200 ANNEX C. JOURNAL OF DEVELOPMENT

C.2 Distributed-memory Dense BLAS

This document summarizes the discussions that took place during the meetings of the BLAS Tech-
nical Forum concerning the distributed-memory BLAS. The committee did not reach an agreement
on how to specify an interface for such a set of routines, however it was felt that this document
should keep a record of those discussions.

There has been much interest in the past few years in developing versions of the BLAS for
distributed-memory computers [50, 28, 3, 29, 13, 17, 15, 18, 8, 51]. Some of this research proposed
parallelizing the BLAS [45, 50, 17, 15, 11, 18, 49, 51], and some implemented a few important BLAS
routines [50, 43, 17, 15, 11, 18, 49, 51|, such as matrix-matrix multiplication [31, 5, 36, 44, 4, 16, 52]
or triangular system solve [34, 40, 41, 10].

Based on this research work, it was agreed that an interface for the distributed-memory BLAS
should have the following features:

e The calling sequence definitions should be simple and similar in all targeted programming
languages.

e The interface should be effective for the developement of large and high-quality dense linear
algebra software for distributed-memory computers.

e The interface should permit broad functionality to enable, facilitate and encourage the devel-
opment of current and related research projects.

The main advantages of establishing a distributed-memory dense BLAS standard are portability
and ease-of-use. In a distributed-memory environment in which the higher level routines and/or
abstractions are built upon lower level message-passing and computational routines the benefits of
standardization are particularly apparent. Furthermore, the definition of distributed-memory dense
basic linear algebra subprograms provides vendors with a clearly defined base set of routines that
they can implement efficiently, or in some cases provide hardware support for, thereby enhancing
scalability.

The goal of the distributed-memory dense BLAS interface simply stated should be to develop
a widely used standard for writing message-passing programs performing dense basic linear alge-
bra operations. As such the interface should establish a practical, portable, efficient and flexible
standard for distributed-memory dense basic linear algebra operations.

A complete list of goals follows.

e Design an Application Programming Interface (API) (not necessarily for compilers or a sys-
tem implementation library) well suited for distributed-memory dense basic linear algebra
computations.

e Allow efficient communication and computation: minimizing communication startup overhead
and volume, while maximizing load balance and local computational performance.

o Allow for re-use of existing message-passing interface standard [30] as well as local basic linear
algebra computational kernels such as the de facto standard BLAS.

e Allow for implementations that can be used in a heterogeneous environment.

e Define an interface that is not too different from current practice and provide extensions that
allow greater flexibility.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.2. DISTRIBUTED-MEMORY DENSE BLAS 201

¢ Define an interface that can be implemented on many vendors’ platforms, with no significant
changes in the underlying system software.

e Semantics of the interface should be language-and data-distribution independent.
e The interface should be designed to allow for thread-safety.

Such a distribute-memory BLAS standard should be intended for use by all those who want
to write portable programs performing dense linear algebra operations in Fortran 77, Fortran 90,
High Performance Fortran (HPF), C or C++. This includes individual application programmers,
developers of dense linear algebra software designed to run on parallel machines, and creators of
computational environment and tools. In order to be attrac- tive to this wide audience, the standard
must provide a simple, easy-to-use interface for the basic user while not semantically precluding the
high-performance computation and communication operations available on advanced computers.

The attractiveness of the distributed-memory dense BLAS at least partially stems from its
wide portability as well as the common occurence of dense linear algebra operations in numerical
simulations. These programs may run on distributed-memory multiprocessors, networks or clusters
of workstations, and combinations of all of these. In addition, shared-memory implementations are
possible. The message passing paradigm will not be made obsolete by architectures combining the
shared- and distributed-memory views, or by increases in network speeds. It thus should be both
possible and useful to implement such a standard on a great variety of machines, including those
”machines”, parallel or not, connected by a communication network.

The distributed-memory dense BLAS interface should provide many features intended to im-
prove performance on scalable parallel computers with specialized interprocessor communication
hardware. Thus, we expect that native, high-performance implementations of this interface could
be provided on such machines. At the same time, implementations of such a standard on top
of MPI or PVM will provide portability to workstation clusters and heterogeneous networks of
workstations.

During the discussions it was agreed that the distributed-memory BLAS should include

e A set of basic dense linear algebra computational operations
e Data-redistribution operations
e Environmental management and inquiry

e Bindings for various widely used programming languages, including high level languages such
as High Performance Fortran (HPF)

The distributed-memory dense BLAS interface should specify routines that operate on in-core
dense matrices. On entry, these routines assume that the data has been distributed on the processors
according to a specific data decomposition scheme that dictates the local storage of the data when it
resides in the processors’ memory. The data layout information as well as the local storage scheme
for these different matrix operands is conveyed to the routines via a descriptor that could be a
simple array of integers. The standard could mandate that the first entry of this array identifies
the type of the descriptor, i.e., the data distribution scheme it describes. This allows to specify the
distributed-memory dense BLAS interface indepen- dently from the data distribution.

The distributed-memory dense BLAS are executed by processes, rather than physical processors.
In general there may be several processes running on a processor, in which case it is assumed that
the runtime system handles the scheduling of processes. In the absence of such a runtime system,
the distributed-memory dense BLAS assume one process per processor. A process is defined as a



202 ANNEX C. JOURNAL OF DEVELOPMENT

basic unit or thread of execution that minimally includes a stack, registers, and memory. Multiple
processes may share a physical processor. The term processor refers to the actual hardware. Each
process is treated as if it were a processor: a process executing a program or subprogram calling
the distributed-memory dense BLAS must exist for the lifetime of the program’s or subprogram’s
run. Its execution should affect other processes’ execution only through the use of message-passing
calls. With this in mind, the term process is used in all sections of this chapter unless otherwise
specified.

The distributed-memory dense BLAS are thus executed by a collection of processes, that are
enclosed in a communication context. Similarly, a communication context or simply context
is associated with every global matrix. The use of a context provides the ability to have separate
“universes” of message passing. This means that a collection of processes can safely communicate
even if other (possibly overlapping) sets of processes are also communicating. Thus, a context is
a powerful mechanism for avoiding unintentional nondeterminism in message passing and provides
support for the design of safe, modular software libraries. In MPI, this concept is referred to as a
communicator.

A context partitions the communication space. A message sent from one context cannot be
received in another context. The use of separate communication contexts by distinct libraries (or
distinct library routine invocations) insulates communication internal to a specific library routine
from external communication that may be going on within the user’s program.

In most respects, the terms process collection and context can be used interchangeably. For
example, one may say that an operation is performed “in context X” or “in process collection
X”. The slight difference here is that the user may define two identical sets of processes (say, two
1 x 3 process grids, both of which use processes 0, 1, and 2), but each will be enclosed in its
own context, so that they are distinct in operation, even though they are indistinguishable from a
process collection standpoint.

Another example of the use of context might be to define a normal two-dimensional process
grid within which most computation takes place. However, in certain portions of the code it may
be more convenient to access the processes as a one-dimensional process grid, whereas at other
times one may wish, for instance, to share information among nearest neighbors. In such cases,
one will want each process to have access to three contexts: the two-dimensional process grid, the
one-dimensional process grid, and a small process grid that contains the process and its nearest
neighbors. Therefore, communication contexts allow one to

e create arbitrary groups of processes,
e create an indeterminate number of overlapping and/or disjoint collections of processes, and
e isolate a set of processes so that communication interference does not occur.

A distributed-memory dense BLAS function should create a grid of processes and its enclosing
context. This routine returns a context handle, which is a simple integer, assigned by the message-
passing library used by a given implementation of the distributed-memory dense BLAS to identify
the commu- nication context. Subsequent distributed-memory dense BLAS will be passed these
handles, which allow to determine from which context/process collec- tion a routine is being called.
The user should never alter or change these handles; they are opaque data objects that are only
meaningful for the distributed-memory dense BLAS routines.

A defined context consumes resources. It is therefore advisable to release contexts when they
are no longer needed. When the entire distributed-memory dense BLAS system is shut down, all
outstanding contexts are automatically freed.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.2. DISTRIBUTED-MEMORY DENSE BLAS 203

Some systems, such as MPI, supply their own version of context. For portability reasons, one
thus cannot assume that the communication contexts used by the user’s program are usable by the
distributed-memory dense BLAS. Therefore, the following interface allows to form a distributed-
memory dense BLAS context in reference to a user’s context.

The standard could mandate that the second entry of each descriptor is set to the value of the
communication context identifying the collection of processes onto which the data is distributed.

The routines of the distributed-memory dense BLAS could require that all global data (vectors
or matrices) be distributed across the processes prior to invoking the routines. The data layout
and local storage scheme are specified by a particular implementation, but are strictly speaking
not part of the standard. Global data is mapped to the local memories of processes assuming an
implementation-dependent data distribution scheme.

A descriptor is associated with each global array. This descriptor stores the information
required to establish the mapping between each global array entry and its corresponding process
and memory location. Array descriptors corresponding to distinct layouts are differentiated by
their first entry called the type of the descriptor. The data residing in the processes’ memory
is specified by a pointer. Splitting the local data from the layout’s description allows to specify
language-dependent interfaces for programming languages providing only simple data structures
such as Fortran 77 without affecting the functionality or ease-of-use of the interface.

Most of the distributed-memory dense BLAS should operate within the same communication
context, i.e., all distributed operands should be distributed on the same process grid. These oper-
ations are said to be intra-context operations. Only, very few distributed-memory dense BLAS
perform inter-context operations, in which case this feature should clearly be mentioned in the
procedure functionality.

Furthermore, all distributed operands involved in the operation should be distributed accord-
ingly to the same decomposition scheme. In other words, the type entry of each descriptor must
be equal.

All distributed-memory dense BLLAS operations could be collective, that is, all processes in
the context need to invoke the procedure even if certain processes are not involved in the operation.
This situation may happen for example when some processes don’t own any data to be operated
on.

The distributed-memory dense BLAS manages system memory that is used for buffering
messages and for storing internal representations of various distributed-memory dense BLAS objects
such as communication contexts, local arrays of data, etc. This memory is not directly accessible
to the user, and objects stored there are either private or opaque: their size and shape is not
visible to the user. Opaque objects are accessed via handles, which exist in user space. Private
objects cannot be accessed by the user, and are allocated and released within the same routine.
distributed-memory dense BLAS that operate on opaque objects are passed handle arguments to
access these objects. In addition to their use by distributed-memory dense BLAS calls for object
access, handles can participate in assignment and comparisons.

In Fortran and C, all handles have type integer and correspond to the same objects. This means
that the user’s program can pass a C handle to a Fortran subprogram and conversely, such that in
both languages the handle refers to the same object.

Opaque objects are allocated and deallocated by calls that are specific to each object type.
These are listed in the sections where the object are described. The calls accept a handle argument
of matching type. In an allocate call this is an ouput argument that returns a valid reference to
the object. In a call to deallocate this is an input/output argument which returns with an “invalid
handle” constant for each object type. Comparisons to this constant are used to test for validity
of the handle.



204 ANNEX C. JOURNAL OF DEVELOPMENT

A call to deallocate invalidates the handle and marks the object for deallocation. The object
is not accesible to the user after the call. However, distributed-memory dense BLAS need not
deallocate the object immediately. Any operation pending (at the time of the deallocate) that
involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are significant only at the process where the object was created,
and cannot be transferred to another process.

This design hides the internal representation used for distributed-memory dense BLAS internal
data structures, thus allowing similar calls in C and Fortran. It also avoids conflicts with the
typing rules in these languages, and easily allows for future extensions of functionality. Note that
the objects handles defined in the distributed-memory dense BLAS are exclusively used by the
underlying message passing library. The user data itself remains directly accessible in the user’s
program.

The explicit separating of handles in user space, objects in system space, allows space-reclaiming,
deallocation calls to be made at appropriate points in the user program. If the opaque objects
were in user space, one would have to be very careful not to go out of scope before any pending
operation requiring that object completed. The specified design allows an object to be marked for
deallocation, the user program can then go out of scope, and the object itself still persists until any
pending operations are complete. Again such a design cannot be applied in general to the user’s
data.

The requirement that handles support assignment/comparison is made since such operations
are common. This restricts the domain of possible implementations. Moreover, such a design has
been adopted by most message passing library interfaces such as the MPIL.

The intended semantics of opaque objects is that each opaque object is separate from each
other; each call to allocate such an object copies copies all the information required for that object.
Implementations may avoid excessive copying by substituting referencing for copying. For example,
a derived datatype may contain references to its components, rather then copies of its components.
In such cases, the implementation must maintain reference counts, and allocate and deallocate
objects such that the visible is as if the objects were copied. Such a design is particularly suitable
for communication contexts, because the amount of data one has to keep track of is small. However,
applying the same concept to the user’s data forces the introduction of routines to manage logical
templates, adding complexity, and was therefore ruled out.

There are several important language bindings issues not addressed by this document. This
section does not discuss the interoperability of message passing between languages. It is fully
expected that many implementations should have such features.

A descriptor is associated with each distributed matrix. The entries of the descriptor uniquely
determine the mapping of the matrix entries onto the local processes’ memories. Since vectors
may be seen as a special case of distributed matrices or proper submatrices, the larger scheme just
defined encompasses their description as well.

The local storage convention of the distributed matrix operands in every process’s memory does
not need to be specified by the standard. It is however recommended that convenient data structure
are chosen by a given implementation allowing to rely on the sequential BLAS to perform the local
computations within a process.

The distributed-memory dense BLAS should not provide mechanisms for dealing with failures in
the communication and computation systems. If the distributed-memory dense BLAS is built on an
unreliable underlying mechanism, then it is the job of the implementor(s) of the distributed-memory
dense BLAS subsystem to insulate the user from this unreliability, or to reflect unrecoverable errors
as failures. Whenever possible, such failures will be reflected as errors in the relevant communication
or computation call.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

C.2. DISTRIBUTED-MEMORY DENSE BLAS 205

Of course, distributed-memory dense BLLAS programs can still be erroneous. A program error
can occur when a distributed-memory dense BLAS routine is called with an invalid value for any
of its arguments. The routine must report this fact and terminate the execution of the program.
Each routine, on detecting an error, should call a common error-handling routine, passing to it
the current communication context, the name of the routine and the number of the first argument
that is in error. For efficiency purposes, the distributed-memory dense BLAS only perform a local
validity check of their argument list. If an error is detected in at least one process of the current
context, the program execution is stopped.

A global validity check of the input arguments passed to a distributed-memory dense BLAS
routine must be performed in the user-level calling procedure. To demonstrate the need and cost
of global checking, as well as the reason why this type of checking should not be performed in
the distributed-memory dense BLAS, consider the following example: the value of a global input
argument is legal but differs from one process to another. The results are unpredictable. In order
to detect this kind of error situation, a synchronization point would be necessary, which may result
in a significant performance degradation. Since every process must call the same routine to perform
the desired operation successfully, it is natural and safe to restrict somewhat the amount of checking
operations performed in the distributed-memory dense BLAS routines.

Specialized implementations may call system-specific exception-handling facilities, either via an
auxiliary routine or directly from the routine. In addition, the testing programs can take advantage
of this exception-handling mechanism by simulating specific erroneous input argument lists and then
verifying that particular errors are correctly detected.

Resource errors can also occur when a program exceeds the amount of available system resources.
The occurence of this type of error depends on the amount of available resources in the system
and the resource allocation mechanism used; this may differ from system to system. A high-
quality implementation will provide generous limits on the important resources so as to alleviate
the portability problem this represents.



