
4.2 Linear Least-Squares and Covariance Matrix

A. Purpose

The principal expected application of this set of subrou-
tines is the solution of the linear least-squares problem,
Ax ' b, where A is an m × n matrix with m > n, and
b is an m-vector. The solution vector, x, is an n-vector.
Computation of the covariance matrix of the solution
vector, x, is also supported.

This software is not limited to the usual case of m > n
and A being of full rank. A pseudoinverse solution is
provided for all of the cases, m > n, m = n, and m < n,
including the case of A being rank-deficient. Further-
more, the right-side of the problem may be an m × k
matrix, B, in which case the solution will be an n × k
matrix, X.

B. Usage

B.1 Solving a Least-Squares Problem

B.1.a Program Prototype, Single Precision

INTEGER LDA, M, N, LDB, NB, KRANK,
IP(≥N)

REAL A(LDA, ≥N), TAU, RNORM(≥NB),
WORK(≥N), B(LDB) or B(LDB, ≥ NB)

Assign values to A(,), LDA, M, N, B(,), LDB, NB, and
TAU.

CALL SHFTI(A, LDA, M, N, B, LDB, NB,
TAU, KRANK, RNORM, WORK, IP)

Computed quantities are returned in A(,), B(,),
KRANK, RNORM(), and IP().

B.1.b Argument Definitions

A(,) [inout] On entry contains the M×N matrix, A, of
the least-squares problem. Permit M > N, M = N,
or M < N. On return contains an upper triangular
matrix that can be used by subroutine, SCOV2, to
compute the covariance matrix.

LDA [in] First dimensioning parameter for the array,
A(,). Require LDA ≥ M.

M [in] Number of rows of data in A(,) and B(,) on
entry. Require M ≥ 1.

N [in] Number of columns of data in A(,) on entry.
Require N ≥ 0.

B(,) [inout] May be a singly or doubly subscripted ar-
ray. On entry contains the right-side M-vector, b,

or (M×NB)-matrix, B, for the least-squares prob-
lem. On return contains the solution N-vector, x, or
(N×NB)-matrix, X.

LDB [in] First dimensioning parameter for the array
B(,). Require LDB ≥ max(M,N) when NB ≥ 1, and
LDB ≥ 1 when NB = 0.

NB [in] Number of right-side vectors for the least-
squares problem. Require NB ≥ 0. If NB = 1, the ar-
ray, B(,), may be either singly or doubly subscripted.
If NB> 1, the array B(,) must be doubly subscripted.
If NB = 0, this subroutine will not access B(,).

TAU [in] Absolute tolerance parameter provided by
the user. Ideally should indicate the noise level of
the data in the given matrix, A. The value, zero, is
acceptable. Will be used in estimating the rank of A.
Larger values of TAU will lead to a smaller estimated
rank for A.

KRANK [out] Rank of A estimated by the subroutine.
Will be in the range, 0 ≤ KRANK ≤ min(M,N).

RNORM() [out] On return, RNORM(i) will contain
the square root of sum of squares of residuals for the
ith right-side vector.

WORK() [scratch] This array, of length at least N, is
used internally by the subroutine as working space.

IP() [out] On return contains a record of column inter-
changes.

B.2 Computing the Covariance Matrix

Subroutine SCOV2 is designed to be used following
SHFTI; but only in cases in which KRANK determined
by SHFTI is N.

B.2.a Program Prototype, Single Precision

INTEGER LDA, N, IP(≥N), IERR

REAL A(LDA, ≥N), VAR

On entry the values in A(,), LDA, N, and IP() should
be the same as on return from a previous call to SHFTI.
Also, assign a value to VAR.

CALL SCOV2(A, LDA, N, IP, VAR, IERR)

Computed quantities are returned in A(,) and IERR.

B.2.b Argument Definitions

A(,) [inout] On entry contains an N×N upper-
triangular matrix produced by the subroutine,
SHFTI. On return contains the upper-triangular part
of the symmetric covariance matrix of the original

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

July 11, 2015 Linear Least-Squares and Covariance Matrix 4.2–1

least-squares problem. Elements in A(,) below the
diagonal will not be referenced.

LDA, N [in] Must be the same as in a previous call to
SHFTI.

IP() [in] Contains a record of column interchanges per-
formed by a previous call to SHFTI.

VAR [in] Estimate of the variance of the data errors
in the original right-side vector, b. To compute the
covariance matrix for the ith right-side vector of the
original problem, the user’s code can compute VAR
in terms of output quantities from SHFTI as

DOF = M - N

STDDEV = RNORM(i)/sqrt(DOF)
VAR = STDDEV**2

IERR [out] Error flag. Zero indicates no error was
detected. A positive value indicates that A(IERR,
IERR) was zero on entry. In this latter case no re-
sult will be produced.

B.3 Modifications for Double Precision

Change the REAL type statements to DOUBLE PRE-
CISION, and change the subroutine names from SHFTI
and SCOV2 to DHFTI and DCOV2, respectively.

C. Examples and Remarks

C.1 A least-squares example

Data for a sample linear least-squares problem were gen-
erated by computing values of

y = 0.5 + 0.25 sin(2πx) + 0.125 exp(−x)

at eleven points, x = 0.0, 0.1, ..., 1.0, and rounding the
resulting y-values to 4 decimal places, thus introducing
errors bounded in magnitude by 0.00005. The program,
DRSHFTI, uses SHFTI to compute a least-squares fit to
this data using the model

c1 + c2 sin(2πx) + c3 exp(−x)

and uses SCOV2 to compute the covariance matrix for
the computed coefficients. Results are shown in the out-
put file, ODSHFTI.

C.2 Large problems

If M >> N and storage limitations make it awkward
or impossible to allocate M×N locations for the array,
A(,), one can use sequential accumulation of the rows
of data to produce a smaller matrix to which SHFTI
and SCOV2 can then be applied. See Chapter 4.4 for
sequential accumulation.

C.3 Underdetermined problems

If M < N, or, more generally, whenever Rank(A) < N,
there will be infinitely many vectors, x, that achieve the
same minimal residual norm for the least-squares prob-
lem. For such cases SHFTI computes the pseudoinverse
solution, i.e. the solution vector, x, of least Euclidean
norm.

C.4 Computing the pseudoinverse matrix

If one sets B(,) to be the M×M identity matrix, the re-
sulting N×M solution matrix, X, will be the pseudoin-
verse matrix of A.

C.5 Reliability issues regarding KRANK

KRANK must be understood as an estimate of the rank
of A that depends not only on A, but on the user’s set-
ting of TAU and the particular algorithm used in SHFTI.
A small change in the value of TAU could result in a dif-
ferent value being assigned to KRANK, which in turn
could result in a large change in the solution vector.

Although this subroutine will produce a solution what-
ever the value of KRANK, the occurrence of KRANK
< min(M, N) should be regarded as exceptional. The
user should investigate such instances as it could be due
to a programming error or a very ill-conditioned model.
Singular Value Analysis (see Chapter 4.3) can be useful
in analyzing an ill-conditioned model.

D. Functional Description

This software is an adaptation to Fortran 77 of the
subroutine, HFTI, given and described in [1]. The
name, HFTI, denotes Householder Forward Transforma-
tion with column Interchanges.

To avoid nonessential complications, we shall describe
the algorithm only for the case of M ≥ N and NB =
1. A sequence of up to N Householder orthogonal trans-
formations is applied from the left, with column inter-
changes, the total effect of which may be summarized by
the equation

Q [A : b]

[
P 0
0 1

]
=

[
R g
0 h

]
where Q is the M×M product of the Householder matri-
ces, P is an N×N permutation matrix accounting for the
column interchanges, R is an N×N upper-triangular ma-
trix with diagonal elements in order of decreasing mag-
nitudes, g is an N-vector, and h is an (M − N)-vector.

If all diagonal elements of R exceed TAU in magnitude,
the solution, x, is computed by solving Rx = g. The
subroutine sets KRANK = N and RNORM(1) = ‖h‖.
Alternatively, if the diagonal elements of R beyond po-
sition i are less than TAU, the subroutine sets KRANK

4.2–2 Linear Least-Squares and Covariance Matrix July 11, 2015

= i. Let [R1 : g1] denote the first KRANK rows of
[R : g], and let g2 denote the last N − KRANK com-
ponents of g. The subroutine applies up to KRANK
Householder transformations to R1 from the right, ef-
fecting the transformation

R1K = [W : 0]

where K is the N×N product of Householder trans-
formations and W is a KRANK×KRANK non-singular
upper-triangular matrix. A KRANK-vector, y1, is com-
puted by solving Wy1 = g1. An N-vector, y, is formed
by appending zeros to the end of y1, and the minimal
length solution vector, x, is computed as x = PKy.
RNORM(1) is computed as the Euclidean norm of the
(M − KRANK)-vector formed by concatenating g2 and
h.

Subroutine, SCOV2, is intended for use only when
Rank(A) = N. Algorithm, COV, from [1] is used.
The covariance matrix is traditionally defined as C =
σ2(AtA)−1, where σ2 is the variance of the data error.
Using the triangular matrix, R, and the (orthogonal)
permutation matrix, P , defined above, one can also write
C = σ2(PRtRP t)−1 = σ2PR−1R−tP t, where R−t de-
notes the transpose of R−1. Thus, SCOV2 computes

E = R−1

F = EEt

C = σ2PFP t

References

1. Charles L. Lawson and Richard J. Hanson, Solving
Least-Squares Problems, Prentice-Hall, Englewood
Cliffs, N. J. (1974) 340 pages.

E. Error Procedures and Restrictions

In SHFTI (or DHFTI) an error message will be issued
and an immediate return will be made, setting KRANK
= 0, if any of the following conditions are noted:

M < 1, N < 0, LDA < M, or LDB < max(M, N)

Most commonly, on return KRANK will have the value
min(M, N). A smaller value of KRANK may be valid,
but unless the user has reason to expect this possibility
it is likely to be due to a usage error.

In SCOV2 (or DCOV2) the N diagonal elements of A(,)
must be nonzero on entry. If so, IERR is set to zero. If
not, IERR is set to the index of the first zero element, an
error message will be issued, and a return will be made
with the computation being incomplete.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DCOV2 DCOV2, DDOT, DSWAP, ERFIN,
ERMSG, IERM1, IERV1

DHFTI AMACH, DAXPY, DDOT, DHFTI,
DHTCC, DHTGEN, DNRM2, ERFIN,
ERMOR, ERMSG, IERM1, IERV1

SCOV2 ERFIN, ERMSG, IERM1, IERV1, SCOV2,
SDOT, SSWAP

SHFTI AMACH, ERFIN, ERMOR, ERMSG,
IERM1, IERV1, SAXPY, SDOT, SHFTI,
SHTCC, SHTGEN, SNRM2

Adapted to Fortran 77 from [1] by C. L. Lawson and S.
Y. Chiu, JPL, May 1986, June 1987.

DRSHFTI

c program DRSHFTI
c>> 2001−05−22 DRSHFTI Krogh Minor change f o r making . f90 ve r s i on .
c>> 1996−07−03 DRSHFTI Krogh Spec i a l code f o r C convers ion .
c>> 1994−10−19 DRSHFTI Krogh Changes to use M77CON
c>> 1987−12−09 DRSHFTI Lawson I n i t i a l Code .
c Demo d r i v e r f o r SHFTI and SCOV2
c−−S r ep l a c e s ”?”: DR?HFTI, ?HFTI, ?COV2
c
c The sample data was computed as
c y = 0.5 + 0.25 ∗ s in (2∗ p i ∗x) + 0.125 ∗ exp(−x)
c rounded to four decimal p l a c e s .
c −−
c++ Code f o r .C. i s i n a c t i v e
c%% long i n t k ;
c++ End

integer MMAX, NMAX
real ZERO, ONE, TWO, FOUR

July 11, 2015 Linear Least-Squares and Covariance Matrix 4.2–3

parameter (MMAX=11, NMAX=3)
parameter (ZERO = 0.0E0 , ONE = 1.0E0 , TWO = 2.0E0 , FOUR = 4.0E0)
real X(MMAX) ,Y(MMAX) ,A(MMAX,NMAX) ,C(MMAX)
real WORK(NMAX) , RNORM(1)
real DOF, PI , STDDEV, TAU, VAR
integer IP (NMAX) , KRANK, I , IERR, J , NC, M, N

c −−
data X / 0 .0E0 , 0 . 1E0 , 0 . 2E0 , 0 . 3E0 , 0 . 4E0 , 0 . 5E0 ,
∗ 0 .6E0 , 0 . 7E0 , 0 . 8E0 , 0 . 9E0 , 1 . 0E0/
data Y / 0.6250E0 , 0 . 7 601E0 , 0 . 8 401E0 , 0 . 8 304E0 , 0 . 7 307E0 , 0 . 5 758E0 ,
∗ 0 .4217E0 , 0 . 3 243E0 , 0 . 3 184E0 , 0 . 4 039E0 , 0 . 5 460E0/
data M, N, NC, TAU/ MMAX, NMAX, 1 , 0 . 0E0/

c −−
PI = FOUR ∗ atan (ONE)
do 20 I = 1 , M

A(I , 1) = ONE
A(I , 2) = sin (TWO ∗ PI ∗ X(I))
A(I , 3) = exp(−X(I))
C(I) = Y(I)

20 continue

ca l l SHFTI (A,MMAX,M,N,C,MMAX,NC,TAU,KRANK,RNORM,WORK, IP)
DOF = M − N
STDDEV = RNORM(1) / sqrt (DOF)
VAR = STDDEV∗∗2
print ’ (1x , ’ ’Rank o f l i n e a r system =’ ’ , i 4) ’ , KRANK
print ’ (1x , ’ ’ Std . Dev . o f data e r r o r =’ ’ , f 10 . 6) ’ , STDDEV
print ’ (1x , ’ ’ So lu t i on c o e f f i c i e n t s =’ ’ ,3 f10 . 6) ’ , (C(J) , J=1,N)

ca l l SCOV2(A, MMAX, N, IP , VAR, IERR)
print ’ (1x , ’ ’ Error f l a g from SCOV2 =’ ’ , i 4) ’ , IERR
print ’ (’ ’ Covariance matrix o f computed c o e f f i c i e n t s : ’ ’) ’
print ’ (1X) ’

c++ Code f o r ˜ .C. i s a c t i v e
do 30 I = 1 ,N

print ’ (1x , 3 (3 x , 2 i3 , g16 . 8)) ’ , (I , J ,A(I , J) , J=I ,N)
30 continue

c++ Code f o r .C. i s i n a c t i v e
c%% fo r (i = 0 ; i < n ; i++){
c%% fo r (j = i ; j < n ; j+=3){
c%% fo r (k = j ; k < (j < n − 3 ? j+3 : n) ; k++)
c%% p r i n t f (” %3l d%3l d %16.8g ” , i +1, k+1, a [k] [i]) ;
c%% p r i n t f (”\n”) ;}
c%% }
c++ End

stop
end

ODSHFTI

Rank o f l i n e a r system = 3
Std . Dev . o f data e r r o r = 0.000030
So lu t i on c o e f f i c i e n t s = 0.500004 0.249999 0.125007
Error f l a g from SCOV2 = 0
Covariance matrix o f computed c o e f f i c i e n t s :

4.2–4 Linear Least-Squares and Covariance Matrix July 11, 2015

1 1 0.15022650E−08 1 2 0.42248927E−09 1 3 −0.22285622E−08
2 2 0.30603203E−09 2 3 −0.66292566E−09
3 3 0.34968251E−08

July 11, 2015 Linear Least-Squares and Covariance Matrix 4.2–5

	Linear Least-Squares and Covariance Matrix
	Purpose
	Usage
	Solving a Least-Squares Problem
	Computing the Covariance Matrix
	Modifications for Double Precision

	Examples and Remarks
	A least-squares example
	Large problems
	Underdetermined problems
	Computing the pseudoinverse matrix
	Reliability issues regarding KRANK

	Functional Description
	Error Procedures and Restrictions
	Supporting Information

