
2.16 Complex Error Function w(z)

A. Purpose

Compute the Fadeeva function w(z), defined by Equa-
tion 7.1.3 in [1]:
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The Fadeeva function is related to the error function by
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to the Fresnel integrals
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and to the Voigt functions V (x, y) and L(x, y) (used in
spectroscopy and astronomy — see [2]) by V (x, y) =
<w(z) and L(x, y) = =w(z), where z = x+ iy.

B. Usage

B.1 Program Prototype, Single Precision

COMPLEX Z, W

INTEGER IFLAG

CALL CWOFZ (Z, W, IFLAG)

B.2 Argument Definitions

Z [in] Argument at which the function is to be evalu-
ated.

W [out] Value of w(z), where z is given by the argu-
ment Z.

IFLAG [out] A flag indicating success or failure of the
computation:

0 means w(z) was successfully calculated,

+1 means w(z) was not successfully calculated be-
cause it would have no significant digits.

−1 means w(z) was not successfully calculated be-
cause it would overflow.

See Section E, Error Procedures and Restrictions, for
a discussion of values of Z that result in nonzero val-
ues of IFLAG. If IFLAG is nonzero, the real and
imaginary parts of W are set to the largest repre-
sentable number.

B.3 Modifications for Double Precision

Change the subprogram name to ZWOFZ. On comput-
ers that support a double precision complex data type,
frequently spelled COMPLEX*16, and on which dou-
ble precision complex is represented by an array of two
double precision numbers, with the first being the real
part, and the second being the imaginary part, change
the type declarations of Z and W so that Z and W are
declared to be of type double precision complex. On
machines that do not support double precision complex,
change the declarations of Z and W to

DOUBLE PRECISION Z(2), W(2)

In the latter case, put the real part of z into Z(1), and
the imaginary part of z into Z(2), and find the real and
imaginary parts of w(z) in W(1) and W(2), respectively.

C. Examples and Remarks

See DRCWOFZ and ODCWOFZ for an example of the
usage of this subprogram.

D. Functional Description

From Eq. (1) it is clear that w(z) is analytic in the entire
plane. In the upper half-plane, 0 ≤ |w(z)| < 1, which
may have been the original reason to consider w(z) to
be a generalization of erfc.

w(z) satisfies the differential equation w′(z) + 2zw(z) =
2i/
√
π. Since w(z) is analytic it satisfies the Cauchy-

Riemann conditions. If we let w(z) = u(z) + iv(z),
and z = x + iy, where u, v, x and y are real, the
Cauchy-Riemann conditions, together with the differen-
tial equation, give us ux = 2yv − 2xu and uy = 2xv +
2yu − 2π1/2. In some applications, particularly related
to spectroscopy, one needs V (x, y), L(x, y), Vx(x, y) and
Vy(x, y). We have already, above, identified V (x, y) as
u(z) and L(x, y) as v(z). Thus, one can compute these
four functions by computing w(z) alone.

These subprograms are based on a subprogram by G. P.
M. Poppe and C. M. J. Wijers described in [3] and [4].
The subprogram by Poppe and Wijers was modified to
work in either single or double precision, and some tests
of argument range were changed to be invoked only when
necessary. Machine characteristics are discovered, and
errors are processed, using MATH77 conventions. The
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subprogram name was changed to conform to MATH77
naming conventions.

The algorithm uses three different methods. Inside the
ellipse (x/6.3)2+(y/4.4)2 ≤ .2922 the algorithm uses the
series approximation given by Equation 7.1.6 in [1]. In
the elliptic annulus .2922 < (x/6.3)2 + (y/4.4)2 ≤ 1.0
the algorithm uses a Taylor series, with derivatives cal-
culated by the Laplace continued fraction. Outside the
latter ellipse, a Laplace continued fraction is used.

Accuracy Tests

The accuracy of the approximations was analyzed by
Poppe and Wijers. They concluded that relative accu-
racy is maintained within 14 significant digits, except in-
side a circle of radius 0.126 around a zero of the function
(all zeros of w(z) are in the lower half-plane), where ab-
solute accuracy is retained but relative accuracy is not.
They also compared the accuracy of w(z) to erfc z for
several purely imaginary values of z. Their testing pro-
cedure is reported in [3].

We tested CWOFZ in four regions along the imaginary
axis, where w(z) is real, on an IBM PC/AT, by com-
paring to DERFCE. Each region was divided into 500
subregions, and a point was randomly selected in each
subregion. The maximum errors are shown below, where
ULP means “error in units of last position of the refer-
ence result,” and ρ ≈ 1.192× 10−7 is the round-off level
for IEEE single precision arithmetic.

Range ULP Absolute Relative
[0..0.75] 2.42 1.21 ρ 2.29 ρ
[0.75..1.2848] 19.05 4.76 ρ 12.95 ρ
[1.2848..4.4] 6.05 1.23 ρ 3.49 ρ
[4.4..100] 2.19 0.12 ρ 1.43 ρ

In the range [0.75..1.2848] errors grow as x increases.
Errors are four times larger near 1.2848 than near 0.75.

We tested ZWOFZ in five regions along the imaginary
axis, where w(z) is real, on an IBM PC/AT, by compar-
ing to an extended precision calculation of exp(x2) erfcx.
Each region was divided into 200 subregions, and a point
was randomly selected in each subregion. The maximum
errors are shown below, where ρ ≈ 2.22 × 10−16 is the
round-off level for IEEE double precision arithmetic.

Range ULP Absolute Relative
[0..0.75] 1.47 0.73 ρ 1.35 ρ
[0.75..1.2848] 14.29 3.57 ρ 9.84 ρ
[1.2848..3.4469] 6.23 0.78 ρ 4.44 ρ
[3.4469..4.4] 14.20 1.78 ρ 13.42 ρ
[4.4..100] 3.02 0.19 ρ 1.52 ρ

In the range [0.75..1.2848] errors grow as x increases.
Errors are four times larger near 1.2848 than near 0.75.

We tested ZWOFZ in four regions along the real axis
on an IBM PC/AT, by comparing the imaginary part of
the result to an extended precision calculation of Daw-
son’s integral, F (x). Each region was divided into 200
subregions, and a point was randomly selected in each
subregion. The maximum errors are as follows.

Range ULP Absolute Relative
[0..1.83960] 2.21 0.93 ρ 1.73 ρ
[1.8396..2.95] 17.28 3.90 ρ 11.20 ρ
[2.95..6.3] 8.99 1.12 ρ 6.24 ρ
[6.3..100] 1.59 0.06 ρ 0.90 ρ

We tested ZWOFZ along the real axis on an IBM
PC/AT, by comparing the real part of the result to an
extended precision calculation of exp(−x2), in the range
[0..10]. The maximum error was 2.04 ULP; the maxi-
mum absolute error was 0.26 ρ; the maximum relative
error was 0.45 ρ. The largest errors occurred near the
change of method at x = 1.8396.
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E. Error Procedures and Restrictions

w(z) is computable throughout the upper half plane
without restriction. To compute w(z) in the lower
half plane we use w(−z) = 2 exp(−z2) − w(z). Since
exp(−z2) = exp(<z2)[cos(=z2) + i sin(=z2)], we must
have x2−y2 < ln Ω, where Ω is the largest representable
floating point number. Argument reduction in comput-
ing sin and cos causes loss of precision, and so we restrict
2|xy| < ρ−1/2, where ρ is the smallest positive number
such that the floating point representation of 1.0 + ρ is
different from 1.0. If y < 0 and x2− y2 ≥ ln Ω the error
processor (see Chapter 19.2) is invoked with LEVEL =
2, and IFLAG is set to −1. If y < 0 and 2|xy| ≥ ρ−1/2

the error message processor is invoked with LEVEL =
2, and IFLAG is set to +1. The usual action of the er-
ror message processor when invoked with LEVEL = 2 is
to halt execution of the program. This action may be
altered by calling ERMSET (see Chapter 19.2).
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F. Supporting Information

Entry Required Files

CWOFZ AMACH, CWOFZ, ERFIN, ERMOR,
ERMSG, SERV1

ZWOFZ AMACH, DERV1, ERFIN, ERMOR,
ERMSG, ZWOFZ

Present version converted from ACM TOMS Algo-
rithm 680, [4], by W. V. Snyder, 1991.
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DRCWOFZ

c program DRCWOFZ
c>> 2009−10−27 DRCWOFZ Krogh/Snyder Added equ i va l enc e f o r Nag compi ler .
c>> 1996−06−10 DRCWOFZ Krogh Moved formats up , M77CON changes f o r C.
c>> 1992−03−13 DRCWOFZ WV Snyder Created from DRCWOFZ
c>> 1991−11−20 DRCWOFZ WV Snyder Or i g ina l Code
c Conversion shou ld on ly be done from ”Z” to ”C” fo r p roce s s ing to C.
c−−C rep l a c e s ”?”: DR?WOFZ, ?WOFZ
c
c Demonstration d r i v e r f o r CWOFZ.
c

complex Z , W
real ZR(2 ) , WR(2)
equivalence ( Z , ZR ) , ( W, WR )
integer IFLAG
integer IX , IY

c
c Eva luate w( z ) at 25 po in t s [ 0 . . 4 ] x [ 0 . . 4 ] in the complex p lane .
c
10 format ( ’ x y Re w Im w ’ )
20 format (2 i3 , 2g17 . 8 )

print 10
do 40 ix = 0 , 4

do 30 iy = 0 , 4
z = cmplx( real ( i x ) , real ( i y ) )
ca l l cwofz ( zr , wr , i f l a g )
print 20 , ix , iy , w

30 continue
40 continue

stop
end

ODCWOFZ

x y Re w Im w
0 0 1.0000000 0.0000000
0 1 0.42758343 0.0000000
0 2 0.25539580 0.0000000
0 3 0.17900115 0.0000000
0 4 0.13699944 0.0000000
1 0 0.36787945 0.60715777
1 1 0.30474424 0.20821901
1 2 0.21849267 0.92997834E−01
1 3 0.16426113 0.50197128E−01
1 4 0.12988818 0.30778861E−01
2 0 0.18315639E−01 0.34002644
2 1 0.14023955 0.22221340
2 2 0.14795277 0.13117969
2 3 0.13075750 0.81112668E−01
2 4 0.11213948 0.53489000E−01
3 0 0.12340980E−03 0.20115739
3 1 0.65317795E−01 0.17391835
3 2 0.92710741E−01 0.12831692
3 3 0.96402526E−01 0.91236345E−01
3 4 0.90933919E−01 0.65592334E−01
4 0 0.11253518E−06 0.14595355
4 1 0.36281474E−01 0.13583903
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4 2 0.59686974E−01 0.11321013
4 3 0.69790952E−01 0.89340016E−01
4 4 0.71570434E−01 0.69374524E−01
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