
4.5 Sequential Solution of a Banded Least-Squares Problem

A. Purpose

Let a linear least-squares problem be denoted by

Ax ' b

where A is a given m × n matrix with m ≥ n, b is a
given m-vector, and it is required to find an n-vector, x,
that is an approximate solution to this equation in the
least-squares sense. The given data for this problem can
be regarded as the composite matrix, [A : b].

Assume further that the matrix A is banded, in the sense
that there is an integer, NB ≤ n, such that in any row of
A all nonzero elements occur within a set of NB contigu-
ous positions. This set of subroutines is intended for the
case in which NB is significantly smaller than n so there
is the possibility of achieving some significant saving of
storage and execution time by taking advantage of this
band property.

Subroutine SBACC can be used to preprocess the data
matrix, [A : b], sequentially. Subroutine SBSOL can
be used to solve the problem after the transformation
accomplished by SBACC. Subroutine SBSOL can also
be used to compute a covariance matrix for the solution
vector.

B. Usage

B.1 Sequential processing of data

The user must make a sequence of calls to SBACC, send-
ing a block of rows of [A : b] with each call. On the first
call the user sets NB, the bandwidth, which will remain
unchanged after that. Also, on the first call the user
must set IR = 1, and JT = 1. After that IR will be
updated by SBACC.

Along with each block the user sets two integers, MT and
JT, indicating that MT new rows are being provided,
within these rows of A only the NB columns beginning
with column JT are being provided, and that the ele-
ments in all other columns in these rows of A are zero.
The user puts this block of data in the array G(,), be-
ginning with row IR of G(,). The data corresponding to
column JT of A goes into the first column of G(,). Data
from the vector b of the problem goes into column NB
+ 1 of G(,).

The data blocks must be ordered so that from one call
to the next, the value of the column index JT either
remains the same or increases.

B.1.a Program Prototype, Single Precision

INTEGER LDG, NB, IR, MT, JT, JTPREV,
IERR2

REAL G(LDG, ≥NB+1)

When starting a new problem set LDG, NB, and IR.
On the initial call and all subsequent calls for the same
problem, set MT and JT and store MT rows of data into
G(,) beginning at row IR.

CALL SBACC(G, LDG, NB, IR, MT,
JT, JTPREV, IERR2)

Following the call the contents of G(,) will have been al-
tered, reflecting the processing of the new data. The val-
ues of JTPREV and IR may have been changed. IERR2
will be set.

B.1.b Argument Definitions

G(,) [inout] The working array. With MT, JT, and
IR defined below, on each call to SBACC the user
places columns JT to JT + NB − 1 of MT rows of A
into G(IR:IR+MT−1, 1:NB) and the corresponding
elements of b into G(IR:IR+MT−1, NB+1). It is
implied that within these MT rows of A all elements
not in columns JT through JT + NB − 1 are zero.

LDG [in] The leading dimensioning parameter for G(,).
LDG must be large enough so that on each call to
SBACC one has IR + MT− 1 ≤ LDG.

MT can be set by the user on each call. Let MTmax

denote the largest value the user will assign to MT.
If the user keeps JT ≤ n−NB + 1 (see discussion in
Section C) then the largest value of IR will be n+ 2,
so it would suffice to set LDG = n+ 1 +MTmax.

If the user permits JT to be as large as n, then LDG
must be at least n + NB + MTmax.

NB [in] Set by user on the initial call for a problem.
Must not be changed during the processing for one
problem. NB indicates the bandwidth of the data
matrix A. In any row of A all nonzero elements must
appear in some set of NB consecutive columns.

IR [inout] Index of first row of G(,) into which the user
is to place new data. The variable IR must be set by
the user to the value 1 on the initial call to SBACC
and must not be altered after that by the user on
successive calls for the same problem. IR will be up-
dated in SBACC by (effectively) setting IR = JT +
min(NB + 1, MT + max(IR − JT, 0)).

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

July 11, 2015 Sequential Solution of a Banded Least-Squares Problem 4.5–1

Let IRin denote the value of IR on entry to SBACC
and IRout denote its value on return. These quanti-
ties will satisfy

IRin ≤ IRout ≤ JT + NB + 1.

MT [in] Set by user to indicate the number of new
rows of data being introduced by the current call to
SBACC. SBACC will return immediately if MT ≤ 0.
MT will not be altered by SBACC.

JT [in] Set by user to indicate the column of the new
sub-block of A that the user is storing in the first col-
umn of the work array, G(,). The user must set JT =
1 on the initial call to SBACC and must either leave
JT the same or increase it on each successive call for
the same problem. Too large an increase between
successive calls can cause the problem to be struc-
turally singular. See Section E for more information
on this. JT will not be altered by SBACC.

JTPREV [inout] Need not be set before the first call
to SBACC for a problem. Must not be altered by the
user on later calls for the same problem. JTPREV is
used within SBACC to mark the row of G(,) at which
the method of packing data changes. Quantities in
G(,) at and below row JTPREV are subject to poten-
tial change during the processing of additional data,
whereas quantities above row JTPREV are not.

On return, SBACC sets JTPREV = JT. JTPREV,
as set by SBACC, is needed as input when calling
SBSOL.

IERR2 [inout] Error status indicator. Need not be
set before the initial call for a problem. Will be set
by SBACC to zero if no errors are detected and to
nonzero values, as described in Section E, if error
conditions are detected.

B.1.c Modifications for Double Precision

For double precision usage change the REAL statement
to DOUBLE PRECISION and change the subroutine
name SBACC to DBACC.

B.2 Computation of Solution Vector

B.2.a Program Prototype, Single Precision

INTEGER MODE, LDG, NB, IR, JTPREV, N,
IERR3

REAL G(LDG, ≥NB+1), X(≥ N), RNORM

Set MODE and N. If MODE is set to 2 or 3 then
also store a vector, p, into X(). G(,), NB, IR, and
JTPREV should have values resulting from previous
calls to SBACC.

CALL SBSOL(MODE, G, LDG, NB, IR,
JTPREV, X, N, RNORM, IERR3)

On return, X() and RNORM will contain computed re-
sults and IERR3 will be set. No other quantities in the
argument list will be modified.

B.2.b Argument Definitions

MODE [in] The previous processing of data by SBACC
will have left a representation of an upper triangular
matrix, R, and a vector, y, in the array, G(,). See
Section D for the interpretation of these quantities.
The user selects the desired solution process by set-
ting MODE to 1, 2, or 3.

=1 Solve Rx = y, where R and y are contained in
G(,) as the result of previous calls to SBACC.
The solution vector, x, will be stored in X().
This gives the solution to the least-squares prob-
lem, Ax ' b.

=2 Solve Rtx = p, where R is the matrix residing
in G(,) as the result of previous calls to SBACC,
and p is a vector placed in X() by the user. The
solution vector, x, will replace p in X().

=3 Solve Rx = p, where R is the matrix residing in
G(,) as the result of previous calls to SBACC,
and p is a vector placed in X() by the user. The
solution vector, x, will replace p in X().

G(,),LDG,NB,IR,JTPREV [in] These arguments
must contain values as they were defined upon the
return from a preceding call to SBACC.

X() [inout] On input, with MODE = 2 or 3, this array
must contain the N-dimensional right-side vector of
the system to be solved. On return, with MODE =
1, 2, or 3, this array will contain the N-dimensional
solution vector of the appropriate system that has
been solved.

N [in] Set by user to specify the dimensionality of the
desired solution vector. This causes the subroutine
SBSOL to use only the leading N×N submatrix of the
triangular matrix currently represented in the array
G(,). An error is reported if this submatrix is singu-
lar.

RNORM [out] If MODE = 1, RNORM is set by the
subroutine to the norm of the residual vector for the
least-squares problem, i.e., ‖b − Ax‖. This number
is computed as

[
IR−1∑

I=N+1

G(I, NB + 1)2

]1/2

If MODE = 2 or 3, RNORM is set to zero.

4.5–2 Sequential Solution of a Banded Least-Squares Problem July 11, 2015

IERR3 [out] Error status indicator set by SBSOL. Zero
means no errors detected. If a diagonal element of the
leading N×N submatrix represented in G(,) is zero,
an error message will be issued and IERR3 will be
set to the index of the first zero diagonal element.
In this latter case the solution vector X() will not be
computed.

B.2.c Changes for Double Precision

For double precision usage change the REAL statement
to DOUBLE PRECISION and change the subroutine
name SBSOL to DBSOL.

C. Examples and Remarks

C.1 Computation of the covariance matrix for
the solution vector

The features provided by MODE = 2 and 3 are pri-
marily intended to support the computation of the un-
scaled covariance matrix, C, for the least-squares prob-
lem. This matrix, C, is defined by C = (AtA)−1. How-
ever, since RtR = AtA (See Section D), C is also given
by C = (RtR)−1, and thus C satisfies the equation,
RtRC = I, where I is the n× n identity matrix. It fol-
lows that the matrix, C, can be computed in two steps,
first solving

RtZ = I

for Z, and then solving

RC = Z

for C. Using SBSOL or DBSOL the matrices Z and C
can be computed one column at a time.

This matrix, C, must be multiplied by an estimate of
the variance of the data error to obtain the solution co-
variance matrix. This variance can be estimated using
N, MTOTAL, and RNORM as follows:

DOF = MTOTAL − N

VAR = RNORM∗∗2 / DOF

where MTOTAL is the total number of rows of A intro-
duced into the problem.

C.2 Demonstration problem

As a demonstration problem we compute the continu-
ous piecewise linear function that best fits a sample of
91 values of the sine function in the least-squares sense.
Sample values are values of the sine function at one de-
gree steps from zero to 90 degrees. The piecewise linear
function will be parameterized by a set of ten values, yi,
i = 1, 10, which will be the values of the piecewise lin-
ear function at the arguments 0, 10, 20, ..., 90 degrees.

The fitted function will be defined by linear interpolation
between adjacent pairs of these points.

Note that because the sine curve is concave down
throughout this interval we expect the knots, yi, each to
lie above the sine curve, with the linearly interpolated
segment between each adjacent pair of knots passing be-
low the sine curve.

Program DRDBACC illustrates the use of DBACC and
DBSOL to compute the ten values of yi for this prob-
lem. It also computes the (formal) 10 × 10 covariance
matrix for these quantities. The results are shown in
ODDBACC.

Note from the listing of residuals that the residuals at
x = 0, 10, 20, ... degrees are positive, while the residuals
at x = 5, 15, 25, ... degrees are negative, as expected.

This problem is not really statistical since the given data
are essentially exact. Thus the computed SIGFAC and
covariance matrix do not really have a statistical inter-
pretation, but merely serve to illustrate how to use these
subroutines to compute these quantities. Note in partic-
ular that the covariance matrix is symmetric (to some
level of accuracy), as it should be, even though this
method computes each column of the covariance matrix
independently.

For an example of more general usage of DBACC see
a listing of the MATH77 library subroutine, DC2FIT,
Chapter 11.4.

C.3 Data blocks having fewer than NB contigu-
ous columns of nonzeros

This subroutine requires the value of NB to be constant
throughout the processing of one problem. If the data
block being sent to SBACC in one call has all of its
nonzeros in fewer than NB contiguous columns the user
must pad out the block to a width of NB columns by
including zeros. The padding columns may be either on
the left or the right or both.

For example, suppose NB = 4 and one is introducing
a row, or block of rows, of A having nonzeros only in
columns 5, 6, and 7. One may either set JT = 4 and
send columns 4, 5, 6, and 7, with column 4 containing
zeros; or else one may set JT = 5 and send columns 5,
6, 7, and 8, with column 8 containing zeros.

In choosing between these alternatives there are two
points to consider. JT must be nondecreasing on suc-
cessive calls to SBACC. Sending padding columns that
are beyond the last actual column of A causes the algo-
rithm to use more rows of storage than would otherwise
be necessary.

July 11, 2015 Sequential Solution of a Banded Least-Squares Problem 4.5–3

D. Functional Description

Subroutine SBACC uses Householder orthogonal trans-
formations to process the given data, producing an
equivalent least-squares problem of the form[

R
0

]
'
[

y
α

]
where R is an n×n upper triangular matrix with a band-
width of NB, y is an n-vector, and α is a scalar quantity.
These quantities are related to the data, [A : b], by the
relations, RtR = AtA, Rty = Atb, and yty +α2 = btb.

The solution, x, for this problem is also the solution for
the given least-squares problem, Ax ' b, and can be
computed by solving the triangular system, Rx = y.
This latter system is solved for x when SBSOL is called
with MODE = 1.

The residual vector for the transformed least-squares
problem is[

0
α

]
.

The norm of this residual vector is |α| and this is also
equal to ‖b − Ax‖. After n linearly independent rows
of A have been accumulated, where n is the number of
columns of A, if a solution is requested with N = n, then
the value |α| will be returned as RNORM. If a solution
is requested with N < n, components of y beyond yN
will also be used in computing RNORM.

Subroutine SBACC dynamically partitions the array
G(,) into three segments by groups of rows. These seg-
ments are rows 1 through JTPREV − 1, rows JTPREV
through IR − 1, and rows IR through LDG.

The first segment holds rows of [R : y] for which process-
ing is completed. In this segment element ri,j is stored
in G(i, j − i+ 1).

The second segment, consisting of at most NB + 1 rows,
holds rows of[

R : y
0 : α

]
that may be changed by data yet to be received. In this
segment element ri,j is stored in G(i, j − JTPREV + 1).

The third segment is used to receive new rows of [A : b].

The subroutine SBSOL alters only the contents of X()
and RNORM. Thus it is permissible to alternate between
accumulating data using SBACC and obtaining a cur-
rent solution or covariance matrix using SBSOL. It is
also permissible to use SBSOL with N < n. The sub-
routine SBSOL can compute a solution vector of length
N whenever the portion of the A matrix introduced to
that point has the property that its first N columns are
linearly independent.

References

1. Charles L. Lawson and Richard J. Hanson, Solving
Least-Squares Problems, Prentice-Hall, Englewood
Cliffs, N. J. (1974) 340 pages.

E. Error Procedures and Restrictions

In response to detected error conditions, SBACC will
set IERR2 nonzero and issue an error message using the
error message routines of Chapter 19.2. On errors num-
bered 1 through 4, SBACC will return. Generally the
calling program should abandon the problem processing
in these cases. When IERR2 = 3 it is conceivable, but
not likely, that the user might wish to continue the pro-
cessing, in which case the user must reset IERR2 to zero.
If SBACC is reentered with IERR2 6= 0, (and IR > 1) it
will set IERR2 = 5 and execute a STOP.

IERR2 Explanation

1 MT > LDG − IR + 1. To correct this problem either
use a larger dimension LDG, or a smaller block size
MT.

2 JT < JTPREV. This occurs if the data blocks are out
of order, in the sense that the current JT is smaller
than JT on the previous call.

3 JT > min(JTPREV + NB, IR). This occurs when
the difference between the current JT and JT on the
previous call is so large that the matrix would be
structurally singular. This condition does not, how-
ever, preclude the processing of the data to triangular
form, and thus SBACC will do the processing, unless
there is a storage limitation, in which case IERR2
will be set to 4.
This condition is likely to be due to a program us-
age error. If not, then the problem needs either more
data in preceding blocks or a mathematical model
with fewer or differently defined free parameters. Al-
ternatively, see pp. 218–219 of [1] for ideas on stabi-
lizing such a structurally singular problem.

4 The condition described above for IERR2 = 3 holds
and there is a storage limitation indicated by MT
> LDG− JT + 1. The storage problem could be re-
lieved by increasing LDG or decreasing MT. How-
ever, the more fundamental problem indicated by
IERR2 = 3 must still be dealt with.

5 SBACC has been entered with IERR2 6= 0. SBACC
will execute a STOP since the calling program has
ignored a nonzero setting of IERR2 on the previous
call.

The following conditions are not tested in SBACC and
violation will have unpredictable effects: IR, and JT

4.5–4 Sequential Solution of a Banded Least-Squares Problem July 11, 2015

must be set to 1 on the first call to SBACC. JTPREV
and IR must not subsequently be altered by the user
during the processing for one problem.

SBACC will return immediately if MT ≤ 0. This is not
regarded as an error condition.

If SBSOL encounters a zero diagonal term in the N×N
matrix R, IERR3 will be set to the index of the (first)
zero term and an error message will be issued. The so-
lution X() will not be computed in this case.

F. Supporting Information

The source language is ANSI Fortran 77.

These subroutines are adaptations to the JPL MATH77
library of the algorithms and subroutines BNDACC and
BNDSOL that were developed by C. L. Lawson and R.
J. Hanson at JPL in 1972 and described in detail in [1].

Entry Required Files

DBACC DBACC, DHTCC, DNRM2, ERFIN,
ERMSG, IERM1, IERV1

DBSOL DBSOL, ERFIN, ERMSG, IERM1, IERV1

SBACC ERFIN, ERMSG, IERM1, IERV1, SBACC,
SHTCC, SNRM2

SBSOL ERFIN, ERMSG, IERM1, IERV1, SBSOL

DRDBACC

c program DRDBACC
c>> 1996−05−28 DRDBACC Krogh Moved formats up .
c>> 1994−10−19 DRDBACC Krogh Changes to use M77CON
c>> 1987−12−09 DRDBACC Lawson I n i t i a l Code .
c−−D rep l a c e s ”?”: DR?BACC, ?BACC, ?BSOL
c Demonstration d r i v e r f o r DBACC & DBSOL
c C. L . Lawson & S . Y. Chiu , JPL , Ju ly 1987 , Sept 1987.
c −−

integer NX, LDG, NB, ISCALE
integer I , IERR2 , IERR3 , IG , IR , J , JT , JTPREV, MT, MTOTAL
parameter (NX = 10 , LDG = 24 , NB = 2 , ISCALE = 6)
double precision XTAB(NX) , G(LDG, 3) , YFIT(NX) , C(NX,NX)
double precision DELX, DOF, DTOR, RDUMMY, RNORM, SIGFAC, VFAC
double precision X, YF, YTRUE
double precision ZERO, XINC, XLIMIT
double precision ONE, C45 , HALF
parameter (ZERO = 0.0D0 , XINC = 1.0D0 , XLIMIT = 89 .5D0)
parameter (ONE = 1.0D0 , C45 = 45 .0D0 , HALF = 0.5D0)
data XTAB / 00 .0D0 , 10 .0D0 , 20 .0D0 , 30 .0D0 , 40 .0D0 ,

∗ 50 .0D0 , 60 .0D0 , 70 .0D0 , 80 .0D0 , 90 .0D0 /
c
1000 format (’ Ca l l i ng DBACC with JT =’ , i3 , ’ , MT =’ , i 3)
1003 format (1x/ ’ X Y YFIT R=Y−YFIT ’ /1X)
1004 format (1X, F6 . 1 , 3F10 . 5)
1006 format (1X, 1 0 (F7 . 2 , 1X))

c −−
write (∗ , ’ (1x , a//1x , a/1x , a/1x) ’)

∗ ’ Demonstration d r i v e r f o r DBACC and DBSOL. ’ ,
∗ ’Compute l e a s t−squares f i t o f a cont inuous p i e c ew i s e l i n e a r ’ ,
∗ ’ f unc t i on to the s i n e func t i on on 0 to 90 degree s . ’
DTOR = atan (ONE)/C45
MTOTAL = 0
IR = 1
MT = 0
JT = 1
IG = 0
X = −XINC
DELX = XTAB(JT+1) − XTAB(JT)

c
20 i f (X . l t . XLIMIT) then

X = X + XINC

July 11, 2015 Sequential Solution of a Banded Least-Squares Problem 4.5–5

MTOTAL = MTOTAL + 1
i f (X . gt . XTAB(JT+1))then

write (∗ , 1000) JT , MT
ca l l DBACC(G,LDG,NB, IR ,MT, JT ,JTPREV, IERR2)
IG = IR−1
MT = 0
JT = min(JT+1, NX−1)
DELX = XTAB(JT+1) − XTAB(JT)

end i f
IG = IG + 1
MT = MT + 1
G(IG , 1) = (XTAB(JT+1) − X) / DELX
G(IG , 2) = (X − XTAB(JT)) / DELX
G(IG , 3) = sin (x ∗ DTOR)

go to 20
end i f

i f (MT . gt . 0)then
write (∗ , 1000) JT , MT
ca l l DBACC(G,LDG,NB, IR ,MT, JT ,JTPREV, IERR2)

end i f

ca l l DBSOL(1 ,G,LDG,NB, IR ,JTPREV,YFIT,NX,RNORM, IERR3)
c The f o l l ow i n g s ta tement does a type convers ion .

DOF = MTOTAL − NX
SIGFAC = RNORM / SQRT(DOF)
write (∗ , ’ (1x/1x , a , i4 , a , f10 . 5 , a , f10 . 5) ’)

∗ ’MTOTAL =’ , MTOTAL, ’ , RNORM =’ , RNORM, ’ , SIGFAC =’ , SIGFAC
write (∗ , 1003)
do 30 I=1,NX

YTRUE = sin (XTAB(I)∗DTOR)
write (∗ , 1004) XTAB(I) ,YTRUE,YFIT(I) ,YFIT(I) − YTRUE

i f (I .ne . NX)then
X = HALF∗(XTAB(I+1) + XTAB(I))
YF = HALF∗(YFIT(I+1) + YFIT(I))
YTRUE = sin (X∗DTOR)
write (∗ , 1004) X,YTRUE,YF,YF − YTRUE

end i f
30 continue

c
c Compute unsca led covar iance matrix in C(,) .
c

do 50 J = 1 ,NX
do 40 I = 1 ,NX

C(I , J) = ZERO
40 continue

C(J , J) = ONE
ca l l DBSOL(2 ,G,LDG,NB, IR ,JTPREV,C(1 , J) ,NX,RDUMMY, IERR3)
ca l l DBSOL(3 ,G,LDG,NB, IR ,JTPREV,C(1 , J) ,NX,RDUMMY, IERR3)

50 continue
c

write (∗ , ’ (1x/10x , a , i 1 /1x) ’)
∗ ’ Covariance matrix s c a l ed up by 10∗∗ ’ ,ISCALE

c
VFAC = (10∗∗ISCALE) ∗ SIGFAC∗∗2
do 60 I = 1 ,NX

print 1006 , (VFAC∗C(I , J) , J=1,NX)
60 continue

c

4.5–6 Sequential Solution of a Banded Least-Squares Problem July 11, 2015

stop
end

July 11, 2015 Sequential Solution of a Banded Least-Squares Problem 4.5–7

ODDBACC

Demonstration d r i v e r f o r DBACC and DBSOL.

Compute l e a s t−squares f i t o f a cont inuous p i e c ew i s e l i n e a r
func t i on to the s i n e func t i on on 0 to 90 degree s .

Ca l l i ng DBACC with JT = 1 , MT = 11
Ca l l i ng DBACC with JT = 2 , MT = 10
Ca l l i ng DBACC with JT = 3 , MT = 10
Ca l l i ng DBACC with JT = 4 , MT = 10
Ca l l i ng DBACC with JT = 5 , MT = 10
Ca l l i ng DBACC with JT = 6 , MT = 10
Ca l l i ng DBACC with JT = 7 , MT = 10
Ca l l i ng DBACC with JT = 8 , MT = 10
Ca l l i ng DBACC with JT = 9 , MT = 10

MTOTAL = 91 , RNORM = 0.00818 , SIGFAC = 0.00091

X Y YFIT R=Y−YFIT

0 .0 0 .00000 0.00009 0.00009
5 .0 0 .08716 0.08708 −0.00008

10 .0 0 .17365 0.17406 0.00041
15 .0 0 .25882 0.25847 −0.00034
20 .0 0 .34202 0.34289 0.00087
25 .0 0 .42262 0.42207 −0.00055
30 .0 0 .50000 0.50126 0.00126
35 .0 0 .57358 0.57283 −0.00075
40 .0 0 .64279 0.64441 0.00162
45 .0 0 .70711 0.70619 −0.00092
50 .0 0 .76604 0.76797 0.00193
55 .0 0 .81915 0.81809 −0.00106
60 .0 0 .86603 0.86821 0.00219
65 .0 0 .90631 0.90512 −0.00119
70 .0 0 .93969 0.94203 0.00234
75 .0 0 .96593 0.96471 −0.00122
80 .0 0 .98481 0.98738 0.00257
85 .0 0 .99619 0.99476 −0.00143
90 .0 1 .00000 1.00215 0.00215

Covariance matrix s c a l ed up by 10∗∗6

0 .24 −0.06 0 .02 −0.00 0 .00 −0.00 0 .00 −0.00 0 .00 −0.00
−0.06 0 .15 −0.04 0 .01 −0.00 0 .00 −0.00 0 .00 −0.00 0 .00
0 .02 −0.04 0 .14 −0.04 0 .01 −0.00 0 .00 −0.00 0 .00 −0.00

−0.00 0 .01 −0.04 0 .14 −0.04 0 .01 −0.00 0 .00 −0.00 0 .00
0 .00 −0.00 0 .01 −0.04 0 .14 −0.04 0 .01 −0.00 0 .00 −0.00

−0.00 0 .00 −0.00 0 .01 −0.04 0 .14 −0.04 0 .01 −0.00 0 .00
0 .00 −0.00 0 .00 −0.00 0 .01 −0.04 0 .14 −0.04 0 .01 −0.00

−0.00 0 .00 −0.00 0 .00 −0.00 0 .01 −0.04 0 .14 −0.04 0 .02
0 .00 −0.00 0 .00 −0.00 0 .00 −0.00 0 .01 −0.04 0 .15 −0.06

−0.00 0 .00 −0.00 0 .00 −0.00 0 .00 −0.00 0 .02 −0.06 0 .24

4.5–8 Sequential Solution of a Banded Least-Squares Problem July 11, 2015

	Sequential Solution of a Banded Least-Squares Problem
	Purpose
	Usage
	Sequential processing of data
	Computation of Solution Vector

	Examples and Remarks
	Computation of the covariance matrix for the solution vector
	Demonstration problem
	Data blocks having fewer than NB contiguous columns of nonzeros

	Functional Description
	Error Procedures and Restrictions
	Supporting Information

