
2.5 Bessel Functions of General Orders Jν and Yν

A. Purpose

These subroutines compute a sequence of values Jν(x)
or Yν(x) for ν = α, α+ 1, ..., α+ NUM− 1. Jν and Yν
are Bessel functions of the first and second kinds, respec-
tively, as described in [1]. Jν and Yν are a pair of linearly
independent solutions of the differential equation

x2
d2w

dx2
+ x

dw

dx
+ (x2 − ν2)w = 0

Yν is also sometimes called the Neumann function and
denoted by Nν .

B. Usage

B.1 Program Prototype, Single Precision

REAL X, ALPHA, BJ(≥NUM),BY(≥NUM)

INTEGER NUM

Assign values to X, ALPHA, and NUM. To evaluate J
Bessel functions:

CALL SBESJN (X, ALPHA, NUM, BJ)

To evaluate Y Bessel functions:

CALL SBESYN (X, ALPHA, NUM, BY)

The results are stored in BJ() or BY(), respectively.

B.2 Argument Definitions

X [in] Argument for function evaluation. Require X
≥ 0 for the J function and X > 0 for the Y func-
tion. Require X < (16ρ)−1 for both functions, where
ρ denotes the machine precision.

ALPHA [in] Lowest order, ν, for which Jν(x) or Yν(x)
is to be computed. Require ALPHA ≥ 0. For suf-
ficiently large ν, depending on x, positive values of
Jν(x) will be smaller than the computer’s underflow
limit and the magnitude of Yν(x) will exceed the over-
flow limit. SBESYN issues an error message before
overflow occurs.

NUM [in] Number of values of ν for which Jν(x) or
Yν(x) is to be computed. Require NUM ≥ 1.

BJ() [out] Array in which SBESJN will store results.
BJ(i) = Jα+i−1(x) for i = 1, 2, ..., NUM.

BY() [out] Array in which SBESYN will store results.
BY(i) = Yα+i−1(x) for i = 1, 2, ..., NUM.

B.3 Modifications for Double Precision

For double precision usage, change the REAL statement
to DOUBLE PRECISION and change the subroutine
names to DBESJN and DBESYN, respectively.

C. Examples and Remarks

These Bessel functions satisfy the Wronskian identity
([1], Eq. 9.1.16)

z(ν, x) =
xπ

2
[Jν+1(x)Yν(x)− Jν(x)Yν+1(x)]− 1 = 0

The program DRSBESJN evaluates this expression for
a few values of ν and x. The results are shown in
ODSBESJN.

D. Functional Description

D.1 Properties of J and Y

In the region x ≥ ν, both J and Y are oscillatory and
are bounded in magnitude by one. For fixed ν ≥ 0 and
increasing x these functions have asymptotic behavior
described by ([1], Eqs. 9.2.1 – 9.2.2)

Jν(x) ∼ [2/(πx)]1/2 cos(x− (ν + 0.5)π/2) (1)

Yν(x) ∼ [2/(πx)]1/2 sin(x− (ν + 0.5)π/2) (2)

In the region ν ≥ x, Jν(x) is positive and bounded and
approaches zero as ν increases with fixed x > 0, while
Yν(x) is negative and unbounded and approaches −∞
as ν increases with fixed x > 0. For fixed x > 0 and
increasing ν, these functions have asymptotic behavior
described by ([1], Eqs. 9.3.1 – 9.3.2).

Jν(x) ∼ (2πν)−1/2(ex/(2ν))ν (3)

Yν(x) ∼ −(2/(πν))
1
2 (ex/(2ν))−ν (4)

where e = 2.718 · · · .

Both J and Y satisfy the recursion ([1], Eq. 9.1.27)

fν+1(x)− (2ν/x)fν(x) + fν−1(x) = 0 (5)

For ν > x this recursion is stable in the forward direction
for Y and in the backward direction for J. For x > ν the
recursion is stable in either direction for both J and Y.

D.2 Machine dependent quantities

Let ρ denote the machine precision, i.e., R1MACH(3) or
D1MACH(3) of Chapter 19.1. Let Ω denote the overflow
limit, i.e., R1MACH(2) or D1MACH(2). Define

XPQ = 1.1293(− log10(ρ/4))− 0.59

The asymptotic series used in these subroutines is valid
for x ≥ XPQ and 0 ≤ ν ≤ 2.
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Let ν∗(x) denote the value of ν for which Eq. (4) reaches
the overflow limit, Ω, for a given value of x. It hap-
pens that ν∗(x) is very close to the value of ν for which
Eq. (3) reaches the underflow limit on the same machine.
The figure below shows plots of ν∗(x) for some computer
systems currently in use at JPL.
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D.3 Computation of Jν(x)

Given x, α, and NUM, define β = α+ NUM− 1. Thus,
β is the largest requested order.

For x = 0 the result is 1 if ν = 0, and 0 if ν > 0.

For 0 < x ≤ 0.1 the Taylor series in x is used
([1],Eq. 9.1.10). For 0.1 < x ≤ max(β,XPQ) forward
recursion on ν is used to determine a starting point for
backward recursion. The execution time in this region
increases linearly with β and can be substantial for large
β.

For max(β,XPQ) < x < (16ρ)−1 the subroutine eval-
uates the asymptotic series in x ([1], Eqs. 9.2.5, 9.2.9,
and 9.2.10) for two values of ν in the range [0, 2], and
then uses forward recursion. The execution time in this
region increases linearly with β and decreases with in-
creasing x.

If x > (16ρ)−1 an error message is issued because the
phase of the sine and cosine functions will not be known
with any accuracy.

D.4 Computation of Yν(x)

If x = 0 an error message is issued since the result would
be −∞. The output values are set to −Ω/2.

For 0 < x ≤ ρ and ν = 0, the result is (2/π)(γ +
ln(x/2)) ([1], Eq. 9.1.13), where γ denotes Euler’s con-
stant, 0.57721 · · · . For 0 < x ≤ ρ and ν > 0, the result
is −π−1Γ(ν)(x/2)−ν ([1], Eq. 9.1.9).

For ρ < x < XPQ the subroutine first computes values
of J. From these values it computes Y for two values of ν
in [0, 2], and then uses forward recursion on ν to obtain
the requested values.

For XPQ ≤ x ≤ (16ρ)−1 the subroutine evaluates the
asymptotic series in x for two values of ν in [0, 2], and
then uses forward recursion.

If x > (16ρ)−1 an error message is issued as noted pre-
viously for J.

D.5 Accuracy tests

The subroutines SBESJN and SBESYN were tested on
an IBM compatible PC using IEEE arithmetic by com-
parison with the corresponding double precision subrou-
tines. Tables 1 and 2 give a summary of the errors found
in these tests. Each number in a rectangular cell is the
maximum value of the error observed at 2592 points
tested in the indicated range. Each number in a triangu-
lar cell is the maximum over 1296 points. The underflow
limit for Jν , and the overflow limit for Yν , actually ex-
tend down the ν axis (see Figure 3). Where the function
underflows or overflows, fewer samples are used.

Table 1. Maximum errors found in indicated re-
gions for SBESJN. Relative error is shown above
the diagonal and absolute error below. Error is
shown as a multiple of the machine precision,
≈ 1.19× 10−7 for these tests.
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As a test of the double precision subroutines, and an
additional test of the single precision subroutines, the
expression z(ν, x) defined in Section C was evaluated at
40 points. Nine values are shown in Table 3 from these
tests of SBESJN and SBESYN and in Table 4 from the
tests of DBESJN and DBESYN.

These subroutines are designed for use with arithmetic
precision to about 10−20. The auxiliary subroutine
DBESPQ has no inherent accuracy limitations.
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Table 2. Maximum errors found in indicated re-
gions for SBESYN. Relative error is shown above
the diagonal and absolute error below. Error is
shown as a multiple of the machine precision,
≈ 1.19× 10−7 for these tests.
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Table 3. Single precision Wronskian test.
Tabulated value is z(ν, x)/R1MACH(3)

where R1MACH(3) ≈ 5.96× 10−8.
ν x⇒ 5.1 15.3 30.6

30.6 6.2 24.6 3.5
15.3 5.9 5.9 0.2
5.1 1.3 0.7 3.5

Table 4. Double precision Wronskian test.
Tabulated value is z(ν, x)/D1MACH(3)

where D1MACH(3) ≈ 1.11× 10−16.
ν x⇒ 5.1 15.3 30.6

30.6 32.2 17.2 16.0
15.3 3.9 5.8 0.4
5.1 1.0 1.8 0.1
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E. Error Procedures and Restrictions

These subroutines require x ≥ 0, ALPHA ≥ 0, and NUM
≥ 1. Violation of any of these conditions causes an error
message and an immediate return.

The subroutines attempt to anticipate and avoid over-
flow conditions. Intermediate overflows are avoided by
dynamic rescaling. If a final value of Y would be beyond
the overflow limit the value is set to −Ω/2 and an error
message is issued. It is assumed that the host system
will set underflows to zero. No messages are issued for
underflow.

If x > (16ρ)−1 an error message is issued since no accu-
racy can be obtained.

Subroutines SBESYN and DBESYN each contain an in-
ternal array AJ() to hold values of Jν(x) needed to com-
pute Yν(x). The size requirement of this array varies
with the machine precision and is about 3(− log10 ρ)+3.
For example, for precisions of 10−10, 10−20, and 10−30

the required size is 33, 63, and 95. The array is nominally
dimensioned 95 to handle all anticipated computers. An
error message will be issued in the unlikely event that a
larger dimension is needed.

Error messages are issued by the error message processor
of Chapter 19.2.

The user should be aware that these subroutines require
a substantial amount of execution time, generally in-
creasing linearly with the sum, ALPHA+NUM.

F. Supporting Information

The source language for these subroutines is ANSI For-
tran 77.

Original subroutines SBJNU, SBYNU, DBJNU,
DBYNU, BESJ, and BESY were designed and pro-
grammed by W. V. Snyder and E. W. Ng, JPL, 1973,
with modifications by S. Singletary in 1974. The present
subroutines are modifications of the earlier subroutines
to improve portability and accuracy, avoid overflows,
and conform to Fortran 77. These subroutines were
produced in 1984 by C. L. Lawson and S. Y. Chiu in
consultation with Snyder and Ng.

Entry Required Files

DBESJN AMACH, DBESJN, DBESPQ, DERM1,
DERV1, DGAMMA, ERFIN, ERMSG,
IERV1

DBESYN AMACH, DBESPQ, DBESYN, DERM1,
DERV1, DGAMMA, DLGAMA, ERFIN,
ERMOR, ERMSG, IERV1

SBESJN AMACH, ERFIN, ERMSG, IERV1,
SBESJN, SBESPQ, SERM1, SERV1,
SGAMMA

SBESYN AMACH, ERFIN, ERMOR, ERMSG,
IERV1, SBESPQ, SBESYN, SERM1,
SERV1, SGAMMA, SLGAMA
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DRSBESJN

c DRSBESJN
c>> 1999−01−07 DRSBESJN Krogh Added e x t e r na l s ta tement .
c>> 1996−05−31 DRSBESJN Krogh Changes to use M77CON
c>> 1994−09−01 DRSBESJN WVS Moved formats to top f o r C convers ion
c>> 1992−04−29 DRSBESJN CAO Replaced ’1 ’ in format .
c>> 1987−12−09 DRSBESJN Lawson I n i t i a l Code .
c−−S r ep l a c e s ”?”: DR?BESJN, ?BESJN, ?BESYN
c DEMONSTRATION PROGRAM FOR BESSEL func t i on .
c

real X(3 ) ,ALPHA(3 ) ,BJ(2 ) ,BY(2 ) ,Z , PI2
external SBESJN, SBESYN
integer I , N

c
data X / 0 .5E0 , 1 . 5E0 , 3 . 2E0 /
data ALPHA / 1 .5E0 , 3 . 0E0 , 7 . 8E0 /
data PI2 / 1.5707963267948966192313216E0 /

c
100 format ( ’ ’ ,4X,A1, 9X,A2,11X,A7,11X,A7,12X,A1)
200 format ( ’ ’ ,26X,A9, 9X,A9/ ’ ’ )
300 format ( ’ ’ ,F6 . 2 , 5X, F6 . 2 , 4X,G15 . 8 , 5X,G15 . 8 ,G13 . 2 )
400 format ( ’ ’ ,21X, 2 (G15 . 8 , 5X)/ ’ ’ )

c
print 100 , ’X ’ , ’NU’ , ’ J (NU,X) ’ , ’Y(NU,X) ’ , ’Z ’
print 200 , ’ J (NU+1,X) ’ , ’Y(NU+1,X) ’

c
do 500 I = 1 ,3

N = 2
ca l l SBESJN(X( I ) ,ALPHA( I ) ,N,BJ)
ca l l SBESYN(X( I ) ,ALPHA( I ) ,N,BY)
Z = PI2 ∗ X( I ) ∗ (BJ(2)∗BY(1) − BJ(1)∗BY(2 ) ) − 1 .E0
print 300 ,X( I ) ,ALPHA( I ) ,BJ(1 ) ,BY(1 ) ,Z
print 400 ,BJ(2 ) ,BY(2)

500 continue
c

end

ODSBESJN

X NU J(NU,X) Y(NU,X) Z
J (NU+1,X) Y(NU+1,X)

0 .50 1 .50 0.91701694E−01 −2.5214655 0 .0
0.92364084E−02 −14.138548

1 .50 3 .00 0.60963951E−01 −2.0735416 0 .12E−06
0.11768132E−01 −7.3619728

3 .20 7 .80 0.11046740E−02 −40.619846 −0.12E−06
0.20715481E−03 −187.70990
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