
2.6 Bessel Functions I0, I1, K0 and K1

A. Purpose

These subprograms compute values of the modified (hy-
perbolic) Bessel functions of the first kind, I0 and I1 and
the modified (hyperbolic) Bessel functions of the second
kind, K0 and K1. These functions are discussed in [1]
and [2].

B. Usage

B.1 Program Prototype, Single Precision

REAL X, BI0, BI1, BK0, BK1

INTEGER INFO, IWANT

To compute I0 and/or K0:
Assign values to X and IWANT, and

CALL SBI0K0(X, BI0, BK0, IWANT, INFO)

To compute I1 and/or K1:
Assign values to X and IWANT, and

CALL SBI1K1(X, BI1, BK1, IWANT, INFO)

B.2 Argument Definitions

X [in] Argument of function. Require X > 0 for the K
functions.

BI0, BI1, BK0, BK1 [out] Function values, depend-
ing on IWANT.

IWANT [in] Specification of the desired functions:

= 1: BIn = In(x)
= 2: BKn = Kn(x)
= 3: BIn = In(x) and BKn = Kn(x)
= −1: BIn = e−|x|In(x)
= −2: BKn = exKn(x)
= −3: BIn = e−|x|In(x) and BKn = exKn(x).

INFO [out] indicates the status on termination. INFO
= 0 means the computation was successful. See Sec-
tion E for the meaning of nonzero values of INFO.

B.3 Modifications for Double Precision

For double precision usage, change the REAL type state-
ment to DOUBLE PRECISION, and change the subrou-
tine names to DBI0K0 and DBI1K1, respectively.

C. Examples and Remarks

The listing of DRSBESI0 and ODSBESI0 gives an ex-
ample of using these subprograms to evaluate the Wron-
skian identity

ζ(x) = x[I0(x)K1(x) + I1(x)K0(x)]− 1 = 0

D. Functional Description

The functions In and Kn are a pair of linearly indepen-
dent solutions for the differential equation

x2
d2w

dx2
+ x

dw

dx
−
(
x2 + n2

)
w = 0

The functions I0 and I1 are defined for all real x. The
function I0 is even, and I1 is odd. They are monotone
increasing functions of |x|, approaching e|x|(2π|x|)− 1

2

as |x| → ∞. The functions e−|x|I0(x) and e−|x|I1(x)
are monotone decreasing functions of |x|, approaching

(2π|x|)− 1
2 as |x| → ∞.

The functions K0 and K1 have real values for positive
real x, approach +∞ as x→ 0+ and have complex values
for negative real x. As x → 0+, K0(x) → − ln(x) and
K1(x)→ 1/x. Kn(x) is a monotone decreasing function

of x, approaching e−x(π/2x)
1
2 as x→ +∞.

The K subprograms treat x ≤ 0 as an error condition.
If the complex values of K0 and K1 for negative x are
desired they may be computed from the formulae

K0(x) = K0(−x)− iπI0(−x)

K1(x) =−K1(−x)− iπI1(−x),
x < 0

where i denotes the imaginary unit. See Equation 9.6.31
in [1].
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The computer approximations for these functions, ex-
cept for K0(x) when x < 2, were developed by L. W.
Fullerton, [3] and [4], using functional forms involv-
ing sine, cosine, square root, logarithm, and Chebyshev
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polynomial approximations. The computer approxima-
tions for K0(x) when x < 2 were developed by W. J.
Cody of Argonne National Laboratory using rational
polynomial approximations. Where Chebyshev polyno-
mial approximations are used, these subprograms select
the polynomial degrees to adapt to machine accuracy
of up to 30 decimal places. The coefficients given by
Cody have only 21 digits. If 30 decimal place precision
is needed, approximations due to Fullerton are available,
but for precisions up to 16 decimal places, they are some-
what less accurate than the approximations due to Cody,
because Fullerton computes K0(x) using I0(x), ln(x) and
a Chebyshev polynomial (see formula 9.6.13 in [1]); the
errors in I0(x) and ln(x), together with the error in the
Chebyshev polynomial approximation, are greater than
the errors in Cody’s approximation.

The single precision subprograms for In(x) and Kn(x)
were tested on an IBM PC/AT (using IEEE arithmetic)
by comparison with the corresponding double precision
subprograms over various argument ranges. Each inter-
val was divided into 10,000 subintervals, and a point
was randomly selected in each subinterval. The rel-
ative precision of IEEE single precision arithmetic is
ρ = 2−23 ≈ 1.19 × 10−7. The test results may be sum-
marized as follows.

Relative Error, in units of ρ
Function Interval Max. Mean Std. Dev.

I0(x) [0, 2.5] 1.21 0.23 0.17
[2.5, 5] 1.15 0.35 0.25
[5, 15] 1.31 0.40 0.26
[15, 80] 1.21 0.39 0.26

I1(x) [0, 2.5] 1.01 0.23 0.17
[2.5, 5] 1.49 0.38 0.28
[5, 15] 1.39 0.42 0.28
[15, 80] 1.60 0.41 0.29

K0(x) [0, 1.8] 2.15 0.41 0.37
[1.8, 2.1] 2.28 0.43 0.34
[2.1, 5] 1.33 0.35 0.26
[5, 15] 1.36 0.34 0.24
[15, 80] 1.33 0.36 0.26

K1(x) [0, 1.8] 2.01 0.28 0.23
[1.8, 2.1] 2.30 0.41 0.31
[2.1, 5] 1.11 0.31 0.22
[5, 15] 1.09 0.31 0.22
[15, 80] 1.12 0.31 0.22

The double precision subprograms for In(x) were tested
on an IBM PC/AT (using IEEE arithmetic) by com-
parison with extended precision subprograms over vari-
ous argument ranges. The double precision routines for
Kn(x) were tested on an IBM PC/AT (using IEEE arith-
metic) by comparison with an independent double preci-
sion procedure, due to Cody, that creates a purified argu-
ment, that is, one for which the function can be evaluated

without significant error. Each interval was divided into
2000 subintervals, and a point was randomly selected in
each subinterval. The relative precision of IEEE double
precision arithmetic is ρ = 2−52 ≈ 2.22 × 10−16. The
test results may be summarized as follows.

Relative Error, in units of ρ
Function Interval Max. Mean Std. Dev.

I0(x) [0, 2.5] 1.38 0.24 0.31
[2.5, 5] 1.36 0.34 0.25
[5, 9] 5.14 0.63 0.79

I1(x) [0, 2.5] 1.04 0.24 0.18
[2.5, 5] 1.41 0.34 0.26
[5, 9] 1.97 0.45 0.33

K0(x) [0, 1.8] 3.37 0.07 0.77
[1.8, 2.1] 2.75 0.03 0.81
[2.1, 5] 2.94 0.54 0.52
[5, 15] 2.24 0.58 0.50
[15, 80] 2.78 0.64 0.55
[80, 225] 3.21 0.66 0.59

K1(x) [0, 1.8] 3.41 0.74 0.63
[1.8, 2.1] 4.75 1.07 0.85
[2.1, 5] 5.31 1.49 1.10
[5, 15] 8.84 3.43 2.22
[15, 80] 57.67 16.51 13.62
[80, 225] 115.95 49.63 33.35

The poor accuracy reported for I0(x) in [5, 9] occurs
largely in [8.5, 9], and may be due to a questionable refer-
ence value. Other reports of poor accuracy are probably
justified.

Having no adequate reference function for I0(x) and
I1(x) for x > 9.0, subprograms for these func-
tions were tested by computing the Wronskian relation
I0(x)K1(x) + I1(x)K0(x) and comparing the result to
1/x. The test results may be summarized as follows.

Relative Error, in units of ρ
Interval Max. Mean Std. Dev.
[9, 80] 1.52 0.43 0.30
[80, 700] 1.66 0.43 0.30

The errors here are much smaller than the errors re-
ported above for K0(x) and K1(x). The very accurate
values of the Wronskian relation suggest a functional
dependence between the algorithms implemented in the
different hyperbolic Bessel function subprograms.
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Argument range testing in SBI0K0 or DBI0K0:

INFO Argument Range BI0 BK0 IWANT Reason
−3 x ≤ 0 correct Ω |IWANT| ≥ 2 K0(x) and exK0(x) are imaginary
−2 x > XI0MAX > XK0MAX Ω zero IWANT > 0 I0(x) overflows, K0(x)underflows

1 XI0MAX ≥ x > XK0MAX correct zero IWANT ≥ 2 K0(x) underflows

Argument range testing in SBI1K1 or DBI1K1:

INFO Argument Range BI1 BK1 IWANT Reason
−4 0 < x < XK1MIN correct Ω |IWANT| ≥ 2 K1(x) and exK1(x) overflow
−3 x ≤ 0 correct Ω |IWANT| ≥ 2 K1(x) and exK1(x) are imaginary
−2 x > XI1MAX > KX1MAX Ω zero IWANT > 0 I1(x) overflows, K1(x) underflows

1 XI1MAX ≥ x > XK1MAX correct zero IWANT ≥ 2 K1(x) underflows

B001. Technical report, Los Alamos Scientific Labora-
tory (1973).

4. L. Wayne Fullerton, Portable special function rou-
tines, in Wayne Cowell, editor, Portability of Nu-
merical Software, Lecture Notes in Computer Sci-
ence 57, 452–483, Springer Verlag, Berlin (1977).

E. Error Procedures and Restrictions

These subroutines set INFO to indicate the termination
status. INFO = 0 means the computation was success-
ful. INFO = −1 means IWANT had an improper value.
Any other value means the argument was one for which
one of the requested functions does not have a defined
real value, or the function value would be outside the
underflow or overflow limits of the host system.

The subroutines obtain host exponent limits using
R1MACH() or D1MACH() of Chapter 19.1. These are
used to compute argument limits, XI0MAX, etc., using
asymptotic formulas — Equations 9.7.1 and 9.2.2 of [1].
For example on a machine with IEEE arithmetic, these
argument limits are as listed in the following table:

Bound Single Precision Double Precision
XI0MAX 91.900 713.9869
XK0MAX 85.337 705.3427
XI1MIN 2.531× 10−38 4.45× 10−308

XI1MAX 91.906 713.9876
XK1MIN 1.187× 10−38 2.247× 10−308

XK1MAX 85.34 705.3434

The different argument range tests and resulting settings
of BI0, BK0, BI1, BK1, and INFO are given in the ta-
bles above, where Ω denotes the largest representable
number.

When INFO 6= 0 the error message processor of Chapter
19.2 is called — with LEVEL = 0 if INFO < 0 and with
LEVEL = −2 if INFO > 0. The user can alter the de-
fault action of the error processor by calling ERMSET
of Chapter 19.2.

F. Supporting Information

The source language is ANSI Fortran 77.

Subprograms SBI0K0 and SBI1K1 designed and devel-
oped by W. V. Snyder, JPL, 1990, based on earlier sub-
programs by L. W. Fullerton and W. J. Cody.

Entry Required Files

DBI0K0 AMACH, DBI0K0, DCSEVL, DERM1,
DERV1, DINITS, ERFIN, ERMSG,
IERM1, IERV1

DBI1K1 AMACH, DBI1K1, DCSEVL, DERM1,
DERV1, DINITS, ERFIN, ERMSG,
IERM1, IERV1

SBI0K0 AMACH, ERFIN, ERMSG, IERM1, IERV1,
SBI0K0, SCSEVL, SERM1, SERVI, SINITS

SBI1K1 AMACH, ERFIN, ERMSG, IERM1, IERV1,
SBI1K1, SCSEVL, SERM1, SERVI, SINITS
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DRSBI0K0

c program DRSBI0K0
c>> 1996−05−28 DRSBI0K0 Krogh Moved formats up .
c>> 1994−10−19 DRSBI0K0 Krogh Changes to use M77CON
c>> 1992−03−18 DRSBI0K0 CLL Added ”c” to ”program” l i n e above .
c>> 1990−11−21 WVS ( ed i t e d by CLL)
c Demonstration d r i v e r f o r s i n g l e p r e c i s i on hyp e r b o l i c Besse l
c f unc t i on subprograms .
c
c Compute the Wronskian r e l a t i o n
c
c z = x ∗ ( I1 ( x )∗K0( x ) + I0 ( x )∗K1( x )) − 1.0
c
c z shou ld be approx imate ly zero .
c
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−S r ep l a c e s ”?”: DR?BI0K0 , ?BI0K0 , ?BI1K1
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real X, BI0 , BK0, BI1 , BK1, Z
integer IX , INFO

c
100 format (3x , a1 , 7 x , 4 ( a5 , 8 x ) , a1/3x , ’− ’ ,7x , 4 ( ’−−−−− ’ ,8 x ) , ’− ’ )
150 format (1x , f 4 . 1 , 1 x , 2 ( f12 . 8 , 1 x ) ,4 x , ’ INFINITY ’ ,5x , ’ INFINITY ’ )
200 format (1x , f 4 . 1 , 1 x , 4 ( f12 . 8 , 1 x ) ,1 x , g9 . 2 )
c

print 100 , ’X ’ , ’ I0 (X) ’ , ’ I1 (X) ’ , ’K0(X) ’ , ’K1(X) ’ , ’Z ’
c

x = 0 .0 e0
ca l l sb i0k0 (x , bi0 , bk0 , 1 , i n f o )
ca l l sb i1k1 (x , bi1 , bk1 , 1 , i n f o )
print 150 , x , bi0 , b i1
do 300 ix = 5 , 50 , 5

x = ix / 10 .0 e0
ca l l sb i0k0 (x , bi0 , bk0 , −3, i n f o )
ca l l sb i1k1 (x , bi1 , bk1 , −3, i n f o )
z = x ∗ ( b i1 ∗bk0 + bi0 ∗bk1 ) − 1 .0 e0
print 200 , x , bi0 , bi1 , bk0 , bk1 , z

300 continue
stop
end

ODSBI0K0

X I0 (X) I1 (X) K0(X) K1(X) Z
− −−−−− −−−−− −−−−− −−−−− −
0 .0 1.00000000 0.00000000 INFINITY INFINITY
0 .5 0.64503527 0.15642083 1.52410924 2.73100948 −0.12E−06
1 .0 0.46575961 0.20791042 1.14446294 1.63615346 0 .0
1 .5 0.36743361 0.21903940 0.95820999 1.24316573 −0.60E−07
2 .0 0.30850834 0.21526928 0.84156823 1.03347695 0 .0
2 .5 0.27004644 0.20658463 0.75954866 0.90017444 −0.60E−07
3 .0 0.24300034 0.19682670 0.69776160 0.80656350 −0.60E−07
3 .5 0.22280243 0.18739997 0.64902627 0.73646754 −0.60E−07
4 .0 0.20700192 0.17875084 0.60929769 0.68157595 0 .0
4 .5 0.19419828 0.17095883 0.57609683 0.63714987 0 .12E−06
5 .0 0.18354082 0.16397227 0.54780757 0.60027385 0 .0
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