Annex B

Legacy BLAS

B.1 Introduction

This chapter addresses additional language bindings for the original Level 1, 2, and 3 BLAS. The
Level 1, 2, and 3 BLAS will hereafter be referred to as the Legacy BLAS.

B.2 C interface to the Legacy BLAS

This section gives a detailed discussion of the proposed C interface to the legacy BLAS. Every
mention of “BLAS” in this chapter should be taken to mean the legacy BLAS. Each interface
decision is discussed in its own section. Each section also contains a Considered methods subsection,
where other solutions to that particular problem are discussed, along with the reasons why those
options were not chosen. These Considered methods subsections are indented and italicized in order
to distinguish them from the rest of the text.

It is largely agreed among the group (and unanimous among the vendors) that user demand
for a C interface to the BLAS is insufficient to motivate vendors to support a completely separate
standard. This proposal therefore confines itself to an interface which can be readily supported on
top of the already existing Fortran 77 callable BLAS (i.e., the legacy BLAS).

The interface is expressed in terms of ANSI/ISO C. Very few platforms fail to provide ANSI/ISO
C compilers at this time, and for those platforms, free ANSI/ISO C compilers are almost always
available (eg., gcc).

B.2.1 Naming scheme

The naming scheme consists of taking the Fortran 77 routine name, making it lower case, and
adding the prefix cblas_. Therefore, the routine DGEMM becomes cblas_dgemm.

Considered methods

Various other naming schemes have been proposed, such as adding C_ or c_ to the
name. Most of these schemes accomplish the requirement of separating the Fortran 77
and C name spaces. It was argued, however, that the addition of the blas prefix unifies
the naming scheme in a logical and useful way (making it easy to search for BLAS use
in a code, for instance), while not placing too great a burden on the typist. The letter ¢
is used to distinguish this language interface from possible future interfaces.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 181

B.2.2 Indices and |_ AMAX

The Fortran 77 BLAS return indices in the range 1 < I < N (where N is the number of entries
in the dimension in question, and I is the index), in accordance with Fortran 77 array indexing
conventions. This allows functions returning indices to be directly used to index standard arrays.
The C interface therefore returns indices in the range 0 < I < N for the same reason.

The only BLAS routine which returns an index is the function I_AMAX. This function is declared
to be of type CBLAS_INDEX, which is guaranteed to be an integer type (i.e., no cast is required when
assigning to any integer type). CBLAS_INDEX will usually correspond to size_t to ensure any array
can be indexed, but implementors might choose the integer type which matches their Fortran 77
INTEGER, for instance. It is defined that zero is returned as the index for a zero length vector (eg.,
For N =0, I_AMAX will always return zero).

B.2.3 Character arguments

All arguments which were characters in the Fortran 77 interface are handled by enumerated types
in the C interface. This allows for tighter error checking, and provides less opportunity for user
error. The character arguments present in the Fortran 77 interface are: SIDE, UPLO, TRANSPOSE,
and DIAG. This interface adds another such argument to all routines involving two dimensional
arrays, ORDER. The standard dictates the following enumerated types:

enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};

enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};
enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};

enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};

enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};

Considered methods

The other two most commonly suggested methods were accepting these arguments as
either char * or char. It was noted that both of these options require twice as many
comparisons as normally required to branch (so that the character may be either upper
or lower case). Both methods also suffered from ambiguity (what does it mean to have
DIAG="H’, for instance). If char was chosen, the words could not be written out as they
can for the Fortran 77 interface (you couldn’t write ”NoTranspose”). If char * were
used, some compilers might fail to optimize string constant use, causing unnecessary
Memory usage.

The main advantage of enumerated data types, however, is that much of the error
checking can be done at compile time, rather than at runtime (i.e., if the user fails to
pass one of the valid options, the compiler can issue the error).

There was much discussion as to whether the integer values should be specified, or
whether only the enumerated names should be so specified. The group could find no
substansive way in which specifying the integer values would restrict an implementor,
and specifying the integer values was seen as an aid to inter-language calls.

B.2.4 Handling of complex data types

All complex arguments are accepted as void *. A complex element consists of two consecutive
memory locations of the underlying data type (i.e., float or double), where the first location
contains the real component, and the second contains the imaginary part of the number.

182 ANNEX B. LEGACY BLAS

In practice, programmers’ methods of handling complex types in C vary. Some use various data
structures (some examples are discussed below). Others accept complex numbers as arrays of the
underlying type.

Complex numbers are accepted as void pointers so that widespread type casting will not be
required to avoid warning or errors during compilation of complex code.

An ANSI/ISO committee is presently working on an extension to ANSI/ISO C which defines
complex data types. The definition of a complex element is the same as given above, and so the
handling of complex types by this interface will not need to be changed when ANSI/ISO C standard
is extended.

Considered methods

Probably the most strongly advocated alternative was defining complex numbers via
a structure such as
struct NON_PORTABLE COMPLEX {float r; float i;}; The main problem with this
solution is the lack of portability. By the ANSI/ISO C standard, elements in a structure
are not guaranteed to be contiguous. With the above structure, padding between elements
has been experimentally observed (on the CRAY T3D), so this problem is not purely
theoretical.

To get around padding problems within the structure, a structure such as
struct NON_PORTABLE COMPLEX {float v[21;}; has been suggested. With this struc-
ture there will obviously be no padding between the real and imaginary parts. However,
there still exists the possibility of padding between elements within an array. More im-
portantly, this structure does not lend itself nearly as well as the first to code clarity.

A final proposal is to define a structure which may be addressed the same as the
one above (i.e., ptr->r, ptr->i), but whose actual definition is platform dependent.
Then, hopefully, various vendors will either use the above structure and ensure via
their compilers its contiguousness, or they will create a different structure which can be
accessed in the same way.

This requires vendors to support something which is not in the ANSI C standard,
and so there is no way to ensure this would take place. More to the point, use of such a
structure turns out to not offer much in the way of real advantage, as discussed in the
following section.

All of these approaches require the programmer to either use the specified data type
throughout the code which will call the BLAS, or to perform type casting on each BLAS
call. When complex numbers are accepted as void pointers, no type casting or data type
is dictated, with the only restriction being that a complexr number have the definition
given above.

B.2.5 Return values of complex functions

BLAS routines which return complex values in Fortran 77 are instead recast as subroutines in the
C interface, with the return value being an output parameter added to the end of the argument
list. This allows the output parameter to be accepted as void pointers, as discussed above.
Further, the name is suffixed by _sub. There are two main reasons for this name change.
First, the change from a function to a subroutine is a significant change, and thus the name should
reflect this. More importantly, the “traditional” name space is specifically reserved for use when the
forthcoming ANSI/ISO C extension is finalized. When this is done, this C interface will be extended

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 183

to include functions using the “traditional” names which utilize the new ANSI/ISO complex type
to return the values.

Considered methods

This is the area where use of a structure is most desired. Again, the most common
suggestion is a structure such as struct NON_PORTABLE_COMPLEX {float r; float i;};.
If one is willing to use this structure throughout one’s code, then this provides a
natural and convenient mechanism. If, however, the programmer has utilized a different
structure for complez, this ease of use breaks down. Then, something like the following

code fragment is required:

NON_PORTABLE_COMPLEX ctmp;
float cdot[2];

ctmp = cblas_cdotc(n, x, 1, y, 1);
cdot[0] = ctmp.r;
cdot[1] = ctmp.i;

which is certainly much less convenient than: cblas_cdotc_sub(n, x, 1, y, 1, cdot).

It should also be noted that the primary reason for having a function instead of a
subroutine is already invalidated by C’s lack of a standard complex type. Functions
are most useful when the result may be used directly as part of an in-line computation.
However, since ANSI/ISO C lacks support for complex arithmetic primitives or operator
overloading, complex functions cannot be standardly used in this way. Since the function
cannot be used as a part of a larger expression, nothing is lost by recasting it as a
subroutine; indeed a slight performance win may be obtained.

B.2.6 Array arguments

Arrays are constrained to being contiguous in memory. They are accepted as pointers, not as arrays
of pointers.

All BLAS routines which take one or more two dimensional arrays as arguments receive one
extra parameter as their first argument. This argument is of the enumerated type
enum CBLAS ORDER {CblasRowMajor=101, CblasColMajor=102};.
If this parameter is set to CblasRowMajor, it is assumed that elements within a row of the array(s)
are contiguous in memory, while elements within array columns are separated by a constant stride
given in the stride parameter (this parameter corresponds to the leading dimension [e.g. LDA] in
the Fortran 77 interface).

If the order is given as CblasColMajor, elements within array columns are assumed to be
contiguous, with elements within array rows separated by stride memory elements.

Note that there is only one CBLAS_ORDER parameter to a given routine: all array operands are
required to use the same ordering.

Considered methods

This solution comes after much discussion. C users appear to split roughly into two
camps. Those people who have a history of mizing C and Fortran 77 (in particular
making use of the Fortran 77 BLAS from C), tend to use column-magor arrays in order
to allow ease of inter-language operations. Because of the flexibility of pointers, this is

184

ANNEX B. LEGACY BLAS

not appreciably harder than using row-major arrays, even though C “natively” possesses
TOW-MAJoT Arrays.

The second camp of C users are not interested in overt C/Fortran 77 interoperability,
and wish to have arrays which are row-major, in accordance with standard C conven-
tions. The idea that they must recast their row-oriented algorithms to column-magjor
algorithms 1is unacceptable; many in this camp would probably not utilize any BLAS
which enforced a column-major constraint.

Because both camps are fairly widely represented within the target audience, it is
impossible to choose one solution to the exclusion of the other.

Column-major array storage can obuviously be supported directly on top of the legacy
Fortran 77 BLAS. Recent work, particularly code provided by D.P. Manley of DEC, has
shown that row-major array storage may also be supported in this way with little cost.
Appendiz B.2.12 discusses this issue in detail. To preview it here, we can say the level
1 and 8 BLAS require no extra operations or storage to support row-major operations
on top of the legacy BLAS. Level 2 real routines also require mo extra operations or
storage. Some complex level 2 routines involving the conjugate transpose will require
extra storage and operations in order to form explicit conjugates. However, this will
always involve vectors, not the matriz. In the worst case, we will need n extra storage,
and 3n sign changes.

One proposal was to accept arrays as arrays of pointers, instead of as a single pointer.
The problems with this approach are manifold. First, the existing Fortran 77 BLAS
could not be used, since they demand contiguous (though strided) storage. Second, this
approach requires users of standard C 2D arrays or 1D arrays to allocate and assign the
appropriate pointer array.

Beyond this, many of the vectors used in level 1 and level 2 BLAS come from rows
or columns of two dimensional arrays. Elements within columns of row-major arrays
are not uniformly strided, which means that a n-element column vector would need n
pointers to represent it. This then leads to vectors being accepted as arrays of pointers
as well.

Now, assuming both our one and two dimensional arrays are accepted as arrays of
pointers, we have a problem when we wish to perform sub-array access. If we wish to
pass an m X n subsection of a this array of pointers, starting at row ¢ and column j, we
must allocate m pointers, and assign them in a section of code such as:

float **A, **subA;

subA = malloc(m*sizeof (floatx*));
for (k=0; k != m; k++) subA[k] = A[i+k] + j;
cblas_rout(... subA ...);

The same operation must be done if we wish to use a row or column as a vector.
This is not only an inconvenience, but can add up to a non-negligible performance loss
as well.

A fiz for these problems is that one and two dimensional arrays be passed as arrays
of pointers, and then indices are passed in to indicate the sub-portion to access. Thus
you have a call that looks like: cblas_rout(... A, i, j, ...);. This solution still
requires some additional tweaks to allow using two dimensional array rows and columns
as vectors. Users presently using C 2D arrays or 1D arrays would have to malloc the

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 185

array of pointers as shown in the preceding example in order to use this kind of interface.
At any rate, a library accepting pointers to pointers cannot be supported on top of the
Fortran 77 BLAS, while one supporting simple pointers can.

If the programmer is utilizing the pointer to pointer style of array indexing, it is still
possible to use this library providing that the user ensures that the operand matriz is
contiguous, and that the rows are constantly strided. If this is the case, the user may
pass the operand matriz to the library in precicely the same way as with a 2D C array:
cblas_rout(... &A[i1[j] ...);.

Example 1: making a library call with a C 2D array:

double A[50][25]; /* standard C 2D array */

cblas_rout(CblasRowMajor, ... &A[i]l[j], 25, ...);

Example 2: Legal use of pointer to pointer style programming and the
CBLAS

double **A, *p;

A = malloc(M);
p = malloc (M*N*sizeof (double));
for (i=0; i < M; i++) A[i] = &pl[i*N];

cblas_rout(CblasRowMajor, ... &A[il[j]l, N, ...);

Example 3: Illegal use of pointer to pointer style programming and the
CBLAS

double **A, *p;

A = malloc(M);
p = malloc (MxN*sizeof (double));
for (i=0; i < M; i++) A[i] = malloc(N*sizeof (double));

cblas_rout(CblasRowMajor, ... &A[i]l[j]1, N, ...);

Note that Example 3 is illegal because the rows of A have no guaranteed stride.

B.2.7 Aliasing of arguments

Unless specified otherwise, only input-only arguments (specified with the const qualifier), may be
legally aliased on a call to the C interface to the BLAS.

Considered methods

The ANSI C standard allows for the aliasing of output arguments. However, allowing this often
carries a substantial performance penalty. This, along with the fact that Fortran 77 (which we
hope to call for optimized libraries) does not allow aliasing of output arguments, led us to make
this restriction.

186 ANNEX B. LEGACY BLAS

B.2.8 C interface include file

The C interface to the BLAS will have a standard include file, called cblas.h, which minimally
contains the definition of the CBLAS types and ANSI/ISO C prototypes for all BLAS routines.
It is not an error to include this file multiple times. Refer to section B.2.11 for an example of a
minimal cblas.h.
ADVICE TO THE IMPLEMENTOR:

Note that the vendor is not constrained to using precisely this include file; only the enumerated type
definitions are fully specified. The implementor is free to make any other changes which are not
apparent to the user. For instance, all matriz dimensions might be accepted as size_t instead of
int, or the implementor might choose to make some routines inline.

B.2.9 Error checking

The C interface to the legacy BLAS must supply error checking corresponding to that provided by
the reference Fortran 77 BLAS implementation.

B.2.10 Rules for obtaining the C interface from the Fortran 77

e The Fortran 77 routine name is changed to lower case, and prefixed by cblas_.

e All routines which accept two dimensional arrays (i.e., level 2 and 3), acquire a new parameter
of type CBLAS_ORDER as their first argument, which determines if the two dimensional arrays
are row or column major.

o Character arguments are replaced by the appropriate enumerated type, as shown in Sec-
tion B.2.3.

o Input arguments are declared with the const modifier.

e Non-complex scalar input arguments are passed by value. This allows the user to put in
constants when desired (eg., passing 10 on the command line for N).

o Complez scalar input arguments are passed as void pointers, since they do not exist as a

predefined data type in ANSI/ISO C.
e Array arguments are passed by address.
o Qutput scalar arguments are passed by address.

o Complez functions become subroutines which return the result via a void pointer, added as
the last parameter. The name is suffixed with _sub.

B.2.11 cblas.h include file

The cblas.h include file can be found on the BLAS Technical Forum webpage:

http://www.netlib.org/blas/blast-forum/cblas.h

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 187

B.2.12 Using Fortran 77 BLAS to support row-major BLAS operations

This section is not part of the standard per se. Rather, it exists as an advice to the implementor
on how row-major BLAS operations may be implemented using column-major BLAS. This allows
vendors to leverage years of Fortran 77 BLAS developement in producing the C BLAS.

Before this issue is examined in detail, a few general observations on array storage are helpful.
We must distinguish between the matrix and the array which is used to store the matrix. The
matrix, and its rows and columns, have mathematical meaning. The array is simply the method of
storing the matrix, and its rows and columns are significant only for memory addressing.

Thus we see we can store the columns of a matrix in the rows of an array, for instance. When
this occurs in the BLAS, the matrix is said to be stored in transposed form.

A row-major array stores elements along a row in contiguous storage, and separates the column
elements by some constant stride (often the actual length of a row). Column-major arrays have
contiguous columns, and strided rows. The importance of this is to note that a row-major array
storing a matrix in the natural way, is a transposed column-major array (i.e., it can be thought of
as a column-major array where the rows of the matrix are stored in the columns of the array).

Similarly, an upper triangular row-major array corresponds to a transposed lower triangular
column-major array (the same is true in reverse [i.e., lower-to-upper], obviously). To see this,
simply think of what a upper triangular matrix stored in a row-major array looks like. The first n
entries contain the first matrix row, followed by a non-negative gap, followed by the second matrix
TOwW.

If this same array is viewed as column-major, the first n entries are a column, instead of a row,
so that the columns of the array store the rows of the matrix (i.e., it is transposed). This means
that if we wish to use the Fortran 77 (column-major) BLAS with triangular matrices coming from
C (possibly row-major), we will be reversing the setting of UPLO, while simultaneously reversing
the setting of TRANS (this gets slightly more complicated when the conjugate transpose is involved,
as we will see).

Finally, note that if a matrix is symmetric or Hermitian, its rows are the same as its columns,
so we may merely switch UPLO, without bothering with TRANS.

In the BLAS, there are two separate cases of importance. one dimensional arrays (storage for
vectors) have the same meaning in both C and Fortran 77, so if we are solving a linear algebra
problem who’s answer is a vector, we will need to solve the same problem for both languages.
However, if the answer is a matrix, in terms of calling routines which use column-major storage
from one using row-major storage, we will want to solve the transpose of the problem.

To get an idea of what this means, consider a contrived example. Say we have routines for
simple matrix-matrix and matrix-vector multiply. The vector operation is y < A X z, and the
matrix operation is C < A x B. Now say we are implementing these as calls from row-major
array storage to column-major storage. Since the matrix-vector multiply’s answer is a vector, the
problem we are solving is remains the same, but we must remember that our C array A is a Fortran
77 AT. On the other hand, the matrix-matrix multiply has a matrix for a result, so when the
differing array storage is taken into account, the problem we want to solve is C7 < BT x AT

This last example demonstrates another general result. Some level 3 BLAS contain a SIDE
parameter, determining which side a matrix is applied on. In general, if we are solving the transpose
of this operation, the side parameter will be reversed.

With these general principles, it is possible to show that all that row-major level 3 BLAS can
be expressed in terms of column-major BLAS without any extra array storage or extra operations.
In the level 2 BLAS, no extra storage or array accesses are required for the real routines. Complex
routines involving the conjugate transpose, however, may require a n-element temporary, and up

188 ANNEX B. LEGACY BLAS

to 3n more operations (vendors may avoid all extra workspace and operations by overloading the
TRANS option for the level 2 BLAS: letting it also allow conjugation without doing the transpose).
The level 1 BLAS, which deal exclusively with vectors, are unaffected by this storage issue.

With these ideas in mind, we will now show how to support a row-major BLAS on top of a
column major BLAS. This information will be presented in tabular form. For brevity, row-major
storage will be referred to as coming from C (even though column-major arrays can also come from
C), while column-major storage will be referred to as F77.

Each table will show a BLAS invocation coming from C, the operation that the BLAS should
perform, the operation required once F77 storage is taken into account (if this changes), and the call
to the appropriate F77 BLAS. Not every possible combination of parameters is shown, since many
are simply reflections of another (i.e., when we are applying the Upper, NoTranspose becomes
Lower, Transpose rule, we will show it for only the upper case. In order to make the notation
more concise, let us define Z to be conj(z).

Level 2 BLAS
GEMV

C call cblas_cgemv(CblasRowMajor, CblasNoTrans, m, n, a, A, lda, x, incx, (3, y, incy)
op y aAx + By
F77 call CGEMV(’T’, n, m, «, A, 1lda, x, incx, §, y, incy)

C call cblas_cgemv(CblasRowMajor, CblasTrans, m, n, «, A, lda, x, incx, f, y, incy)
op y — aATx + By
F77 call CGEMV(’N’, n, m, a, A, lda, x, incx, f, y, incy)

C call cblas_cgemv(CblasRowMajor, CblasConjTrans, m, n, a, A, 1lda, x, incx, 3, y, incy)
op y «— oAz + By = (7 « @ATT + BYy) _
F77 call CGEMV(’N’, n, m, @, A, 1da, T, 1, 3, ¥, incy)

Note that we switch the value of transpose to handle the row/column major ordering difference.
In the last case, we will require n elements of workspace so that we may store the conjugated vector
. Then, we set y = 7, and make the call. This gives us the conjugate of the answer, so we once
again set y = 7. Therefore, we see that to support the conjugate transpose, we will need to allocate
an n-element vector, and perform 2m + n extra operations.

SYMV

SYMYV requires no extra workspace or operations.
C call cblas_csymv(CblasRowMajor, CblasUpper, n, «, A, 1da, x, incx, 3, y, incy)
op y <+ oAz + By =y + aATz + By
F77 call CSYMV(’L’, n, a, A, 1da, x, incx, (3, y, incy)

HEMV

HEMYV routine requires 3n conjugations, and n extra storage.
C call cblas_chemv(CblasRowMajor, CblasUpper, n, «, A, lda, x, incx, 3, y, incy)
op y <+ adz + By =y + oAz + By = (y « aATz + By)
F77 call CHEMV(’L’, n, @, A, 1da, T, incx, B3, ¥, incy)

10

11

12

13

14

15

16

17

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 189

TRMV/TRSV

C call cblas_ctrmv(CblasRowMajor, CblasUpper, CblasNoTrans, diag, n, A, 1lda, x, incx)
op T+ Az
F77 call CTRMV(’L’, ’T’, diag, n, A, 1lda, x, incx)

C call cblas_ctrmv(CblasRowMajor, CblasUpper, CblasTrans, diag, n, A, lda, x, incx)
op z+— ATz
F77 call CTRMV(’L’, ’N’, diag, n, A, 1lda, x, incx)

C call cblas_ctrmv(CblasRowMajor, CblasUpper, CblasConjTrans, diag, n, A, lda, x, incx)
op z+ Aflz = (z = AT7)
F77 call CTRMV(’L’, ’N’, diag, n, A, lda, T, incx)

Again, we see that we will need some extra operations when we are handling the conjugate
transpose. We conjugate x before the call, giving us the conjugate of the answer we seek. We then
conjugate this again to return the correct answer. This routine therefore needs 2n extra operations
for the complex conjugate case.

The calls with the C array being Lower are merely the reflection of these calls, and thus are
not shown. The analysis for TRMYV is the same, since it involves the same principle of what a
transpose of a triangular matrix is.

GER/GERU

This is our first routine that has a matrix as the solution. Recalling that this means we solve the
transpose of the original problem, we get:

C call cblas_cgeru(CblasRowMajor, m, n, &, x, incx, y, incy, A, lda)

Cop A+ azyT + A

F77op AT « ayaT + AT

F77 call CGERU(n, m, a, y, incy, x, incx, A, 1lda)

No extra storage or operations are required.

GERC

C call cblas cgerc(CblasRowMajor, m, n, a, x, incx, y, incy, A, 1lda)
Cop Aoyl + 4

F77op AT « a(zy®)T + AT = oz’ + AT

F77 call CGERU(n, m, a, ¥, incy, x, incx, A, 1lda)

Note that we need to allocate n-element workspace to hold the conjugated y, and we call GERU,
not GERC.

HER

C call cblas_cher(CblasRowMajor, CblasUpper, n, a, x, incx, A, 1lda)
Cop Aoz + A

Fr7op AT « azaT + AT

F77 call CHER(C’L’, n, o, T, 1, A, 1da)

Again, we have an n-element workspace and n extra operations.

190

HER2

C call
Cop
F77 op
F77 call

ANNEX B. LEGACY BLAS

cblas_cher2(CblasRowMajor, CblasUpper, n, «, x, incx, y, incy, A, 1lda)
A azyf + y(az)? + A

AT — aga” +amy” + AT = ay(@) " +z(am)T + AT

CHER2(’L’, n, «, ¥, 1, T, 1, A, 1lda)

So we need 2n extra workspace and operations to form the conjugates of z and y.

SYR

C call
Cop
F77 op
F77 call

cblas_ssyr(CblasRowMajor, CblasUpper, n, «, x, incx, A, 1lda)
Aoz’ + A

AT azz™ 4+ AT

SSYR(’L’, n, «, x, incx, A, 1lda)

No extra storage or operations required.

SYR2

C call
C op
F77 op
F77 call

cblas_ssyr2(CblasRowMajor, CblasUpper, n, «a, x, incx, y, incy, A, lda)
A+ azyT +ayzT + A

AT — ayxT + axy™ + AT

SSYR2(’L’, n, «, y, incy, x, incx, A, 1lda)

No extra storage or operations required.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 191

Level 3 BLAS

GEMM

C call cblas_cgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, «, A, 1lda, B, 1db, 8, C, 1ldc)
C op C < aAB+ 8C

F77op CT « aBTAT +8CT

F77 call CGEMM(°N’, °N’, n, m, k, «, B, 1db, A, lda, ﬂ, C, 1ldc)

C call cblas_cgemm(CblasRowMajor, CblasNoTrans, CblasTrans, m, n, k, «, A, lda, B, 1db, 3, C, 1ldc)
C op C « aABT + 8C

F77op CT «+ aBAT +pC”

F77 call CGEMM(’T’, °N’, n, m, k, «, B, 1db, A, lda, ﬂ, C, 1ldc)

C call cblas_cgemm(CblasRowMajor, CblasNoTrans, CblasConjTrans, m, n, k, «, A, lda, B, 1db, £, C, 1ldc)
C op C « aABY® + BC

F77op CT « aBAT +8C7

F77 call CGEMM(°C’, ’N’, n, m, k, «, B, 1db, A, 1da, B3, C, 1dc)

C call cblas_cgemm(CblasRowMajor, CblasTrans, CblasNoTrans, m, n, k, «, A, lda, B, 1db, 3, C, 1ldc)
C op C + aATB + 8C

F77op CT «aBTA+8CT

F77 call CGEMM(°N’, ’T’, n, m, k, «, B, 1db, A, 1da, B, C, 1ldc)

C call cblas_cgemm(CblasRowMajor, CblasTrans, CblasTrans, m, n, k, a, A, lda, B, 1db, 3, C, 1ldc)

C op C + aATBT + 8C

F77op CT < aBA+BCT

F77 call CGEMM(°T’, ’T’, n, m, k, «, B, 1db, A, 1da, B, C, 1ldc)

C call cblas_cgemm(CblasRowMajor, CblasTrans, CblasConjTrans, m, n, k, «, A, lda, B, 1db, 8, C, 1ldc)
Cop C + aA"BY +C

F77op CT « aBA+ BCT

F77 call CGEMM(’C’, ’T’, n, m, k, «, B, 1db, A, 1da, B3, C, ldc)

C call cblas_cgemm(CblasRowMajor, CblasConjTrans, CblasNoTrans, m, n, k, «, A, lda, B, 1db, £, C, 1ldc)
C op C «+ aA¥B +8C

F77op CT < aBTA+3CT

F77 call CGEMM(°N’, °’C’, n, m, k, «, B, 1db, A, 1da, B, C, 1ldc)

C call cblas_cgemm(CblasRowMajor, CblasConjTrans, CblasTrans, m, n, k, «, A, lda, B, 1db, 8, C, 1ldc)
C op C «+ aA"BT 4+ pC

F77op CT « aBA+ BCT

F77 call CGEMM(’T’, ’C’, n, m, k, o, B, 1db, A, 1da, B3, C, 1dc)

C call cblas_cgemm(CblasRowMajor, CblasConjTrans, CblasConjTrans, m, n, k, a, A, lda, B, 1db, 3, C, 1ldc)
C op C «+ aA¥BH 4 gC

F77op CT < aBA+ BCT

F77 call CGEMM(°C’, ’C’, n, m, k, «, B, 1db, A, 1da, B, C, 1dc)

192 ANNEX B. LEGACY BLAS

SYMM/HEMM !

2
C call cblas_chemm(CblasRowMajor, CblasLeft, CblasUpper, m, n, «, A, 1lda, B, 1db, §#, C, 1ldc)

3
Cop C <~ aAB + 8C
F77op CT « aBTAT + 8CT !
F77 call CHEMM(’R’, °’L’, n, m, «, A, 1da, B, 1db, 3, C, 1ldc) 5

6
C call cblas_chemm(CblasRowMajor, CblasRight, CblasUpper, m, n, «, A, 1da, B, 1db, 3, C, 1ldc)
Cop C «+ aBA+ C 8
F77op CT « aATBT 4+ pCT 0

F77 call CHEMM(’L’, ’L’, n, m, «, A, 1da, B, 1ldb, B, C, 1ldc) 10

11

12

SYRK 13
C call cblas_csyrk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, «a, A, 1lda, #, C, 1ldc) 14
Cop C + aAAT + 5C 15
F77op C7T « aAAT +8CT 16
F77 call CSYRK(’L’, ’T’, n, k, «, A, 1da, B, 1db, 3, C, 1ldc) 17

18
C call cblas_csyrk(CblasRowMajor, CblasUpper, CblasTrans, n, k, «, A, 1lda, 3, C, 1ldc)

C op C « aATA+ BC
F77op CT « aATA+BCT
F77 call CSYRK(’L’, °N’, n, k, «, A, 1lda, B, 1db, ,B, C, 1ldc)

19
20
21
22

In reading the above descriptions, it is important to remember a few things. First, the symmetric *

matrix is C, and thus we change UPLO to accommodate the differing storage of C. TRANSPOSE is
then varied to handle the storage effects on A.

24

25

26

27

HERK 28
C call cblas_cherk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, «, A, 1da, 3, C, 1ldc) 29
C op C + aAAH + pC 30

F77op C7T « aAAT +8CT
F77 call CHERK(’L’, °C’, n, k, «a, A, 1da, B, 1db, 3, C, 1ldc)

31

32

C call cblas_cherk(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, a, A, 1da, 3, C, 1ldc) *

Cop C adlid{BC y
F77op CT « aATA+BCT 35
F77 call CHERK(’L’, °N’, n, k, «, A, 1da, B, 1db, B, C, 1ldc) 36
37

38

SYR2K 89

40
C call cblas_csyr2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, «, A, lda, B, 1db, 3, C, 1ldc)

C op C + aABT + aBAT + 8C
F77op C7 « aBAT + aAB” + 8CT = aAB” + aBAT + BC” 42
F77 call CSYR2K(’L’, °T’, n, k, o, A, 1lda, B, 1db, ﬂ, C, 1ldc) 43

41

44
C call cblas_csyr2k(CblasRowMajor, CblasUpper, CblasTrans, n, k, «, A, 1lda, B, 1db, [, C, 1ldc)

C op C + aATB+aBTA+ BC
F77op CT « aBTA+aA"B+8CT =aA"B+aBTA+pCT 46
F77 call CSYR2K(’L’, ’N’, n, k, o, A, 1da, B, 1db, ﬂ, C, 1ldc) a7

48

45

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 193

Note that we once again wind up with an operation that looks the same from C and Fortran
77, saving that the C operations wishes to form C”', instead of C. So once again we flip the setting
of UPLO to handle the difference in the storage of C. We then flip the setting of TRANS to handle
the storage effects for A and B.

HER2K
C call cblas_cher2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, «, A, lda, B, 1db, 3, C, 1ldc)
C op C + aAB® +aBA" + B8C

F77op C7T « aBAT +aABT + 8CT =aABT + aBAT + pC”
F77 call CHER2K(’L’, °C’, n, k, @, A, 1lda, B, 1db, 8, C, 1dc)

C call cblas_cher2k(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, «, A, lda, B, 1db, 3, C, 1ldc)
C op C+ aA"B+aB®A+BC

F77op CT < aBTA+aATB+B8CT =aATB +aBTA+ pC”

F77 call CHER2K(°L’, °N’, n, k, @, A, 1lda, B, 1db, £, C, 1ldc)

TRMM/TRSM

Because of their identical use of the SIDE, UPLO, and TRANSA parameters, TRMM and TRSM share
the same general analysis. Remember that A is a triangular matrix, and thus when we handle its
storage by flipping UPLO, we implicitly change its TRANS setting as well. With this in mind, we

have:
C call cblas_ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasNoTrans, diag, m, n, «, A, 1lda, B, 1ldb)

C op B + aAB
F77op BT < aBTAT
F77 call CTRMM(’R’, °L’, ’N’, diag, n, m, a, A, 1da, B, 1db)

C call cblas_ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasTrans, diag, m, n, «, A, lda, B, 1db)
Cop B+ aATB

F77op BT « aBTA

F77 call CTRMM(’R’, °L’, ’T’, diag, n, m, o, A, lda, B, 1db)

C call cblas_ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasConjTrans, diag, m, n, «, A, lda, B, 1db)
Cop B+ aA"B

F77op BT + aBTA

F77 call CTRMM(’R’>, °L’, °C’, diag, n, m, o, A, 1lda, B, 1db)

Banded routines

The above techniques can be used for the banded routines only if a C (row-major) banded array
has some sort of meaning when expanded as a Fortran banded array. It turns out that when this
is done, you get the transpose of the C array, just as in the dense case.

In Fortran 77, the banded array is an array whose rows correspond to the diagonals of the
matrix, and whose columns contain the selected portion of the matrix column. To rephrase this,
the diagonals of the matrix are stored in strided storage, and the relevant pieces of the columns of
the matrix are stored in contiguous memory. This makes sense: in a column-based algorithm, you
will want your columns to be contiguous for efficiency reasons.

In order to ensure our columns are contiguous, we will structure the banded array as shown
below. Notice that the first Ky rows of the array store the superdiagonals, appropriately spaced

194 ANNEX B. LEGACY BLAS

to line up correctly in the column direction with the main diagonal. The last K rows contain the
subdiagonals.

______ Super diagonal KU
——————————— Super diagonal 2
____________ Super diagonal 1
_____________ main diagonal (D)
____________ Sub diagonal 1
___________ Sub diagonal 2
______ Sub diagonal KL

If we have a row-major storage, and thus a row-oriented algorithm, we will similarly want our
rows to be contiguous in order to ensure efficiency. The storage scheme that is thus dictated is
shown below. Notice that the first K columns store the subdiagonals, appropriately padded to
line up with the main diagonal along rows.

KL
|
|
|
|
|

Now, let us contrast these two storage schemes. Both store the diagonals of the matrix along
the non-contiguous dimension of the matrix. The column-major banded array stores the matrix
columns along the contiguous dimension, whereas the row-major banded array stores the matrix
rows along the contiguous storage.

This gives us our first hint as to what to do: rows stored where columns should be, indicated,
in the dense routines, that we needed to set a transpose parameter. We will see that we can do
this for the banded routines as well.

We can further note that in the column-major banded array, the first part of the non-contiguous
dimension (i.e. the first rows) store superdiagonals, whereas the first part of the non-contiguous
dimension of row-major arrays (i.e., the first columns) store the subdiagonals.

We now note that when you transpose a matrix, the superdiagonals of the matrix become the
subdiagonals of the matrix transpose (and vice versa).

Along the contiguous dimension, we note that we skip Ky elements before coming to our first
entry in a column-major banded array. The same happens in our row-major banded array, except
that the skipping factor is K.

All this leads to the idea that when we have a row-major banded array, we can consider it as
a transpose of the Fortran 77 column-major banded array, where we will swap not only m and n,
but also Ky and K7. An example should help demonstrate this principle. Let us say we have the

. 1 3 5 7
matrix A = l 9 4 6 8]
If we express this entire array in banded form (a fairly dumb thing to do, but good for
example purposes), we get Ky = 3, K = 1. In row-major banded storage this becomes:

X 135 7
C”_[2468X

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CINTERFACE TO THE LEGACY BLAS 195

So, we believe this should be the transpose if interpreted as a Fortran 77 banded array. The
matrix transpose, and its Fortran 77 banded storage is shown below:

Ly X 2
1 4

AT — gg ~F=| 3 6
S 5 8

7 X

Now we simply note that since Cy is row major, and F} is column-major, they are actually the
same array in memory.

With the idea that row-major banded matrices produce the transpose of the matrix when
interpreted as column-major banded matrices, we can use the same analysis for the banded BLAS
as we used for the dense BLAS, noting that we must also always swap Ky and Kj.

Packed routines

Packed routines are much simpler than banded. Here we have a triangular, symmetric or Hermitian
matrix which is packed so that only the relevant triangle is stored. Thus if we have an upper tri-
angular matrix stored in column-major packed storage, the first element holds the relevant portion
of the first column of the matrix, the next two elements hold the relevant portion of the second
column, etc.

With an upper triangular matrix stored in row-major packed storage, the first N elements hold
the first row of the matrix, the next N — 1 elements hold the next row, etc.

Thus we see in the Hermitian and symmetric cases, to get a row-major packed array correctly
interpreted by Fortran 77, we will simply switch the setting of UPLO. This will mean that the rows
of the matrix will be read in as the columns, but this is not a problem, as we have seen before.
In the symmetric case, since A = AT the column and rows are the same, so there is obviously no
problem. In the Hermitian case, we must be sure that the imaginary component of the diagonal is
not used, and it assumed to be zero. However, the diagonal element in a row when our matrix is
upper will correspond to the diagonal element in a column when our matrix is called lower, so this
is handled as well.

In the triangular cases, we will need to change both UPLO and TRANS, just as in the dense
routines.

With these ideas in mind, the analysis for the dense routines may be used unchanged for packed.

