are vectors, and and A is a matrix. If m or n is less than or equal to zero or if beta is equal to
one and alpha is equal to zero, this function returns immediately. As described in section 2.5.3,
the value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero,
an error flag is set and passed to the error handler. If Ida is less than one or Ida is less than m, an
error flag is set and passed to the error handler. For the C bindings, if order = blas_rowmajor
and if Ida is less than one or Ida is less than n, an error flag is set and passed to the error handler;
if order = blas_colmajor and if Ida is less than one or Ida is less than m, an error flag is set and
passed to the error handler.

The operator argument conj is only referenced when x and y are complex vectors. When z and
y are complex vectors, the vector components y; are used unconjugated or conjugated as specified
by the operator argument conj.

e Fortran 95 binding: Refer to GEMM specification

e Fortran 77 binding:

SUBROUTINE BLAS_xGER(CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA,

$ A, LDA)
INTEGER CONJ, INCX, INCY, LDA, M, N
<type> ALPHA, BETA
<type> ACLDA, *), X(*), Y(x)
e C binding:

void BLAS_xger(enum blas_order_type order, enum blas_conj_type conj,
int m, int n, SCALAR_IN alpha, const ARRAY x, int incx,
const ARRAY y, int incy, SCALAR_IN beta, ARRAY a, int 1lda);

{SY,SP}R (Symmetric Rank One Update) A+ azz? + BA with A = AT

The routine performs the symmetric rank-1 update A = azz’ + S A, where o and 3 are scalars,
x is a vector and A is a symmetric (symmetric packed) matrix. This routine returns immediately

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

2.8. LANGUAGE BINDINGS

if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero. As described in
section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error
flag is set and passed to the error handler. If Ida is less than one or Ida is less than n, an error flag

is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routines xSYR and xSPR with added functionality

for complex symmetric matrices.

e Fortran 95 binding:

Symmetric Packed:

SUBROUTINE spr(x, ap [, uplo] [, trans] [, alphal [, beta])

<type>(<wp>), INTENT(IN) :: x(:)

<type>(<wp>), INTENT(INOUT) :: ap(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x has shape (n)
ap has shape (n*(n+1)/2)

The functionality of syr is covered by syrk.

e Fortran 77 binding:

Symmetric:

SUBROUTINE BLAS_xSYR(UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

Symmetric Packed:

SUBROUTINE BLAS_xSPR(UPLO, N, ALPHA, X, INCX, BETA, AP)

all:
INTEGER INCX, LDA, N, UPLO
<type> ALPHA, BETA
<type> A(C LDA, *) or AP(*), X(*)
e C binding:
Symmetric:

void BLAS_xsyr(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY a, int lda);

Symmetric Packed:
void BLAS_xspr(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY ap);

{HE,HP}R (Hermitian Rank One Update)

The routine performs the Hermitian rank-1 update A = azz® + SA, where o and 3 are real
scalars, z is a complex vector and A is a Hermitian (Hermitian packed) matrix. This routine returns

A+ azzt + BA with A = A

66 CHAPTER 2. DENSE AND BANDED BLAS

immediately if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero.
As described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error flag is set and passed to the error handler. If Ida is less than one or Ida is less than
n, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Hermitian Packed:

SUBROUTINE hpr(x, ap [, uplo] [, trans] [, alphal [, betal)
COMPLEX (<wp>) , INTENT(IN) :: x(:)
COMPLEX (<wp>), INTENT(INOUT) :: ap(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
REAL(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x has shape (n)

ap has shape (n*(n+1)/2)

The functionality of her is covered by herk.

e Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHER(UPLO, N, ALPHA, X, INCX, BETA, A, LDA)
Hermitian Packed:

SUBROUTINE BLAS_xHPR(UPLO, N, ALPHA, X, INCX, BETA, AP)

all:
INTEGER INCX, LDA, N, UPLO
<rtype> ALPHA, BETA
<ctype> AC LDA, *) or AP(*), X(*)
e C binding:
Hermitian:

void BLAS_xher(enum blas_order_type order, enum blas_uplo_type uplo,
int n, RSCALAR_IN alpha, const CARRAY x, int incx,
RSCALAR_IN beta, CARRAY a, int 1lda);

Hermitian Packed:

void BLAS_xhpr(enum blas_order_type order, enum blas_uplo_type uplo,
int n, RSCALAR_IN alpha, const CARRAY x, int incx,
RSCALAR_IN beta, CARRAY ap);

{SY,SP}R2 (Symmetric Rank two update) A < azy” + ayz” + BA with A = AT

The routine performs the symmetric rank-2 update A = azy” + ayz? + BA, where o and S
are scalars, z is a vector and A is a symmetric (symmetric packed) matrix. This routine returns
immediately if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero.
As described in section 2.5.3, the value incx or incy less than zero is permitted. However, if either

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

®

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

2.8. LANGUAGE BINDINGS 67

incx or incy is equal to zero, an error flag is set and passed to the error handler. If Ida is less than
one or lda is less than n, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routines xSYR2 and xSPR2 with added function-
ality for complex symmetric matrices.

e Fortran 95 binding:

Symmetric Packed:

SUBROUTINE spr2(x, y, ap [, uplo] [, trans] [, alphal] [, betal])
<type>(<wp>), INTENT(IN) :: x(:), y(:)
<type>(<wp>), INTENT(INOUT) :: ap(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x and y have shape (n)

ap has shape (n*(n+1)/2)

The functionality of syr2 is covered by syr2k.

e Fortran 77 binding:

Symmetric:
SUBROUTINE BLAS_xSYR2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A,
$ LDA)

Symmetric Packed:
SUBROUTINE BLAS_xSPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA,

$ AP)
all:
INTEGER INCX, LDA, N, UPLO
<type> ALPHA, BETA
<type> ACLDA, *) or AP(*), X(*), Y(*)
e C binding:
Symmetric:

void BLAS_xsyr2(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,

const ARRAY y, int incy, SCALAR_IN beta, ARRAY a, int lda);
Symmetric Packed:
void BLAS_xspr2(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,

const ARRAY y, int incy, SCALAR_IN beta, ARRAY ap);

{HE,HP}R2 (Hermitian Rank two update) A+ azy® + ayz® + BA with A = AH

The routine performs the Hermitian rank-2 update A = azy? + ayz + BA, where o is a
complex scalar and and £ is a real scalar, £ and y are complex vectors and A is a Hermitian

68 CHAPTER 2. DENSE AND BANDED BLAS

(Hermitian packed) matrix. This routine returns immediately if n is less than or equal to zero or
if beta is equal to one and alpha is equal to zero. As described in section 2.5.3, the value incx or
incy less than zero is permitted. However, if either incx or incy is equal to zero, an error flag is set
and passed to the error handler. If Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler.

e Fortran 95 binding:

Hermitian Packed:

SUBROUTINE hpr2(x, y, ap [, uplo] [, trans] [, alphal] [, beta])
COMPLEX (<wp>), INTENT(IN) :: x(:), y(:)
COMPLEX (<wp>) , INTENT(INOUT) :: ap(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>) , INTENT(IN), OPTIONAL :: alpha, beta

where

x and y have shape (n)

ap has shape (n*(n+1)/2)

The functionality of her2 is covered by her2k.

e Fortran 77 binding:

Hermitian:
SUBROUTINE BLAS_xHER2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A,
$ LDA)

Hermitian Packed:
SUBROUTINE BLAS_xHPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA,

$ AP)
all:
INTEGER INCX, LDA, N, UPLO
<ctype> ALPHA
<rtype> BETA
<ctype> ACLDA, *) or AP(*), X(*), Y(*)
e C binding:
Hermitian:

void BLAS_xher2(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY x, int incx,
const CARRAY y, int incy, RSCALAR_IN beta, CARRAY a,
int 1lda);

Hermitian Packed:

void BLAS_xhpr2(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY x, int incx,
const CARRAY y, int incy, RSCALAR_IN beta, CARRAY ap);

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 69

2.8.7 Matrix Operations
{GE,GB,SY,HE,SB,HIB,SP,HP,TR,TB,TP}_.NORM (Matrix norms)
r < [|All1; [1Allirs [[Allp, [|Alloos [1Alloors [|Allmaz, or [|Allmazr

These routines compute the one-norm, real one-norm, Frobenius-norm, infinity-norm, real
infinity-norm, max-norm, or real max-norm of a general matrix A depending on the value passed
as the norm operator argument. This routine returns immediately with the output scalar r set to
zero if m (for nonsymmetric matrices) or n or kl or ku (for band matrices) or k (for symmetric
band matrices) is less than or equal to zero. The resulting scalar r is always real and as defined in
section 2.1.3. If norm = blas_two_norm, requesting the two-norm of a matrix, an error flag is set
and passed to the error handler. The only exception to this rule is if the matrix is a single column
or a single row, whereby the Frobenius-norm is returned since the two-norm and Frobenius-norm
of a vector are identical. For the routine GE_.NORM, if Ida is less than one or Ida is less than m,
an error flag is set and passed to the error handler. For the C bindings of GE_ZNORM, if order =
blas rowmajor and if |da is less than one or Ida is less than n, an error flag is set and passed to
the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than m, an
error flag is set and passed to the error handler. For the routine GB_NORM, if Ida is less than ki
plus ku plus one, an error flag is set and passed to the error handler. For the routines SY_ NORM,
HE_NORM, and TR_NORM, if Ida is less than one or Ida is less than n, an error flag is set and passed
to the error handler. For the routines SB_NORM, HB_NORM, and TB_NORM, if Ida is less than k
plus one, an error flag is set and passed to the error handler.

Advice to implementors. High-quality implementations of these routines should be accu-
rate. The subroutines SLANGB, SLANGE, SLANGT, SLANHS, SLANSB, SLANSP, SLANST,
SLANSY, SLANTB, SLANTP, and SLANTR, of the LAPACK [6] software library are examples
of accurate implementations. High-quality implementations should document the accuracy of
the algorithms used in this routine so as to alleviate the portability problems this represents.
(End of advice to implementors.)

e Fortran 95 binding:

General:

REAL (<wp>) FUNCTION ge_norm(a [, norm])
General Band:

REAL (<wp>) FUNCTION gb_norm(a, m, k1 [, norm])
Symmetric:

REAL (<wp>) FUNCTION sy_norm(a [, norm] [, uplo])
Hermitian:

REAL (<wp>) FUNCTION he_norm(a [, norm] [, uplo])
Symmetric Band:

REAL (<wp>) FUNCTION sb_norm(a [, norm] [, uplo])
Hermitian Band:

REAL (<wp>) FUNCTION hb_norm(a [, norm] [, uplo])
Symmetric Packed:

REAL (<wp>) FUNCTION sp_norm(ap [, norm] [, uplo])
Hermitian Packed:

REAL (<wp>) FUNCTION hp_norm(ap [, norm] [, uplo])

70

CHAPTER 2. DENSE AND BANDED BLAS

Triangular:
REAL (<wp>) FUNCTION tr_norm(a [, norm] [, uplo] [, diag])
Triangular Band:
REAL (<wp>) FUNCTION tb_norm(a [, norm] [, uplo] [, diag]l)
Triangular Packed:
REAL (<wp>) FUNCTION tp_norm(ap [, norm] [, uplo] [, diag]l)
all:
<type>(<wp>), INTENT (IN) :: a(:,:) | ap(:)
INTEGER, INTENT (IN) :: m, k1
TYPE (blas_norm_type), INTENT (IN), OPTIONAL :: norm
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
TYPE (blas_diag_type), INTENT (IN), OPTIONAL :: diag
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
(n,n) for symmetric, Hermitian or triangular
(k+1,n) for symmetric banded, Hermitian banded
or triangular banded (k=band width)
ap has shape (n*x(n+1)/2).

Fortran 77 binding:

General:

<rtype> FUNCTION BLAS_xGE_NORM(NORM, M, N, A, LDA)
General Band:

<rtype> FUNCTION BLAS_xGB_NORM(NORM, M, N, KL, KU, A, LDA)
Symmetric:

<rtype> FUNCTION BLAS_xSY_NORM(NORM, UPLO, N, A, LDA)
Hermitian:

<rtype> FUNCTION BLAS_xHE_NORM(NORM, UPLO, N, A, LDA)
Symmetric Band:

<rtype> FUNCTION BLAS_xSB_NORM(NORM, UPLO, N, K, A, LDA)
Hermitian Band:

<rtype> FUNCTION BLAS_xHB_NORM(NORM, UPLO, N, K, A, LDA)
Symmetric Packed:

<rtype> FUNCTION BLAS_xSP_NORM(NORM, UPLO, N, AP)
Hermitian Packed:

<rtype> FUNCTION BLAS_xHP_NORM(NORM, UPLO, N, AP)
Triangular:

<rtype> FUNCTION BLAS_xTR_NORM(NORM, UPLO, DIAG, N, A, LDA)
Triangular Band:

<rtype> FUNCTION BLAS_xTB_NORM(NORM, UPLO, DIAG, N, K, A, LDA)
Triangular Packed:

<rtype> FUNCTION BLAS_xTP_NORM(NORM, UPLO, DIAG, N, AP)
all:

INTEGER DIAG, K, KL, KU, LDA, M, N, NORM, UPLO

<type> A(C LDA, *) or AP(*)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS

e C binding:

General:
void BLAS_xge_norm(

General Band:

void BLAS_xgb_norm(

Symmetric:
void BLAS_xsy_norm(

Hermitian:
void BLAS_xhe_norm(

Symmetric Band:
void BLAS_xsb_norm(

Hermitian Band:
void BLAS_xhb_norm(

Symmetric Packed:
void BLAS_xsp_norm(

Hermitian Packed:
void BLAS_xhp_norm(

Triangular:
void BLAS_xtr_norm(

Triangular Band:
void BLAS_xtb_norm(

Triangular Packed:
void BLAS_xtp_norm(

enum blas_order_type order, enum blas_norm_type norm,

71

int m, int n, const ARRAY a, int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
int m, int n, int kl, int ku, const ARRAY a, int lda,
RSCALAR_INQUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, const ARRAY a,
int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, const CARRAY a,
int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, int n, int k, const ARRAY a,

int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, int n, int k, const CARRAY a,

int 1lda, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, const ARRAY ap,
RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, const CARRAY ap,
RSCALAR_INQUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,
int n, const ARRAY a, int lda, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,

int n, int k, const ARRAY a, int lda, RSCALAR_INOUT r);

enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,
int n, const ARRAY ap, RSCALAR_INOUT r);

72 CHAPTER 2. DENSE AND BANDED BLAS

{GE,GB}_DIAG_SCALE (Diagonal scaling) A« DA, AD with D diagonal

These routines scale a general (or banded) matrix A on the left side or the right side by a
diagonal matrix D. This routine returns immediately if m or n or kl or ku (for band matrices) is
less than or equal to zero. As described in section 2.5.3, the value incd less than zero is permitted.
However, if incd is equal to zero, an error flag is set and passed to the error handler. For the
routine GE_DIAG_SCALE, if Ida is less than one or Ida is less than m, an error flag is set and passed
to the error handler. For the C bindings of GE_DIAG_SCALE, if order = blas_rowmajor and if Ida
is less than one or Ida is less than n, an error flag is set and passed to the error handler; if order
= blas_colmajor and if Ida is less than one or Ida is less than m, an error flag is set and passed to
the error handler. For the routine GB_DIAG_SCALE, if Ida is less than kl plus ku plus one, an error
flag is set and passed to the error handler.

e Fortran 95 binding:

General:
SUBROUTINE ge_diag_scale(d, a [, side])
General Band:
SUBROUTINE gb_diag_scale(d, a, m, k1 [, side])
all:
<type>(<wp>), INTENT (IN) :: d(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:)
INTEGER, INTENT (IN) :: m, k1
TYPE (blas_side_type), INTENT (IN), OPTIONAL :: side
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > kl)
d has shape (p) where p = m if side = blas_left_side
p = n if side = blas_right_side

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_DIAG_SCALE(SIDE, M, N, D, INCD, A, LDA)
General Band:

SUBROUTINE BLAS_xGB_DIAG_SCALE(SIDE, M, N, KL, KU, D, INCD, A,

$ LDA)
all:
INTEGER INCD, KL, KU, LDA, M, N, SIDE
<type> AC LDA, *), D(*)
e C binding:
General:

void BLAS_xge_diag_scale(enum blas_order_type order,
enum blas_side_type side, int m, int n,
const ARRAY d, int incd, ARRAY a, int 1lda);
General Band:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 73

void BLAS_xgb_diag_scale(enum blas_order_type order,
enum blas_side_type side, int m, int n, int k1,
int ku, const ARRAY d, int incd, ARRAY a, int 1lda);

{GE,GB}_LRSCALE (Two-sided diagonal scaling) A<+ DL ADp

These routines scale a general (or banded) matrix A on the left side by a diagonal matrix Dy,
and on the right side by a diagonal matrix Dg. This routine returns immediately if m or n or kl or
ku (for band matrices) is less than or equal to zero. As described in section 2.5.3, the value incdl or
incdr less than zero is permitted. However, if either incdl or incdr is equal to zero, an error flag is set
and passed to the error handler. For the routine GE_LRSCALE, if Ida is less than one or Ida is less
than m, an error flag is set and passed to the error handler. For the C bindings of GE_LRSCALE,
if order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler; if order = blas _colmajor and if Ida is less than one or Ida is less than
m, an error flag is set and passed to the error handler. For the routine GB_LRSCALE, if Ida is less
than kl plus ku plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

General:
SUBROUTINE ge_lrscale(dl1, dr, a)
General Band:
SUBROUTINE gb_lrscale(d1, dr, a, m, k1)
all:
<type>(<wp>), INTENT (IN) :: d1(:), dr(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:)
INTEGER, INTENT (IN) :: m, k1
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
dl has shape (m)
dr has shape (n)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_LRSCALE(M, N, DL, INCDL, DR, INCDR, A, LDA)
General Band:

SUBROUTINE BLAS_xGB_LRSCALE(M, N, KL, KU, DL, INCDL, DR, INCDR,

$ A, LDA)

all:
INTEGER INCDL, INCDR, KL, KU, LDA, M, N
<type> AC LDA, *), DL(*), DR(*)

¢ C binding:

74 CHAPTER 2. DENSE AND BANDED BLAS

General:

void BLAS_xge_lrscale(enum blas_order_type order, int m, int n,
const ARRAY dl, int incdl, const ARRAY dr,
int incdr, ARRAY a, int 1da);

General Band:

void BLAS_xgb_lrscale(enum blas_order_type order, int m, int n, int k1,
int ku, const ARRAY dl, int incdl, const ARRAY dr,
int incdr, ARRAY a, int 1lda);

{SY,SB,SP} LRSCALE (Two-sided diagonal scaling of a symmetric matrix)
A+ DAD with A = A"

These routines perform a two-sided scaling of a symmetric (or symmetric banded or symmetric
packed) matrix A by a diagonal matrix D. This routine returns immediately if n or k (for symmetric
band matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than
zero is permitted. However, if incd is equal to zero, an error flag is set and passed to the error
handler. For the routines SY_LRSCALE and SP_LRSCALE, if Ida is less than one or Ida is less than
n, an error flag is set and passed to the error handler. For the routine SB_LRSCALE, if Ida is less
than k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Symmetric:
SUBROUTINE sy_lrscale(d, a [, uplo])
Symmetric Band:
SUBROUTINE sb_lrscale(d, a [, uplo])
Symmetric Packed:
SUBROUTINE sp_lrscale(d, ap [, uplo])
all:
<type>(<wp>), INTENT (IN) :: d4(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:) | ap(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
where
a has shape (n,n) for symmetric
(k+1,n) for symmetric banded (k=band width)
ap has shape (n*(n+1)/2).
d has shape (n)

e Fortran 77 binding:

Symmetric:

SUBROUTINE BLAS_xSY_LRSCALE(UPLO, N, D, INCD, A, LDA)
Symmetric Band:

SUBROUTINE BLAS_xSB_LRSCALE(UPLO, N, K, D, INCD, A, LDA)
Symmetric Packed:

SUBROUTINE BLAS_xSP_LRSCALE(UPLO, N, D, INCD, AP)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 75

all:
INTEGER INCD, K, LDA, N, UPLO
<type> A(C LDA, *) or AP(*), D(*)
e C binding:
Symmetric:

void BLAS_xsy_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY d, int incd, ARRAY a, int 1lda);

Symmetric Band:

void BLAS_xsb_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const ARRAY d, int incd, ARRAY a,
int 1da);

Symmetric Packed:

void BLAS_xsp_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY d, int incd, ARRAY ap);

{HE,HB,HP}_LRSCALE (Two-sided diagonal scaling of a Hermitian matrix)
A < DADY with A = A"

These routines perform a two-sided scaling of a Hermitian (or Hermitian banded or Hermitian
packed) matrix A by a diagonal matrix D. This routine returns immediately if n or k (for Hermitian
band matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than
zero is permitted. However, if incd is equal to zero, an error flag is set and passed to the error
handler. For the routines HE_LRSCALE, if Ida is less than one or Ida is less than n, an error flag is
set and passed to the error handler. For the routine HB_LRSCALE, if Ida is less than k plus one, an
error flag is set and passed to the error handler.

e Fortran 95 binding:

Hermitian:
SUBROUTINE he_lrscale(d, a [, uplo])
Hermitian Band:
SUBROUTINE hb_lrscale(d, a [, uplo])
Hermitian Packed:
SUBROUTINE hp_lrscale(d, ap [, uplo])
all:
COMPLEX (<wp>), INTENT (IN) :: d(:)
COMPLEX(<wp>), INTENT (INOUT) :: a(:,:) | ap(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
where
a has shape (n,n) for Hermitian
(k+1,n) for Hermitian banded (k=band width)
ap has shape (n*(n+1)/2).
d has shape (n)

e Fortran 77 binding:

76 CHAPTER 2. DENSE AND BANDED BLAS

Hermitian:

SUBROUTINE BLAS_xHE_LRSCALE(UPLO, N, D, INCD, A, LDA)
Hermitian Band:

SUBROUTINE BLAS_xHB_LRSCALE(UPLO, N, K, D, INCD, A, LDA)
Hermitian Packed:

SUBROUTINE BLAS_xHP_LRSCALE(UPLO, N, D, INCD, AP)

all:
INTEGER INCD, K, LDA, N, UPLO
<ctype> A(LDA, *) or AP(*), D(*)
e C binding:
Hermitian:

void BLAS_xhe_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY d, int incd, ARRAY a, int 1lda);

Hermitian Band:

void BLAS_xhb_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const ARRAY d, int incd, ARRAY a,
int 1da);

Hermitian Packed:

void BLAS_xhp_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY d, int incd, ARRAY ap);

{GE,GB}_DIAG_SCALE_ACC (Diagonal scaling and accumulation) A<+ A+BD

These routines perform the diagonal scaling of a general (or banded) matrix B and accumulate
the result in the matrix A. This routine returns immediately if m or n or kl or ku (for band
matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than zero
is permitted. However, if incd is equal to zero, an error flag is set and passed to the error handler.
For the routine GE_DIAG_SCALE_ACC, if Ida or Idb is less than one or Ida or Idb is less than m, an
error flag is set and passed to the error handler. For the C bindings of GE_DIAG_SCALE_ACC, if
order = blas_rowmajor and if Ida or Idb is less than one or Ida or Idb is less than n, an error flag
is set and passed to the error handler; if order = blas colmajor and if Ida or Idb is less than one
or Ida or Idb is less than m, an error flag is set and passed to the error handler. For the routine
GB_DIAG_SCALE_ACC, if Ida is less than kl plus ku plus one, an error flag is set and passed to the
error handler.

e Fortran 95 binding:

General:
SUBROUTINE ge_diag_scale_acc(b, d, a)
Band:
SUBROUTINE gb_diag_scale_acc(b, m, k1, d, a)
all:
<type>(<wp>), INTENT (IN) :: b(:,:), d(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:)
INTEGER, INTENT (IN) :: m, k1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 7

where
a has shape (m,n)
b has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > kl)
d has shape (n)

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGE_DIAG_SCALE_ACC(M, N, B, LDB, D, INCD, A,
$ LDA)

Band:
SUBROUTINE BLAS_xGB_DIAG_SCALE_ACC(M, N, KL, KU, B, LDB, D, INCD,
$ A, LDA)

all:
INTEGER INCD, KL, KU, LDA, LDB, M, N
<type> AC LDA, *), BCLDB, *), D(*)

e C binding:
General:

void BLAS_xge_diag_scale_acc(enum blas_order_type order, int m, int n,
const ARRAY b, int 1db, const ARRAY d,
int incd, ARRAY a, int 1lda);

General Band:

void BLAS_xgb_diag_scale_acc(enum blas_order_type order, int m, int n,
int k1, int ku, const ARRAY b, int 1db,
const ARRAY d, int incd, ARRAY a, int 1lda);

{GE,SY,SB,SP}_ACC (Matrix accumulation and scale) B+ aA+ BB, B+ aA” + 8B

These routines scale a matrix A (or its transpose) and scale a matrix B and accumulate the
result in the matrix B. Matrices A and B have the same storage format. These routines return
immediately if alpha is equal to zero and beta is equal to one, or if m (for nonsymmetric matrices)
or n or k (for symmetric band matrices) is less than or equal to zero. As described in section 2.5.3,
for the routine GE_ACC, if |da or Idb is less than one or Ida or Idb is less than m, an error flag is set
and passed to the error handler. For the C bindings for GE_ACC, if order = blas_rowmajor and
if Ida or Idb is less than one or Ida or Idb is less than n, an error flag is set and passed to the error
handler; if order = blas_colmajor and if Ida or Idb is less than one or Ida or Idb is less than m, an
error flag is set and passed to the error handler. For the routine SY_ACC, if Ida or Idb is less than
one or Ida or Idb is less than n, an error flag is set and passed to the error handler. For the routine
SB_ACC, if Ida or Idb is less than k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

General:
SUBROUTINE ge_acc(a, b [, trans] [, alphal [, betal)

78

CHAPTER 2. DENSE AND BANDED BLAS

Symmetric:
SUBROUTINE sy_acc(a, b [, uplo] [, trans] [, alphal [, betal)
Symmetric Band:
SUBROUTINE sb_acc(a, b [, uplo]l [, trans] [, alphal [, betal)
Symmetric Packed:
SUBROUTINE sp_acc(ap, bp [, uplo]l [, trans] [, alphal [, betal)
all:
<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)
<type>(<wp>), INTENT(INOUT) :: b(:,:) | bp(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT (IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

The default value for 5 is 1.0 or (1.0,0.0).

Fortran 77 binding:

General:
SUBROUTINE BLAS_xGE_ACC(TRANS, M, N, ALPHA, A, LDA, BETA, B,
$ LDB)
Symmetric:
SUBROUTINE BLAS_xSY_ACC(UPLO, TRANS, N, ALPHA, A, LDA, BETA, B,
$ LDB)

Symmetric Band:
SUBROUTINE BLAS_xSB_ACC(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
$ B, LDB)

Symmetric Packed:
SUBROUTINE BLAS_xSP_ACC(UPLO, TRANS, N, ALPHA, AP, BETA, BP)

all:

INTEGER K, LDA, LDB, M, N, TRANS, UPLD

<type> ALPHA, BETA

<type> A(C LDA, *) or AP(*), B(LDB, *) or BP(*)
C binding:
General:

void BLAS_xge_acc(enum blas_order_type order, enum blas_trans_type tramns,
int m, int n, SCALAR_IN alpha, const ARRAY a, int 1lda,
SCALAR_IN beta, ARRAY b, int 1db);
Symmetric:
void BLAS_xsy_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, SCALAR_IN alpha,
const ARRAY a, int 1da, SCALAR_IN beta, ARRAY b, int 1db);
Symmetric Band:
void BLAS_xsb_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k, SCALAR_IN alpha,
const ARRAY a, int 1lda, SCALAR_IN beta, ARRAY b, int 1db);
Symmetric Packed:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 79

void BLAS_xsp_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, SCALAR_IN alpha,
const ARRAY ap, SCALAR_IN beta, ARRAY bp);

{GB,TR,TB,TP}_ACC (Matrix accumulation and scale) B+ aA+ BB

These routines scale matrices A and B and accumulate the result in the matrix B. Matrices A
and B have the same storage format. These routines return immediately if alpha is equal to zero
and beta is equal to one, or if m or ki or ku (for general band matrices) or n or k (for triangular band
matrices) is less than or equal to zero. For the routine GB_ACC, if Ida is less than kl plus ku plus
one, an error flag is set and passed to the error handler. For the routines TR_ACC and TP_ACC, if
Ida is less than one or Ida is less than n, an error flag is set and passed to the error handler. For the
routine TB_ACC, if Ida is less than k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

General Band:
SUBROUTINE gb_acc(a, m, k1, b [, alphal] [, betal)
Triangular:
SUBROUTINE tr_acc(a, b [, uplo] [, diag]l [, alphal [, betal)
Triangular Band:
SUBROUTINE tb_acc(a, b [, uplo] [, diag]l [, alphal [, betal])
Triangular Packed:
SUBROUTINE tp_acc(ap, bp [, uplo] [, diag] [, alphal] [, betal])
all:
<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)
INTEGER, INTENT (IN) :: m, k1
<type>(<wp>), INTENT(INOUT) :: b(:,:) | bp(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
TYPE (blas_diag_type), INTENT (IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

The default value for 8 is 1.0 or (1.0,0.0).
e Fortran 77 binding:

General Band:
SUBROUTINE BLAS_xGB_ACC(M, N, KL, KU, ALPHA, A, LDA, BETA, B,

$ LDB)
Triangular:
SUBROUTINE BLAS_xTR_ACC(UPLO, DIAG, N, ALPHA, A, LDA, BETA, B,
$ LDB)

Triangular Band:
SUBROUTINE BLAS_xTB_ACC(UPLO, DIAG, N, K, ALPHA, A, LDA, BETA, B,
$ LDB)

Triangular Packed:
SUBROUTINE BLAS_xTP_ACC(UPLO, DIAG, N, ALPHA, AP, BETA, BP)

80 CHAPTER 2. DENSE AND BANDED BLAS

all:
INTEGER DIAG, K, KL, KU, LDA, LDB, M, N, UPLO
<type> ALPHA, BETA
<type> AC LDA, *) or AP(*), B(LDB, *) or BP(*)
e C binding:

General Band:
void BLAS_xgb_acc(enum blas_order_type order, int m, int n, int k1, int ku,
SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,
ARRAY b, int 1db);
Triangular:
void BLAS_xtr_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY a, int 1da, SCALAR_IN beta, ARRAY b, int 1db);
Triangular Band:
void BLAS_xtb_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k, SCALAR_IN alpha,
const ARRAY a, int 1da, SCALAR_IN beta, ARRAY b, int 1db);
Triangular Packed:
void BLAS_xtp_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY ap, SCALAR_IN beta, ARRAY bp);

{GE,GB,SY,SB,SP,TR,TB,TP}_ADD (Matrix add and scale) C <~ aA+ BB

This routine scales two matrices A and B and stores their sum in a matrix C. Matrices A, B,
and C have the same storage format. This routine returns immediately if m or kl or ku (for general
band matrices) or n or k (for symmetric or triangular band matrices) is less than or equal to zero.
For the routine GE_ADD, if Ida or Idb is less than one or less than m, an error flag is set and passed
to the error handler. For the C bindings for GE_ADD, if order = blas_rowmajor and if Ida or Idb
is less than one or Ida or Idb is less than n, an error flag is set and passed to the error handler; if
order = blas colmajor and if Ida or Idb is less than one or Ida or Idb is less than m, an error flag
is set and passed to the error handler. For the routine GB_ADD, if Ida or Idb is less than kl plus ku
plus one, an error flag is set and passed to the error handler. For the routines SY_ADD, TR_ADD,
SP_ADD, and TP_ADD, if Ida or Idb is less than one or Ida or Idb is less than n, an error flag is set
and passed to the error handler. For the routines SB_ADD and TB_ADD, if Ida or Idb is less than
k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

General:

SUBROUTINE ge_add(a, b, ¢ [, alphal [, beta])
General Band:

SUBROUTINE gb_add(a, m, k1, b, ¢ [, alphal [, beta])
Symmetric:

SUBROUTINE sy_add(a, b, ¢ [, uplo] [, alphal [, betal])

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Symmetric Band:

2.8. LANGUAGE BINDINGS

SUBROUTINE sb_add(a, b, ¢ [, uplo] [, alphal] [, betal)

Symmetric Packed:

SUBROUTINE sp_add(ap, bp, cp [, uplo]l [, alphal [, betal)

Triangular:

SUBROUTINE tr_add(a, b, ¢ [, uplo]l [, diag]l [, alphal [, betal)

Triangular Band:

SUBROUTINE tb_add(a, b, ¢ [, uplo]l [, diagl [, alphal [, betal)
Triangular Packed:
SUBROUTINE tp_add(ap, bp, cp [, uplo]l [, diagl [, alphal [, betal)

all:

<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)
INTEGER, INTENT (IN) :: m, kl

<type>(<wp>), INTENT(IN) :: b(:,:) | bp(:)
<type>(<wp>), INTENT(OUT) :: c(:,:) | cp(:)

TYPE (blas_
TYPE (blas_

uplo_type), INTENT (IN), OPTIONAL :: uplo
diag_type), INTENT (IN), OPTIONAL :: diag

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
assuming A,

B and C all the same (general, banded or packed) with

the same size.

a, b and ¢

ap, bp and

have shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
(n,n) for symmetric or triangular
(k+1,n) for symmetric banded or triangular
banded (k=band width)
cp have shape (nx(n+1)/2).

The default value for 8 is 1.0 or (1.0,0.0).

Fortran 77 binding:

General:
SUBROUTINE
$

General Band:
SUBROUTINE
$

Symmetric:
SUBROUTINE
$

Symmetric Band:
SUBROUTINE
$

Symmetric Packed:
SUBROUTINE

Triangular:
SUBROUTINE

BLAS_xGE_ADD(M, N, ALPHA, A, LDA, BETA, B, LDB, C,
LDC)

BLAS_xGB_ADD(M, N, KL, KU, ALPHA, A, LDA, BETA, B,
LDB, C, LDC)

BLAS_xSY_ADD(UPLO, N, ALPHA, A, LDA, BETA, B, LDB,
¢, LDC)

BLAS_xSB_ADD(UPLO, N, K, ALPHA, A, LDA, BETA, B, LDB,
¢, LDC)

BLAS_xSP_ADD(UPLO, N, ALPHA, AP, BETA, BP, CP)

BLAS_xTR_ADD(UPLO, DIAG, N, ALPHA, A, LDA, BETA, B,

81

82

$
Triangular Band:

CHAPTER 2. DENSE AND BANDED BLAS

LDB, C, LDC)

SUBROUTINE BLAS_xTB_ADD(UPLO, DIAG, N, K, ALPHA, A, LDA, BETA,

$
Triangular Packed:

B, LDB, C, LDC)

SUBROUTINE BLAS_xTP_ADD(UPLO, DIAG, N, ALPHA, AP, BETA, BP, CP)

all:
INTEGER
<type>
<type>
<type>
C binding;:
General:

void BLAS_xge_add(

General Band:
void BLAS_xgb_add(

Symmetric:
void BLAS_xsy_add(

Symmetric Band:
void BLAS_xsb_add(

Symmetric Packed:
void BLAS_xsp_add(

Triangular:
void BLAS_xtr_add(

Triangular Band:
void BLAS_xtb_add(

Triangular Packed:
void BLAS_xtp_add(

DIAG, K, KL, KU, LDA, LDB, M, N, TRANS, UPLO
ALPHA, BETA

AC LDA, *) or AP(*), B(LDB, *) or BP(*),
C(LDC, *) or CP(*)

enum blas_order_type order, int m, int n, SCALAR_IN alpha,
const ARRAY a, int 1lda, SCALAR_IN beta, const ARRAY b,
int 1db, ARRAY c, int ldc);

enum blas_order_type order, int m, int n, int k1, int ku,
SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,
const ARRAY b, int 1db, ARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo, int n,
SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,
const ARRAY b, int 1db, ARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, SCALAR_IN alpha, const ARRAY a, int 1lda,
SCALAR_IN beta, const ARRAY b, int 1db, ARRAY c, int 1ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
int n, SCALAR_IN alpha, const ARRAY ap, SCALAR_IN beta,
const ARRAY bp, ARRAY cp);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY a, int lda, SCALAR_IN beta, const ARRAY b,
int 1db, ARRAY c, int ldc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k, SCALAR_IN alpha,
const ARRAY a, int lda, SCALAR_IN beta, const ARRAY b,
int 1db, ARRAY c, int 1dc);

enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY ap, SCALAR_IN beta, const ARRAY bp,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 83

ARRAY cp);

2.8.8 Matrix-Matrix Operations

In the following section, op(X) denotes X, or X© or X# where X is a matrix.
GEMM (General Matrix Matrix Product) C «+ aop(A)op(B) + pC

The routine performs a general matrix matrix multiply C' < aop(A)op(B) + BC where a and
B are scalars, and A, B, and C are general matrices. This routine returns immediately if alpha
is equal to zero and beta is equal to one, or if m or n or k is less than or equal to zero. If Ida is
less than one, or transa = blas_no_trans and lda is less than m, or transa # blas_no_trans and
Ida is less than k, or Idb is less than one, or transb = blas_no_trans and |db is less than k, or
transb # blas_no_trans and Idb is less than n, or Idc is less than one or less than m, an error flag
is set and passed to the error handler.

This interface encompasses the Legacy BLAS routine xGEMM.

e Fortran 95 binding:

SUBROUTINE gemm(a, b, ¢ [, transa] [, transb] [, alphal] [, betal)
<type>(<wp>), INTENT(IN) :: <aa>, <bb>
<type>(<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa, transb
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
<aa> ::= a(:,:) or a(:)
<bb> = b(:,:) or b(:)
<cc> =c(:,:) or c(:)
and

¢, rank 2, has shape (m,n)
a has shape (m,k) if transa = blas_no_trans (the default)
(k,m) if transa /= blas_no_trans
(m) if rank 1
b has shape (k,n) if transb = blas_no_trans (the default)
(n,k) if transb /= blas_no_trans
(n) if rank 1
c, rank 1, has shape (m)
a has shape (m,n) if transa = blas_no_trans (the default)
(n,m) if transa /= blas_no_trans
b has shape (n)

84 CHAPTER 2. DENSE AND BANDED BLAS

Rank a | Rank b | Rank ¢ | transa | transb | Operation Arguments
2 2 2 N N C + aAB + pC real or complex
2 2 2 N T C + aABT 4+ pC real or complex
2 2 2 N H C + aABY + gC complex
2 2 2 T N C + aATB + BC real or complex
2 2 2 T T C + aATBT + BC | real or complex
2 2 2 H N C + aA’B+ pC | complex
2 2 2 H H C + aA"BH 4 BC | complex
2 1 1 N - ¢+ aAb+ Be real or complex
2 1 1 T - c <+ aATb+ Be real or complex
2 1 1 H - c <+ aAfb+ Be complex
1 1 2 - - C + aab” + pC real or complex
1 1 2 - H C + aab® + BC complex

The functionality of xGEMV, xGER, xGERU, and xGERC are also covered by this generic
procedure.

e Fortran 77 binding:

SUBROUTINE BLAS_xGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
<type> ALPHA, BETA
<type> A(C LDA, *), BCLDB, *), C(LDC, *)
e C binding:

void BLAS_xgemm(enum blas_order_type order, enum blas_trans_type transa,
enum blas_trans_type transb, int m, int n, int k,
SCALAR_IN alpha, const ARRAY a, int lda, const ARRAY b,
int 1db, SCALAR_IN beta, ARRAY c, int 1ldc);

SYMM (Symmetric Matrix Matrix Product) C + aAB + pBC or C < aBA+ C

This routine performs one of the symmetric matrix matrix operations C' < aAB + BC or
C < aBA + BC where « and (8 are scalars, A is a symmetric matrix, and B and C' are general
matrices. This routine returns immediately if alpha is equal to zero and beta is equal to one, or if
m or n is less than or equal to zero. For side equal to blas_left_side, and if Ida is less than one or less
than m, or if Idb is less than one or less than m, or if Idc is less than one or less than m, an error
flag is set and passed to the error handler. For side equal to blas_right_side, and if Ida is less than
one or less than n, or if Idb is less than one or less than n, or if Idc is less than one or less than n,
an error flag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xSYMM with added functionality for com-
plex symmetric matrices.

e Fortran 95 binding:

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

2.8. LANGUAGE BINDINGS 85

SUBROUTINE symm(a, b, ¢ [, side] [, uplo]l [, alphal] [, betal)
<type>(<wp>), INTENT(IN) :: a(:,:), <bb>
<type>(<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
<bb> = b(:,:) or b(:)
<cc> =c(:,:) or c(:)
and

¢, rank 2, has shape (m,n), b same shape as ¢
SY a has shape (m,m) if side = blas_left_side (the default)
a has shape (n,n) if side /= blas_left_side
c, rank 1, has shape (m), b same shape as c
SY a has shape (m,m)

Rank b | Rank ¢ | side | Operation
2 2 L |C <+ aAB+pC
2 2 R | C <+ aBA+pC
1 1 - ¢+ aAb+ Be

The functionality of xSYMV is covered by symm.
e Fortran 77 binding:

SUBROUTINE BLAS_xSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO
<type> ALPHA, BETA
<type> A(C LDA, *), BCLDB, *), C(LDC, *)
e C binding:

void BLAS_xsymm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, int m, int n, SCALAR_IN alpha,
const ARRAY a, int lda, const ARRAY b, int 1db,
SCALAR_IN beta, ARRAY c, int ldc);

HEMM (Hermitian Matrix Matrix Product) C <+ aAB +pBC or C < aBA+ C

This routine performs one of the Hermitian matrix matrix operations C' <+ aAB + BC or
C <+ aBA + BC where a and 3 are scalars, A is a Hermitian matrix, and B and C are general
matrices. This routine returns immediately if alpha is equal to zero and beta is equal to one, or if
m or n is less than or equal to zero. For side equal to blas_left_side, and if Ida is less than one or less
than m, or if Idb is less than one or less than m, or if Idc is less than one or less than m, an error
flag is set and passed to the error handler. For side equal to blas_right_side, and if Ida is less than
one or less than n, or if Idb is less than one or less than n, or if Idc is less than one or less than n,
an error flag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xHEMM.

86 CHAPTER 2. DENSE AND BANDED BLAS

e Fortran 95 binding:

Hermitian:
SUBROUTINE hemm(a, b, ¢ [, side] [, uplo]l [, alphal] [, betal)
COMPLEX(<wp>), INTENT(IN) :: a(:,:), <bb>
COMPLEX (<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
COMPLEX (<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
<bb> = b(:,:) or b(:)
<cc> =c(:,:) or c(:)
and

c, rank 2, has shape (m,n), b same shape as ¢
HE a has shape (m,m) if "side" = blas_left_side (the default)
a has shape (n,n) if "side" /= blas_left_side
c, rank 1, has shape (m), b same shape as ¢
HE a has shape (m,m)

Rank b | Rank ¢ | side | Operation
2 2 L C +— aAB + pC
2 2 R | C <« aBA+pBC
1 1 - c+ aAb+ (e

The functionality of xHEMYV is covered by hemm.

e Fortran 77 binding:

SUBROUTINE BLAS_xHEMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO
<ctype> ALPHA, BETA
<ctype> A(C LDA, *), BCLDB, *), C(LDC, *)
e C binding:

void BLAS_xhemm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, int m, int n, CSCALAR_IN alpha,
const CARRAY a, int lda, const CARRAY b, int 1db,
CSCALAR_IN beta, CARRAY c, int 1ldc);

TRMM (Triangular Matrix Matrix Multiply) B <+ aop(T)B or B < aBop(T)

These routines perform one of the matrix-matrix operations B <« aop(T)B or B <+ aBop(T)
where « is a scalar, B is a general matrix, and 7' is a unit, or non-unit, upper or lower triangular
(or triangular band) matrix. This routine returns immediately if m, n, or k (for triangular band
matrices), is less than or equal to zero. For side equal to blas_left_side, and if Idt is less than one

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS

or less than m, or if Idb is less than one or less than m, an error flag is set and passed to the error
handler. For side equal to blas_right_side, and if Idt is less than one or less than n, or if Idb is less
than one or less than m, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xTRMM.

e Fortran 95 binding:

SUBROUTINE trmm(t, b [, side] [, uplo] [, transt] [, diag] [, alphal)
:t(:,
:: <bb>

<type>(<wp>), INTENT(IN)

<type>(<wp>), INTENT(INOUT)
<type>(<wp>), INTENT(IN), OPTIONAL ::
TYPE (blas_diag_type), INTENT(IN), OPTIONAL ::
TYPE (blas_side_type), INTENT(IN), OPTIONAL ::
TYPE (blas_trans_type), INTENT(IN), OPTIONAL ::
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL ::

where
<bb> ::=b(:,:) or b(:)
and

b, rank 2, has shape (m,n)

TR t has shape (m,m) if side = blas_left_side (the default)

:)

alpha

t has shape (n,n) if side /= blas_left_side

b, rank 1, has shape (m)
TR t has shape (m,m)

Rank b | transt | side | Operation
2 N L |B+ alB
2 T L | B« aT™B
2 H L |B+aT"B
2 N R | B+« aBT
2 T R | B+ aBTT
2 H R | B+« aBTH
1 N - b+ oTh
1 T - b+ oTTh
1 H - b+ oTHp

The functionality of xXTRMYV is covered by trmm.

e Fortran 77 binding:

SUBROUTINE BLAS_xTRMM(SIDE, UPLO, TRANST, DIAG, M, N, ALPHA, T,

$ LDT, B, LDB)

INTEGER DIAG, LDB, LDT, M, N, SIDE, TRANST, UPLO
<type> ALPHA

<type> T(LDT, *), B(LDB, *)

e C binding:

diag

side
transt

uplo

88 CHAPTER 2. DENSE AND BANDED BLAS

void BLAS_xtrmm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, enum blas_trans_type transt,
enum blas_diag_type diag, int m, int n, SCALAR_IN alpha,
const ARRAY t, int 1dt, ARRAY b, int 1db);

TRSM (Triangular Solve) B+ aop(T~')B or B «+ aBop(T™!)

This routine solves one of the matrix equations B + aop(T !)B or B <+ aBop(T ') where « is
a scalar, B is a general matrix, and T is a unit, or non-unit, upper or lower triangular matrix. This
routine returns immediately if m or n is less than or equal to zero. For side equal to blas_left_side,
and if Idt is less than one or less than m, or if Idb is less than one or less than m, an error flag is set
and passed to the error handler. For side equal to blas_right_side, and if Idt is less than one or less
than n, or if Idb is less than one or less than m, an error flag is set and passed to the error handler.
These interfaces encompass the Legacy BLAS routine xTRSM.

Advice to implementors. Note that no check for singularity, or near singularity is specified
for these triangular equation-solving routines. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver. (End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE trsm(t, b [, side] [, uplo] [, transt] [, diag]l [, alphal])
<type>(<wp>), INTENT(IN) :: t(:,:)
<type>(<wp>), INTENT(INOUT) :: <bb>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
where
<bb> ::= b(:,:) or b(:)
and
b, rank 2, has shape (m,n)
TR t has shape (m,m) if side = blas_left_side (the default)
t has shape (n,n) if side /= blas_left_side
b, rank 1, has shape (m)
TR t has shape (m,m)

Rank b | transt | side | Operation
2 N L | B+ al'B
2 T L |B+al'' "B
2 H L | B+ ol "B
2 N R | B+ aBT!
2 T R | B+ aBT T
2 H R | B+ aBT
1 N - b+ ol b
1 T - | b+—aT Th
1 H - | b+aT M p

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 89

The functionality of XTRSV is covered by trsm.

e Fortran 77 binding:

SUBROUTINE BLAS_xTRSM(SIDE, UPLO, TRANST, DIAG, M, N, ALPHA,

$ T, LDT, B, LDB)
INTEGER DIAG, LDB, LDT, M, N, SIDE, TRANST, UPLO
<type> ALPHA
<type> T(LDT, *), B(LDB, *)

e C binding:

void BLAS_xtrsm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, enum blas_trans_type transt,
enum blas_diag_type diag, int m, int n, SCALAR_IN alpha,
const ARRAY t, int 1dt, ARRAY b, int 1db);

SYRK (Symmetric Rank K update) C + aAAT + BC, C < aAT A+ BC

This routine performs one of the symmetric rank k operations C < «aAA”T + BC or C
aAT A + BC where o and f8 are scalars, C' is a symmetric matrix, and A is a general matrix. This
routine returns immediately if alpha is equal to zero and beta is equal to one, or if n or k is less
than or equal to zero. If Idc is less than one or less than n, an error flag is set and passed to the
error handler. For trans equal to blas_no_trans, and if Ida is less than one or less than n, an error
flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less than one
or less than k, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xSYRK with added functionality for
complex symmetric matrices.

e Fortran 95 binding:

SUBROUTINE syrk(a, c [, uplo] [, trans] [, alphal] [, betal)
<type>(<wp>), INTENT(IN) :: <aa>
<type>(<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
<aa> ::= a(:,:) or a(:)
and
¢ has shape (n,n)
a has shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | trans | Operation
2 N | C « adAT +8C
2 T | C+ aATA+pC
1 - C + aaa” + pC

90 CHAPTER 2. DENSE AND BANDED BLAS

The functionality of xSYR is covered by syrk.

e Fortran 77 binding:

SUBROUTINE BLAS_xSYRK(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,

$ C, LDC)
INTEGER K, LDA, LDC, N, TRANS, UPLO
<type> ALPHA, BETA
<type> AC LDA, *), C(LDC, *)
e C binding:

void BLAS_xsyrk(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k, SCALAR_IN alpha,
const ARRAY a, int 1da, SCALAR_IN beta, ARRAY c, int 1dc);

HERK (Hermitian Rank K update) C + aAA" + BC, C + aAP A+ pC

This routine performs one of the Hermitian rank k operations C' <+ aAdA® + BC or C «+
aA” A 4+ BC where o and 3 are scalars, C is a Hermitian matrix, and A is a general matrix. This
routine returns immediately if alpha is equal to zero and beta is equal to one, or if n or k is less
than or equal to zero. If Idc is less than one or less than n, an error flag is set and passed to the
error handler. For trans equal to blas_no_trans, and if Ida is less than one or less than n, an error
flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less than one
or less than k, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xHERK.

e Fortran 95 binding:

SUBROUTINE herk(a, ¢ [, uplo] [, tramns] [, alphal [, betal])
COMPLEX (<wp>) , INTENT(IN) :: <aa>
COMPLEX (<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
REAL (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
<aa> ::= a(:,:) or a(:)
and
¢ has shape (n,n)
a has shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | trans | Operation
2 N C + aAA" + 8C
2 T | C+ adAfA+pBC
1 - C + aaad® + BC

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 91

The functionality of xHER is covered by herk.

e Fortran 77 binding:

SUBROUTINE BLAS_xHERK(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C,

$
INTEGER
<rtype>
<ctype>

e C binding:

LDC)
K, LDA, LDC, N, TRANS, UPLO
ALPHA, BETA
AC LDA, *), C(LDC, *)

void BLAS_xherk(enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k, RSCALAR_IN alpha,
const CARRAY a, int 1da, RSCALAR_IN beta, CARRAY c, int 1ldc);

SY_TRIDIAG_RK (Symmetric Rank K update with symmetric tridiagonal matrix)

C « aAJAT + BC, C « aATJA + BC

This routine performs one of the symmetric rank k operations C + aAJAT + BC or C
aATJA + BC where o and 3 are scalars, C is a symmetric matrix, A is a general matrix, and J
is a symmetric tridiagonal matrix. This routine returns immediately if alpha is equal to zero and
beta is equal to one, or if n or k is less than or equal to zero. If Idc is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_no_trans, and if Ida is
less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_trans, and if Ida is less than one or less than k, an error flag is set and passed to the error

handler.

e Fortran 95 binding:

SUBROUTINE sy_tridiag_rk(a, d, e, ¢ [, uplo] [, trans] [, alpha] &

[, betal)

<type>(<wp>), INTENT(IN) :: a(:,:)

<type>(<wp>), INTENT(IN) :: d(:), e(:)

<type>(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

¢ has shape (n,n)

if trans
a has
d has
e has
if trans
a has
d has
e has

= blas_no_trans (the default)
shape (n,k)

shape (k)

shape (k-1)

/= blas_no_trans

shape (k,n)

shape (n)

shape (n-1)

92 CHAPTER 2. DENSE AND BANDED BLAS

Rank a | trans | Operation
2 N C + aAJAT + BC
2 T | C<+ adTJA+BC

e Fortran 77 binding:

SUBROUTINE BLAS_xSY_TRIDIAG_RK(UPLO, TRANS, N, K, ALPHA, A, LDA, D,

$ E, BETA, C, LDC)
INTEGER K, LDA, LDC, N, TRANS, UPLO
<type> ALPHA, BETA
<type> AC LDA, *), CCLDC, *), D(*), E(*)
e C binding:

void BLAS_xsy_tridiag_rk(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY d, const ARRAY e, SCALAR_IN beta,
ARRAY c, int 1ldc);

HE_TRIDIAG RK (Hermitian Rank K update with symmetric tridiagonal matrix)
C + aAJA? + BC, C + A" JA+ BC

This routine performs one of the Hermitian rank k operations C < aAJAH + BC or C «+
aAH® JA + BC where a and § are scalars, C is a Hermitian matrix, A is a general matrix, and J
is a symmetric tridiagonal matrix. This routine returns immediately if alpha is equal to zero and
beta is equal to one, or if n or k is less than or equal to zero. If Idc is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_no_trans, and if Ida is
less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_trans, and if Ida is less than one or less than k, an error flag is set and passed to the error
handler.

e Fortran 95 binding:

SUBROUTINE he_tridiag_rk(a, d, e, ¢ [, uplo] [, trans] [, alpha] &
[, betal)
COMPLEX (<wp>), INTENT(IN) :: a(:,:)
COMPLEX (<wp>) , INTENT(IN) :: d(:), e(:)
COMPLEX (<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
REAL(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
¢ has shape (n,n)
if trans = blas_no_trans (the default)
a has shape (n,k)
d has shape (k)

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 93

e has shape (k-1)
if trans /= blas_no_trans
a has shape (k,n)
d has shape (n)
e has shape (n-1)

Rank a | trans | Operation
2 N C + aAJAY 1+ BC
2 T | C<+ aA"JA+BC

e Fortran 77 binding:

SUBROUTINE BLAS_xHE_TRIDIAG_RK(UPLO, TRANS, N, K, ALPHA, A, LDA,

$ D, E, BETA, C, LDC)
INTEGER K, LDA, LDC, N, TRANS, UPLO
<rtype> ALPHA, BETA
<ctype> AC LDA, *), C(LDC, *), D(*), E(*)
e C binding:

void BLAS_xhe_tridiag_rk(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
RSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY d, const CARRAY e, RSCALAR_IN beta,
CARRAY c, int 1ldc);

SYR2K (Symmetric rank 2k update) C < (aA)BT + B(aA)T + pC
C + (aA)TB + BT (ad) + BC

These routines perform the symmetric rank 2k operation C' < (ad)B? + B(aA)! + BC or
C + (aA)"B + BT (aA) + BC where a and j are scalars, C is a symmetric matrix, and A and B
are general matrices. This routine returns immediately if alpha is equal to zero and beta is equal
to one, or if n or k is less than or equal to zero. If Idc is less than one or less than n, an error flag
is set and passed to the error handler. For trans equal to blas_no_trans, and if Ida is less than one
or less than n, or if Idb is less than one or less than n, an error flag is set and passed to the error
handler. For trans equal to blas_trans, and if Ida is less than one or less than k, or if Idb is less than
one or less than k, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xSYR2K with added functionality for
complex symmetric matrices.

e Fortran 95 binding:

SUBROUTINE syr2k(a, b, ¢ [, uplo] [, trans] [, alphal] [, betal])
<type>(<wp>), INTENT(IN) :: <aa>, <bb>
<type>(<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

94 CHAPTER 2. DENSE AND BANDED BLAS

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
<aa> ::= a(:,:) or a(:)
<bb> = b(:,:) or b(:)
and

¢ has shape (n,n)
if trans = blas_no_trans (the default)
a has shape (n,k)
b has shape (n,k)
if trans /= blas_no_trans
a has shape (k,n)
b has shape (k,n)

Rank a | Rank b | trans | Operation
2 2 N C < aABT + aBAT + 8C
2 2 T C <+ aATB +aBTA + BC
1 1 - C + aab” + aba® + BC

The functionality of xSYR2 is covered by syr2k.

e Fortran 77 binding:

SUBROUTINE BLAS_xSYR2K(UPLQO, TRANS, N, K, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO
<type> ALPHA, BETA
<type> AC LDA, *), B(LDB, *), C(LDC, *)
e C binding:

void BLAS_xsyr2k(enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k, SCALAR_IN alpha,

const ARRAY a, int lda, const ARRAY b, int 1db,
SCALAR_IN beta, ARRAY ¢, int 1ldc);

HER2K (Hermitian rank 2k update) C « (aA)BY + B(aA)? + BC
C + (aA)I B + B (aA) + BC

These routines perform the Hermitian rank 2k operation C' < (ad)BY + B(aA)? + BC or
C + (aA)” B + B (aA) + BC where a and 3 are scalars, C is a Hermitian matrix, and A and B
are general matrices. This routine returns immediately if alpha is equal to zero and beta is equal
to one, or if n or k is less than or equal to zero. If Idc is less than one or less than n, an error flag
is set and passed to the error handler. For trans equal to blas_no_trans, and if Ida is less than one
or less than n, or if Idb is less than one or less than n, an error flag is set and passed to the error
handler. For trans equal to blas_trans, and if Ida is less than one or less than k, or if Idb is less than

one or less than k, an error flag is set and passed to the error handler.
These interfaces encompass the Legacy BLAS routine xHER2K.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 95
e Fortran 95 binding:

SUBROUTINE her2k(a, b, ¢ [, uplo] [, trans] [, alpha] [, betal])
COMPLEX (<wp>), INTENT(IN) :: <aa>, <bb>
COMPLEX (<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>), INTENT(IN), OPTIONAL :: alpha
REAL (<wp>), INTENT(IN), OPTIONAL :: beta

where
<aa> ::= a(:,:) or a(:)
<bb> = b(:,:) or b(:)
and

¢ has shape (n,n)

a and b have shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | Rank b | trans | Operation
2 2 N | C < aABY + aBAY +8C
2 2 T | C+ aA¥B+aB"A+BC
1 1 - C <+ aab® + aba? + pC

The functionality of xHER2 is covered by her2k.

e Fortran 77 binding:

SUBROUTINE BLAS_xHER2K(UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO
<ctype> ALPHA
<rtype> BETA
<ctype> A(C LDA, *), B(LDB, *), C(LDC, *)
e C binding:

void BLAS_xher2k(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k, CSCALAR_IN alpha,
const CARRAY A, int 1lda, const CARRAY b, int 1db,
RSCALAR_IN beta, CARRAY c, int ldc);

SY_TRIDIAG_R2K (Symmetric rank 2k update with symmetric tridiagonal matrix)

C + (aAJ)BT + B(aAJ)T + BC
C « (aAJ)TB + BT (e AJ) + BC

96 CHAPTER 2. DENSE AND BANDED BLAS

These routines perform the symmetric rank 2k operation C' <+ (aAJ)BT + B(aAJ)T + BC or
C + (aAJ)'B + BT (aAJ) + BC where o and f3 are scalars, C is a symmetric matrix, A and B
are general matrices, and J is a symmetric tridiagonal matrix. This routine returns immediately
if alpha is equal to zero and beta is equal to one, or if n or k is less than or equal to zero. If Idc is
less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_no_trans, and if Ida is less than one or less than n, or if Idb is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less
than one or less than k, or if Idb is less than one or less than k, an error flag is set and passed to

the error handler.

e Fortran 95 binding:

SUBROUTINE sy_tridiag_r2k(a, d, e, b, ¢ [, uplo] [, trans] &
[, alphal [, betal)

<type>(<wp>), INTENT(IN) :: a(:,:), b(:,:)
<type>(<wp>), INTENT(IN) :: d(:), e(:)
<type>(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>) , INTENT(IN), OPTIONAL :: alpha
<type>(<wp>), INTENT(IN), OPTIONAL :: beta

where

¢ has shape (n,n)
if trans = blas_no_trans (the default)
a and b have shape (n,k)

d has shape (k)
e has shape (k-1)

if trans /= blas_no_trans
a and b have shape (k,n)

d has shape (n)
e has shape (n-1)

Rank a | Rank b | trans | Operation
2 2 N C « (aAJ)BT + B(aAJ)T + BC
2 2 T |C+ (edAJ)T'B + BT(aAJ) + BC

e Fortran 77 binding:

SUBROUTINE BLAS_xSY_TRIDIAG_R2K(UPLO, TRANS, N, K, ALPHA, A, LDA,

$ D, E, B, LDB, BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO
<type> ALPHA, BETA
<type> A(C LDA, *), BCLDB, *), C(LDC, *),

$ D(*), EC *)

e C binding:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS

void BLAS_xsy_tridiag_r2k(enum blas_order_type order,
enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY d, const ARRAY e, const ARRAY

b,

int 1db, SCALAR_IN beta, ARRAY c, int 1ldc);

97

HE_TRIDIAG_R2K (Hermitian rank 2k update with symmetric tridiagonal matrix)

C < (aAJ)BY + B(aAJ)H + BC
C + (@A) B+ BH(aAJ) + BC

These routines perform the symmetric rank 2k operation C < (aAJ)BH + B(aAJ)® + BC or
C + (aAJ)" B + BH(aAJ) + BC where o and B are scalars, C' is a Hermitian matrix, A and B
are general matrices, and J is a symmetric tridiagonal matrix. This routine returns immediately
if alpha is equal to zero and beta is equal to one, or if n or k is less than or equal to zero. If Idc is
less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_no_trans, and if Ida is less than one or less than n, or if Idb is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less
than one or less than k, or if Idb is less than one or less than k, an error flag is set and passed to

the error handler.

e Fortran 95 binding:

SUBROUTINE he_tridiag_r2k(a, d, e, b, ¢ [, uplo] [, trans] &

COMPLEX (<wp>), INTENT(IN)
COMPLEX (<wp>), INTENT(IN)

[, alphal [, beta])

COMPLEX (<wp>) , INTENT(INQOUT)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>) , INTENT(IN), OPTIONAL :: alpha

REAL (<wp>) , INTENT(IN), OPTIONAL :: beta

where
¢ has shape (n,n)

t:a(:,:), b(:,:)
10 d(), e(:)
troc(e,2)

if "trans" = blas_no_trans (the default)
a and b have shape (n,k)

d has shape (k)
e has shape (k-1)

if "trans" /= blas_no_trans
a and b have shape (k,n)

d has shape (n)
e has shape (n-1)

Rank a | Rank b | trans | Operation
2 2 N | C « (@AJ)BY + B(aAJ)? + BC
2 2 T | C+ (aAJ)!B+ B (aAJ) + BC

98 CHAPTER 2. DENSE AND BANDED BLAS

e Fortran 77 binding:

SUBROUTINE BLAS_xHE_TRIDIAG_R2K(UPLO, TRANS, N, K, ALPHA, A, LDA,

$ D, E, B, LDB, BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO
<ctype> ALPHA
<rtype> BETA
<ctype> A(C LDA, *), B(LDB, *), C(LDC, *),
$ D(*), E(*)
e C binding:

void BLAS_xhe_tridiag_r2k(enum blas_order_type order,
enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
CSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY d, const CARRAY e, const CARRAY b,
int 1db, RSCALAR_IN beta, CARRAY c, int ldc);

2.8.9 Data Movement with Matrices
{GE,GB,SY,SB,SP,TR,TB,TP} COPY (Matrix copy) B+ A B+ AT, B+ AH

This routine copies a matrix (or its transpose or conjugate-transpose) A and stores the result
in a matrix B. Matrices A and B have the same storage format. This routine returns immediately
if m (for nonsymmetric matrices), n, k (for symmetric band matrices), or kl or ku (for general band
matrices), is less than or equal to zero. For the routine GE_COPY, if trans equal to blas_no_trans,
and if Ida is less than one or less than m, or if Idb is less than one or less than m, an error flag
is set and passed to the error handler. For the routine GE_COPY, if trans equal to blas_trans or
blas_conj_trans, and if Ida is less than one or less than m, or if Idb is less than one or less than n,
an error flag is set and passed to the error handler. For the routine GB_COPY, if Ida is less than
kl plus ku plus one, or if Idb is less than kl plus ku plus one, an error flag is set and passed to the
error handler. For the routines SY_COPY and TR_COPY, if Ida is less than one or less than n, or
if Idb is less than one or less than n, an error flag is set and passed to the error handler. For the
routines SB_COPY and TB_COPY, if Ida is less than k plus one, or if Idb is less than k plus one, an
error flag is set and passed to the error handler.

e Fortran 95 binding:

General:

SUBROUTINE ge_copy(a, b [, trans])
General Band:

SUBROUTINE gb_copy(a, b, m, k1 [, trans])
Symmetric:

SUBROUTINE sy_copy(a, b [, uplo])
Symmetric Band:

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS

SUBROUTINE sb_copy(a, b [, uplo])

Symmetric Packed:

SUBROUTINE sp_copy(ap, bp [, uplo])

Triangular:

SUBROUTINE tr_copy(a, b [, uplo] [,trans] [, diag])

Triangular Band:

SUBROUTINE tb_copy(a, b [, uplo] [,trans] [, diag])

Triangular Packed:

SUBROUTINE tp_copy(ap, bp [, uplo] [,trans] [, diag])

all:

<type>(<wp>), INTENT(IN)
<type>(<wp>), INTENT(OUT)

INTEGER, INTENT(IN)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL ::
TYPE (blas_trans_type), INTENT(IN), OPTIONAL ::
TYPE (blas_diag_type), INTENT(IN), OPTIONAL ::

where

a and b have shape (n,n) for symmetric or triangular
(k+1,n) for symmetric banded or triangular

a, b have shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)

::m, k1

:: a(:,:) or ap(:)
:: b(:,:) or bp(:)

uplo
trans
diag

banded (k=band width)
ap and bp have shape (n*(n+1)/2).

For a general or general banded matrix:

If trans = blas_no_trans (the default)

If trans \= blas_no_trans

a has shape (m,n) and b has shape (n,m) for general matrix
(1,n) and b has shape (1,m) for general banded matrix (1 > k1)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_COPY(TRANS, M,

General Band:

SUBROUTINE BLAS_xGB_COPY(TRANS, M,

Symmetric:

SUBROUTINE BLAS_xSY_COPY(UPLO,

Symmetric Band:

SUBROUTINE BLAS_xSB_COPY(UPLO,

Symmetric Packed:

SUBROUTINE BLAS_xSP_COPY(UPLO,

Triangular:

SUBROUTINE BLAS_xTR_COPY(UPLO,

Triangular Band:

SUBROUTINE BLAS_xTB_COPY(UPLO,

$
Triangular Packed:

SUBROUTINE BLAS_xTP_COPY(UPLO,

LDB)

N, AP, BP)

N, A, LDA, B, LDB)
N, KL, KU, A, LDA, B, LDB)
N, A, LDA, B, LDB)

N, K, A, LDA, B, LDB)

TRANS, DIAG, N, A, LDA, B, LDB)

TRANS, DIAG, N, K, A, LDA, B,

TRANS, DIAG, N, AP, BP)

99

100 CHAPTER 2. DENSE AND BANDED BLAS

all:
INTEGER DIAG, LDA, LDB, N, K, KL, KU, TRANS, UPLO
<type> A(C LDA, *) or AP(*), B(LDB, *) or BP(*)
¢ C binding:
General:

void BLAS_xge_copy(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, const ARRAY a, int 1lda, ARRAY b, int 1db);
General Band:
void BLAS_xgb_copy(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, int kl, int ku, const ARRAY a, int lda,
ARRAY b, int 1db);
Symmetric:
void BLAS_xsy_copy(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY a, int 1lda, ARRAY b, int 1db);
Symmetric Band:
void BLAS_xsb_copy(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const ARRAY a, int 1lda, ARRAY b, int 1db);
Symmetric Packed:
void BLAS_xsp_copy(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY ap, ARRAY bp);
Triangular:
void BLAS_xtr_copy(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const ARRAY a, int lda, ARRAY b, int 1db);
Triangular Band:
void BLAS_xtb_copy(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, const ARRAY a, int 1lda, ARRAY b, int 1db);
Triangular Packed:
void BLAS_xtp_copy(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, const ARRAY ap, ARRAY bp);

{HE,HB,HP}_COPY (Matrix copy) B+ A

This routine copies a Hermitian matrix A and stores the result in a matrix B. This routine
returns immediately if n or k is less than or equal to zero. For the routine HE_COPY, if Ida is less
than one or less than n, or if Idb is less than one or less than n, an error flag is set and passed to
the error handler. For the routine HB_COPY, if Ida is less than k plus one, or if Idb is less than k
plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Hermitian:
SUBROUTINE he_copy(a, b [, uplo])

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 101

Hermitian Band:
SUBROUTINE hb_copy(a, b [, uplo])
Hermitian Packed:
SUBROUTINE hp_copy(ap, bp [, uplo])
all:
COMPLEX (<wp>), INTENT(IN) :: a(:,:) or ap(:)
COMPLEX (<wp>) , INTENT(OUT) :: b(:,:) or bp(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
where
a and b have shape (n,n)
(k+1,n) for banded (k=band width)
ap and bp have shape (n*(n+1)/2).

e Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHE_COPY(UPLO, N, A, LDA, B, LDB)
Hermitian Band:

SUBROUTINE BLAS_xHB_COPY(UPLO, N, K, A, LDA, B, LDB)
Hermitian Packed:

SUBROUTINE BLAS_xHP_COPY(UPLO, N, AP, BP)

all:
INTEGER K, LDA, LDB, N, UPLO
<ctype> A(C LDA, *) or AP(*), B(LDB, *) or BP(*)
e C binding:
Hermitian:

void BLAS_xhe_copy(enum blas_order_type order, enum blas_uplo_type uplo,

int n, const CARRAY a, int lda, CARRAY b, int 1db);
Hermitian Band:
void BLAS_xhb_copy(enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, const CARRAY a, int lda, CARRAY b, int 1ldb);
Hermitian Packed:
void BLAS_xhp_copy(enum blas_order_type order, enum blas_uplo_type uplo,

int n, const CARRAY ap, CARRAY bp);

GE_TRANS (Matrix transposition) A« AT, A+ AH

This routine performs the matrix transposition or conjugate-transposition of a square matrix
A, overwriting the matrix A. This routine returns immediately if n is less than or equal to zero. If
Ida is less than one or less than n, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE ge_trans(a [, conjl)
<type>(<wp>), INTENT(INOUT) :: a(:,:)

102 CHAPTER 2. DENSE AND BANDED BLAS

TYPE (blas_conj_type), INTENT(IN), OPTIONAL :: conj
where
a has shape (n,n)

e Fortran 77 binding:

SUBROUTINE BLAS_xGE_TRANS(CONJ, N, A, LDA)

INTEGER CONJ, LDA, N
<type> A(C LDA, *)
e C binding:

void BLAS_xge_trans(enum blas_order_type order, enum blas_conj_type conj,
int n, ARRAY a, int 1lda);

GE_PERMUTE (Permute matrix) A<+ PA,or A+ AP

This routine permutes the rows or columns of a matrix (A < PA or A < AP) by the permu-
tation matrix P. The representation of the permutation vector p is described in section 2.2.6. This
routine returns immediately if m or n is less than or equal to zero. As described in section 2.5.3,
the value incp less than zero is permitted. However, if incp is equal to zero, an error flag is set and
passed to the error handler. If Ida is less than one or less than m, an error flag is set and passed to
the error handler. For the C bindings, if order = blas_rowmajor and if Ida is less than one or Ida
is less than n, an error flag is set and passed to the error handler; if order = blas_colmajor and
if Ida is less than one or Ida is less than m, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE ge_permute(p, a [, side])

INTEGER, INTENT(IN) :: p(:)

<type>(<wp>), INTENT(INOUT) :: a(:,:)

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
where

a has shape (m,n)

d has shape (p) where p = m if side = blas_left_side

p = n if side = blas_right_side

e Fortran 77 binding:

SUBROUTINE BLAS_xGE_PERMUTE(SIDE, M, N, P, INCP, A, LDA)

INTEGER INCP, LDA, M, N, SIDE
INTEGER P(*)
<type> A(LDA, *)

The value of INCP may be positive or negative. A negative value of INCP applies the permu-
tation in the opposite direction.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.8. LANGUAGE BINDINGS 103
e C binding:
void BLAS_xge_permute(enum blas_order_type order, enum blas_side_type side,
int m, int n, const int *p, int incp, ARRAY a,

int 1da);

The value of incp may be positive or negative. A negative value of incp applies the permu-
tation in the opposite direction.

2.8.10 Environmental Enquiry

FPINFO (Environmental enquiry)

This routine queries for machine-specific floating point characteristics. Refer to section 1.6 for a
list of all possible return values of this routine, and sections A.4, A.5, and A.6, for their respective
language dependent representations in Fortran 95, Fortran 77, and C.

e Fortran 95 binding:

REAL (<wp>) FUNCTION fpinfo(cmach, prec)
TYPE (blas_cmach_type), INTENT(IN) :: cmach
REAL (<wp>), INTENT(IN) :: prec

e Fortran 77 binding:

<rtype> FUNCTION BLAS_xFPINFO(CMACH)
INTEGER CMACH

¢ C binding:

<rtype> BLAS_xfpinfo(enum blas_cmach_type cmach) ;

