8.1 Find a Zero of a Univariate Function

A. Purpose

Find a zero of a univariate function, f(z).

B. Usage

This subroutine uses reverse communication, 4.e., it
returns to the calling program each time it needs to
have f() evaluated at a new value of x.

B.1 Program Prototype, Single Precision
REAL X1, F1, X2, F2, TOL

INTEGER MODE

Assign values to X1, X2, and TOL.

MODE =0
F2 = The value of f() evaluated at X2.
10 F1 = The value of f() evaluated at X1.

]CALL SZERO(X1, F1, X2, F2, MODE, TOL)‘

IF (MODE .EQ. 1) go to 10

Computed quantities are returned in MODE, X1,
F1, X2, and F2.

B.2 Argument Definitions

X1, F1, X2, F2 [inout] On the initial entry, F1
= f(X1) and F2 = f(X2). If F1 and F2 are of
opposite sign, the zero will be found in the inter-
val spanned by X1 and X2. If F1xF2 > 0, and
X2 # X1 then |X2 — X1| will be used in setting
the step size for the initial search. If X2 = X1
on entry, then one must also have F2 = F1, and
the search is started as described in Section D.

On returns with MODE = 1, X1 is a new trial ab-
scissa. The calling program must set F1 = f(X1)
and call SZERO again.

On return with MODE = 2 or 3, X1 is the ab-
scissa at which |f()| had the smallest value, and
F1 = f(X1). If F1 # 0, X2 is the nearest abscissa
to X1 at which f() was evaluated and found to
have the opposite sign from F1, and F2 = f(X2).

MODE [inout] Current state of computation. The
user must initially set MODE = 0, and after that
should not change its value, except to control de-
tailed printing as explained in Section D. On each
return, MODE will have one of the following val-
ues:

©1997 Calif. Inst. of Technology, 2015 Math & la Carte, Inc.

July 11, 2015

Find a Zero of a Univariate Function

=1 The calling program is to compute F1 =
f(X1) and call SZERO again.

= 2 Normal termination. Error tolerance crite-
rion is satisfied.

= 3 Normal termination. Error tolerance crite-
rion is not satisfied.

=4 Apparently f has a discontinuity between
X1 and X2. No zero has been identified.

=5 Set when F1xF2 > 0, and SZERO was un-
able to find function values with different
signs.

=6 SZERO was called with MODE > 1, or
called initially with MODE > 0. This
causes execution to stop.

TOL [in] Error tolerance.

> 0 the zero is to be isolated to an interval of
length less than TOL.

< 0 an z is desired for which |f(x)| < |TOL].

= 0 the iteration continues until the zero of f()

is isolated as accurately as possible. In this
case SZERO will never set MODE = 3.

B.3 Modifications for Double Precision

For double-precision usage change the name SZERO
to DZERO, and change the REAL declaration to
DOUBLE PRECISION.

C. Examples and Remarks

The program DRSZERO illustrates the use of
SZERO to compute the root of the function, f(z) =
2% — 8, for which the exact answer is x = 3. Output
is shown in ODSZERO.

D. Functional Description

When F1xF2 > 0 at the initial point, iterates are
generated according to the formula z = xpy, +
(Zmin — Tmax) X p, where the subscript “min” is asso-
ciated with the (z, f) pair that has the smallest value
for |f|, and pis 8 if 7 = finin / (fmax — fmin) = 8, else
p = max(x/4,r), where k is a count of the number
of iterations that have been taken without finding
f’s with opposite signs. If X1 and X2 have the same
value initially (and F1 and F2 equal F(X1)), then
the next z is a distance 0.008 + |Zmin|/4 from Ty
taken toward 0. (If X1 = X2 = 0, the next z is
—.008.)

Let 1 and zo denote the first two = values that
give f values with different signs. Let A < B be

8.1-1

the two values of = that bracket the zero as tightly
as is known. Thus A = 21 or A = 29 and B is
the other when computing x3. The next point x3 is
generated treating x as the linear function ¢(f) that
interpolates the points (f(z1), 1) and (f(x2), z2),
and computing x3 = ¢(0), subject to the condition
that A+ ¢ < 23 < B — ¢, where ¢ = 0.875 times
the accuracy to which the root has been requested.
(This condition on 3 with updated values for A and
B is also applied to future iterates.)

Let x4, x5, ..., x,, denote the abscissae on the fol-
lowing iterations. Let a = z,,, b = x,,—1, and
¢ = Ty—2. Either A or B (defined as above) will
coincide with a, and B will frequently coincide with
either b or ¢. Let p(x) be the quadratic polynomial
in z that passes through the values of f evaluated at
a, b, and c¢. Let ¢(f) be the quadratic polynomial in
f that passes through the points (f(a),a), (f(b),b),
and ((c), c).

Let C = A or B, selected so that C # a. If the
sign of f has changed in the last 4 iterations and
p'(a) x ¢ (f(a)) and p'(C) x ¢'(f(C)) are both in the
interval [1/4, 4], then x is set to ¢(0). (Note that if
p is replaced by f and ¢ is replaced by x, then both
products have the value 1.) Otherwise z is set to
a—(a—C)p/(1+ ¢)), where ¢ is selected based
on past behavior and on the ratio of f(a) with val-
ues of f() having the same sign as f(a), and different
sign from f(a), evaluated at nearby values of . The
method of selecting ¢ is sufficiently complicated that
we simply refer interested readers to the code. The
algorithm is such that 0 < ¢, and if the sign of f()
does not change for an extended period, ¢ gets large.

Reference [I] compares a number of algorithms for
finding a zero of a continuous function. Dr. Shi has
kindly used the same test program, ENCLOFX, on
DZERQO. With Dr. Shi’s permission, results from Ta-
ble II of that paper are given on the next page with
an additional column added for the results he ob-
tained with DZERO. With the exception of DE and
M, all codes solved all of the problems. See [1] for
more details.

Detailed printing

Before the initial call with MODE = 0, or at any
time during the iterative process, the user may set a
counter for detailed output by calling SZERO with
a negative value of MODE. There is no problem-
solving action on such a call. A saved counter is
set so detailed output will be written using the mes-
sage processor described in Chapter 19.3 on the next
IMODE|—1 normal calls. To resume normal compu-
tation with the detailed print on, the calling program

8.1-2

Find a Zero of a Univariate Function

must set MODE = 0 if a new problem sequence is
being started or MODE = 1 if an iterative sequence
is being continued. (Detailed print can be turned off
by setting MODE = —1 as is implied by the above.)

The detailed output consists of X1, F1, KTYP, DIV,
and KS. KTYP is 0 if ¢ above was used on the pre-
vious iteration, and KTYP is 1 if x was set to ¢(0).
DIV is the name of the program variable correspond-
ing to ¢, and KS is the number of iterations since
there has been a change in the sign of f().

References

1. G. E. Alefeld, F. A. Potra, and Yixun Shi, Algo-
rithm 748: Enclosing zeros of continuous functions,
ACM Trans. on Math. Software 21, 3 (Sept.
1995) 327-344.

E. Error Procedures and Restrictions

The user must initially set MODE = 0 and must not
alter MODE after that while iterating on the same
problem (except as described in Section D for de-
tailed output.) Entering SZERO with MODE > 0
when SZERO has not set MODE to 1 results in an
error condition and an error message will be issued
using the system error handler SMESS (or DMESS).
In such a case, if MODE # 6, SZERO will set MODE
= 6 and return, whereas if MODE = 6, SZERO will
STOP.

SZERO uses the Fortran 77 SAVE statement to save
values of internal variables between the successive
calls needed to solve a problem. Thus SZERO can-
not be used to work on more than one problem at
a time. In particular, calling SZERO with MODE
= 0 will always initialize it for a new problem and no
data will be retained from a previous problem (ex-
cept for the internal detailed print counter described
in Section D.)

F. Supporting Information
The source language is ANSI Fortran 77.

Entry Required Files
DZERO AMACH, DMESS, DZERO, MESS
SZERO AMACH, MESS, SMESS, SZERO

Algorithm and code due to F. T. Krogh, JPL,
April 1972. Revised to improve portability,
April 1974. Name changed from SFABZ/DFABZ to
SZERO/DZERQO, and minor improvements to the
algorithm, September 1987.

Revised to allow F1xF2 > 0 on initial entry, and to
change error handling, November 1991.

July 11, 2015

July 11, 2015

Total Number of Function Evaluations in Solving All the Problems Listed in Table I of [1]

BR DE M R LE 2.1 2.2 2.3 24 2.5 4.1 4.2 DZERO

2804 2808 2839 7630 2694 3154 2950 2645 2791 2687 2696 2650 2100

2905 2963 2992 7768 2821 3338 3060 2789 2922 2819 2835 2786 2177

2975 3196 3261 8014 3061 3448 3151 2948 3015 2914 2908 2859 2236

3008 2998 3146 8230 3165 3509 3219 3029 3060 2954 2950 2884 2255
DRSZERO

c program DRSZERO

c>> 1995—05—28 DRSZERO Krogh Changes to use M7T7CON

c>> 1993—05—05 DRSZERO Krogh Adjusted to simplify conversion to C.

> 1992—03—24 DRSZERO Krogh Added 7,” to format statmement.

c>> 1991—11—25 DRSZERO Krogh Cleaned up Fortran wversion.

c>> 1987—12—09 DRSZERO Krogh Initial Code.

c—S replaces ”7%7: DR?ZERO, ?ZERO

c Demo driver for SZERO. Univariate zero finder.

c F. T. Krogh, Sept. 1987.

C

real X1, X2, F1, F2, A, B, TOL, TWO, EIGHT
parameter (A = 0.0E0, B = 4.0E0, TOL = 0.0E0)

parameter (TWO = 2.0E0, EIGHT = 8.0E0)

integer MODE

10 format(’ Results from subroutine SZERO: '/’ MODE = 7, 13/
* Solution: X1 = ",F11.8/
« f(X1) = *,1P,G11.3/
* Accuracy : X1 - X2 = ,Gl11.3/
X f(X2) = ’,G11.3)

c

write (x, (1x,a))
x 'DRSZERO.. Demo driver for SZERO, univariate zero finder.’,
x 'Problem: Find zero of 2xxX — 8. Exact result: X = 3.’
X2 =B
F2 = TWOxxX2 — EIGHT
MODE = 0
X1 =A

20 F1 = TWOxxX1 — EIGHT
call SZERO(X1, F1, X2, F2, MODE, TOL)
if (MODE .eq. 1) go to 20

write (x,10) MODE, X1, F1, X1-X2, F2

stop
end
ODSZERO
DRSZERO.. Demo driver for SZERO, univariate zero finder.

Problem: Find zero of 2%xxX — 8.
Results from subroutine SZERO:

Exact result: X = 3.

MODE = 2

Solution: X1 = 3.00000024
f(X1) = 9.537E-07

Accuracy: X1l — X2 = 4.768E-07
f(X2) = —1.431E-06

Find a Zero of a Univariate Function

8.1-3

	Find a Zero of a Univariate Function
	Purpose
	Usage
	Program Prototype, Single Precision
	Argument Definitions
	Modifications for Double Precision

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

