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C.3 Fortran 95 Thin BLAS

C.3.1 Introduction

This paper presents a proposal for a specification of Fortran 95 thin BLAS.

A preliminary version of the F90 Blas proposal has been circulated informally (but not very
widely) for about 4 years, and code which implements that version has been available in the
Fortran 90 software repository maintained by NAG Ltd (http://www.nag.co.uk).

This proposal is designed to cover — as far as seems sensible — roughly the same functionality
as the original Level 1, 2 and 3 (Fortran 77) BLAS. It does not address sparse matrices or vectors,
nor does it explicitly address issues of parallel computation.

Many of the Fortran 77 Level 1 BLAS can be replaced by simple array expressions and assign-
ments in Fortran 95, without loss of convenience or performance (assuming a reasonable degree of
optimisation by the compiler). Fortran 95 also allows groups of related Level 2 and Level 3 BLAS
to be merged together, each group being covered by a single interface.

C.3.2 Design of Fortran 95 Interfaces

Our proposed design utilizes the following features of the Fortran 95 language.

Generic interfaces: all routines are accessed through generic interfaces. A single generic name
covers several specific instances whose arguments may differ in the following properties:

data type (real or complex). However, the relevant arguments must be either all real or all
complex. (We do not, for example, cater for multiplying a real matrix by a complex
matrix, though this functionality could easily be added to the design if there was a need
for it.)

precision (or equivalently, kind-value). However, all real or complex arguments must have
the same precision.

rank Some arguments may either have rank 2 (to store a matrix) or rank 1 (to store a vector).

different argument list Some of the arguments may not appear in a specific instance. In
this case a pre-defined value or a pre-defined action is assumed. The following table
contains the pre-defined value or action for the argument that may not be used. Some
of these arguments are key arguments that will be described later.

argument | value or action if the argument is not used

alpha 1.0 or (1.0,0.0)
beta 0.0 or (0.0,0.0)
op_X operate with x
lower reference upper triangle only

right_side | operate on the left-hand side
unit_diag | non-unit triangular

Assumed-shape arrays: all array arguments are assumed-shape arrays, which must have the ex-
act shape required to store the corresponding matrix or vector. Hence arguments to specify
array-dimensions or problem-dimensions are not required. The routines assume that the sup-
plied arrays have valid and consistent shapes (see Section C.3.5). Zero dimensions (implying
empty arrays) are allowed.
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Key arguments: in the Fortran 77 BLAS, we use character arguments to specify different options
for the operation to be performed. In this proposal we suggest using key arguments. A key
argument is a dummy argument whose actual argument must be a named constant defined
by BLAS. The following table lists the key arguments, the related BLAS named constants
and the equivalent F77 BLAS values.

dummy argument

named constant

meaning

F77 argument

opX

lower
right_side

unit_diag

C33

not used
blas_trans
blas_conj
blas_conj_trans
not used
blas_lower

not used
blas_right

not used
blas_unit_diag

Interfaces for Real Data

operate with x

operate with transpose x

operate with conjugate x

operate with conjugate-transpose x
reference upper triangle only
reference lower triangle only
operate on the left-hand side
operate on the right-hand side
non-unit triangular

unit triangular

TRANSx = 'N’
TRANSx ="T"
TRANSx ='C’
TRANSx = "H’
UPLO ="U’
UPLO ="L’
SIDE ="'L’
SIDE =R’
DIAG =N’
DIAG ="U’

The primary aim of this paper is to convey the flavour of the different generic interfaces.
Therefore we first describe the interfaces as they apply to real data. The extra complications

which arise when they apply to complex data will be considered in Section C.3.4.

We summarize each interface in the form of a subroutine statement (or in one case a function
statement), in which all the arguments might appear. (This is a convenient way to think of the
interface, although such a statement using the generic interface name never appears in the code.)
Arguments which need not be supplied are enclosed in square brackets, for example:

subroutine trmm( [alpha,] a, [op_a,] b, [lower,] [right_side,] [unit_diag] )

This is followed by a table which lists the different variants of the operation, depending either
on the ranks of some of the arguments or on the key arguments.
The following table shows the values used in the tables and the related named constant for the

key arguments.

dummy argument ‘ value in table ‘ named constant

op_x T’ blas_trans

'C blas_conj

'C/ T blas_conj_trans
right_side 'R’ blas_right

Routines using conventional storage for matrices

By conventional storage, we mean storing a matrix in a 2-dimensional array,

subroutine gemm( [alpha,] a, [op_a,] b, [op_bl, [beta,] c )
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rank of a | rank of b | rank of ¢ | op_a | op_b | operation F77 BLAS
2 2 2 C + aAB + pC _GEMM
2 2 2 T’ | C + aABT + BC | _GEMM
2 2 2 T’ C+ aAT"B+BC | _GEMM
2 2 2 T | T | C <+ aATBT + BC | _GEMM
2 1 1 ¢+ aAb+ e _GEMV
2 1 1 T c <+ aATb+ Be _GEMV
1 1 2 C + aab! + BC _GER_
subroutine symm( [alpha,] a, b, [beta,] c, [lower,] [right_side] )
subroutine hemm( [alpha,] a, b, [beta,] c, [lower,] [right_side] )
rank of b | rank of ¢ | right_side | operation | F77 BLAS
2 2 C < aAB + BC | SYmM
2 2 'R’ C < aBA+ BC | SYMM
1 1 ¢+ aAb+ Bc _SYmv
where A is a symmetric matrix.
subroutine syrk( [alpha,] a, [op_a,] [beta,] c, [lower] )
subroutine herk( [alpha,] a, [op_a,] [beta,] c, [lower] )
rank of a ‘ op_-a ‘ operation ‘ F77 BLAS
2 C + aAAT + BC | _SYRK
2 'T? | C + aATA+ BC | _SYRK
1 C + aaa” + pC | SYR1
where C is a symmetric matrix.
subroutine syr2k( [alpha,] a, [op_a,] b, [beta,] c, [lower] )
subroutine he2rk( [alpha,] a, [op_a,] b, [beta,] c, [lower] )
rank of a ‘ rank of b ‘ op_a ‘ operation ‘ F77 BLAS
2 2 C + aABT + aBAT + BC | _SYR2K
2 2 'T" | C+ aATB+ aBTA+ BC | _SYR2K
1 1 C « aab” + aba™ + BC _SYR2

where C is a symmetric matrix.

subroutine trmm( [alpha,] a, [op_a,] b, [lower,] [right_side,] [unit_diag] )

rank of b | op_a | right_side | operation F77 BLAS
2 B < aAB _TRMM
2 T B+ aATB | _TRMM
2 'R’ B+ aBA | -TRMM
2 T 'R’ B+ aBAT | _TRMM
1 b+ aAb _TRMV
1 T b+ oAb | _TRMV

subroutine trsm( [alpha,] a, [op_a,] b, [lower,] [right_

side,] [unit_diag] )
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rank of b | op_a | right_side | operation F77 BLAS
2 B+ aA~'B | _TRSM
2 T’ B+ aA~TB | _TRSM
2 'R’ B+ aBA~! | _TRSM
2 T’ 'R’ B+ aBA~" | _TRSM
1 b+ aA™lb _TRSV
1 T b+ aA™Tb | _TRSV

Routines using packed storage for matrices

By packed storage, we mean storing the upper or lower triangle of a symmetric or triangular matrix

in a 1-dimensional array (i.e. a vector).

subroutine spmv( [alpha,] a, b, [beta,] c, [lower] )
subroutine hpmv( [alpha,] a, b, [beta,] c, [lower] )

operation

| F77 BLAS

¢+ aAb+ Bc ‘ _SPMV

where A is a symmetric matrix.

subroutine spri( [alpha,] a, [beta,] c, [lower] )
subroutine hpri( [alpha,] a, [beta,] c, [lower] )

operation

| F77 BLAS

C + aaa” + pC ‘ _SPR1

where C is a symmetric matrix.

subroutine syr2( [alpha,] a, b, [beta,] c, [lower] )
subroutine he2r( [alpha,] a, b, [beta,] c, [lower] )

operation

| F77 BLAS

C < aab” + aba™ + BC ‘ _SYR2

where C is a symmetric matrix.

subroutine tpmv( [alpha,] a, [op_a,] b, [lower,] [unit_diag] )

op.a ‘ operation ‘ F77 BLAS

’T’

where A is a triangular matrix.

b+ aAb
b+ aATb

_TPMV
_TPMV

subroutine tpsv( [alpha,] a, [op_a,] b, [lower,] [unit_diag] )

op-a ‘ operation

| F77 BLAS

’T, ‘

where A is a triangular matrix.

b+ aA~ b | _TPSV
b+ aAd Th

_TPSV
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Routines for band matrices

subroutine gbmv( [alpha,] a, [op_a,] b, [beta,] c, kd )

op-a ‘ operation ‘ F77 BLAS
C < aAb+ Bc | GBMV
T’ | C + aATb+ Bc | _GBMV

where A is a general band matrix with kd superdiagonals supplied.

subroutine sbmv( [alpha,] a, b, [beta,] c, [lower] )
subroutine hbmv( [alpha,] a, b, [beta,] ¢, [lower] )

operation ‘ F77 BLAS

¢ < aAb+ Bc | _SPMV

where A is a symmetric band matrix.

subroutine tbmv( [alpha,] a, [op_a,] , [lower,] [unit_diag] )

op-a ‘ operation ‘ F77 BLAS

b+ aAb
T | b+ aATd

where A is a triangular band matrix.

subroutine tpsv( [alpha,] a, [op_a,] , [lower,] [unit_diag] )

_TBMV
_TBMV

op.a ‘ operation ‘ F77 BLAS ‘
b« aA~'b | _TBSV
T | b+ aA~Th | TBSV

where A is a triangular band matrix.

Level 1 routines

function nrm2( x )
Operation: return ||z||o.

subroutine swap( x, y )
Operation: x <> y.

subroutine rot( x, y, ¢, s )

subroutine rotg( a, b, ¢, s )
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C.3.4 Interfaces for Complex Data

In this section we show the subroutine gemm for complex arguments. The generic interface is that
described for real arguments.
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rank of a | rank of b | rank of ¢ | op_.a | op_b | operation F77 BLAS
2 2 2 C < aAB + C _GEMM
2 2 2 T’ | C <+ aABT + BC | _GEMM
2 2 2 'C/T’ | C + aAB® + BC | GEMM
2 2 2 T C «+ aATB +BC | _GEMM
2 2 2 v T | C+ aATBT + pC | _GEMM
2 2 2 ' | 'C/T" | C + «ATBY + BC | _GEMM
2 2 2 'C/T’ C+ aA¥B+BC | _GEMM
2 2 2 'C/T | "T° | C+ «aA"BT + BC | GEMM
2 2 2 'C/T" | 'C/T’ | C + aA"BY 4+ BC | _GEMM
2 1 1 ¢+ aAb+ Be _GEMV
2 1 1 T ¢+ aATb + e _GEMV
2 1 1 'C/T’ ¢+ aAfb+ Be _GEMV
1 1 2 C + aab” + pC _GERU
1 1 2 'C | C <+ aab® + pC _GERC

C.3.5 Error checking

We propose that the Fortran 95 thin BLAS perform no checks on their arguments.

C.3.6 Comparison with the Fortran 77 BLAS

We consider in more detail each Level of BLAS in turn.
performed by the BLAS, we use the traditional BLAS names, except that we omit the initial letter
(S, D, C, Z) which indicates the data type — for example, SWAP. The resulting names are also the

generic names which we propose for the Fortran 95 interfaces.

Level 1

We include in this proposal only the following:

SWAP
ROT

NRM2
ROTG

ROT and ROTG have been extended to cover complex rotations.

Level 2

We propose to combine many of the Level 2 BLAS with the corresponding Level 3 BLAS in a single
generic interface, the different instances being distinguished by the ranks of some of the arguments.
In order to do this, we propose to remove some minor inconsistencies between the specifications of

the Level 2 and Level 3 routines:

We propose adding one new routine:

In referring to particular operations
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REFG

to generate an elementary reflector (that is, a Householder matrix), following the same specifi-
cation as the LAPACK auxiliary routine xLARTG.

The scope of the proposed BLAS has been extended slightly compared with the Fortran 77
BLAS: for example, we propose Level 1 BLAS for generating an elementary reflector (Householder
matrix), and for generating and applying complex plane rotations; we also propose Level 2 BLAS
for complex symmetric matrices. On the other hand, many of the Fortran 77 Level 1 BLAS can be
replaced in Fortran 95 by simple array constructs, and they have been omitted.

For the thin BLAS we propose that the code does not do any checks on the arguments.

We propose generic interfaces that cover — wherever relevant — both Level 2 and Level 3 BLAS
(for example, xXTRSV and xTRSM), and have modified the specification of some Level 2 BLAS to
make them more consistent with the Level 3 BLAS (for example, xTRSV now has an argument
alpha).

For each procedure we specify a number of arguments that must be supplied and another set of
arguments that need not be supplied. We specify a value or action for each argument which need
not be supplied.

We propose that the thin BLAS contain a specific instance for each possible case and no checks
or branching is used within the code.

We propose that the early implementations for the thin BLAS will contain simple calls to the
reliable and tested F77 BLAS.

For example, the generic gemm will consist of the following specific procedures:

e 36 specific procedures each of which calls the F77 BLAS procedure ZGEMM (3 settings for each
of op_a and op_b, and 2 settings for each of alpha and beta).

e 12 specific procedures each of which calls the F77 BLAS procedure ZGEMV (3 settings for op_a,
and 2 settings for each of alpha and beta).

e 4 specific procedures each of which calls the F77 BLAS procedure ZGERU (2 settings for each
of alpha and beta).

e 4 specific procedures each of which calls the F77 BLAS procedure ZGERC (2 settings for each
of alpha and beta).

e 36 specific procedures each of which calls the F77 BLAS procedure DGEMM (3 settings for each
of op_a and op_b, and 2 settings for each of alpha and beta). Only 16 procedures are needed,
but we allow for op_.a = blas_conj_trans for similarity with the complex case.

¢ 12 specific procedures each of which calls the F77 BLAS procedure DGEMV (3 settings for op_a,
and 2 settings for each of alpha and beta). Only 8 procedures are needed, but we allow for
op.a = blas_conj_trans for similarity with the complex case.

e 4 specific procedures each of which calls the F77 BLAS procedure DGER (2 settings for each
of alpha and beta).

e 4 specific procedures each of which calls the F77 BLAS procedure DGER (2 settings for each of
alpha and beta). These are similar to the previous case but have been added to allow op_b
= blas_conj (as in the complex case for ZGERC).

Appendix C.3.8 contains a list of these specific procedures (only double precision procedures
are listed).
A proposed document for this procedure is given in a separate document.
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C.3.7 Conclusion

Our principal purpose in presenting this specification at this meeting is to provide additional input
to the discussion about different levels of genericity in the interface to linear algebra routines. The
thin BLAS are designed principally as building-blocks for software developers and for the BLAS
itself.
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C.3.8 Further Details: Specific procedures for gemm

This appendix contains a list of the specific procedures for the generic procedure gemm.

36 procedures each calls the F77 BLAS subroutine ZGEMM
a, b and ¢ are rank-2

1
1

1

!

! alpha op_a a op_b b beta ¢
1

! zgemm_301 (alpha,blas_conj_trans,a,blas_conj_trans,b,beta,c)
! zgemm_302 (alpha,blas_conj_trans,a,blas_conj_trans,b, c)
! zgemm_303 (alpha,blas_conj_trans,a,blas_trans ,b,beta,c)
! zgemm_304 (alpha,blas_conj_trans,a,blas_trans ,b, c)
! zgemm_305 (alpha,blas_conj_trans,a, b,beta,c)
! zgemm_306 (alpha,blas_conj_trans,a, b, c)
! zgemm_307 (alpha,blas_trans ,a,blas_conj_trans,b,beta,c)
! zgemm_308 (alpha,blas_trans ,a,blas_conj_trans,b, c)
! zgemm_309 (alpha,blas_trans ,a,blas_trans ,b,beta,c)
! zgemm_310 (alpha,blas_trans ,a,blas_trans ,b, c)
! zgemm_311 (alpha,blas_trans ,a, b,beta,c)
! zgemm_312 (alpha,blas_trans ,a, b, c)
! zgemm_313 (alpha, a,blas_conj_trans,b,beta,c)
! zgemm_314 (alpha, a,blas_conj_trans,b, c)
! zgemm_315 (alpha, a,blas_trans ,b,beta,c)
! zgemm_316 (alpha, a,blas_trans ,b, c)
! zgemm_317 (alpha, a, b,beta,c)
! zgemm_318 (alpha, a, b, c)
! zgemm_319 ( blas_conj_trans,a,blas_conj_trans,b,beta,c)
! zgemm_320 ( blas_conj_trans,a,blas_conj_trans,b, c)
! zgemm_321 ( blas_conj_trans,a,blas_trans ,b,beta,c)
! zgemm_322 ( blas_conj_trans,a,blas_trans ,b, c)
! zgemm_323 ( blas_conj_trans,a, b,beta,c)
! zgemm_324 ( blas_conj_trans,a, b, c)
! zgemm_325 ( blas_trans ,a,blas_conj_trans,b,beta,c)
! zgemm_326 ( blas_trans ,a,blas_conj_trans,b, c)
! zgemm_327 ( blas_trans ,a,blas_trans ,b,beta,c)
! zgemm_328 ( blas_trans ,a,blas_trans ,b, c)
! zgemm_329 ( blas_trans ,a, b,beta,c)
! zgemm_330 ( blas_trans ,a, b, c)
! zgemm_331 ( a,blas_conj_trans,b,beta,c)
! zgemm_332 ( a,blas_conj_trans,b, c)
! zgemm_333 ( a,blas_trans ,b,beta,c)
! zgemm_334 ( a,blas_trans ,b, c)
! zgemm_335 ( a, b,beta,c)
! zgemm_336 ( a, b, c)
1

1

! 12 procedures each calls the F77 BLAS subroutine ZGEMV

! a is rank-2, and b and ¢ are rank-1

1

! alpha op_a a op_b b beta ¢
1

! zgemv_201 (alpha,blas_conj_trans,a, b,beta,c)
! zgemv_202 (alpha,blas_conj_trans,a, b, c)
! zgemv_203 (alpha,blas_trans -N b,beta,c)
! zgemv_204 (alpha,blas_trans ,a, b, c)
! zgemv_205 (alpha, a, b,beta,c)
! zgemv_206 (alpha, a, b, c)
! zgemv_207 ( blas_conj_trans,a, b,beta,c)
! zgemv_208 ( blas_conj_trans,a, b, c)
! zgemv_209 ( blas_trans ,a, b,beta,c)
! zgemv_200 ( blas_trans ,a, b, c)
! zgemv_211 ( a, b,beta,c)
! zgemv_212 ( a, b, c)
1

1

1

4 procedures each calls the F77 BLAS subroutine ZGERU

operation

alpha A(H) B(H) + beta
alpha A(H) B(H) + C
alpha A(H) B(T) + beta
alpha A(H) B(T) + C
alpha A(H) B + beta C
alpha A(H) B + C

alpha A(T) B(H) + beta
alpha A(T) B(H) + C
alpha A(T) B(T) + beta
alpha A(T) B(T) + C
alpha A(T) B + beta C
alpha A(T) B + C

alpha A B(H) + beta C
alpha A B(H) + C
alpha A B(T) + beta C
alpha A B(T) + C
alpha A B + beta C
alpha A B
A(H) B(H)
A(H) B(H) + C

A(H) B(T) + beta C
A(H) B(T) + C

A(H) B + beta C
A(H) B+ C

A(T) B(H) + beta C
A(T) B(H) + C

A(T) B(T) + beta C
A(T) B(T) + C

A(T) B + beta C
A(T) B+ C

A B(H) + beta C
B(H) + C

B(T) beta C
B(T) + C

B + beta C

B+ C

¢

+
+ beta C
+
+

+
+
+
+

AANAAANAANAANANANAANAANAANAANANAANANAANANANANAANANANAANANAANANANANAANANANANANNANANNAN

e RN NN e R o K e o e e o o e e Ko e o o o e o Ko Ko o e o o o K2 e Ko Ko e
= e e e

operation

alpha A(H)
alpha A(H)
alpha A(T) beta ¢
alpha A(T) b + ¢
alpha A b + beta ¢
alpha A b + ¢

A(H) b + beta ¢

A(H) b + ¢

A(T) b + beta c

A(T) b + ¢

A b + beta ¢

Ab+c

+ beta ¢
+ c
+

oo o o

o o0 o0 000000000
AANAANANAANANAANANANAANANANAN
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¢ is rank-2, and a and b are rank-1

zgeru_201
zgeru_202
zgeru_203
zgeru_204

alpha op_a a op_b b beta
(alpha, a, b,beta,
(alpha, a, b,
( a, b,beta,
( a, b,

4 procedures each calls the F77 BLAS subroutine ZGERC
¢ is rank-2, and a and b are rank-1

zgerc_201
zgerc_202
zgerc_203
zgerc_204

alpha op_a a op_b b beta
(alpha,blas_conj a, b,beta,
(alpha,blas_conj a, b,
( blas_conj a, b,beta,
( blas_conj a, b,

36 procedures each calls the F77 BLAS subroutine DGEMM
a, b and ¢ are rank-2

dgemm_301
dgemm_302
dgemm_303

dgemm_334
dgemm_335
dgemm_336

alpha op_a a op_b b beta

[+

c)
c)
c)
c)

[+

c)
c)
c)
c)

[+

(alpha,blas_conj_trans,a,blas_conj_trans,b,beta,c)

(alpha,blas_conj_trans,a,blas_conj_trans,b,
(alpha,blas_conj_trans,a,blas_trans ,b,beta,
( a,blas_trans ,b,
( a, b,beta,
( a, b,

12 procedures each calls the F77 BLAS subroutine DGEMV
a is rank-2, and b and ¢ are rank-1

dgemv_201
dgemv_202
dgemv_211
dgemv_212

alpha op_a a op_b b beta
(alpha,blas_conj_trans,a, b,beta,
(alpha,blas_conj_trans,a, b,
( a, b,beta,
( a, b,

8 procedures each calls the F77 BLAS subroutine DGER
¢ is rank-2, and a and b are rank-1

dger_201
dger_202
dger_203
dger_204
dger_205
dger_206
dger_207
dger_208

alpha op_a a op_b b beta
(alpha, a, b,beta,
(alpha, a, b,
( a, b,beta,
( a, b,
(alpha,blas_conj a, b,beta,
(alpha,blas_conj a, b,
( blas_conj a, b,beta,
( blas_conj a, b,

c)
c)

c)
c)
c)

c

c)
c)

c)
c)

[

c)
c)
c)
c)
c)
c)
c)
c)

operation

aaoaan

<
<
<
<

alpha a b(T) + beta C
alpha a b(T) + C

a b(T) + beta C

a b(T) + C

operation

aaoaaaQ

<
<
<
<

alpha a b(H) + beta C
alpha a b(H) + C

a b(H) + beta C

a b(H) + C

operation

Q
A

Q
A

alpha A(H) B(H) + beta C
alpha A(H) B(H) + C
alpha A(H) B(T) + beta C

A B(T) + C
A B + beta C
AB+C

operation

c < alpha A(H) b + beta c
c < alpha A(H) b + ¢

[+
C

<
<

A b + beta ¢
Ab+c

operation

oo

<
<
<
<
<
<
<
<

alpha a b(T) + beta C
alpha a b(T) + C

a b(T) + beta C

a b(T) + C

alpha a b(H) + beta C
alpha a b(H) + C

a b(H) + beta C

a b(H) + C

Procedure gemm
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Description

gemm is a generic procedure which performs one of following operations:
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rank of a | rank of b | rank of c op-a op-b operation F77 BLAS

2 2 2 C <+ aAB + 5C _GEMM
2 2 2 T C « aABT + 8C _GEMM
2 2 2 'C/T’ | C <+ aABH +8C _GEMM
2 2 2 T C «— aATB +BC _GEMM
2 2 2 T N C + aATBT + BC | GEMM
2 2 2 T C/T’ | C <+ aATBY + BC | _GEMM
2 2 2 'C/T C « aAP B+ 8C _GEMM
2 2 2 c/T T C + aAHBT 4 BC | _GEMM
2 2 2 'C/T | ’C/T’ | C+ aAHBH + 8C | GEMM
2 1 1 ¢+ aAb+ Bc _GEMV
2 1 1 T ¢+ aATb 4+ Bc _GEMV
2 1 1 C/T c— aAHb + Be _GEMV
1 1 2 C « aab” + BC _GER_
1 1 2 '’ C + aab® +BC _GER._
_ AT)

(If A is real, then A7 =

Usage

CALL gemm([alphal, [op-al, a, [op-bl, b, [betal, c)

One or more of the arguments in square brakets can be dropped. The order of the supplied arguments must remain unchanged.

Interfaces

Distinct interfaces are provided for each of the combinations of the following cases:

Real / complex data

Real data:

alpha, a, b, beta and c are of type real(kind=wp).

Complex data: alpha, a, b, beta and ¢ are of type complex(kind=wp).

different ranks

f77_gemm: a, b and c are rank-2 arrays.

f77_gemv: a is a rank-2 array while b and ¢ are rank-1 arrays.

f77_ger:

Arguments

All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that
required by the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that

the array x must have exactly n elements.

The procedure derives the values of the following problem parameters from the shape of the supplied arrays.

m — the first dimension of ¢, if ¢ is rank-2 (m =SIZE(c,1)), or the size of ¢ if it is rank-1 (m =SIZE(c))

n — the second dimension of c if it is rank-2 (n =SIZE(c,2))

k — the intermediate dimension

Mandatory arguments

One or more of the arguments alpha, op-a, op-b and beta can be dropped. The order of the supplied arguments must remain

unchanged.

alpha — real(kind=wp)/ complex(kind=wp), intent(in)

Input: the value of « if different from one.

c is a rank-2 array while a and b are rank-1 arrays.

Note: if o is exactly one, you need not supply this argument.
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op_a — a “key” argument, intent(in)

Input: if op_a is supplied, it specifies whether the operation involves the transpose A7 or its conjugate-transpose A
(= AT if A is real). In this case op_a must have one of the following values (which are named constants, each of a
different derived type, defined by the BLAS, and accessible from the module blas):

blas_trans: if the operation involves the transpose AT rather than the matrix A;

blas_conj_trans: if the operation involves the conjugate-transpose A¥ rather than the matrix A.

Note: for real matrices, blas_conj_trans is equivalent to blas_trans.

Constraints: op_a must not be supplied if a is rank-1 or if the operation does not involve the transpose or the conjugate-
transpose of A.

a(m) / a(p,q) — real(kind=wp)/ complex(kind=wp), intent(in)

Input: the matrix A or vector a.
If a is rank-2 then:

if op_a is not supplied, the shape of a must be (m, k);
if op-a is supplied, the shape of a must be (k, m).

op_b — a “key” argument, intent(in)

Input: if op_b is supplied and b is rank-2, it specifies whether the operation involves the transpose BT or its conjugate-
transpose B (= BT if B is real). In this case op_b must have one of the following values (which are named constants,
each of a different derived type, defined by the BLAS, and accessible from the module blas):

blas_trans: if the operation involves the transpose BT rather than the matrix B;
blas_conj_trans: if the operation involves the conjugate-transpose BH rather than the matrix B.
If op_b is supplied and b is rank-1, it specifies that the operation involves the conjugate of ¥ (b¥) rather than 7. In

this case op_b must have be blas_conj (which is a named constant of a derived type, defined by the BLAS, and accessible
from the module blas).

Note: for real matrices, blas_conj_trans is equivalent to blas_trans. For real arrays blas_conj does not have any effect.

Constraints: op_b must not be supplied if the operation does not involve the conjugate of b, the transpose of B or the
conjugate-transpose of B.

b(r) / b(r,s) — real(kind=wp)/ complex(kind=wp), intent(in)

Input: the matrix B or vector b.
If b is rank-1 then:

if a is rank-1, the shape of b must be (m);

if a is rank-2, the shape of b must be SIZE(op-a(a),2).
If b is rank-2 then:

if op_b is not supplied, the shape of b must be (k,n);

if op_b is supplied, the shape of b must be (n, k).

beta — real(kind=wp)/ complex(kind=wp), intent(in)
Input: the value of g if different from zero.

Note: if g is exactly zero, you need not supply this argument.

c(m) / c(m,n) — real(kind=wp)/ complex(kind=wp), intent(inout)
Input: the matrix C or vector c. If beta is not supplied ¢ need not be initialized.

Output: the matrix C or vector ¢ after applying the operation.

Examples of usage

One or more of the arguments alpha, op-a, op-b and beta can be dropped. The order of the supplied arguments must remain
unchanged.

To perform C < aABH use the call:
CALL gemm (alpha,a,blas_conj_trans,b,c)

To perform C <— AB + BC use the call:
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CALL gemm (a,b,beta,c)
To perform C <— aAB + C use the call:

CALL gemm (alpha,a,b,beta,c)
To perform C + AT BH + BC use the call:

CALL gemm (blas_trans,a,blas_her,b,beta,c)
To perform ¢ < aATb + Bc use the call:

CALL gemm (alpha,blas_trans,a,b,beta,c)
To perform C <+ ab® + BC use the call:

CALL gemm (a,b,blas_conj,beta,c)
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