7.3 Compute Polynomial Coefficients from Roots

A. Purpose

Given n complex numbers, z;, compute (complex) coef-
ficients, ¢;, such that the monic polynomial defined by

p(z) =c12" 4+ ...+ cnz+ cnta

has the numbers z; as its roots. The coefficients will be

computed from the relation
az"+.. . ezt enri=(2z—21)(z—22)7 (2 — zn)

Note that ¢; is always set to 1.

B. Usage

B.1 Program Prototype, Single Precision
INTEGER NDEG

COMPLEX ROOTS(>NDEG),COEFS(>NDEG+1)
Assign values to NDEG and ROOTS().

| CALL CCOEF (NDEG, ROOTS, COEFS) |

Computed quantities are returned in COEFS().

B.2 Argument Definitions

NDEG [in] Number of roots given in ROOTS(), and
thus the degree of the polynomial whose coefficients
are to be computed.

ROOTS() [in] Roots, given as complex numbers.

COEFS() [out] Computed coefficients, stored as com-
plex numbers. The arrays COEFS() and ROOTS()
must be distinct. The coefficient, ¢1, will be the co-
efficient of zVPFY and will be set to 1.

B.3 Modifications for Double Precision

For double precision usage change the subroutine name
from CCOEF to ZCOEF. Recall that the Fortran 77
standard does not support a double precision complex
data type, although many Fortran compilers do, using
the declaration, COMPLEX*16. To remain within the
Fortran 77 standard, use the declarations

DOUBLE PRECISION ROOTS(2,
COEFFS(2, >NDEG+1)

and use the convention that real and imaginary parts of
complex numbers are associated with the values 1 and 2,
respectively, of the first subscript. This usage is compat-
ible with the Fortran 90 standard. Alternatively, if the
COMPLEX*16 declaration is available and is compatible
with this storage convention, one may use the nonstan-
dard declaration

> NDEG),

COMPLEX*16 ROOTS(> NDEG), COEFFS(>
NDEG+1)
July©1119,950(%%h£ Inst. of Technology, 2015 Math a la Carte, Inc.

ompute Polynomial Coefficients from Roots

C. Examples and Remarks

The program, DRZCOEF, with its output, ODZCOEF,
illustrates the use of ZCOEF to compute the coefficients
of a quadratic and a cubic polynomial.

If this subroutine is used to assess the accuracy of a
polynomial root finder we suggest use of the double pre-
cision version, even if it is a single precision root finder,
to reduce the introduction of errors from the process of
computing the polynomial coefficients.

D. Functional Description
Method

The degree, NDEG, and roots, z1, ..., ZNpEqG, are given.
The coefficients, ¢;, are computed by the following al-
gorithm. The quantities z; and ¢; are complex. In the
double precision version the complex arithmetic is coded
in-line in terms of operations on the real and imaginary
parts to conform to the Fortran 77 standard.

C1 = 1.0
if(NDEG .le. 0) return
Cy = —21
do i =2, NDEG
Ci+1 = —C; * 24
doj=1,2, —1
Cj =Cj —Cj1 * 25
enddo
enddo
return

Accuracy tests

The logic and the accuracy of this code were checked by
use with a root finder. The accuracy was consistent with
the computer system being used.

E. Error Procedures and Restrictions

If NDEG < 0 the subroutine returns, setting
COEFS(1) = 1. The arrays ROOTS() and COEFS()

must occupy distinct storage locations.
F. Supporting Information

The source language for these subroutines is ANSI For-
tran 77.

Entry Required Files
CCOEF CCOEF
ZCOEF ZCOEF

Designed by C. L. Lawson, JPL, May 1986.

Programmed by C. L. Lawson and S. Y. Chiu, JPL,
May 1986, Feb. 1987.

7.3-1

DRZCOEF

c program DRZCOEF

c>> 1996—06—25 DRZCOEF Krogh Set for deriving C vers.
> 1994—07—15 CLL

c>> 1987—12—09 DRZCOEF Lawson Initial Code.

¢ Conwversion should only be done from ”Z” to ”"C” for processing to C.

c—Z7 replaces 7%2”: DR?COEF, ?COEF
c Demo driver for ZCOEF
c C. L. Lawson & S. Chiu, JPL, 1987 Feb 17.

c
integer I, NDEG1, NDEG2
double precision RT1(2,3), RT2(2,2)
double precision ZC(2,4)

data (RT1(1,1),I=1,3) / 1.D0, 1.D0, 3.D0 /
data (RT1(2,1),1=1,3) / 1.D0, —1.D0, 0.D0 /
data (RT2(1,1),I=1,2) / 2.D0, 3.D0 /
data (RT2(2,1),1=1,2) / 1.D0, 2.D0 /

data NDEG1, NDEG2 / 3, 2 /
c
call ZCOEF(NDEGI,RT1,ZC)
c++ CODE for ~.C. is active
100 format (1X/1X,A,13)

200 format(1x,A/ (1X,’(’,F12.9,’,’ ,F12.9,7)":
* ©(7,F12.9,7,7,F12.9,7) "))
print 100, ’Degree =’ ,NDEG1
print 200, Roots =’ ,(RT1(1,1),RT1(2,1),I=1NDEG1)
print 200, Coeffs =’,(2C(1,1),Z2C(2,1),I=1NDEGI1+1)
print ’(/)’

call ZCOEF(NDEG2,RT2,ZC)

print 100, ’Degree =’ ,NDEG2
print 200, Roots =’ ,(RT2(1,1),RT2(2,1),I1=1NDEG2)
print 200,’ Coeffs =’ ,(ZC(1,1),Z2C(2,1),I=1NDEG2+1)

c++ CODE for .C. is inactive

%% printf(7 \n Degree =%3ld”, ndegl);

%% printf(7 \n Roots =\n");

%% for (i = 0; i < ndegl; 1+=2){

%% printf(7 (%12.9f,%12.9f)7, rt1[i][0], rt1[i][1]);
%% if (i < ndegl—1) printf(7 (%12.9f,%12.9f)7, rt1[i+1][0],
%% rti1[i+1][1]);

ch% printf("\n”);}

%% printf(7 \n Coeffs =\n");

%% for (i = 0; i <= ndegl; i+=2){

ch% printf(7 (%12.9f,%12.9f)7, zc[i][0], zc[i][1]);

c%% if (i < ndegl) printf(7 (%12.9f,%12.9f)7, zc[i+1][0],
c%% zeli+1][1]);

ch% printf("\n”);}

%%

c%% printf("\n\n”);

c%% zcoef(ndeg2, rt2, zc);

c%% printf(7 \n Degree =%3ld”, ndeg2);

c%% printf(7 \n Roots =\n");

%% for (i = 0; i < ndeg2; i+=2){

c%% printf(7 (%12.9f,%12.9f)7, rt2[i][0], rt2[i][1]);

c%% if (i < ndeg2—1) printf(7 (%12.9f,%12.9f)", rt2[i+1][0],

7.3-2

Compute Polynomial Coefficients from Roots

July 11, 2015

July 11, 2015

%% rt2[i+1][1]);
%% printf("\n”);}
c%% printf(7 \n Coeffs

c%% for (i = 0; i <= ndeg2;
%% printf(7 (%12.9f,%12.9f)", zc[i][0],
%% if (i < ndeg2) printf(”

ch% ze[i+1][1]);
%% printf("\n”);}
c++ END

end

Degree = 3

Roots =

(1.000000000, 1.000000000)
(3.000000000, 0.000000000)
Coeffs =

(1.000000000, 0.000000000)
(8.000000000,—0.000000000)

Degree = 2

Roots =

(2.000000000, 1.000000000)
Coeffs =

(1.000000000, 0.000000000)
(4.000000000, 7.000000000)

=\n");
i+=2){

ODZCOEF

(1.000000000,—1.000000000)

(—5.000000000, 0.000000000)
(—6.000000000,—0.000000000)

(3.000000000, 2.000000000)

(—5.000000000,—3.000000000)

Compute Polynomial Coefficients from Roots

zeli][1]);
(%12.9f,%12.9f)7, zc[i+1][0],

7.3-3

	Compute Polynomial Coefficients from Roots
	Purpose
	Usage
	Program Prototype, Single Precision
	Argument Definitions
	Modifications for Double Precision

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

