
2.10 Exponential Integrals Ei and E1

A. Purpose

These subroutines compute the exponential integrals Ei
and E1, defined by

Ei(x) =

∫ x

−∞

et

t
dt, and E1(x) =

∫ ∞
x

e−t

t
dt.

These functions are related by the equation

Ei(x) = −E1(−x)

The functions Ei(x) for x > 0 and E1(x) for x < 0 are
defined as Cauchy principal value integrals. These func-
tions thus have well-defined finite values for all real x
except x = 0 where Ei(0) = −∞ and E1(0) = +∞.

For additional properties of these functions see [1].

B. Usage

B.1 Program Prototype, Single Precision

REAL X, Y, EI, SE1

Assign a value to X and obtain the value of Ei or E1

respectively by use of the statements,

Y =SEI(X) Y =SE1(X)

B.2 Argument Definitions

X [in] Argument of function. Require X 6= 0.

B.3 Modifications for Double Precision

For double precision usage change the REAL state-
ment to DOUBLE PRECISION and change the function
names to DEI and DE1 respectively.

C. Examples and Remarks

See the program DRSEI and the output ODSEI for an
example of the use of SEI and SE1 to tabulate values of
Ei and E1.

D. Functional Description

As x varies from −∞ to 0, E1(x) varies monotoni-
cally from −∞ to +∞. There is a single real root
at −0.37250 74107 81366 63446.

As x varies from 0 to +∞, E1(x) varies monotonically
from +∞ to zero.

E1(x) is asymptotic to x−1e−x as x approaches +∞ or
−∞, and to − ln |x| as x approaches zero.
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Let µ and λ be defined so that eµ is the overflow limit
and e−λ is the underflow limit for the machine arith-
metic. Define α = µ+lnµ and β = λ− lnλ. Then E1(x)
would overflow for x < −α and underflow for x > β.

This algorithm, due to L. W. Fullerton, with minor
changes by Lawson and Chiu, partitions the interval
[−α, β] into eight subintervals. On each subinterval a
polynomial approximation is used.

The polynomial degrees and the numbers α and β are de-
termined on the first entry to the subprogram by use of
the System Parameters subprograms (see Chapter 19.1).
The subprograms adapt to any precision up to about 31
decimal places.

Accuracy tests

Subprogram SE1 was tested on an IBM compatible
PC using IEEE arithmetic by comparison with DE1
at 50,000 points between −80 and 80. The relative pre-
cision of the IEEE single precision arithmetic is ρ =
2−23 ≈ 1.19 × 10−7. The test results may be summa-
rized as follows:

Argument Interval Max. Rel. Error
[−80.00, −1.20] 2.5ρ
[ −1.20, −1.00] 4.6ρ
[ −1.00, −0.41] 0.9ρ
[ −0.41, −0.30] (see just below)
[ −0.30, 80.00] 0.8ρ

The relative error in the interval [−0.41, −0.30] is large
due to the root near −0.3725. However, |E1(x)| is
bounded by 0.31 and the absolute error has a satisfacto-
rily small bound of 0.22ρ in this interval.
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E. Error Procedures and Restrictions

In the following cases the function value would be beyond
the representable range. The subprograms will issue an
error message and return a value as follows (Ω is the
overflow limit):

X SEI(X) X SE1(X)
< −β 0 < −α −Ω
= 0. −Ω = 0. Ω
> α Ω > β 0

Error messages are processed using the subroutines of
Chapter 19.2 with an error level of zero.

F. Supporting Information

The source language is Fortran 77.

Based on code designed and programmed by L. W.
Fullerton, Los Alamos National Lab., 1977. Modified
by C. L. Lawson and S. Y. Chiu, JPL, 1983.

Entry Required Files

DE1 AMACH, DCSEVL, DEI, DERM1, DERV1,
DINITS, ERFIN, ERMSG, IERM1, IERV1

DEI AMACH, DCSEVL, DEI, DERM1, DERV1,
DINITS, ERFIN, ERMSG, IERM1, IERV1

SE1 AMACH, ERFIN, ERMSG, IERM1, IERV1,
SCSEVL, SEI, SERM1, SERV1, SINITS

SEI AMACH, ERFIN, ERMSG, IERM1, IERV1,
SCSEVL, SEI, SERM1, SERV1 SINITS

DRSEI

program DRSEI
c>> 1996−05−28 DRSEI Krogh Added e x t e r na l s ta tement .
c>> 1994−10−19 DRSEI Krogh Changes to use M77CON
c>> 1992−03−16 DRSEI CLL
c>> 1990−11−29 CLL
c>> 1987−12−09 DRSEI Lawson I n i t i a l Code .
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−S r ep l a c e s ”?”: DR?EI , ?EI , ?E1
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer J
external SEI , SE1
real X(14) , Y, Z , SEI , SE1

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
data X / −80.E0 , −20.E0 , −5.E0 , −1.E0 , −.4E0 , −.3E0 , −.001E0 ,

∗ . 001E0 , . 3E0 , . 4E0 , 1 .E0 , 5 .E0 , 20 .E0 , 80 .E0 /
c

print ’ (1x , 3X,A1,13X,A6,14X,A6/) ’ , ’X ’ , ’ SEI (X) ’ , ’SE1(X) ’
c

do 10 J = 1 , 14
Y = SEI (X(J ) )
Z = SE1(X(J ) )
print ’ (1x , F7 . 3 , 5X, 2 (G15 . 8 , 5X) ) ’ ,X( J ) ,Y, Z

10 continue
end
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ODSEI

X SEI (X) SE1(X)

−80.000 −0.22285430E−36 −0.70145861E+33
−20.000 −0.98355261E−10 −25615652.
−5.000 −0.11482956E−02 −40.185276
−1.000 −0.21938396 −1.8951187
−0.400 −0.70238012 −0.10476526
−0.300 −0.90567666 0.30266854
−0.001 −6.3315392 6.3295393
0 .001 −6.3295393 6.3315392
0 .300 −0.30266854 0.90567666
0 .400 0.10476526 0.70238012
1 .000 1.8951187 0.21938396
5 .000 40.185276 0.11482956E−02

20 .000 25615652. 0 .98355261E−10
80 .000 0.70145861E+33 0.22285430E−36
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