
2.4 Bessel Functions J0, J1, Y0 and Y1

A. Purpose

These subprograms compute values of the cylindrical
Bessel functions of the first kind, J0 and J1, and of the
cylindrical Bessel functions of the second kind, Y0 and
Y1. These functions are discussed in [1] and [2].

B. Usage

B.1 Program Prototype, Single Precision

REAL X,SBESJ0,SBESJ1,SBESY0,SBESY1,W

Assign a value to X and use one of the following function
references.

To compute J0 : W = SBESJ0(X)

To compute J1 : W = SBESJ1(X)

To compute Y0 for x > 0 : W = SBESY0(X)

To compute Y1 for x > 0 : W = SBESY1(X)

B.2 Argument Definitions

X [in] Argument of function. Require X > 0 for the Y
functions.

B.3 Modifications for Double Precision

For double precision usage, change the REAL type
statement to DOUBLE PRECISION, and change the
function names to DBESJ0, DBESJ1, DBESY0, and
DBESY1, respectively.

C. Examples and Remarks

The listing of DRSBESJ0 and ODSBESJ0 gives an ex-
ample of using these subprograms to evaluate the Wron-
skian identity

z(x) = (xπ/2)[J1(x)Y0(x)− J0(x)Y1(x)]− 1 = 0

D. Functional Description

The functions Jn and Yn are a pair of linearly indepen-
dent solutions for the differential equation

x2
d2w

dx2
+ x

dw

dx
+
(
x2 − n2

)
w = 0

The functions J0 and J1 are defined for all real x. The
function J0 is even, and J1 is odd. As x → ∞, J0(x)
and J1(x) oscillate an infinite number of times about
zero with an amplitude that diminishes asymptotically
to [2/(πx)]

1
2 , i.e., approximately 0.80x−

1
2 . The distance

between successive zeros approaches π as |x| → ∞.

The functions Y0 and Y1 have real values for positive real
x, approach −∞ as x→ 0+ and have complex values for
negative real x. For large positive x the Y functions
have oscillatory behavior similar to the J functions, i.e.,
with amplitude approaching 0.80x−

1
2 and zero spacing

approaching π. As x → 0+, Y0(x) → (2/π) ln(x) and
Y1(x)→ −(2/πx).
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The Y subprograms treat x ≤ 0 as an error condition.
If the complex values of Y0 and Y1 for negative x are
desired they may be computed from the formulae

Y0(x) = Y0(−x) + 2iJ0(−x)

Y1(x) = −Y1(−x)− 2iJ1(−x),
x < 0

where i denotes the imaginary unit. See Equation 9.1.36
in [1].

The computer approximations for these functions were
developed by L. W. Fullerton, [3] and [4], using func-
tional forms involving sine, cosine, square root, log-
arithm, and Chebyshev polynomial approximations.
These subprograms select the polynomial degrees to
adapt to machine accuracy of up to 30 decimal places.

The single precision subprograms for Jn(x) and Yn(x)
were tested on a Univac 1100 by comparison with the
corresponding double precision subprograms over vari-
ous argument ranges. The relative precision of Univac
single precision arithmetic is ρ = 2−27 ≈ 0.745× 10−8.

The results show that the relative error can be very large
near the zeros of any of these functions with the excep-
tion that relative accuracy can be, and is, maintained
for J1 near its zero at x = 0. The absolute error is large
for Y0 and Y1 near the singularity at x = 0.

Test results may be summarized as follows.
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Argument Maximum (Abs. or
Function Interval Error Rel.)
SBESJ0 [−5.6, 5.6] 6.5ρ (Abs.)

[1.0, 1.0E6] 2.1ρx
1
2 (Abs.)

SBESJ1 [−7.2, 7.2] 3.8ρ (Abs.)

[1.0, 1.0E6] 1.1ρx
1
2 (Abs.)

SBESY0 [0.00, 0.32] 7.6ρ (Rel.)
[0.32, 1.12] 6.0ρ (Abs.)
[1.12, 4.00] 1.9ρ (Abs.)

[1.0, 1.0E6] 2.1ρx
1
2 (Abs.)

SBESY1 [0.0, 1.1] 6.6ρ (Rel.)
[1.1, 5.5] 3.0ρ (Abs.)

[1.0, 1.0E6] 1.3ρx
1
2 (Abs.)

For the functions Jn(x) and Yn(x) the absolute error is

approximated by 2|x| 12 ρ for large |x| while the amplitude

of the function values decreases like 0.8|x|− 1
2 . Thus no

accuracy at all can be expected when 2|x| 12 ρ > 0.8|x|− 1
2 ,

i.e., when |x| > 0.4ρ−1. The subprograms assume less
than one decimal digit of accuracy could be produced
when x > 0.04ρ−1, and issue an error message.

As a test of the double precision subprograms and an ad-
ditional test of the single precision subprograms the test
function, z(x), defined above in Section C, was evaluated
in double precision and in single precision at selected
points ranging from 100 to 107. The machine arithmetic
accuracies were ρ1 = 2−27 ≈ 0.745× 10−8 for single pre-
cision and ρ2 = 2−60 ≈ 1.15×10−18 for double precision.
The magnitude of z(x) computed in single precision was
bounded by 8ρ1 for 100 ≤ x ≤ 104 and had the value
22ρ1 for x = 105 and x = 106. The magnitude of z(x)
computed in double precision was bounded by 9ρ2 for
100 ≤ x ≤ 107.

This accuracy is much greater than the individual sub-
programs, SBESJ0, etc., deliver for large arguments.
Thus the very accurate values of z(x) must be due to
a functional relation existing between the algorithms
implemented in the different cylindrical Bessel function
subprograms.
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E. Error Procedures and Restrictions

These subprograms return a zero result and issue an er-
ror message if

(a) x ≤ 0 for Y0 or Y1,
or

(b) |x| > 0.04ρ−1 for J0, J1, Y0 or Y1.

The subprograms use R1MACH(4) or D1MACH(4) for
ρ. The system-supplied sine and cosine subprograms
may also have a cutoff value close to ρ−1. If it is less
than 0.04ρ−1 then there will be values of x that will pass
through the tests and trigger an error message from the
sine or cosine subprogram.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DBESJ0 AMACH, DBESJ0, DBMP0, DCSEVL,
DERM1, DERV1, DINITS, ERFIN,
ERMSG, IERM1, IERV1

DBESJ1 AMACH, DBESJ1, DBMP1, DCSEVL,
DERM1, DERV1, DINITS, ERFIN,
ERMSG, IERM1, IERV1

DBESY0 AMACH, DBESJ0, DBESY0, DBMP0,
DCSEVL, DERM1, DERV1, DINITS,
ERFIN, ERMSG, IERM1, IERV1

DBESY1 AMACH, DBESJ1, DBESY1, DBMP1,
DCSEVL, DERM1, DERV1, DINITS,
ERFIN, ERMSG, IERM1, IERV1

SBESJ0 AMACH, ERFIN, ERMSG, IERM1, IERV1,
SBESJ0, SBMP0, SCSEVL, SERM1,
SERV1, SINITS

SBESJ1 AMACH, ERFIN, ERMSG, IERM1, IERV1,
SBESJ1, SBMP1, SCSEVL, SERM1,
SERV1, SINITS

SBESY0 AMACH, ERFIN, ERMSG, IERM1, IERV1,
SBESJ0, SBESY0, SBMP0, SCSEVL,
SERM1, SERV1, SINITS

SBESY1 AMACH, ERFIN, ERMSG, IERM1, IERV1,
SBESJ1, SBESY1, SBMP1, SCSEVL,
SERM1, SERV1, SINITS

Subprograms SBESJ0, SBESJ1, SBESY0 and SBESY1
designed and developed by L. W. Fullerton, Los Alamos,
1977. Adapted to Fortran 77 and the MATH77 library
by C. L. Lawson and S. Chiu, JPL, 1984.
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DRSBESJ0
c DRSBESJ0
c>> 2009−10−26 DRSBESJ0 Krogh Moved func t i on c a l l s from pr i n t s ta tement .
c>> 1996−05−30 DRSBESJ0 Krogh Added e x t e r na l s ta tement .
c>> 1994−10−19 DRSBESJ0 Krogh Changes to use M77CON
c>> 1994−09−13 DRSBESJ0 CLL Typed a l l v a r i a b l e s .
c>> 1994−09−01 DRSBESJ0 WVS Moved formats to top f o r C convers ion
c>> 1994−08−09 DRSBESJ0 WVS s e t up f o r CHGTYP
c>> 1992−04−29 DRSBESJ0 CAO Replaced ’1 ’ in format .
c>> 1987−12−09 DRSBESJ0 Lawson I n i t i a l Code .
c−−S r ep l a c e s ”?”: ?BESJ0 , ?BESJ1 , ?BESY0, ?BESY1, DR?BESJ0
c Demonstration d r i v e r f o r Besse l f unc t i on s .
c
c Z = (PI / 2) ∗ X ∗ ( J1 (X)∗Y0(X) − J0 (X)∗Y1(X) ) − 1.0
c

integer IX
real BEJ0 , BEJ1 , BEY0, BEY1
external SBESJ0 , SBESJ1 , SBESY0, SBESY1
real SBESJ0 , SBESJ1 , SBESY0, SBESY1, PI2 , X, Z

c
data PI2 / 1.5707963267948966192313216E0 /

c
100 format ( ’ ’ ,2X,A1, 7X,A5, 8X,A5, 8X,A5, 8X,A5, 8X,A1/3X, ’− ’ ,7X,

∗ 5( ’− ’ ) , 8X, 5 ( ’− ’ ) , 8X, 5 ( ’− ’ ) , 8X, 5 ( ’− ’ ) , 8X, ’− ’ )
150 format ( ’ ’ ,F4 . 1 , 1X, 2 ( F12 . 7 , 1X) ,3X, ’−INFINITY ’ ,4X, ’−INFINITY ’ )
200 format ( ’ ’ ,F4 . 1 , 1X, 4 ( F12 . 7 , 1X) ,1X,G9 . 2 )

c
print 100 , ’X ’ , ’ J0 (X) ’ , ’ J1 (X) ’ , ’Y0(X) ’ , ’Y1(X) ’ , ’Z ’

c
X = 0 .E0
BEJ0 = SBESJ0(X)
BEJ1 = SBESJ1(X)
print 150 , X, BEJ0 , BEJ1

c
do 250 IX = 5 , 50 , 5

X = IX / 10 .E0
BEJ0 = SBESJ0(X)
BEJ1 = SBESJ1(X)
BEY0 = SBESY0(X)
BEY1 = SBESY1(X)
Z = PI2 ∗ X ∗ ( BEJ1∗BEY0 − BEJ0∗BEY1 ) − 1 .0 e0
print 200 , X,BEJ0 ,BEJ1 ,BEY0,BEY1,Z

250 continue
stop

c
end

ODSBESJ0

X J0 (X) J1 (X) Y0(X) Y1(X) Z
− −−−−− −−−−− −−−−− −−−−− −
0 .0 1.0000000 0.0000000 −INFINITY −INFINITY
0 .5 0.9384696 0.2422685 −0.4445186 −1.4714723 −0.18E−06
1 .0 0.7651977 0.4400506 0.0882570 −0.7812129 0 .12E−06
1 .5 0.5118276 0.5579365 0.3824489 −0.4123086 0 .0
2 .0 0.2238908 0.5767248 0.5103757 −0.1070324 0 .12E−06
2 .5 −0.0483838 0.4970941 0.4980704 0.1459181 0 .0
3 .0 −0.2600519 0.3390590 0.3768500 0.3246744 0 .0
3 .5 −0.3801277 0.1373775 0.1890219 0.4101884 0 .0
4 .0 −0.3971498 −0.0660434 −0.0169407 0.3979257 −0.12E−06
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4 .5 −0.3205426 −0.2310604 −0.1947050 0.3009973 0 .24E−06
5 .0 −0.1775968 −0.3275791 −0.3085176 0.1478631 −0.60E−07
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