7.2 Roots of a Quadratic Polynomial

A. Purpose

Compute the two roots of a quadratic polynomial having
real coefficients.

B. Usage

B.1 Program Prototype, Single Precision
REAL A(>3)

COMPLEX Z(>2)

Assign values to A().

| CALL SPOLZ2(A, 7) |

The roots are returned in Z().
B.2 Argument Definitions
A() [in] Contains the coefficients of the polynomial
a1m2 “+ agx + as
Require A(1) # 0. The contents of the array A() are
not modified by the subroutine.

Z() [out] Array in which the two roots are returned.
The roots will be stored as complex numbers even in
cases in which they are real.

B.3 Modifications for Double Precision

For double precision usage change the subroutine name
to DPOLZ2 and change the type statements to:

DOUBLE PRECISION A(> 3)

DOUBLE PRECISION Z(2, > 2), or
COMPLEX*16 Z(> 2))

On return the real and imaginary parts of the j** root

will be stored in Z(1, j) and Z(2, j) respectively.

C. Examples and Remarks

The program, DRSPOLZ2, uses SPOLZ2 to compute the
roots of the polynomials, 2 +x — 1, 222 — 12z + 26, and
2% — 42 + 4. The output is shown in ODSPOLZ2.

See the remark in Chapter 15.1, Section C, concerning
the use of COMPLEX*16.

D. Functional Description

Method

We are given the real coefficients of a quadratic polyno-
mial:

a1x2 “+ agx + as

©1997 Calif. Inst. of Technology, 2015 Math & la Carte, Inc.

July 11, 2015

Roots of a Quadratic Polynomial

The case of a; = 0 is regarded as an error. The subrou-
tine issues an error message and returns, setting both
roots to zero.

Compute p = ag/a; and g = az/a;. The cases of p =0
or ¢ = 0 are given special treatment. Otherwise we com-
pute the roots of 22 4 px + ¢, knowing that p and ¢ are
both nonzero.

Compute u = —p/2. Direct use of the quadratic formula
would give the roots as 1y = u+ z and ro = u — z, where
z = y/u? —q. To extend the range of data for which
results can be obtained without overflow or underflow,
the expression for z is evaluated differently depending on
the magnitude of u. We use thresholds, ¢; and ¢g, such
that ¢2 /16 is the underflow limit and 16¢2 is the overflow
limit. The values of ¢; and ¢y are set on the first call to
this subroutine by use of the subprograms RIMACH or
DIMACH from Chapter 19.1.

Rather than computing z, we compute f = |z| and a
2

quantity, d, having the same sign as u” — q :
If |u| > C2
d=1—(q/u)/u

f=lul/1d|

Elseif |u| < ¢
d = u(u/|q|) — signq

F=ld Vld

Else
d=u?—gq
f=Id

Endif

If d = 0, the polynomial has the real root, u, with multi-
plicity two. If d < 0, the roots are the complex numbers,
(u, f) and (u, —f).

If d > 0, the roots are the two real numbers, u + f
and u — f, however use of these expressions would cause
unnecessary loss of accuracy in the root of smaller mag-
nitude when the magnitudes of uw and f are nearly the
same. Instead we use the expressions, 1 = u + fsignu,
and ro = q/r1.

Accuracy tests

A test program ran cases exercising all of the branches of
the subroutine. Accuracy was consistent with the com-
puter being used.

E. Error Procedures and Restrictions

If the high-order coefficient, A(1), is zero, the subroutine
issues an error message via ERMSG of Chapter 19.2,

7.2-1

with an error level of 0, and returns with both roots set Programmed by C. L. Lawson and S. Y. Chiu, JPL,

to zero. May 1986, Feb. 1987.

F. Supporting Information Entry Required Files

The Source Language is ANSI Fortran 77. DPOLZ2 AMACH. DPOLZ2. ERFIN. ERMSQG

Designed by C. L. Lawson, JPL, May 1986. SPOLZ2 AMACH, ERFIN, ERMSG, SPOLZ2
DRSPOLZ2

c Program DRSPOLZ2

c>> 2009—10—28 DRZPOLZ2 Krogh Mods to get comples used in single prec.
c>> 1996—07—03 DRSPOLZ2 Krogh Set for deriving single precision C vers.
c>> 1995—05—28 DRSPOLZ2 Krogh Moved formats up.

c>> 1994—08—09 DRSPOLZ2 WVS Removed ’0° in format

c>> 1991—11—-20 DRSPOLZ2 CLL Editing for Fortran 90.

c>> 1987—12—09 DRSPOLZ2 Lawson Initial Code.

¢ Conversion should only be done from ”D” to ”S” for processing to C.
c—S replaces 7%2”: DR?POLZ2, ?POLZ2

c Demonstration driver for SPOLZ2.
c
real DC(3,3)
c++ CODE for .D. | .C. is inactive
C real Z(2,2)

c¢++ CODE for .S. & ~.C. is active
complex Z(2)
c++ END

data (DC(I,1),1=1,3) / 1.E0, 1.E0, —1.E0 /
data (DC(I,2),I=1,3) / 2.E0, —12.E0, 26.E0 /
data (DC(I,3),I1=1,3) / 1.BE0, —4.E0, 4.E0 /
data N / 2 /
c

100 format(’ ’,’Degree =’,12/7 7|
* "Coefficients =’,6X,3(F10.4,1X))

200 format(’ ’,’Roots =’/(2(1X:’(’,1X,F8.5,",7 ,1X,F8.5,2X,)’ ,2X)))

300 format(//’)

do 40 J = 1,3
print 100, N, (DC(I, J),I=1,3)
call SPOLZ2(DC(1,J),Z)

c¢c++ CODE for .D. & ~.C. is inactive

C print (77 Roots =""/(2(1X:" (" ,1X,F8.5,"7,7 7 ,1X,F8.5,2X,
C *) ,2eX)))’, (Z(1,K),Z(2,K),K=1,2)
c++ CODE for .S. & ~.C. is active
print ('’ Roots =’’/(2(1X: ('’ ,1X,F8.5, ", 1X,F8.5,2X,
*) ,2X))) 7, (Z(K) K=1,2)
c++ CODE for .C. is inactive
%% printf("\n Roots =\n (%8.5f, %8.5f) (%8.5f, %8.5f) 7,
9% 2[0][0], 2[0)[1], =[1][0], #[1][1]);
c++ End
print 300
40 continue
end

7.2-2 Roots of a Quadratic Polynomial July 11, 2015

July 11, 2015

Degree = 2
Coefficients
Roots =

(—1.61803,

Degree = 2
Coefficients
Roots =

(3.00000,

Degree = 2
Coefficients
Roots =

(2.00000,

ODSPOLZ2

= 1.0000 1.0000 —1.0000

0.00000) (0.61803, 0.00000)

= 2.0000 —12.0000 26.0000

2.00000) (3.00000, —2.00000)

= 1.0000 —4.0000 4.0000

0.00000) (2.00000, 0.00000)

Roots of a Quadratic Polynomial

7.2-3

	Roots of a Quadratic Polynomial
	Purpose
	Usage
	Program Prototype, Single Precision
	Argument Definitions
	Modifications for Double Precision

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

