Chapter 4

Extended and Mixed Precision BLAS

4.1 OQverview

This Chapter describes extended and mized precision implementations of the BLAS described in
other chapters. Extended precision is used only internally to the BLAS; the input and output
arguments remain as before. Extended precision permits us to implement some algorithms that
may be simpler, more accurate, and sometimes even faster than without it. Mixed precision refers to
having some input/output parameters that are both single precision and double precision, or both
real and complex. Mixed precision similarly permits us to write simpler or faster algorithms. But
given the complexity that could result by allowing too many combinations of types and precisions,
we must choose a parsimonious subset that is both useful and reasonable to implement.

The rest of this chapter is organized as follows. Section 4.2 summarizes the designs goals and
decisions that guide our design, with details left to [42]. Section 4.3 summarizes the functions
supported in extended and mixed precision. This includes a discussion of the error bounds that
routines must satisfy. Section 4.4 summarizes the issues in our design of language bindings for
Fortran 95, Fortran 77 and C. Section 4.5 contains the detailed calling sequences for the subroutines
in the three languages. A complete justification of our design appears in [42].

4.2 Design Goals and Summary

Our proposal to have extended and mixed precision in the BLAS is motivated by the following
facts:

e A number of important linear algebra algorithms can become simpler, more accurate and
sometimes faster if internal computations carry more precision (and sometimes more range)
than is used for the input and output arguments. These include linear system solving, least
squares problems, and eigenvalue problems. Often the benefits of wider arithmetic cost only
a small fractional addition to the total work.

e For single precision input, the computer’s native double precision is a way to achieve these ben-
efits easily on all commercially significant computers, at least when only a few extra-precision
operations are needed. (Crays and their emulators implement 64-bit single in hardware and
much slower 128-bit double in software, so if a great many double precision operations are
needed, these machines will slow down significantly.)

e Intel and similar processors are designed to run fastest performing arithmetic to the full 80-
bit width, wider than double precision, of their internal registers. These computers confer
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4.2. DESIGN GOALS AND SUMMARY 133

some benefits of wider arithmetic at little or no performance penalty. Some BLAS on these
computers already perform wider arithmetic internally but, without knowing this for sure,
programmers cannot exploit it.

e All computers can simulate quadruple precision or something like it in software at the cost of
arithmetic slower than double precision by at worst an order of magnitude. Less slowdown
is incurred for a rough double-double precision on machines (IBM RS/6000, PowerPC/Mac,
SGI/MIPS R8000,HP PA RISC 2.0) with special fused multiply-accumulate instructions.
Since some algorithms require very little extra precise arithmetic to get a large benefit, the
slowdown is practically negligible.

Given the variety of implementation techniques hinted at above, we need to carefully examine
the costs and benefits of exploiting various arithmetic features beyond the most basic ones, and
choose a parsimonious subset that

Goal 1: is reasonable to implement,

Goal 2: supports some if not all important application examples,
Goal 3: is easy to use,

Goal 4: encourages the writing of portable code, and

Goal 5: accommodates growth as we learn about new algorithms exploiting our arithmetic fea-
tures.

Here is an outline of our design decisions. These are discussed and justified in detail in [42].

1. We will not require that the user explicitly declare or use any new extended precision data
types, i.e. beyond the standard single and double precisions, since these are not supported
in a standard way by every language and compiler. Thus the only extended precision that
we mandate will be hidden inside the BLAS, and so can be implemented in any convenient
machine dependent way. This supports Goals 1, 3 and 4 above.

2. This internal extended precision will support most of the application examples listed in [42],
supporting Goal 2.

3. Since we cannot predict all the future applications of extended or mixed precision, we will
accommodate growth by making our proposal as orthogonal as possible to the rest of this
proposal, showing how to take any BLAS routine, determine whether extra precision is worth
using (since sometimes it is not), and define the extended precision version if it is. This
supports Goal 5.

4. Since the number of possible routines with mixed precision inputs is very large, we will specify
a small subset of mixed precision routines which seems to cover most foreseeable needs. This
supports Goals 1 and 2.

5. In order to easily estimate error bounds in code by running with different internal precisions
and then comparing the answers, (see Example 8 in [42]), we need to be able to specify
the extended precision at runtime; we will do this with a variable we will call PREC. This
supports Goal 2.
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6. Since different machines may best support extended precision in different ways, PREC could
potentially take on many machine-dependent values. Instead we have chosen a parsimonious
subset that will be available on all machines, permitting the implementor to support others
if desired. This supports all the Goals 1 and 4 above.

7. Since the precision specified by one value of PREC can still have different implementations
and so different error bounds on different machines, we have specified environmental enquiries
for the user to be able to discover the actual machine precision (or over/underflow thresholds)
used at runtime. This lets the user pick appropriate stopping criteria for iterations, etc. This
supports Goals 3 and 4.

4.3 Functionality

This section describes the functionality of extended and mixed precision BLAS in a language in-
dependent way. Section 4.3.1 describes how extra precision is specified via the PREC argument.
Section 4.3.2 describes in general what kind of mixed precision operations will be supported. Sec-
tion 4.3.3 describes the error bounds that BLAS operations must satisfy; this is where the semantics
of “extra precision” are precisely specified. Finally, section 4.3.4 lists the functions that will be
supported in extra and/or mixed precision.

4.3.1 Specifying Extra Precision

The internal precision to be used by an extended precision routine will be specified by an argument
called PREC. Tt is not entirely straightforward to describe PREC because even on a single machine
there may be multiple ways of implementing wider-than-double-precision arithmetic (see [42]).

To encourage portability, we specify names for precisions that may map to different formats and
techniques on different machines. As discussed in section 1.6, historically the words “single” and
“double” have referred to very different formats on different architectures. Nonetheless, we all agree
on single precision as a word with a certain meaning, and double precision too, meaning twice or
more precision than single. The definitions below add two more precisions, whose implementation
details are discussed in [42].

PREC = Single . This means single precision, whatever single means on the particular machine,
language and compiler.

PREC = Double . This means double precision, again whatever that means on a particular
machine, language and compiler.

PREC = Indigenous . This means the widest hardware-supported format available. Its intention
is to let the machine run close to top speed, while being as accurate as possible. On some
machines this would be a 64-bit format (whether it is called single or double), but on Intel
machines and ones like them it means the 80-bit IEEE format of the floating point registers.

PREC = Extra . This means anything at least 1.5 times as accurate than double, and in partic-
ular wider than 80-bits (see section 4.3.3 for details). An existing quadruple precision format
could be used to implement this, but it can probably be implemented implemented more effi-
ciently using native double (or indigenous) operations in a technique called “double-double”,
described in [42, 46, 47]. It is possible to write a portable and reasonably efficient reference
implementation of all proposed routines using these techniques [42].
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4.3. FUNCTIONALITY 135

The actual names for PREC values are specified in section A.3. Here are the rules for using
PREC:

1. The internal precision used must always be at least as high as the most precise input or output.
So if the user requests less internal precision than in the most precise input or output, then
the implementor must use more than requested.

2. The implementor may always use a higher precision than the one requested in the subroutine
call, if this is convenient or faster.

3. The precision actually used is available to the user via the environmental enquiry in sec-
tion 4.3.3.

4. PREC may take on other machine dependent values provided by the implementor, provided
these are documented via the environmental enquiry routine.

Advice to implementors: While it appears that as many as seven new implementations of each
routine are needed (four when the arguments are single, and three when the arguments are double),
in fact fewer are needed: Two exist already as the standard BLAS (single input/output with PREC
= Single, and double input/output when PREC = Double), Indigenous = Double or Indigenous =
Single on many machines, and wider precision than requested may be used. Thus the only really
new implementations may be single input/output with Double or Extra internal precision, and
double input/output with Extra internal precision. Of these, only Extra internal precision may
need arithmetic not already native to the machine. A reference implementation is described in [42].

4.3.2 Mixed Precision

Suppose a subroutine has several floating point arguments, some scalars and some arrays. Mixed
precision refers to permitting these arguments to have different mathematical types, meaning real
and complex, or different precisions, meaning single and double. Some BLAS in Chapter 2 are
naturally defined with arguments of mixed mathematical type (e.g. HERK), but most have a
single mathematical type; all are defined with the same precision for all arguments.

The permitted combinations of mathematical types and precisions are defined as follows. There
are two cases:

1. The mathematical types of the input/output floating point arguments are identical to the
BLAS as defined in Chapter 1. All scalar arguments and the output argument (scalar or
array) are double precision. At least one array argument must be single precision.

For example, suppose the function being implemented is matrix-matrix multiplication C' =
a-A-B+3-C, where a and 8 are scalars and A, B and C are arrays. Then the allowed types
are as follows (S = Single real, D = Double real, C = Single complex, Z = Double complex).

NNNJDUOUO|R

NQQU®»®»n
QONQ®UJ®nw
NNNJDUJI
NNNUDOUOUIOQ
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2. The precision of all floating point arguments must be single, or all must be double. All scalar
arguments and the output argument (scalar or array) are complex (unless a scalar argument
must be real for mathematical reasons, like @ and § in HERK). At least one input array
argument must be real.

For example, suppose the function being implemented is matrix-matrix multiplication as
before. Then the allowed types are as follows:

NNNOQQOQIR
NSO Q®w®nx
ONOw®mAQw
NNNQQAQ®
NNNOQOQOQQ

Note that we specify only 16 versions of matrix-matrix multiplication (the 12 mixed ones above,
and 4 unmixed), in contrast to the maximum possible 4° = 1024.

4.3.3 Numerical Accuracy and Environmental Enquiries

The machine dependent interpretations of PREC require us to have a more complicated environ-
mental enquiry routine to describe the numerical behavior of the routine in this chapter than the
simpler FPINFO routine described in sections 1.6 and 2.7. While FPINFO should still be available
for the user to call to get basic properties of the single and double precision floating point types,
here we will specify an additional routine FPINFO_X that depends on PREC.

The calling sequence of this function is

result = FPINFO_X (CMACH, PREC)

Both arguments are input arguments, with the requested information returned as the integer value
of FPINFO_X. The exact input values depend on the language, and are described in section 4.4.
PREC has the same meaning as before. Input argument CMACH may take on the named constant
values below, which are a subset of those permitted by function FPINFO as described in section 2.7.
Ouly the first six values of CMACH from section 2.7 are permitted, because 1) they are sufficient
to define the remaining parameters by using the formulas in section 1.6, and 2) the values returned
by FPINFO_X are representable integer values, whereas the other possible return values, like the
overflow and underflow thresholds, may not be representable in any user-declarable format.

Floating Point | Description

parameter

BASE base of the machine

T number of (BASE) digits in the mantissa

RND 1 when “proper rounding” occurs in addition,
0 otherwise

IEEE 1 when rounding in addition occurs in “IEEE style”,
0 otherwise

EMIN minimum exponent before (gradual) underflow

EMAX largest exponent before overflow
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We will use the following notation to describe machine parameters derivable from the values
returned by FPINFO_X using the formulas in section 1.6:

EPREC 18 relative machine precision or machine epsilon of the internal precision specified by
PREC,

€, is the machine epsilon for the output precision,

OVpRrEc and UNpREq are the overflow and underflow thresholds for internal precision
PREC, and

OV, and UN, are the overflow and underflow thresholds for for the output precision.

Here are the error bounds satisfied by the extra precision routines, and how they depend on e.
There are two cases of interest.

1.

Suppose each component of the computed result is of the form

n

Ttrue:a'(zai'bi)+/8'c s

=1

where all quantities are scalars. This covers the dot product, scaled vector addition and scaled
vector accumulation, all variants of matrix-vector and matrix-matrix products, and low-rank
updates (sometimes with o and (3 taking on special values like zero and one). In this case
the error bound, in the absence of over/underflow of any intermediate or output quantities,
should satisfy

n

|rcomputed - Ttrue' < 7(” + 2) . 6PREC(|O‘| : Z |ai : bi| + |ﬁ : CD + € - |7"true| .
=1

where v = 1 if all data is real and v = 21/2 if any data is complex.

Rationale: This accommodates all reasonable, non-Strassen based implementations, with real
or complex scalars (and conventional multiplication of complex scalars), that perform all
intermediate floating point operations with machine epsilon epgp, with or without a guard
digit, before rounding the final result to precision €¢,. Underflow is guaranteed to be absent
if no intermediate quantity stored in precision PREC is less than UNpRrp in magnitude
(unless its exact value is zero) and |Feomputed| is not less than UN,, (unless its exact value is
zero). Similarly, overflow is guaranteed to be absent if no intermediate quantity in precision
PREC= exceeds OVpRE( in magnitude, and |rcomputeq| does not exceed OV,. We avoid
specifying what happens with underflow, because the implementor may reasonably choose to
compute 7 using a- (3 a; - b;), Yo(a-a;) - b; or 3 a;- (- b;) depending on dimensions, and the
error bounds in the presence of underflow can differ significantly in these three cases. See [42]
for implementation recommendations and detailed error bounds in the presence of underflow.

. Suppose the computed solution consists of one or more vectors z satisfying an n-by-n trian-

gular system of equations
Tr=ab

where « is a scalar, b is a vector (or vectors), and 7 is a triangular matrix. In this case the
computed solution, in the absence of over/underflow in intermediate or output quantities,
satisfies

(T + E) (xcomputed + e) = O4(b + f)
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where |E;j| < pnepruc|Tijl, |ei] < €olTcomputeals 1fil < pnepryuclbil, p = 1 if all data is
real, and p = 6 4+ 4+/2 if any data is complex.

Rationale: This accommodates all reasonable, substitution-based methods of solution, with
summations evaluated in any order, with all intermediate floating point operations done with
machine epsilon eprg; and with all intermediate quantities stored to the same precision. In
particular, this means that the entries of Zcomputeq must be temporarily stored with precision
eprEC before being rounded to the output precision at the end. Overflow and underflow
are defined and treated as before. See [42] for implementation recommendations and detailed
error bounds in the presence of underflow.

The values of eppp must satisfy the following inequalities:

2

€EDOUBLE < €SINGLE

€INDIGENOUS < €SINGLE
<

1.5
€EEXTRA €DOUBLE

The first inequality says that double precision is at least twice as accurate (has twice as many
significant digits) as single precision. The second inequality says that indigenous is at least as
accurate as single precision. The third inequality says that extra precision is at least 1.5 times as
accurate (has 1.5 times as many significant digits) as double precision.

Advice to implementors: This is only a lower bound on the number of significant digits in
extra precision; most reasonable implementations can get close to twice as many digits as double
precision [42]. The lower bound is intended to exclude the use of the 80-bit IEEE format as Extra
precision when Double is the 64-bit IEEE format. It is important that BASE, T, and RND are
chosen so that EPS defined by EPS = BASE'T if RND = 0 and EPS = .5« BASE' T if
RND =1 can be used for error analysis. For example in the reference implementation of EXTRA
precision in [42], T' = 105 even though 106 bits are stored. Though we do not require this, the
simplest way to achieve the error bounds described above is for floating operations ® € {+, —, %, /}
to satisfy the following bounds in the absense of over/underflow: fl(a ®b) = (a ®b)(1+6) for some
|6| < EPS when a and b are real, fl(a £ b) = (a % b)(1 + 6) for some |§| < v/2- EPS when a and
b are complex, fi(a *b) = (a*b)(1 + &) for some |§| < 2+/2- EPS when a and b are complex, and
fl(a/b) = (a/b)(1 + &) for some |§| < (6 + 44/2) - EPS when a and b are complex.

The semantics of overflow and underflow are discussed more carefully in [42]; they become more
complicated concepts when using implementation techniques like double-double for extra precision.
The important properties they should satisfy are

1. In any precision, a quantity greater than OV generates an exception, a oo symbol, or
otherwise somehow indicates its complete loss of precision.

2. In any precision, the error in a floating point operation that might underflow (during some part
of the calculation, if for example it is double-double) is described by fi(a®b) = (a®b)(146)+n,
for some |§| < EPS and || < UN if a and b are real, and for slighlty larger |4| and |n| if a
and b are complex.

We choose not to specify the overflow and underflow thresholds in more detail, in order not to
eliminate innovative ways of implementing extra precision.
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4.4. INTERFACE ISSUES

4.3.4 Function Tables

139

As discussed in [42], not all BLAS routines from Chapter 2 are worth converting to extra or mixed
precision, so we only include the subset that is worth converting.

Table 4.1 is a subset of Table 2.1 in Chapter 2, Reduction Operations.

Table 4.2 is a subset of Table 2.3 in Chapter 2, Vector Operations.
Table 4.3 is a subset of Table 2.5 in Chapter 2, Matrix-Vector Operations.
Table 4.4 is a subset of Table 2.7 in Chapter 2, Matrix Matrix Operations.

Dot product | r < Ar + az’Ty | DOT
Sum T A= Y T SUM

Table 4.1: Extra and Mixed Precision Reduction Operations

Scaled vector accumulation | y < az + Sy, | AXPBY
Scaled vector addition w <+ ax + Py | WAXPBY

Table 4.2: Extra and Mixed Precision Vector Operations

Matrix vector product Yy aAz + By GE, GB, SY, SP, SB, | MV
HE, HP, HB
y+— aATz + By GE, GB MV
z 4 oTz, 4+ oTTx TR, TB, TP MV
Summed matrix vector multiplies | y + oAz + BBz GE SUM_MV
Triangular solve z 4+ ol 'z, z < oT Tz | TR, TB, TP SV
Table 4.3: Extra and Mixed Precision Matrix Vector Operations
Matrix matrix product | C «+ aAB + C, C + aATB + C GE MM
C + aABT + BC, C < aATBT + pC
C <+ aAB+ pC, C < aBA+ pC SY, HE | MM
Triangular multiply B+ oT'B, B <+ aBT TR MM
B+ oT"B, B < aBTT
Triangular solve B+ ol 'B, B+ aBT! TR SM
B+ ol "B, B+ aBT "
Symmetric rank k & 2k | C + aAA”T + BC, C < aATA + BC SY, HE | RK
updates (C = C7T) C + (c¢A)BT + B(aA)T + BC SY, HE | R2K

Table 4.4: Extra and Mixed Precision Matrix Matrix Operations

4.4 |nterface Issues

This section describes the common issues for our three language bindings: Fortran 95, Fortran 77
and C. Here is a summary of the systematic way we take a subroutine name and its argument list,
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| Environmental Enquiry | machine epsilon, over/underflow thresholds |

Table 4.5: Environmental Enquiries for Extra and Mixed Precision Operations

and modify them to allow for extra or mixed precision:

1.

441
1.

Subroutine names and mixed precision inputs. If the language permits a subroutine
argument to have more than one type, because it can dispatch the right routine based on the
actual type at compile time (Fortran 95, but not Fortran 77 or C), then the subroutine name
does not have to change to accommodate mixed precision. Otherwise, a new subroutine name
is required, and will be created from the old one by appending characters indicating the types
of the arguments.

. Subroutine names and extended precision. If the language permits PREC to be an

optional argument (Fortran 95, but not Fortran 77 or C), then the same subroutine name as
for the non-extended precision version can be used without change. If a new name is required,
it will be formed by appending X (or x) to the existing name. If the name has already been
modified to accommodate mixed precision, X (or _x) should be added to the end of the new
name.

. Location of PREC in the calling sequence. The new calling sequence will consist of the

original calling sequence (for the BLAS routine without extra or mixed precision) with PREC
appended at the end.

. Type of PREC. It will be a derived type in Fortran 95, an integer in Fortran 77, and an

enumerated type in C. Standard names are listed below.

. Environmental enquiry function. Its output type is an integer. The input PREC is

specified as above.

Interface Issues for Fortran 95

Subroutine names and mixed precision inputs. No new subroutine names are needed
because we can exploit the optional argument interface of Fortran 95.

. Subroutine names and extended precision. No new subroutine names are needed by

letting PREC be an optional argument. The default in the case of no mixed precision is
the standard BLAS implementation. The default in the case of mixed precision is at the
discretion of the implementor, subject to the constraints of section 4.3.1.

. Type of PREC. PREC is a derived type, as defined in the module blas_operator_arguments

(see section A.4).

. Environmental enquiry function. fpinfo x(CMACH,PREC) returns an integer. PREC is

as specified above. CMACH is as defined in sections 1.6, 2.7, 4.3.3, and A 4.

. Error Handling. Error handling is as defined in section 2.4.6.
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4.42 Interface Issues for Fortran 77

As described in Chapter 2, this proposal violates the letter of the ANSI Fortran 77 standard by
having subroutine and variable names longer than 6 characters and with embedded underscores.

1. Subroutine names and mixed precision inputs. The unmodified subroutine name has
a character (S, D, C or Z) that specifies the floating point argument types. This will be the
type of the output argument. By applying the rules in Section 4.3.2, this also determines
the types of the scalar arguments. The possible types of the remaining array arguments are
listed in Section 4.3.2. The types of these arguments (written _S, D, _C or _Z) are appended
to the unmodified subroutine name, in the order in which they appear in the argument list.

For example, consider BLAS ZGEMM(«,A,B,3,C) (only the floating point arguments are
shown). The Z in BLAS_ZGEMM means that C, a and S are all double-complex. The
possible types of A and B, and the corresponding subroutine names, are:

Type of A | Type of B | Modified subroutine name
BLAS ZGEMM_C_C
BLAS_ZGEMM_C_Z
BLAS_ZGEMM_Z_C
BLAS_ZGEMM_D_D
BLAS_ZGEMM_D_Z
BLAS ZGEMM_Z_D

NQOgONOQQ
goNDODaoaNO

2. Subroutine names and extended precision. To accommodate extended precision, PREC
is added as the last argument, and X is appended to the end of subroutine name (which may
already have been modified to accommodate mixed precision).

For example, double-complex matrix-matrix multiplication implemented with extended pre-
cision is named BLAS ZGEMM _X. Double-complex matrix-matrix multiplication where the
A and B arguments are single-complex is named BLAS_ ZGEMM_C_C_X.

3. Type of PREC. PREC is an integer (named constant), as defined in the include file
blas _namedconstants.h (see section A.5).

4. Environmental enquiry function. BLAS FPINFO_X(CMACH,PREC) returns an integer.
PREC is as specified above. CMACH is as defined in sections 1.6, 2.7, 4.3.3, and A.5.

5. Error Handling. Error handling is as defined in section 2.5.6.

To shorten the subroutine specifications in section 4.5, we will abbreviate the list of possible
subroutine names for GEMM to a single one: BLAS xGEMM{_a b}{ X} The prefix x may be S
(single), D (double), C (complex) or Z (double complex). Also, the subroutine name may optionally
be appended with _a_b, where a and b are the types of A and B respectively, and then optionally
be appended with X. At least one of _a_b or X must appear.

4.4.3 Interface Issues for C

1. Subroutine names and mixed precision inputs. The same scheme is used as in For-
tran 77, as described above, except that all characters in subroutine names are lower case.
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2. Subroutine names and extended precision. The same scheme is used as in Fortran 77,
as described above, except that all characters in subroutine names are lower case.

3. Type of PREC. PREC is an enumerated type, as defined in the include file blas_enum.h
(see section A.6).

4. Environmental enquiry function. BLAS fpinfo x(CMACH,PREC) returns an integer.
PREC is as specified above. CMACH is as defined in sections 1.6, 2.7, 4.3.3, and A.6.

5. Error Handling. Error handling is as defined in section 2.6.9.

4.5 Language Bindings

451 Overview

As in Chapter 2, each specification of a routine will correspond to an operation outlined in the
functionality tables. Operations are organized analogous to the order in which they are presented
in the functionality tables. The specification will have the form:

NAME (multi-word description of operation) < mathematical representation >

e Fortran 95 binding
e Fortran 77 binding
e C binding

Section 4.4 describes abbreviations we use below. For example,

SUBROUTINE BLAS_xDOT{_a_b}{_X}( N, ALPHA, X, INCX, BETA,
Y, INCY, R [, PREC])

means that the subroutine name may optionally be appended with _a_b, where a and b are the
types of X and Y, respectively, and also optionally appended with _X, in which case the parameter
PREC must also appear.

The routines specified here are

¢ Reduction Operations (section 4.5.2)

— DOT (Dot product)
— SUM (Sum)

e Vector Operations (section 4.5.3)

— AXPBY (Scaled vector accumulation)
— WAXPBY (Scaled vector addition)

e Matrix-Vector Operations (section 4.5.4)

— {GE,GB}MV (Matrix vector product)
— {SY,SB,SP}MV (Symmetric matrix vector product)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. LANGUAGE BINDINGS 143

— {HE,HB,HP}MV (Hermitian matrix vector product)
— {TR,TB,TP}MV (Triangular matrix vector product)
— GE_SUM_MV (Summed matrix vector multiplies)
— {TR,TB,TP}SV (Triangular solve)

e Matrix-Matrix Operations (section 4.5.5)

— GEMM (General Matrix Matrix product)
SYMM (Symmetric matrix matrix product)

HEMM (Hermitian matrix matrix product)

TRMM (Triangular matrix matrix multiply)
— TRSM (Triangular solve)

SYRK (Symmetric rank-k update)

— HERK (Hermitian rank-k update)

— SYR2K (Symmetric rank-2k update)

— HER2K (Hermitian rank-2k update)

45.2 Mixed and Extended Precision Reduction Operations

n—1
DOT (Dot Product) z,y € R",r + fr+ar’y = Br+«a Z ZiYi
i=0
n—1 n—1
z,y €C™, 1 pr+ azly :,Br+a2xiyi or r < fr + azfy :ﬁT—I—aZ@-yi
i=0 i=0

The routine DOT adds the scaled dot product of two vectors z and y into a scaled scalar r. The
routine returns immediately if n is less than zero, or, if beta is equal to one and either alpha or n is
equal to zero. If alpha is equal to zero then xz and y are not read. Similarly, if beta is equal to zero,
r is not read. As described in section 2.5.3, the value incx less than zero is permitted. However, if
incx is equal to zero, an error flag is set and passed to the error handler.

When z and y are complex vectors, the vector components z; are used unconjugated or conju-
gated as specified by the operator argument conj. If z and y are real vectors, the operator argument
conj has no effect.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE dot( x, y, r [, conjl [, alphal [, betal [, precl )
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (IN) :: y(:)
<type>(<wp>), INTENT (INOUT) :: r
TYPE (blas_conj_type), INTENT(IN), OPTIONAL :: conj
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
x and y have shape (n)
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The types of alpha, x, y, beta and r are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of x and y can optionally differ from that of r,
alpha and beta.

Fortran 77 binding:

SUBROUTINE BLAS_xDOT{_a_b}{_X}( CONJ, N, ALPHA, X, INCX, BETA, Y, INCY,

$ R, [, PREC] )
INTEGER CONJ, INCX, INCY, N [, PREC]
<type> ALPHA, BETA, R

<type> X( * )

<type> Y( * )

The types of ALPHA, X, Y, BETA and R are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of X and _b is the type of Y. The suffix X is present
if and only if PREC is present. One or both of the suffixes _a b and _X must be present.

C binding:

void BLAS_xdot{_a_b}{_x}( enum blas_conj_type conj, int n, SCALAR_IN alpha,
const ARRAY x, int incx, SCALAR_IN beta,
const ARRAY y, int incy, SCALAR_INOUT r,
[, enum blas_prec_type prec]l );

The types of alpha, x, y, beta and r are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of argument x and _b is the type of argument y. The
suffix x is present if and only if prec is present. One or both of the suffixes _a b and _x must
be present.

n—1
SUM (Sum) T Z z;
i=0

The routine SUM computes the sum of the entries of a vector z. If n is less than or equal to

zero, this routine returns immediately with the output scalar r set to zero. As described in section
2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error flag is
set and passed to the error handler.

Extended precision is permitted, but not mixed precision.
This routine has the same specification as in Chapter 2, except that extended precision is

permitted. Mixed precision is not permitted.

e Fortran 95 binding:

<type>(<wp>) FUNCTION sum( x, prec )
<type>(<wp>), INTENT (IN) :: x(:)
TYPE (blas_prec_type), INTENT (IN) :: prec
where
x has shape (n)
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The types of sum and x are identical.

e Fortran 77 binding:
<type> FUNCTION BLAS_xSUM_X( N, X, INCX, PREC )
INTEGER INCX, N, PREC
<type> X( %)
The types of BLAS xSUM X and argument X are both specified by the prefix x.
e C binding:

void BLAS_xsum_x( int n, const ARRAY x, int incx, SCALAR_INOUT sum,
enum blas_prec_type prec );

The types of arguments sum and x are both specified by the prefix x.

4.5.3 Mixed and Extended Precision Vector Operations

AXPBY (Scaled vector accumulation) Yy azr + Py

The routine AXPBY scales the vector by « and the vector y by 3, adds these two vectors to
one another and stores the result in the vector y. If n is less than or equal to zero, or if « is equal
to zero and (3 is equal to one, this routine returns immediately. As described in section 2.5.3, the
value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero, an
error flag is set and passed to the error handler.

Extended and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE axpby( x, y [, alphal] [, betal] [, prec] )
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (INOUT) :: y(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
x and y have shape (n)

The default value for 5 is 1.0 and (1.0,0.0).

The types of x, y, alpha, and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the type of x can optionally differ from that of alpha,
beta and y.

e Fortran 77 binding:
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SUBROUTINE BLAS_xAXPBY{_a}{_X}( N, ALPHA, X, INCX, BETA, Y, INCY

[, PREC] )
INTEGER INCX, INCY, N [, PREC]
<type> ALPHA, BETA
<type> X( * )
<type> YO %)

The types of ALPHA, X, Y, and BETA are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of X. The suffix X is present if and only if PREC is
present. One or both of the suffixes _a and X must be present.

e C binding:

void BLAS_xaxpby{_a}{_x}( int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY y, int incy,
[, enum blas_prec_type prec]l );

The types of alpha, x, y, and beta are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of argument x. The suffix x is present if and only if
prec is present. One or both of the suffixes _a and _x must be present.

WAXPBY (Scaled vector addition) w 4 az + Py

The routine WAXPBY scales the vector by « and the vector y by 3, adds these two vectors
to one another and stores the result in the vector w. If n is less than or equal to zero, this routine
returns immediately. As described in section 2.5.3, the value incx or incy or incw less than zero is
permitted. However, if either incx or incy or incw is equal to zero, an error flag is set and passed to
the error handler.

Extended and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE waxpby( x, y, w [, alphal [, betal [, prec] )
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (IN) :: y(:)
<type>(<wp>), INTENT (OUT) :: w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
X, y and w have shape (n)

The default value for 5 is 1.0 and (1.0,0.0).

The types of x, y, w, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of x and y can optionally differ from that of w,
alpha and beta.
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e Fortran 77 binding:

SUBROUTINE BLAS_xWAXPBY{_a_b}{_X}( N, ALPHA, X, INCX, BETA, Y, INCY,

$ W, INCW [, PREC] )
INTEGER INCW, INCX, INCY, N [, PREC]
<type> ALPHA, BETA

<type> W( * )

<type> X( * )

<type> Y( * )

The types of X, Y, W, ALPHA and BETA are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of X and _b is the type of Y. The suffix X is present
if and only if PREC is present. One or both of the suffixes _a_b and _X must be present.

e C binding:

void BLAS_xwaxpby{_a_b}{_x}( int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, const ARRAY y, int incy, ARRAY w,
int incw [, enum blas_prec_type prec]l );

The types of x, y, w, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of argument x and _b is the type of argument y. The
suffix _x is present if and only if prec is present. One or both of the suffixes _a_b and _x must
be present.

454 Mixed and Extended Precision Matrix-Vector Operations
{GE,GB}MV (Matrix vector product) Yy oAz + By, y +— aATz + By or y — aAz + By

The routines multiply a vector z by a general (or general band) matrix A or its transpose, or
its conjugate transpose, scales the resulting vector and adds it to the scaled vector operand y. If
m or n is less than or equal to zero or if beta is equal to one and alpha is equal to zero, this routine
returns immediately. As described in section 2.5.3, the value incx or incy less than zero is permitted.
However, if either incx or incy is equal to zero, an error flag is set and passed to the error handler.
For the routine GEMV, if Ida is less than one or Ida is less than m, an error flag is set and passed to
the error handler. For the routine GBMV, if kl or ku is less than zero, or if Ida is less than kl plus
ku plus one, an error flag is set and passed to the error handler.

Extended and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE gbmv( a, m, k1, x, y [, trans] [, alphal] [, betal [, prec] )
<type>(<wp>), INTENT(IN) :: a(:,:), x(:)



148

CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

INTEGER, INTENT(IN) :: m, k1
<type>(<wp>), INTENT(INOUT) :: y(:)
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec
where
if trans = blas_no_trans then
x has shape (n)
y has shape (m)
else if trans =/ blas_no_trans then
x has shape (m)
y has shape (n)
end if

The functionality of gemv is covered by gemm.

Fortran 77 binding:

General:

SUBROUTINE BLAS_xGEMV{_a_b}{_X}( TRANS, M, N, ALPHA, A, LDA,

$ X, INCX, BETA, Y, INCY [, PREC] )
General Band:

SUBROUTINE BLAS_xGBMV{_a_b}{_X}( TRANS, M, N, KL, KU, ALPHA, A,

$ LDA, X, INCX, BETA, Y, INCY [, PREC] )
all:
INTEGER INCX, INCY, KL, KU, LDA, M, N, [PREC,] TRANS
<type> ALPHA, BETA
<type> A(C LDA, * )
<type> X( *)
<type> Y( %)

The types of ALPHA, A, X, Y, and BETA are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of A and _b is the type of X. The suffix _X is present
if and only if PREC is present. One or both of the suffixes _a b and _X must be present.

C binding:

General:
void BLAS_xgemv{_a_b}{_x}( enum blas_order_type order,
enum blas_trans_type trans, int m, int n,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta, ARRAY y,
int incy [, enum blas_prec_type prec]l );
General Band:
void BLAS_xgbmv{_a_b}{_x}( enum blas_order_type order,
enum blas_trans_type trans, int m, int n,
int k1, int ku, SCALAR_IN alpha,
const ARRAY a, int lda, const ARRAY x, int incx,
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SCALAR_IN beta, ARRAY y, int incy
[, enum blas_prec_type prec]l );

The types of alpha, a, x, y and beta are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of argument a and _b is the type of argument x. The
suffix x is present if and only if prec is present. One or both of the suffixes _a_b and _x must
be present.

{SY,SB,SP}MV (Symmetric matrix vector multiply) y < aAz + By with A = AT

The routines multiply a vector z by a real or complex symmetric matrix A, scales the resulting
vector and adds it to the scaled vector operand y. If n is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine SYMV, if Ida is less than
one or Ida is less than n, an error flag is set and passed to the error handler. For the routine SBMV,
if Ida is less than k plus one, an error flag is set and passed to the error handler.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

Symmetric Band:
SUBROUTINE sbmv( a, x, y [, uplo]l [, alphal [, betal [, prec] )
Symmetric Packed:
SUBROUTINE spmv( ap, x, y [, uplo] [, alphal [, betal [, prec] )
<type>(<wp>), INTENT(IN) :: <aa>
<type>(<wp>), INTENT(IN) :: x(:)
<type>(<wp>), INTENT(INOUT) :: y(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec
where
<aa> ::= a(:,:) or ap(:)
and
SB a has shape (k+1,n)
SP ap has shape (n*(n+1)/2)
x and y have shape (n)

The types of alpha, a or ap, x, beta, and y are governed by the rules of mixed precision
arguments set down in section 4.3: the types of a or ap and x can optionally differ from that
of y, alpha and beta.

The functionality of symv is covered by symm.

e Fortran 77 binding:
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Symmetric:
SUBROUTINE BLAS_xSYMV{_a_b}{_X}( UPLO, N, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY [, PREC] )
Symmetric Band:
SUBROUTINE BLAS_xSBMV{_a_b}{_X}( UPLO, N, K, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY [, PREC] )
Symmetric Packed:
SUBROUTINE BLAS_xSPMV{_a_b}{_X}( UPLO, N, ALPHA, AP, X, INCX, BETA,

$ Y, INCY [, PREC] )
all:

INTEGER INCX, INCY, K, LDA, N, UPLO [, PREC]

<type> ALPHA, BETA

<type> A(C LDA, * ) or AP( * )

<type> X( * )

<type> YO * )

The types of ALPHA, A or AP, X, Y and BETA are governed according to the rules of mixed
precision arguments set down in section 4.3. The prefix x is the floating point type of the
arguments, but if _a_b is present then _a is the type of A or AP, and _b is the type of X. The
suffix X is present if and only if PREC is present. One or both of the suffixes _a_ b and _X must
be present.

C binding:

Symmetric:

void BLAS_xsymv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY a, int 1lda,

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y,

int incy [, enum blas_prec_type prec]l );
Symmetric Band:

void BLAS_xsbmv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, SCALAR_IN alpha, const ARRAY a,

int lda, const ARRAY x, int incx, SCALAR_IN beta,

ARRAY y, int incy [, enum blas_prec_type prec] );
Symmetric Packed:

void BLAS_xspmv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY ap,
const ARRAY x, int incx, SCALAR_IN beta, ARRAY y,
int incy [, enum blas_prec_type prec] );

The types of alpha, a or ap, x, y, and beta are governed according to the rules of mixed
precision arguments set down in section 4.3. The prefix x is the floating point type of the
arguments, but if _a_b is present then _a is the type of argument a or ap and _b is the type of
argument x. The suffix _x is present if and only if prec is present. One or both of the suffixes
_a_b and _x must be present.

{HE,HB,HP}MV (Hermitian matrix vector product) y < oAz + By with A = AH
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The routines multiply a vector by a Hermitian matrix A, scales the resulting vector and adds
it to the scaled vector operand y. If n is less than or equal to zero or if beta is equal to one and alpha
is equal to zero, this routine returns immediately. The imaginary part of the diagonal entries of
the matrix operand are supposed to be zero and should not be referenced. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine HEMV, if Ida is less than
one or Ida is less than n, an error flag is set and passed to the error handler. For the routine HBMV,
if Ida is less than k plus one, an error flag is set and passed to the error handler.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

Hermitian Band:
SUBROUTINE hbmv{_a}{_x}( a, x, y [, uplo]l [, alpha] [, betal [, prec] )
Hermitian Packed:
SUBROUTINE hpmv{_a}{_x}( ap, x, y [, uplol [, alphal [, betal [, prec]l )
COMPLEX (<wp>) , INTENT(IN) :: <aa>
COMPLEX (<wp>), INTENT(IN) :: x(:)
COMPLEX (<wp>) , INTENT(INOUT) :: y(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
COMPLEX (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec
where
<aa> ::= a(:,:) or ap(:)
and
HB a has shape (k+1,n)
HP ap has shape (n*(n+1)/2)
x and y have shape (n)

The types of alpha, a or ap, x, beta, and y are governed by the rules of mixed precision
arguments set down in section 4.3: the types of a or ap and x can optionally differ from that
of y, alpha and beta.

The functionality of hemv is covered by hemm.

e Fortran 77 binding:

Hermitian:
SUBROUTINE BLAS_xHEMV{_a_b}{_X}( UPLO, N, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY [, PREC] )
Hermitian Band:
SUBROUTINE BLAS_xHBMV{_a_b}{_X}( UPLO, N, K, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY [, PREC] )
Hermitian Packed:
SUBROUTINE BLAS_xHPMV{_a_b}{_X}( UPLO, N, ALPHA, AP, X, INCX,
$ BETA, Y, INCY [, PREC] )
all:
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INTEGER INCX, INCY, K, LDA, N, UPLO [, PREC]
<ctype> ALPHA, BETA

<ctype> A(C LDA, * ) or AP( * )

<ctype> X( * )

<ctype> YO * )

The types of ALPHA, A or AP, X, Y, and BETA are governed according to the rules of mixed
precision arguments set down in section 4.3. The prefix x is the floating point type of the
arguments, but if _a_b is present then _a is the type of A or AP and _b is the type of X. The
suffix X is present if and only if PREC is present. One or both of the suffixes _a_b and _X must
be present.

e C binding:

Hermitian:

void BLAS_xhemv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, CSCALAR_IN alpha, const CARRAY a, int 1lda,

const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,

int incy [, enum blas_prec_type prec] );
Hermitian Band:

void BLAS_xhbmv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, CSCALAR_IN alpha, const CARRAY a,

int lda, const CARRAY x, int incx, CSCALAR_IN beta,

CARRAY y, int incy [, enum blas_prec_type prec] );
Hermitian Packed:

void BLAS_xhpmv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, CSCALAR_IN alpha, const CARRAY ap,

const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,

int incy [, enum blas_prec_type prec]l );

The types of alpha, a or ap, x, y, and beta are governed according to the rules of mixed
precision arguments set down in section 4.3. The prefix x is the floating point type of the
arguments, but if _a_b is present then _a is the type of argument a or ap and _b is the type of
argument x. The suffix _x is present if and only if prec is present. One or both of the suffixes
_a_b and _x must be present.

{TR,TB,TP}MV (Triangular matrix vector product) T+ alz,z+ aT Tz or v+ oTHz

The routines multiply a vector x by a general triangular matrix 7" or its transpose, or its
conjugate transpose, and copies the resulting vector in the vector operand z. If n is less than or
equal to zero, this routine returns immediately. As described in section 2.5.3, the value incx less
than zero is permitted. However, if incx is equal to zero, an error flag is set and passed to the error
handler. For the routine TRMV, if Idt is less than one or Idt is less than n, an error flag is set and
passed to the error handler. For the routine TBMV, if Idt is less than k plus one, an error flag is
set and passed to the error handler.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.
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e Fortran 95 binding:

Triangular Band:
SUBROUTINE tbmv( t, x [, uplo]l [, transt] [, diag]l [, alphal] [, prec]l )
Triangular Packed:
SUBROUTINE tpmv( tp, x [, uplo]l [, transt] [, diag]l [, alphal] [, prec]l )
<type>(<wp>), INTENT(IN) :: <tt>
<type>(<wp>), INTENT(INOUT) :: x(:)
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec
where
<tt> = t(:,:) or tp(:)
and
x has shape (n)
TB t has shape (k+1,n)
TP tp has shape (n*(n+1)/2)
(k=band width)

The types of alpha, t or tp, and x are governed by the rules of mixed precision arguments
set down in section 4.3: the type of t or tp can optionally differ from that of x and alpha.

The functionality of trmv is covered by trmm.

e Fortran 77 binding:

Triangular:
SUBROUTINE BLAS_xTRMV{_a}{_X}( UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,
$ INCX [, PREC] )

Triangular Band:
SUBROUTINE BLAS_xTBMV{_a}{_X}( UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,
$ X, INCX [, PREC] )

Triangular Packed:
SUBROUTINE BLAS_xTPMV{_a}{_X}( UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX

$ [, PREC] )
all:
INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO [, PREC]
<type> ALPHA
<type> T( LDT, * ) or TP( * )
<type> X( %)

The types of ALPHA, T or TP, and X are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of T or TP. The suffix _X is present if and only if PREC
is present. One or both of the suffixes _a and _X must be present.

e C binding:
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Triangular: !
void BLAS_xtrmv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo, 2
enum blas_trans_type trans, enum blas_diag_type diag, 3
int n, SCALAR_IN alpha, const ARRAY t, int 1dt, 4
ARRAY x, int incx [, enum blas_prec_type prec]l ); 5
Triangular Band: 6

void BLAS_xtbmv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo, 7
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, SCALAR_IN alpha, const ARRAY t, int 1dt, °
ARRAY x, int incx [, enum blas_prec_type prec]l ); 10
Triangular Packed: =
void BLAS_xtpmv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo, 12
enum blas_trans_type trans, enum blas_diag_type diag, **
int n, SCALAR_IN alpha, const ARRAY tp, 14

ARRAY x, int incx [, enum blas_prec_type prec]l ); 15
16

o)

The types of alpha, t or tp, and x are governed according to the rules of mixed precision 7

arguments set down in section 4.3. The prefix x is the floating point type of the arguments, 18

but if _a is present then _a is the type of argument t or tp. The suffix x is present if and 19

only if prec is present. One or both of the suffixes _a and _x must be present. 20

21

22

GE_SUM_MV (Summed matrix vector multiplies) y < aAz + fBx 23

24

This routine adds the product of two scaled matrix vector products. It can be used to compute 25
the residual of an approximate eigenvector and eigenvalue of the generalized eigenvalue problem 26
Axxz = AxBxz. If mor n is less than or equal to zero or if beta is equal to one and alpha is equal 27
to zero, this routine returns immediately. As described in section 2.5.3, the value incx or incy less 28
than zero is permitted. However, if incx or incy is equal to zero, an error flag is set and passed to 29
the error handler. If Ida is less than one or Ida is less than m, or Idb is less than one or Idb is less 30

than m, an error flag is set and passed to the error handler. 31
Extended precision and mixed precision are permitted. 32
This routine has the same specification as in Chapter 2, except that extended precision and 33

mixed precision are permitted. 34

35

e Fortran 95 binding: 36
37

SUBROUTINE ge_sum _mv( a, x, b, y [, alphal] [, betal [, precl) 38
<type>(<wp>), INTENT (IN) :: a(:,:), b(:,:) 39
<type>(<wp>), INTENT (IN) :: x(:) 40
<type>(<wp>), INTENT (OUT) :: y(:) a1
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta 42
<type>(blas_prec_type), INTENT (IN), OPTIONAL :: prec 43
where 44
x has shape (n); 45
y has shape (m); 46

a and b have shape (m,n) for general matrices a7

48
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The types of alpha, a, x, beta, b, and y are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from that of x,
y, alpha and beta. Arguments a and b must have the same type.

e Fortran 77 binding:

SUBROUTINE BLAS_xGE_SUM_MV{_a_b}{_X}( M, N, ALPHA, A, LDA, X, INCX,

$ BETA, B, LDB, Y, INCY
$ [, PREC] )

INTEGER INCX, INCY, LDA, LDB, M, N [, PREC]
<type> ALPHA, BETA

<type> AC LDA, * ), B( LDB, * )

<type> X( * )

<type> Y( * )

The types of ALPHA, A, X, BETA, B, and Y are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of A and B, and _b is the type of x. The suffix X is
present if and only if PREC is present. One or both of the suffixes _a_b and _X must be present.

e C binding:

void BLAS_xge_sum_mv{_a_b}{_x}( enum blas_order_type order, int m, int n,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta,
const ARRAY B, int 1db, ARRAY y, int incy
[, enum blas_prec_type precl );

The types of alpha, a, x, beta, b, and y are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of a and b, and _b is the type of x. The suffix x is
present if and only if prec is present. One or both of the suffixes _a_b and _x must be present.

{TR,TB,TP}SV (Triangular solve) T ol 'z, x4+ aT Tz

These functions solve one of the systems of equations z < o7~z or y < oI 'z, where z and
y are vectors and the matrix 7' is a unit, non-unit, upper or lower triangular (or triangular banded
or triangular packed) matrix. If n is less than or equal to zero, this function returns immediately.
As described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal
to zero, an error flag is set and passed to the error handler. If Idt is less than one or Idt is less than
n, an error flag is set and passed to the error handler.

Extended precision and mixed precision are permitted.

Adwvice to implementors. Note that no check for singularity, or near singularity is specified for
these triangular equation-solving functions. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver.

To implement this function when the internal precision requested is higher than the precision
of x, temporary workspace is needed to compute and store x internally to higher precision.
(End of advice to implementors.)
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This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

Triangular Band:

Triangular Packed:

<type>(<wp>), INTENT(IN) :: <tt>

<type>(<wp>), INTENT(INOUT) :: x(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec

where

<tt> = t(:,:) or tp(:)

and

x has shape (n)
TB t has shape (k+1,n)
TP tp has shape (n*(n+1)/2)

(k=band width)

SUBROUTINE tbsv( t, x [, uplo] [, transt] [, diag] [, alphal [, prec] )

SUBROUTINE tpsv( tp, x [, uplo]l [, trans] [, diagl [, alphal [, precl )

The types of alpha, t or tp, and x are governed by the rules of mixed precision arguments
set down in section 4.3: the type of t or tp can optionally differ from that of x and alpha.

The functionality of trsv is covered by trsm.

e Fortran 77 binding:

Triangular:

SUBROUTINE BLAS_xTRSV{_a}{_X}( UPLO, TRANS, DIAG, N,
$ X, INCX [, PREC] )

Triangular Band:

SUBROUTINE BLAS_xTBSV{_a}{_X}( UPLO, TRANS, DIAG, N,
$ LDT, X, INCX [, PREC]

Triangular Packed:

all:

SUBROUTINE BLAS_xTPSV{_a}{_X}( UPLO, TRANS, DIAG, N,

$ INCX [, PREC] )
INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO
<type> ALPHA

<type> T( LDT, * ) or TP( * )

<type> X( * )

ALPHA, T, LDT,
K, ALPHA, T,
)

ALPHA, TP, X,

[, PREC]

The types of ALPHA, T or TP, and X are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of T or TP. The suffix _X is present if and only if PREC
is present. One or both of the suffixes _a and _X must be present.
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¢ C binding:

Triangular:

void BLAS_xtrsv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, SCALAR_IN alpha, const ARRAY t, int 1dt,
ARRAY x, int incx [, enum blas_prec_type prec]l );

Triangular Band:

void BLAS_xtbsv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, SCALAR_IN alpha, const ARRAY t, int 1dt,
ARRAY x, int incx [, enum blas_prec_type prec]l );

Triangular Packed:

void BLAS_xtpsv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, SCALAR_IN alpha, const ARRAY tp, ARRAY x,
int incx [, enum blas_prec_type prec] );

The types of alpha, t or tp, and x are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of argument t or tp. The suffix x is present if and
only if prec is present. One or both of the suffixes _a and _x must be present.

455 Mixed and Extended Precision Matrix-Matrix Operations

In the following section, op(X) denotes X, or X or X# where X is a matrix.
GEMM (General Matrix Matrix Product) C + aop(A)op(B) + BC

The routine performs a general matrix matrix multiply C' < aop(A)op(B) + BC where « and
[ are scalars, and A, B, and C' are general matrices. This routine returns immediately if m or n or
k is less than or equal to zero. If Ida is less than one or less than m, or if Idb is less than one or less
than k, or if Idc is less than one or less than m, an error flag is set and passed to the error handler.

This interface encompasses the Legacy BLAS routine xGEMM.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE gemm( a, b, ¢ [, transal [, transb] [, alphal] [, betal &
[, prec] )
<type>(<wp>), INTENT(IN) :: <aa>
<type>(<wp>), INTENT(IN) :: <bb>
<type>(<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa, transb
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
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TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where
<aa> ::= a(:,:) or a(:)
<bb> ::=Db(:,:) or b(:)
<cc> =c(:,:) or c(:)
and

c, rank 2, has shape (m,n)
a has shape (m,k) if transa = blas_no_trans (the default)
(k,m) if transa /= blas_no_trans
(m) if rank 1
b has shape (k,n) if transb = blas_no_trans (the default)
(n,k) if transb /= blas_no_trans
(n) if rank 1
c, rank 1, has shape (m)
a has shape (m,n) if transa = blas_no_trans (the default)
(n,m) if transa /= blas_no_trans
b has shape (n)

Rank a | Rank b | Rank ¢ | transa | transb | Operation Arguments
2 2 2 N N C + aAB + pC real or complex
2 2 2 N T C < aABT + C real or complex
2 2 2 N H C « aAB" + gC complex
2 2 2 T N C + aAT"B + pC real or complex
2 2 2 T T C « aAT"B + pC real or complex
2 2 2 H N C + aAB + BC complex
2 2 2 H H C + aA®BH + BC | complex
2 1 1 N - ¢+ aAb+ (e real or complex
2 1 1 T - ¢+ aATb+ Be real or complex
2 1 1 H - ¢+ aAb+ Be complex
1 1 2 - - C + aab” + BC real or complex
1 1 2 - H C + aab® + BC complex

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xGEMYV is also covered by this generic procedure.

The types of a, b, c, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from that of c,
alpha and beta.

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGEMM{_a_b}{_X}( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,
$ B, LDB, BETA, C, LDC [, PREC] )
INTEGER K, LDA, LDB, LDC, M, N, TRANSA, TRANSB [, PREC]
<type> ALPHA, BETA

<type> A(C LDA, * )
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<type> B( LDB,
<type> c( LDC,

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of A and _b is the type of B. The suffix _X is present
if and only if PREC is present. One or both of the suffixes _a b and _X must be present.

e C binding:

void BLAS_xgemm{_a_b}{_x}( enum blas_order_type order,
enum blas_trans_type transa,
enum blas_trans_type transb, int m, int n, int k,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY b, int 1db,
SCALAR_IN beta, ARRAY c, int ldc
[, enum blas_prec_type prec]l );

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of argument a and _b is the type of argument b. The
suffix x is present if and only if prec is present. One or both of the suffixes _a b and _x must
be present.

SYMM (Symmetric Matrix Matrix Product) C <+ aAB +pBC or C < aBA+ C

This routine performs one of the symmetric matrix matrix operations C' <+ aAB + SC or
C < aBA + BC where « and 8 are scalars, A is a symmetric matrix, and B and C' are general
matrices. This routine returns immediately if m or n is less than or equal to zero. For side equal to
blas_left_side, and if Ida is less than one or less than m, or if Idb is less than one or less than m, or
if Idc is less than one or less than m, an error flag is set and passed to the error handler. For side
equal to blas_right_side, and if Ida is less than one or less than n, or if Idb is less than one or less
than n, or if Idc is less than one or less than n, an error flag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xSYMM with added functionality for com-
plex symmetric matrices.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE symm( a, b, ¢ [, side] [, uplo] [, alphal [, betal [, prec]l )
<type>(<wp>), INTENT(IN) :: a(:,:)
<type>(<wp>), INTENT(IN) :: <bb>
<type>(<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
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TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where
<bb> = b(:,:) or b(:)
<cc> =c¢(:,:) or c(:)
and

¢, rank 2, has shape (m,n), b same shape as ¢
SY a has shape (m,m) if side = blas_left_side (the default)
a has shape (n,n) if side /= blas_left_side
c, rank 1, has shape (m), b same shape as ¢
SY a has shape (m,m)

Rank b | Rank ¢ | side | Operation
2 2 L |C <+ aAB+pC
2 2 R | C <+ aBA+pC
1 1 - ¢+ aAb+ e

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xSYMYV is covered by symm.

The types of a, b, ¢, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from that of c,
alpha and beta.

Fortran 77 binding:

SUBROUTINE BLAS_xSYMM{_a_b}{_X}( SIDE, UPLO, M, N, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC] )
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO [, PREC]
<type> ALPHA, BETA

<type> AC LDA, * )

<type> B( LDB, * )

<type> C( LDC, * )

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of A and _b is the type of B. The suffix X is present
if and only if PREC is present. One or both of the suffixes _a_ b and _X must be present.

C binding:

void BLAS_xsymm{_a_b}{_x}( enum blas_order_type order,
enum blas_side_type side,
enum blas_uplo_type uplo, int m, int n,
SCALAR_IN alpha, const ARRAY a, int 1da,
const ARRAY b, int 1db, SCALAR_IN beta, ARRAY c,
int 1dc [, enum blas_prec_type prec] );
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The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of argument a, and _b is the type of argument b.
The suffix _x is present if and only if prec is present. One or both of the suffixes _a_b and x
must be present.

HEMM (Hermitian Matrix Matrix Product) C + aAB + pBC or C < aBA+ C

This routine performs one of the Hermitian matrix matrix operations C «+ «aAB + BC or
C < aBA + BC where a and B are scalars, A is a Hermitian matrix, and B and C are general
matrices. This routine returns immediately if m or n is less than or equal to zero. For side equal to
blas_left_side, and if Ida is less than one or less than m, or if Idb is less than one or less than m, or
if Idc is less than one or less than m, an error flag is set and passed to the error handler. For side
equal to blas_right side, and if Ida is less than one or less than n, or if Idb is less than one or less
than n, or if Idc is less than one or less than n, an error flag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xHEMM.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

Hermitian:
SUBROUTINE hemm( a, b, ¢ [, side] [, uplo] [, alpha] [, betal] [, prec] )
COMPLEX (<wp>), INTENT(IN) :: a(:,:)
COMPLEX (<wp>), INTENT(IN) :: <bb>
COMPLEX (<wp>), INTENT(INQUT) :: <cc>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where
<bb> = b(:,:) or b(:)
<cc> =c¢(:,:) or c(:)
and

¢, rank 2, has shape (m,n), b same shape as ¢
HE a has shape (m,m) if "side" = blas_left_side (the default)
a has shape (n,n) if "side" /= blas_left_side
c, rank 1, has shape (m), b same shape as ¢
HE a has shape (m,m)

Rank b | Rank ¢ | side | Operation
2 2 L |C<++ aAB+pC
2 2 R | C <« aBA+pBC
1 1 - c+ aAb+ (e

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.
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The functionality of xHEMYV is covered by hemm. 1

The types of a, b, ¢, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from that of c,
alpha and beta.

e Fortran 77 binding: 6
7

SUBROUTINE BLAS_xHEMM{_a_b}{_X}( SIDE, UPLO, M, N, ALPHA, A, LDA, 8

$ B, LDB, BETA, C, LDC [, PREC] ) 9
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO [, PREC] 10
<ctype> ALPHA, BETA 11
<ctype> AC LDA, * ) 12
<ctype> B( LDB, * ) 13
<ctype> c( LDC, * ) 14

15

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision 16

arguments set down in section 4.3. The prefix x is the floating point type of the arguments, 17
but if _a_b is present then _a is the type of A and _b is the type of B. The suffix _X is present 18
if and only if PREC is present. One or both of the suffixes _a b and _X must be present. 19
20

e C binding:

21

22

void BLAS_xhemm{_a_b}{_x}( enum blas_order_type order,
enum blas_side_type side,
enum blas_uplo_type uplo, int m, int n,
CSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY b, int 1db, CSCALAR_IN beta, CARRAY c,
int 1dc [, enum blas_prec_type prec] );

23
24
25
26
27
28

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision *

arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of argument a, and _b is the type of argument b.
The suffix _x is present if and only if prec is present. One or both of the suffixes _.a b and x
must be present.

30

TRMM (Triangular Matrix Matrix Multiply) B+ aop(T)B or B < aBop(T) %

These routines perform one of the matrix-matrix operations B < aop(T)B or B < aBop(T) %
where « is a scalar, B is a general matrix, and 7' is a unit, or non-unit, upper or lower triangular
matrix. This routine returns immediately if m or n is less than or equal to zero. For side equal to 40
blas_left_side, and if Idt is less than one or less than m, or if Idb is less than one or less than m, an 4
error flag is set and passed to the error handler. For side equal to blas_right_side, and if Idt is less 42
than one or less than n, or if Idb is less than one or less than m, an error flag is set and passed to 43

the error handler. 44
These interfaces encompass the Legacy BLAS routine xTRMM. 45
Extended precision and mixed precision are permitted. 46

This routine has the same specification as in Chapter 2, except that extended precision and 47
mixed precision are permitted. 48
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e Fortran 95 binding:

SUBROUTINE trmm( t, b [, side] [, uplo] [, transt] [, diag] &
[, alphal [, prec] )
<type>(<wp>), INTENT(IN) :: t(:,:)
<type>(<wp>), INTENT(INOUT) :: <bb>
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
<bb> ::=b(:,:) or b(:)
and
b, rank 2, has shape (m,n)
TR t has shape (m,m) if side = blas_left_side (the default)
t has shape (n,n) if side /= blas_left_side
b, rank 1, has shape (m)
TR t has shape (m,m)

Rank b | transa | side | Operation
2 N L | B+ alB
2 T L | B« aT™B
2 H L |B+aT"B
2 N R | B« aBT
2 T R | B+ aBTT
2 H R | B+ aBTH
1 N - b+ oaTh
1 T - | b+—aT™d
1 H - | b+« aTHp

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xXTRMYV is covered by trmm.

The types of alpha, t, and b are governed according to the rules of mixed precision arguments
set down in section 4.3: the type of t can optionally differ from that of b and alpha.

e Fortran 77 binding:

SUBROUTINE BLAS_xTRMM{_a}{_X}( SIDE, UPLO, TRANST, DIAG, M, N,

$ ALPHA, T, LDT, B, LDB [, PREC] )
INTEGER DIAG, LDT, LDB, M, N, SIDE, TRANST, UPLO

$ [, PREC]

<type> ALPHA

<type> T( LDT, * )

<type> B( LDB, * )
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The types of ALPHA, T, and B are governed according to the rules of mixed precision arguments !
set down in section 4.3. The prefix x is the floating point type of the arguments, but if _a is 2
present then _a is the type of T. The suffix X is present if and only if PREC is present. One or 3
both of the suffixes _a and _X must be present. 4
5

e C binding: 6
7

void BLAS_xtrmm{_a}{_x}(enum blas_order_type order, enum blas_side_type side, 8
enum blas_uplo_type uplo, enum blas_trans_type transa, o

enum blas_diag_type diag, int m, int n, 10

SCALAR_IN alpha, const ARRAY t, int 1dt, ARRAY b, 11

int 1db [, enum blas_prec_type prec] ); 12

13

The types of alpha, t, and b are governed according to the rules of mixed precision arguments 14

set down in section 4.3. The prefix x is the floating point type of the arguments, but if _a 15
is present then _a is the type of argument t. The suffix _x is present if and only if prec is 16
present. One or both of the suffixes _a and _x must be present. 17

18

19

TRSM (Triangular Solve) B+ aop(T~')B or B «+ aBop(T™!)
21
This routine solves one of the matrix equations B + aop(T !)B or B <+ aBop(T ') where « is
a scalar, B is a general matrix, and T is a unit, or non-unit, upper or lower triangular matrix. This
routine returns immediately if m or n is less than or equal to zero. For side equal to blas_left_side,
and if Idt is less than one or less than m, or if Idb is less than one or less than m, an error flag is set
and passed to the error handler. For side equal to blas_right_side, and if Idt is less than one or less
than n, or if Idb is less than one or less than m, an error flag is set and passed to the error handler.
These interfaces encompass the Legacy BLAS routine xTRSM.
Extended precision and mixed precision are permitted.

22
23

24

Adwvice to implementors. Note that no check for singularity, or near singularity is specified for
these triangular equation-solving functions. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver.

33
34
To implement this function when the internal precision requested is higher than the precision 35

of B, temporary workspace is needed to compute and store B internally to higher precision. 36
(End of advice to implementors.) a7

38

This routine has the same specification as in Chapter 2, except that extended precision and 39
mixed precision are permitted. 40
41

e Fortran 95 binding:

42

43

SUBROUTINE trsm( t, b [, side] [, uplo] [, transt] [, diag] & 44
[, alphal [, precl ) a5

<type>(<wp>), INTENT(IN) :: t(:,:) 46
<type>(<wp>), INTENT(INOUT) :: <bb> a

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side 48
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TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
<bb> ::=b(:,:) or b(:)
and
b, rank 2, has shape (m,n)
TR t has shape (m,m) if side = blas_left_side (the default)
t has shape (n,n) if side /= blas_left_side
b, rank 1, has shape (m)
TR t has shape (m,m)

Rank b | transa | side | Operation
2 N L | B+ ol 'B
2 T L |B+aol'B
2 H L |B«+ ol HB
2 N R | B+ aBT!
2 T R | B+ aBT T
2 H R | B+ aBT H
1 N - | b+—aT™ b
1 T - b+ aT "h
1 H - | baT Hp

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xXTRSV is covered by trsm.

The types of t, x and alpha are governed according to the rules of mixed precision arguments
set down in section 4.3: the type of t can optionally differ from that of x and alpha.

Fortran 77 binding:

SUBROUTINE BLAS_xTRSM{_al}{_X}( SIDE, UPLO, TRANST, DIAG, M, N,

$ ALPHA, T, LDT, B, LDB [, PREC] )
INTEGER DIAG, LDT, LDB, M, N, SIDE, TRANST, UPLO

$ [, PREC]

<type> ALPHA

<type> T( LDT, * )

<type> B( LDB, * )

The types of ALPHA, T, and B are governed according to the rules of mixed precision arguments
set down in section 4.3. The prefix x is the floating point type of the arguments, but if _a is
present then _a is the type of T. The suffix X is present if and only if PREC is present. One or
both of the suffixes _a and _X must be present.

e C binding:
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void BLAS_xtrsm{_a}{_x}( enum blas_order_type order, enum blas_side_type side,

enum blas_uplo_type uplo, enum blas_trans_type transt,

enum blas_diag_type diag, int m, int n,
SCALAR_IN alpha, const ARRAY t, int 1dt, ARRAY b,
int 1db [, enum blas_prec_type prec] );

The types of alpha, t, and b are governed according to the rules of mixed precision arguments
set down in section 4.3. The prefix x is the floating point type of the arguments, but if _a
is present then _a is the type of argument t. The suffix x is present if and only if prec is
present. One or both of the suffixes _a and _x must be present.

SYRK (Symmetric Rank K update) C +— aAA” + BC, C + aAT A+ BC

This routine performs one of the symmetric rank k operations C < «aAA”T + BC or C
aAT A + BC where o and f8 are scalars, C' is a symmetric matrix, and A is a general matrix. This
routine returns immediately if n or k is less than or equal to zero. If Idc is less than one or less
than n, an error flag is set and passed to the error handler. For trans equal to blas_no_trans, and if
Ida is less than one or less than n, an error flag is set and passed to the error handler. For trans
equal to blas_trans, and if Ida is less than one or less than k, an error flag is set and passed to the
error handler.

These interfaces encompass the Legacy BLAS routine xSYRK with added functionality for
complex symmetric matrices.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE syrk( a, c¢ [, uplo] [, trans] [, alphal] [, betal] &
[, precl )
<type>(<wp>), INTENT(IN) :: <aa>
<type>(<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
<aa> ::= a(:,:) or a(:)
and
¢ has shape (n,n)
a has shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | trans | Operation
2 N | C « adAT +8C
2 T | C+ aATA+pC
1 - C + aaa” + BC
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The table defining the operation as a function of the operator arguments is identical to

Chapter 2.

The types of alpha, a, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3: the type of a can optionally differ from those of ¢, alpha

and beta.

e Fortran 77 binding:

SUBROUTINE BLAS_xSYRK{_al}{_X}( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,

$
INTEGER
<type>
<type>
<type>

K, LDA, LDC,

ALPHA, BETA
A(C LDA, * )
c( LDC, * )

C, LDC [, PREC] )
N, TRANS, UPLO [, PREC]

The types of ALPHA, A, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of A. The suffix X is present if and only if PREC is
present. One or both of the suffixes _a and _X must be present.

e C binding:

void BLAS_xsyrk{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,

SCALAR_IN alpha, const ARRAY a, int 1lda,

SCALAR_IN beta, ARRAY c, int 1ldc

[, enum blas_prec_type prec] );

The types of alpha, a, beta and c¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of argument a. The suffix _x is present if and only if
prec is present. One or both of the suffixes _a and _x must be present.

HERK (Hermitian Rank K update)

C + aAA" + BC, C + aAP A+ pC

This routine performs one of the Hermitian rank k operations C' «+ aAdA® + BC or C «+
aAf A + BC where a and 3 are scalars, C is a Hermitian matrix, and A is a general matrix. This
routine returns immediately if n or k is less than or equal to zero. If Idc is less than one or less
than n, an error flag is set and passed to the error handler. For trans equal to blas_no_trans, and if
Ida is less than one or less than n, an error flag is set and passed to the error handler. For trans
equal to blas_trans, and if Ida is less than one or less than k, an error flag is set and passed to the

error handler.

These interfaces encompass the Legacy BLAS routine xHERK.
Extended precision and mixed precision are permitted.
This routine has the same specification as in Chapter 2, except that extended precision and

mixed precision are permitted.

e Fortran 95 binding:
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SUBROUTINE herk( a, ¢ [, uplo] [, trans] [, alpha] [, betal] &
[, precl )
COMPLEX (<wp>), INTENT(IN) :: <aa>
COMPLEX (<wp>) , INTENT(INQUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
REAL(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec
where
<aa> ::= a(:,:) or a(:)
and
¢ has shape (n,n)
a has shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | trans | Operation
2 N | C+« adA” +8C
2 T C + aA® A+ BC
1 - C + aad® + BC

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The types of alpha, a, beta and c¢ are governed according to the rules of mixed precision
arguments set down in section 4.3: the type of a can optionally differ from those of ¢, alpha
and beta.

Fortran 77 binding:

SUBROUTINE BLAS_xHERK{_a}{_X}( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,

$ C, LDC [, PREC] )
INTEGER K, LDA, LDC, N, TRANS, UPLO [, PREC]
<rtype> ALPHA, BETA

<ctype> AC LDA, * )

<ctype> C( LDC, * )

The types of ALPHA, A, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of A. The suffix X is present if and only if PREC is
present. One or both of the suffixes _a and X must be present.

C binding:

void BLAS_xherk{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
RSCALAR_IN alpha, const CARRAY a, int 1lda,
RSCALAR_IN beta, CARRAY ¢, int 1ldc
[, enum blas_prec_type prec] );
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The types of alpha, a, beta and c¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a is present then _a is the type of argument a. The suffix _x is present if and only if
prec is present. One or both of the suffixes _a and _x must be present.

SYR2K (Symmetric rank 2k update) C + (aA)BT + B(aA)T + pC
C + («A)TB + BT (aA) + BC

These routines perform the symmetric rank 2k operation C' + (aA)BT + B(aA)T + BC or
C + (aA)TB + BT (aA) + BC where a and j are scalars, C is a symmetric matrix, and A and B
are general matrices. This routine returns immediately if n or k is less than or equal to zero. If Idc
is less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_no_trans, and if Ida is less than one or less than n, or if Idb is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less
than one or less than k, or if Idb is less than one or less than k, an error flag is set and passed to
the error handler.

These interfaces encompass the Legacy BLAS routine xSYR2K with added functionality for
complex symmetric matrices.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:

SUBROUTINE syr2k( a, b, ¢ [, uplo] [, trans] [, alphal] [, betal
[, prec]l )
<type>(<wp>), INTENT(IN) :: <aa>
<type>(<wp>), INTENT(IN) :: <bb>
<type>(<wp>), INTENT(INOUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where
<aa> ::= a(:,:) or a(:)
<bb> = b(:,:) or b(:)
and

¢ has shape (n,n)
if trans = blas_no_trans (the default)
a has shape (n,k)
b has shape (n,k)
if trans /= blas_no_trans
a has shape (k,n)
b has shape (k,n)

Rank a | Rank b | trans | Operation
2 2 N C < aABT + aBAT + 8C
2 2 T C <+ aATB + aBTA + BC
1 1 - C + aab” + aba” + BC
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The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from those of c,
alpha and beta.

e Fortran 77 binding:

SUBROUTINE BLAS_xSYR2K{_a_b}{_X}( UPLO, TRANS, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC] )
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO [, PREC]
<type> ALPHA, BETA

<type> A(C LDA, * )

<type> B( LDB, * )

<type> C( LDC, * )

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of A and b is the type of B. The suffix X is present
if and only if PREC is present. One or both of the suffixes _a_ b and _X must be present.

e C binding:

void BLAS_xsyr2k{_a_b}{_x}( enum blas_order_type order,
enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY b, int 1db,
SCALAR_IN beta, ARRAY c, int 1ldc
[, enum blas_prec_type prec] );

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a b is present then _a is the type of argument a and _b is the type of argument b. The
suffix x is present if and only if prec is present. One or both of the suffixes _a b and _x must
be present.

HER2K (Hermitian rank 2k update) C « (aA)BH + B(aA)H + BC
C + (eA)¥B + BH(aA) + BC

These routines perform the Hermitian rank 2k operation C + (ad)BY + B(aA)® + BC or
C <« (aA) B + BH (aA) + BC where o and 8 are scalars, C is a Hermitian matrix, and A and B
are general matrices. This routine returns immediately if n or k is less than or equal to zero. If Idc
is less than one or less than n, an error flag is set and passed to the error handler. For trans equal
to blas_no_trans, and if Ida is less than one or less than n, or if Idb is less than one or less than n,
an error flag is set and passed to the error handler. For trans equal to blas_trans, and if Ida is less
than one or less than k, or if Idb is less than one or less than k, an error flag is set and passed to
the error handler.
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These interfaces encompass the Legacy BLAS routine xHER2K.

Extended precision and mixed precision are permitted.

This routine has the same specification as in Chapter 2, except that extended precision and
mixed precision are permitted.

e Fortran 95 binding:
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SUBROUTINE her2k( a, b, ¢ [, uplo] [, trans] [, alphal [, betal
[, precl )
COMPLEX (<wp>) , INTENT(IN) :: <aa>
COMPLEX (<wp>), INTENT(IN) :: <bb>
COMPLEX (<wp>), INTENT(INQUT) :: c(:,:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>) , INTENT(IN), OPTIONAL :: alpha
REAL(<wp>), INTENT(IN), OPTIONAL :: beta
TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where
<aa> ::= a(:,:) or a(:)
<bb> = b(:,:) or b(:)
and

¢ has shape (n,n)

a and b have shape (n,k) if trans = blas_no_trans (the default)
(k,n) if trans /= blas_no_trans
(n) if rank 1

Rank a | Rank b | trans | Operation
2 2 N | C < aABY + aBAY +BC
2 2 T | C+ aA¥”B+aB"A+BC
1 1 - C <+ aab® + aba? + pC

The table defining the operation as a function of the operator arguments is identical to
Chapter 2.

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally differ from those of c,
alpha and beta.

e Fortran 77 binding:

SUBROUTINE BLAS_xHER2K{_a_b}{_X}( UPLO, TRANS, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC] )
INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO [, PREC]
<ctype> ALPHA

<rtype> BETA

<ctype> A(C LDA, * )

<ctype> B( LDB, * )

<ctype> c( LDC, * )
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The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if a b is present then _a is the type of A and b is the type of B. The suffix X is present
if and only if PREC is present. One or both of the suffixes _a_b and _X must be present.

e C binding:

void BLAS_xher2k{_a_b}{_x}( enum blas_order_type order,
enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k,
CSCALAR_IN alpha, const CARRAY A, int 1lda,
const CARRAY b, int 1db,
RSCALAR_IN beta, CARRAY c, int 1ldc
[, enum blas_prec_type prec]l );

The types of alpha, a, b, beta and ¢ are governed according to the rules of mixed precision
arguments set down in section 4.3. The prefix x is the floating point type of the arguments,
but if _a_b is present then _a is the type of argument a and _b is the type of argument b. The
suffix x is present if and only if prec is present. One or both of the suffixes _a_b and _x must
be present.

45.6 Environmental Enquiry

FPINFO_X (Environmental enquiry)
This routine queries for machine-specific floating point characteristics.

e Fortran 95 binding:

INTEGER FUNCTION fpinfo_x( cmach, prec )
TYPE (blas_cmach_type), INTENT (IN) :: cmach
TYPE (blas_prec_type), INTENT (IN) :: prec

e Fortran 77 binding:

INTEGER FUNCTION BLAS_FPINFO_X( cmach, prec )
INTEGER cmach, prec

e C binding:

int BLAS_fpinfo_x( enum blas_cmach_type cmach,
enum blas_prec_type prec );
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