
Appendix C. Usage of the mathc90 Library

Table of Contents

1.1 Introduction . 1
1.2 Usage documentation . 1
1.3 Header files . 1

1.3.a The library file, fhelp.c 2
1.3.b A library archive file . 2

1.4 Correspondence between Fortran and C types . . 2
1.4.a CHARACTER arguments 3

STRING . 3
CHAR INT . 3
byte . 3
byte*, or byte[] . 3

1.5 Using the type float in C. 4
1.6 Specification of functions to be passed

to library procedures . 5
1.7 User-accessible COMMON blocks 5
1.8 Codes in MATH77 but not in mathc90 5
1.9 Codes in mathc90 and not in MATH775
1.10 Testing the portability of the mathc90 library . 6

1.1 Introduction

mathc90 is a conversion to the ANSI C language of the
MATH77 library of Fortran 77 mathematical subpro-
grams. We recommend organizing the mathc90 library
into two subdirectories: libsrc containing files of library
source code and their associated header files, and demo

a subdirectory of this containing source code files for
demonstration drivers and their associated header files.

1.2 Usage documentation.

Usage of procedures in the (Fortran) MATH77 library
is thoroughly documented in this manual. We do not
provide similar documentation for the mathc90 library.
Rather, we have attempted to produce the mathc90 code
with a consistent correspondence between its functions
and the subprograms of MATH77. Thus we hope a
user can understand how to use mathc90 by referring
to the MATH77 (Fortran) documentation and applying
the conventions given in this appendix for translating
information about the declaration of variables. This ap-
proach can be supplemented by looking at the function
prototypes in the header file mathc90.h, which is listed
in Appendix D, and by studying the mathc90 demon-
stration drivers.

Most of the user-callable C functions in mathc90 have
the same name, number of arguments, and functionality
as the corresponding Fortran subprogram in MATH77.
The types of arguments and results correspond according
to conventions that will be described subsequently.

Exceptions as to the number of arguments occur for some
procedures that have character arguments. For CSORT
we have omitted the last argument which was work space
of type CHARACTER. Also for CSORT, and for other
procedures discussed under CHAR INT on Page C–3,
we have added a character length argument of type int
immediately following an argument that was a CHAR-
ACTER array in the Fortran version.

Exceptions as to functionality occur in procedures
DSVA/SSVA (Chapter 4.3), DNLxxx/SNLxxx (Chap-
ter 9.3), MESS (Chapter 19.3), and I1MACH (Chap-
ter 19.1). The Fortran subroutines DSVA/SSVA,
DNLxxx/SNLxxx, and MESS allow the user to specify
a Fortran output unit number to be written to. The
mathc90 function mess() emulates this functionality by
writing to a file named messf nn, where nn is the re-
quested unit number. The mathc90 functions dsva() and
dnlxxx() simply write any requested output to stdout.

Calls to R1MACH, D1MACH, and I1MACH in the
MATH77 library are replaced using functionality in the
C language. Thus these subroutines are not included in
the mathc90 library.

A few codes are only in MATH77 or only in mathc90.
These are discussed in Sections 1.8 and 1.9.

1.3 Header files.

There is one large header file mathc90.h which contains
all the declarations required by any of the library files.
This file is only provided with the entire mathc90 li-
brary, but in most cases we recommend using instead
the header files corresponding to the individual routines.
Each library routine except for csort1.c has a corre-
sponding header file with the “.c” replaced by “.h”. A
user-written program that uses functions from mathc90
should reference either mathc90.h in a #include direc-
tive or reference all the “.h” files with names correspond-
ing to the names of the library files being referenced di-
rectly by the user’s code. The library is not designed to
work in a pre-ANSI C90 environment.

In addition there are header files for the library codes re-
quired by each of the demonstration drivers. A demon-
stration driver with a name of the form drxxxx.c uses a
header file of the form p xxxx.h. When calling only li-
brary routines that are called by a demonstration driver,
one may want to include the appropriate one of these
headers. Also a few of the drivers require a header file
with the same name as the demonstration driver, but
with the suffix “.c” replaced by “.h”.

fcrt.h contains definitions of a number of macros whose

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

July 11, 2015 Usage of the mathc90 Library C–1

use is needed in some of the converted codes, due to the
way the commercial conversion processor we use pro-
duces some of the conversions. A user code should not
reference fcrt.h, as we may change or delete items in
this file without notice. If one is compiling single
precision codes in mathc90 changes may be re-
quired in fcrt.h as described in Section 1.5 be-
low.

1.3.a The library file, fhelp.c

The library file, fhelp.c, contains a number of func-
tions supporting operations that are built-in in Fortran
but not in C. Functions in this file are not intended to
be called by users. They may be changed or deleted in
the future without notice.

1.3.b A library archive file

We suggest that on UNIX systems the object files for
all of the library be collected into a library archive file
with the name libmathc90.a. This can easily be done
using the UNIX ar command. Then this library can be
referenced from a compile or link command using the op-
tion -l mathc90. We provide a Gnu make file that does
this, as well as compiling all of the demos and running
them. Analogous methods of creating and referencing a
pre-compiled library file exist on other systems.

1.4 Correspondence between Fortran
and C types.

Fortran 77 declaration C declaration
in user code. in user code.
double precision a double a;

double precision a(5) double a[5];

double precision a(5,10) double a[10][5];

real a float a;

real a(5) float a[5];

real a(5,10) float a[10][5];

integer i long i;

integer i(5) long i[5];

integer i(5,10) long i[10][5];

logical p LOGICAL32 p;
logical p(5) LOGICAL32 p[5];
character ... See: CHARACTER

arguments, Page C–3.
external sname Function declaration for

sname.

In converting Fortran 77 code to ANSI C there are dif-
ferent choices one could make as to how to convert types.
The specifications above relate specifically to the way we
intend the mathc90 library to be used. For subprogram
arguments whose specification in the MATH77 (Fortran)
documentation is as given in the first column below, we
recommend a C declaration as specified in the second
column.

A reference to an element of a 1-dimensional array, whose
Fortran indexing begins at 1, has a corresponding refer-
ence in C with the index decremented by 1. Thus a(j)
in Fortran 77 should be replaced by a[j-1] in C.

In a reference to an element of a 2-dimensional array,
whose Fortran indexing begins at (1,1), the indices must
be interchanged, and each decremented by 1. Thus a(i,j)
in Fortran 77 should be replaced by a[j-1,i-1] in C.

If MATH77 documentation specifies an argument of a
procedure to be an array of any type, or a CHARAC-
TER variable with length that could be greater than one,
the actual argument in referencing a mathc90 function
must be an address, i.e., a pointer. (Recall that in C an
array name is a pointer.) For an argument that is spec-
ified in the MATH77 documentation as numeric, LOGI-
CAL, or CHARACTER*1, and not an array, it must be
passed by address (i.e. a pointer) or by value depending
on whether its value can or cannot be modified by the
procedure. The MATH77 documentation identify each
variable as having the intent in if it cannot be modified,
and one of the intents out or inout (or work or scratch)
if it can be modified. If in doubt about the correct typ-
ing of an argument look at the function prototype in the
header file mathc90.h or at Appendix D.

Any argument to a library procedure that is specified in
the MATH77 documentation as a 2-dimensional numeric
array with the first dimension being adjustable will be
declared within the corresponding mathc90 function as
a 1-dimensional array, and subscript computation will
be expressed explicitly. (From the point of view of the
MATH77 documentation, a 2-dimensional array has an
adjustable first dimension if the size of the first dimen-
sion is one of the arguments in the same argument list
as the array name.) Thus if the user declares the ar-
ray to be used as the corresponding actual argument as
2-dimensional, as we recommend, the user should also
use “cast” syntax in the function reference statement to
force agreement of the type of the argument. For ex-
ample, if an array specified to have an adjustable first
dimension is declared as

double a[10][5];

it should appear in the function reference as

(double*)a

Some C compilers may not require this but some, e.g.
HP-720, do.

On the other hand, if the first dimension of a 2-
dimensional array is specified in the MATH77 documen-
tation to be a fixed value, such as 2 in some subprograms
dealing with double precision complex data and in Chap-
ter 9.3, then the array name in the function reference
should not be prefixed with (double*). Check the func-

C–2 Usage of the mathc90 Library July 11, 2015

tion prototypes in mathc90.h (listed in Appendix D) or
the associated header file when in doubt.

1.4.a CHARACTER arguments

In Fortran each CHARACTER variable has
a declared length which may be specified us-
ing “*” notation or has the default length
1 otherwise. This declared length is auto-
matically passed with the character variable
whenever it is passed as a subprogram ar-
gument.
In C it is more common to think in terms of
what could be called the operational length
of a character string, i.e., the length up to
but not including a terminating null char-
acter. (The ASCII null character has the
numeric value of zero and is written in C
as ′\0′.) This model of a character string
is supported by a number of standard C li-
brary functions that do operations on null-
terminated strings.

The notation ′A′ denotes a constant of type char whose
value is the integer, 65, associated with the ASCII char-
acter A. The notation ′′A′′ denotes a pointer of type
char* pointing to an array of length 2 whose compo-
nents are ′A′ and ′\0′. This later notation can also be
used for longer strings, e.g., ′′Mars′′ denotes (a pointer
to) an array of length 5 with components ′M′, ′a′, ′r′,
′s′, and ′\0′.
Following conventions introduced by the commercial
conversion processor that we use, we use the defined
terms byte, STRING, and CHAR INT to distinguish dif-
ferent usages of character variables. These three terms
are synonyms for char, char*, and char*,int. Note that
byte* is therefore another synonym for char*.

We choose these different terms as follows:

STRING The translation of a non-array
CHARACTER*k argument of intent in whose pur-
pose is just to be printed. In the C version such an
argument must be null-terminated. If the actual ar-
gument in C is written as a literal, it must be a string
literal delimited by (double) quotes, e.g., ′′Venus′′.
Occurrences in user-callable procedures are in the
table at the top of the next column.

CHAR INT The translation of an array of
CHARACTER*k variables for which both the ar-
ray size and CHARACTER length are user specified
and the length k is not present in the same (For-
tran) argument list. In this case the single argument
in Fortran becomes two arguments in C. This pair
of arguments must be of types char* and int, re-
spectively. The int parameter should be one greater
than the k in the corresponding Fortran declaration

to allow space for null terminators. Occurrences in
user-callable procedures:

Chapter Procedure Name CHARACTER*k Argument
6.1 dmatp, dvecp, imatp, text

ivecp, smatp, svecp
6.2 dmatpr, dvecpr, imatpr, text

ivecpr, smatpr, svecpr
14.1 divadb, sivadb text
16.2 dtcst, stcst tcs, mode
16.3 dcft, scft mode
16.3 dplot, splot copt
19.2 ermsg, subnam, mess
19.2 derm1, ierm1, serm1 subnam, mess, label
19.2 derv1, ierv1, serv1 label
19.2 ermor mess
21.1 dprpl1, dprpl2 title, xname, yname

sprpl1, sprpl2

Procedure CHARACTER
Chapter Name Array Argument

4.3 dsva, ssva names
18.1 csort, csortp, c

csortq
19.2 dervn, labels

servn
19.3 dmess, mess, smess text

byte The translation of a non-array CHARACTER*1
argument whose intent is in. If the actual argument
in C is written as a literal, it must be a character lit-
eral delimited by apostrophes, e.g., ′A′. Occurrences
in user-callable procedures:

Procedure CHARACTER*1
Chapter Name Argument

16.1 drft1, srft1 mode
16.4 drft, srft mode
19.2 derm1, derv1, dervn, flag

ermor, ermsg, ierm1,
ierv1, serm1, serv1,
servn

21.2 dprpl, sprpl symbol

byte*, or byte[] The translation of an array or non-
array CHARACTER*k argument whose length k is
known to the procedure by some means other than
the implicit passing of the length in Fortran. The
non-array argument of intent in, i.e., symbol, is not
required to be null-terminated, however if the actual
argument is written as a literal it must be a string
literal delimited by (double) quotes, e.g., ′′A′′.

In the procedures DSFITC/SSFITC of Chapter 11.5,
the argument, CCODE, is an array of intent in, de-
clared as

CHARACTER CCODE(mdim)*(4)

July 11, 2015 Usage of the mathc90 Library C–3

In C, ccode should be declared as

char ccode[mdim][5];

If the main program in Fortran would have made an
assignment such as CCODE(I) = ′10∼a′, then the
corresponding assignment in C could be ccode[i-1] =
′′10∼a′′.

In the Fortran subroutines DPRPL1/SPRPL1 and
DPRPL2/SPRPL2, the declaration of the argument
IMAGE depends on two other arguments, NLINES
and NCHARS:

CHARACTER IMAGE(NLINES)*(NCHARS)

In C, image should be declared as

char image[nlines][nchars + 1];

and the actual argument should be written as
char* image in the reference to dprpl1/sprpl1() or
dprpl2/sprpl2(). On return, null terminators will
have been stored in image[i][nchars], for i = 0, ...,
nlines − 1.

In the Fortran subroutines DPRPL/SPRPL, the dec-
laration of the argument IMAGE depends on another
argument, NCHAR:

CHARACTER IMAGE*(NCHAR)

In C, image should be declared as

char image[nchar + 1];

On return there will be a null terminator in im-
age[nchar].

Occurrences in user-callable procedures:

Procedure CHARACTER*k
Chapter Name Argument Intent

11.5 dsfitc, ssfitc ccode in
21.1 dprpl1, sprl1 image out
21.1 dprpl2, sprl2 image out

symbol in
21.2 dprpl,sprpl image inout

1.5 Using the type float in C.

The ANSI C language standard does not support the
type float as completely as it supports the type double.
In particular, there is a set of twenty-two elementary
mathematical functions that are required by the ANSI
C standard to be provided for operations on data of type
double. The standard does not require these to be pro-
vided for type float, but does specify names these func-
tions should have if they are provided.

The names of these functions for type double are acos,
asin, atan, atan2, cos, sin, tan, cosh, sinh, tanh, exp,
frexp, ldexp, log, log10, modf, pow, sqrt, ceil, fabs, floor,
and fmod. The corresponding names for type float are
acosf, asinf, atanf, atan2f, cosf, sinf, tanf, coshf, sinhf,

tanhf, expf, frexpf, ldexpf, logf, log10f, modff, powf, sqrtf,
ceilf, fabsf, floorf, and fmodf. Function prototypes for
these functions of type float are contained in the header
file mathf.h.

The end of fcrt.h contains definitions for these sin-
gle precision “intrinsic” functions. Three methods
for defining these functions are provided, the method
is selected by the value in the preprocessor vari-
able SINGLE MATH FUNCS. If this variable has the value
intrinsic, it is assumed that the same names can
be used for the single as for the double precision ver-
sions. If this variable has the value use double the
double precision functions are used with the arguments
cast to double, and the result cast back to type float.
If SINGLE MATH FUNCS has neither of these values, the
names used for these functions are the usual double
names followed by an “f”, thus for example sin be-
comes sinf in the single precision codes. It is critical
that the user choose the correct value for
SINGLE MATH FUNCS if the single precision routines are
compiled.

Note that the following two function headers do not have
the same meaning:

Example H1: fname(x)
float x;

Example H2: fname(float x)

The first example is in the K&R or pre-ANSI style. It
implies that the argument x is expected to be passed as
type double and will be coerced to type float before be-
ing used within the function. In the second example the
argument x is expected to be passed as type float.

Similarly there are distinct pre-ANSI and ANSI styles
for use in a code that references a function:

Example R1: void fname();
float x;
...
fname(x);

Example R2: void fname(float);

float x;
...
fname(x);

In Example R1, which is the pre-ANSI style, x will be
coerced from float to double when it is passed to fname,
whereas in Example R2, which is the ANSI style, x will
be passed as type float. The ANSI standard allows usage
of either pre-ANSI or ANSI style. Note, however, that
R1 is compatible with H1, and R2 is compatible with
H2, but mixing the styles gives erroneous results.

C–4 Usage of the mathc90 Library July 11, 2015

We have used the ANSI style,
i.e., as in Example H2, in the
codes of mathc90 that have ar-
guments of type float. Thus a
user must use the ANSI style,
i.e., as in Example R2, in code
that references a library function
that has an argument of type
float. The needed function pro-
totypes can be easily obtained
by simply including the header
file mathc90.h.

1.6 Specification of
functions to be
passed to library
procedures.

For some library procedures one
or more of the arguments is the
name of a user-coded procedure.
As a documentation aid, we list
prototypes for these procedures
to the right, using the MATH77
names.

1.7 User-accessible
COMMON blocks.

We have generally avoided user-
accessible COMMON blocks in
MATH77, however in special-
ized usages of the code of Chap-
ter 14.1 for Ordinary Differen-
tial Equations there is a need to
access the COMMON block DI-
VASC.
In mathc90 this is represented
as an external data structure
named divasc and having type
t divasc. See the file diva.c for
the components of this structure. If you are working
from the “mangled” code, the names will be different
than those in the documentation, but the names in the
structure appear in the same order as given in the docu-
mentation. For type float, replace “diva” with “siva” in
the text above.

1.8 Codes in MATH77 but not in
mathc90.

Since ANSI C does not have a complex data type, some
codes using a complex data type are in MATH77 but not
in mathc90. In particular codes in Chapters 4.1,“Square
Nonsingular Systems of Equations”, and 6.3, “Basic Lin-
ear Algebra Subprograms” which use complex arguments
are not available in mathc90. When the Fortran codes

Library
Chap. Functions Prototypes for user-coded functions

8.2 dnqsol() void dnqfj(long,double[],double[],double*,long*);

snqsol() void snqfj(long,float[],float[],float*,long*);

9.2 dmlc01() void dmlcfg(long,double[],double*,double[],

LOGICAL32*);

smlc01() void smlcfg(long,float[],float*,float[],

LOGICAL32*);

9.3 dnlafu() void dcalcr(long,long,double[],long*,double[]);

dnlagu() void dcalcj(long,long,double[], long*,double*);

dnlafb()
dnlagb()

snlafu() void scalcr(long,long,float[],long*,float[]);

snlagu() void scalcj(long,long,float[],long*,double*);

snlafb()
snlagb()

9.3 dnlsfu() void dcalca(long,long,long,double[],long*,double*);

dnlsgu() void dcalcb(long,long,long,double[],long*,double*);

dnlsfb()
dnlsgb()

snlsfu() void scalca(long,long,long,float[],long*, float*);

snlsgu() void scalcb(long,long,long,float[],long*,float*);

snlsfb()
snlsgb()

14.4 diva() void derivs(double[],double[],double[],long[]);

divaa() void output(double[],double[],double[],long[]);

siva() void derivs(float[],float[],float[],long[]);

sivaa() void output(float[],float[],float[],long[]);

18.3 insort() long compar(long,long);

18.4 exsort() void dataop(long,long,long,long*);

implement a complex version by using real or double
precision arrays, such versions are also available in C.

1.9 Codes in mathc90 but not in
MATH77.

There is one additional sorting function and a few ad-
ditional single precision complex arithmetic functions in
mathc90.

To the functions csort(), csortp(), and csortq() of Chap-
ter 18.1, we have added a character string sorting func-
tion named csort1(). For csort(), csortp(), and csortq(),
the character data to be sorted must be in an array de-
clared in a form such as

char c[100][11];

which would provide space for 100 character strings each

July 11, 2015 Usage of the mathc90 Library C–5

having up to 10 meaningful character positions plus a
null termination character. The second dimensioning
value, e.g. 11 in this example, must be passed as the
second argument to csort(), csortp(), or csortq(). Note
that the operational length of each character string in
the array is determined by the position of its null ter-
minator, but a total of 11 character positions of storage
are allocated for each string.

For csort1() the character data to be sorted are refer-
enced via an array of pointers to char. Such an array,
say for 100 character strings, can be declared as

char *pc[100];

With this method of storing character strings, each
string need not occupy any more storage than is needed
for its meaningful characters, its null terminator, and its
pointer. The procedure csort1() operates by swapping C
pointers, whereas csortp() and csortq() operate by swap-
ping indices, and csort() operates by swapping the actual
character strings.

The statement for referencing csort1() is

csort1(pc, m, n, k, l);

where pc must be declared as described above and the
other four arguments are long int’s with the same inter-

pretation as in the other character sorting procedures.

In MATH77, Chapter 17.2, there are subprograms
for double precision complex arithmetic named ZSUM,
ZDIF, ZPRO, ZQUO, ZSQRTX, and DZABS. These are
provided because double precision complex arithmetic is
not directly supported in standard Fortran 77. There is
no need in Fortran for single precision versions of these
since single precision complex arithmetic is directly sup-
ported in standard Fortran 77.

In C, however, there is no direct support for complex
arithmetic, so there is potential use for both single pre-
cision and double precision versions of these complex op-
erations. Thus, in mathc90 we provide routines named
csum, cdif, cpro, cquo, csqrtx, and scabs, with arguments
(and the returned value from scabs) of type float, as well
as the “z” procedures for type double.

1.10 Testing the portability of the
mathc90 library.

The mathc90 library has been tested for portability on
the same machines as the MATH77 library. This test
involves running the set of demonstration drivers and
comparing the results with those obtained in Fortran
and with results in C on other machines.

C–6 Usage of the mathc90 Library July 11, 2015

	Usage of the mathc90 Library
	Introduction
	Usage documentation.
	Header files.
	The library file, fhelp.c
	A library archive file

	Correspondence between Fortran and C types.
	CHARACTER arguments

	Using the type float in C.
	Specification offunctions to bepassed to libraryprocedures.
	User-accessible COMMON blocks.
	Codes in MATH77 but not in mathc90.
	Codes in mathc90 but not in MATH77.
	Testing the portability of the mathc90 library.

