
7.1 Roots of a Polynomial

A. Purpose

Given the coefficients ai of a polynomial of degree n =
NDEG > 0,

a1z
n + a2z

n−1 + ...+ anz + an+1

with a1 6= 0, this subroutine computes the NDEG roots
of the polynomial. Since the roots may be complex, they
will always be returned as complex numbers, even when
they are real.

Subroutines are provided for four cases:

SPOLZ for single precision real coefficients.
DPOLZ for double precision real coefficients.
CPOLZ for single precision complex coefficients.
ZPOLZ for double precision complex coefficients.

See Section E for remarks on the method of storing dou-
ble precision complex numbers.

B. Usage

B.1 Program Prototype, Single Precision Real
Coefficients

INTEGER NDEG, IERR

REAL A(≥ NDEG + 1), H(≥ NDEG**2)

COMPLEX Z(≥ NDEG)

Assign values to A(), and NDEG.

CALL SPOLZ(A, NDEG, Z, H, IERR)

Computed quantities are returned in Z() and IERR.

B.2 Program Prototype, Double Precision Real
Coefficients

INTEGER NDEG, IERR

DOUBLE PRECISION A(≥ NDEG + 1),
H(≥NDEG**2)

DOUBLE PRECISION Z(2, ≥ NDEG) or

COMPLEX*16 Z(≥ NDEG)

Assign values to A(), and NDEG.

CALL DPOLZ(A, NDEG, Z, H, IERR)

Computed quantities are returned in Z() and IERR.

B.3 Program Prototype, Single Precision Com-
plex Coefficients

INTEGER NDEG, IERR

COMPLEX A(≥NDEG + 1)

REAL H(≥ 2 * NDEG**2)

COMPLEX Z(≥ NDEG)

Assign values to A(), and NDEG.

CALL CPOLZ(A, NDEG, Z, H, IERR)

Computed quantities are returned in Z() and IERR.

B.4 Program Prototype, Double Precision
Complex Coefficients

INTEGER NDEG, IERR

DOUBLE PRECISION A(2, ≥ NDEG + 1) or

COMPLEX*16 A(≥ NDEG + 1)

DOUBLE PRECISION H (≥2 * NDEG**2)

DOUBLE PRECISION Z(2, ≥ NDEG) or

COMPLEX*16 Z(≥ NDEG)

Assign values to A(), and NDEG.

CALL ZPOLZ(A, NDEG, Z, H, IERR)

Computed quantities are returned in Z() and IERR.

B.5 Argument Definitions

A() [in] Contains the coefficients of a polynomial, high
order coefficient first, with A(1) 6= 0. The contents
of this array will not be modified by the subroutine.

In the case of ZPOLZ, if the declaration DOUBLE
PRECISION A(2, NDEG+1) is used, the user must
store the real part of ai in A(1, i) and the imaginary
part in A(2, i).

NDEG [in] Degree of the polynomial.

H() [scratch] Work space for the subroutine.

Z() [out] Contains the polynomial roots stored as com-
plex numbers. In the cases of DPOLZ and ZPOLZ, if
the declaration DOUBLE PRECISION Z(2, NDEG)
is used, the real part of zi will be returned in Z(1, i)
and the imaginary part in Z(2, i).

IERR [out] Error flag. Set by the subroutine to 0 on
normal termination. Set to −1 if A(1) = 0. Set to
−2 if NDEG < 1. Set to J > 0 if the iteration count
limit has been exceeded and roots 1 through J have
not been determined.

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

July 11, 2015 Roots of a Polynomial 7.1–1

C. Examples and Remarks

The program, DRSPOLZ, uses SPOLZ to compute the
roots of the two polynomials

x3 − 4x2 + x− 4, and

x5 − 15x4 + 85x3 − 225x2 + 274x− 120

The output is shown in ODSPOLZ.

The Fortran 77 standard does not support a double pre-
cision complex data type, although such a type is sup-
ported in many compilers using the declaration, COM-
PLEX*16. The subroutines described here conform to
the standard and thus do not use COMPLEX*16. For
cases in which double precision complex quantities are
communicated using the arrays A() or Z(), these sub-
routines store a complex number as an adjacent pair of
double precision numbers, representing respectively the
real and imaginary parts of the complex number. This
is compatible with the Fortran 90 storage convention for
double precision complex. If the user has the COM-
PLEX*16 declaration available and wishes to use it, it
will generally be compatible with this storage conven-
tion.

D. Functional Description

Method

The degree, NDEG, and coefficients, a1, ..., aNDEG+1,
are given. An error condition is reported if NDEG < 1
or if a1 = 0.

Let k + 1 be the index of the last nonzero coefficient. If
k < NDEG, the polynomial has a root at zero repeated
NDEG − k times and these roots are recorded. The re-
maining roots will be roots of the polynomial of degree
k whose coefficients are the first k+ 1 given coefficients.
If k = 1, the root −a2/a1 is recorded.

If k > 1, the subroutine forms the k× k companion ma-
trix H for this kth degree polynomial. The matrix H is
zero except for the first row,

h1,j = −aj+1/a1, j = 1, ..., k

and the elements just below the diagonal,

hi,i−1 = 1, i = 2, ..., k

A scaling algorithm is applied to H to balance the sizes
of the nonzero elements. Testing showed that accuracy
could be very unsatisfactory if no scaling were done. The
scaling method used is a modification of the subrou-
tine BALANC from the EISPACK collection of matrix
eigensystem subroutines [1], [2]. The modification avoids
treating the elements that are known to be zero due to
the form of the companion matrix. The search for useful

row or column permutations done in BALANC is also
deleted since, with ak+1 known to be nonzero, none of
these permutations are possible.

The eigenvalues of the balanced H matrix are then com-
puted using appropriate code for the QR algorithm from
EISPACK. For SPOLZ and DPOLZ the code for the EIS-
PACK subroutine, HQR, has been incorporated in-line.
For CPOLZ or ZPOLZ, a call is made to SCOMQR or
DCOMQR, respectively. These latter two subroutines
are, respectively, single precision and double precision
versions of the EISPACK subroutine, COMQR.

Reference [3] reports that compared with other widely
used methods, the conversion of the root finding prob-
lem to an eigenvalue problem is superior in reliability,
generally superior in accuracy, and comparable in speed.

Accuracy tests

A root of a polynomial is called ill-conditioned if a
small relative change in the coefficients makes a signifi-
cantly larger relative change in the root. Roots that are
bunched closely together relative to their magnitude, or
relative to their distance from other roots, tend to be ill-
conditioned. An extreme case of ill-conditioning occurs
with multiple roots. If the coefficients of a polynomial
are only known to some relative precision, say p, then
a double root will typically have a relative uncertainty
of about p1/2, and a triple root a relative uncertainty of
about p1/3.

The accuracy of a computed root is limited by the inher-
ent conditioning of the root. Rather than directly test-
ing the accuracy of the computed roots, we have chosen
to test the accuracy with which polynomial coefficients
could be reconstituted from the computed roots.

To test these subroutines we selected eight sets of roots
to test SPOLZ and DPOLZ and a different group of eight
sets of roots to test CPOLZ and ZPOLZ. These sets in-
cluded double and triple roots, roots that formed a small
cluster relative to other roots, roots that differed by a
factor of 108, and both real and complex roots. The
number of roots in each set varied from 1 to 7.

From each set of roots we created 8 test sets by multi-
plying all roots in the set by one of the factors, 10−3,
10−2, ..., 103, or 104. This produced a total of 64 test
sets for each subroutine.

To execute the test for one subroutine, say xPOLZ, and
one set of roots, say r1, ..., rn, we did the following:

1. Compute, in double precision, the coefficients, say ai,
of the monic polynomial having the roots, ri. Sub-
routine ZCOEF of Chapter 15.3 is used for this.

2. Use subroutine xPOLZ to compute the roots, say si,
of this polynomial.

7.1–2 Roots of a Polynomial July 11, 2015

3. Compute, in double precision, the coefficients, say bi,
of the monic polynomial having the roots, si.

4. Compute δ = the maximum of the relative differences
between corresponding coefficients, ai and bi.

5. Compute ε = δ /ρ, where ρ is the relative precision of
the arithmetic being used by xPOLZ. The value for
ρ was obtained as R1MACH(4) for single precision
and D1MACH(4) for double precision. (See Chap-
ter 19.1.)

Ideally, Step 3 should be done using significantly higher
precision than is used by the subroutine xPOLZ be-
ing tested, so the error measures, δ and ε, will be at-
tributable only to xPOLZ with no inflation from Step 3.
Since we used double precision in Step 3 for all cases,
we conclude that the reported values of ε are solely at-
tributable to SPOLZ and CPOLZ in the tests of those
subroutines, while the values of ε reported for DPOLZ
and ZPOLZ are somewhat inflated due to errors from
Step 3.

These tests were run on an IBM PC/AT equipped with
the Intel 80287 math coprocessor. The precision was
ρ ≈ 1.2 × 10−7 for single precision and 2.2 × 10−16 for
double precision. The results may be summarized as
follows:

Max. ε over Number of Cases
Subroutine 64 test cases with ε > 10

SPOLZ 35 19
DPOLZ 57 21
CPOLZ 8 0
ZPOLZ 43 8

References

1. B. T. Smith, J. M. Boyle, B. S. Garbow, Y. Ikebe,
V. C. Klema, and C. B. Moler, Matrix Eigensys-
tem Routines — EISPACK Guide, Lecture Notes
in Computer Science 6, Springer Verlag, Berlin (1974)
387 pages.

2. B. S. Garbow, J. M. Boyle, J. J. Dongarra, and
C. B. Moler, Matrix Eigensystem Routines —
EISPACK Guide Extension, Lecture Notes in Com-
puter Science 51, Springer Verlag, Berlin (1977) 343
pages.

3. S. Goedecker, Remark on algorithms to find roots of
polynomials, SIAM J. on Scientific Computing 15,
5 (Sept. 1994) 1058–1063.

E. Error Procedures and Restrictions

The error indicator, IERR, will be set as follows:

= 0 when no errors are detected.

= −1 if A(1) is zero, or A(1, 1) and A(2, 1) are both
zero.

= −2 if NDEG < 1.

= J > 0 if the iteration count limit has been exceeded
and roots 1 through J have not been determined. The
matrix eigenvalue codes allow a maximum of 30 iter-
ations for each root. This limit is ample.

When IERR is set nonzero, the subroutine will also issue
an error message using ERMSG, of Chapter 19.2, with
an error level of 0.

F. Supporting Information

Entry Required Files

CPOLZ AMACH, CPOLZ, ERFIN, ERMSG,
SCOMQR

DPOLZ AMACH, DPOLZ, ERFIN, ERMSG

SPOLZ AMACH, ERFIN, ERMSG, SPOLZ

ZPOLZ AMACH, DCOMQR, DZABS, ERFIN,
ERMSG, ZPOLZ, ZQUO, ZSQRT

Designed by C. L. Lawson, JPL, May 1986. Programmed
by C. L. Lawson and S. Y. Chiu, JPL, May 1986,
Feb. 1987.

July 11, 2015 Roots of a Polynomial 7.1–3

DRSPOLZ

c Program DRSPOLZ
c>> 2009−10−28 DRZPOLZ Krogh Mods to ge t comples used in s i n g l e prec .
c>> 1996−07−09 DRZPOLZ Krogh Set f o r d e r i v i n g s i n g l e p r e c i s i on C ver s .
c>> 1994−08−09 DRSPOLZ WVS Remove ’0 ’ in format
c>> 1992−03−06 DRSPOLZ CLL
c>> 1987−12−09 DRSPOLZ Lawson I n i t i a l Code .
c Conversion shou ld on ly be done from ”D” to ”S” f o r p roce s s ing to C.
c−−S r ep l a c e s ”?”: DR?POLZ, ?POLZ
c Demonstration d r i v e r f o r SPOLZ.
c −−

real A1(4) , A2(6) , H(25)

c++ CODE fo r .D. | .C. i s i n a c t i v e
C r e a l Z1 (2 ,3) , Z2 (2 ,5)
c++ CODE fo r . S . & ˜ .C. i s a c t i v e

complex Z1 (3) , Z2 (5)
c++ END

integer N1 , N2 , IERR
c++ CODE fo r ˜ .C. i s a c t i v e

integer I , k
c++ CODE fo r .C. i s i n a c t i v e
c%% long i n t i , k ;
c++ END
c

data A1 / 1 .E0 , −4.E0 , 1 .E0 , −4.E0 /
data A2 / 1 .E0 , −15.E0 , 85 .E0 , −225.E0 , 274 .E0 , −120.E0 /

c −−
N1 = 3
N2 = 5

c
c++ CODE fo r ˜ .C. i s a c t i v e

100 format (’ ’ , ’ Degree =’ , I2 / ’ ’ , ’ C o e f f i c i e n t s =’ , (T20 , 4 (F10 . 4 , 1X)))
200 format (’ ’ , ’ Roots =’ /(2(1X, ’ (’ ,1X, F8 . 5 , ’ , ’ ,1X, F8 . 5 , 2X, ’) ’ : 2X)))
300 format (// ’ ’)

print 100 , N1 , (A1(I) , I =1 ,4)
c++ CODE fo r .C. i s i n a c t i v e
c%% p r i n t f (” Degree =%2l d \n Co e f f i c i e n t s = ” , n1) ;
c%% fo r (i = 0 ; i < 4 ; i++) p r i n t f (”%10.4 f ” , a1 [i]) ;
c++ End

ca l l SPOLZ(A1 ,N1 , Z1 ,H, IERR)
c++ CODE fo r .D. & ˜.C. i s i n a c t i v e
C p r i n t 200 , ((Z1(K, I) ,K=1 ,2) , I =1 ,3)
c++ CODE fo r . S . & ˜ .C. i s a c t i v e

print 200 , (Z1 (I) , I =1 ,3)
c++ CODE fo r ˜ .C. i s a c t i v e

print 300
print 100 , N2 , (A2(I) , I =1 ,6)

c++ CODE fo r .C. i s i n a c t i v e
c%% p r i n t f (”\n Roots =\n”) ;
c%% fo r (i = 0 ; i < 3 ; i+=2) {
c%% p r i n t f (” (%8.5 f , %8.5 f)” , z1 [i] [0] , z1 [i] [1]) ;
c%% i f (i<2) p r i n t f (” (%8.5 f , %8.5 f)” , z1 [i +1] [0] , z1 [i +1] [1]) ;
c%% p r i n t f (”\n”) ;}
c%% p r i n t f (”\n\n \n Degree =%2l d \n Co e f f i c i e n t s = ” , n2) ;
c%% fo r (i = 0 ; i < 6 ; i+=4) {
c%% fo r (k = i ; k < (i < 2 ? i + 4 : 6) ; k++)

7.1–4 Roots of a Polynomial July 11, 2015

c%% p r i n t f (”%10.4 f ” , a2 [k]) ;
c%% i f (i < 4) p r i n t f (”\n ”) ;}
c++ End

ca l l SPOLZ(A2 ,N2 , Z2 ,H, IERR)
c++ CODE fo r .D. & ˜.C. i s i n a c t i v e
C p r i n t 200 ,((Z2(K, I) ,K=1 ,2) , I =1 ,5)
c++ CODE fo r . S . & ˜ .C. i s a c t i v e

print 200 , (Z2 (I) , I =1 ,5)
c++ CODE fo r .C. i s i n a c t i v e
c%% p r i n t f (”\n Roots =\n”) ;
c%% fo r (i = 0 ; i < 5 ; i+=2) {
c%% p r i n t f (” (%8.5 f , %8.5 f)” , z2 [i] [0] , z2 [i] [1]) ;
c%% i f (i<4) p r i n t f (” (%8.5 f , %8.5 f)” , z2 [i +1] [0] , z2 [i +1] [1]) ;
c%% p r i n t f (”\n”) ;}
c%% p r i n t f (”\n”) ;
c++ END

end

ODSPOLZ

Degree = 3
Co e f f i c i e n t s = 1.0000 −4.0000 1 .0000 −4.0000
Roots =
(4 .00000 , 0 .00000) (0 .00000 , 1 .00000)
(0 .00000 , −1.00000)

Degree = 5
Co e f f i c i e n t s = 1.0000 −15.0000 85.0000 −225.0000

274.0000 −120.0000
Roots =
(4 .99991 , 0 .00000) (4 .00018 , 0 .00000)
(2 .99988 , 0 .00000) (2 .00003 , 0 .00000)
(1 .00000 , 0 .00000)

July 11, 2015 Roots of a Polynomial 7.1–5

	Roots of a Polynomial
	Purpose
	Usage
	Program Prototype, Single Precision Real Coefficients
	Program Prototype, Double Precision Real Coefficients
	Program Prototype, Single Precision Complex Coefficients
	Program Prototype, Double Precision Complex Coefficients
	Argument Definitions

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

