8.2 Solve System of Nonlinear Equations

A. Purpose

This subroutine solves a system of n nonlinear equations
in n unknowns. The problem can be expressed as

f(x)=0

where x denotes an n-vector of unknowns and f denotes
an n-dimensional vector-valued function, with compo-
nents f;(x),i=1, ..., n.

It is assumed that the function f has continuous first par-
tial derivatives with respect to x, at least in a reasonably
sized neighborhood of the solution.

The solution algorithm makes use of the n x n Jacobian
matrix, J(x), whose (7,7) element is 0f;/0xz; evaluated
at x. The elements of J may either be computed by
user-provided code or estimated by the algorithm using
finite differences of values of f.

An auxiliary subroutine DCKDER (Chapter 8.3) may
be used as an aid for checking the consistency of code
the user may write for computing derivatives.

The problem, f(x) = 0, can also be solved using the
nonlinear least-squares package DNLxxx of Chapter 9.3.
Generally if a problem can be solved by both DNQSOL
and DNLxxx the execution time will be significantly less
using DNQSOL. Problems for which DNLxxx is needed
are:

(1) those in which the number of unknowns is not equal
to the number of equations,

(2) those in which one does not expect the system to
have an exact solution,

(3) those in which constraints on the variables are an in-
herent aspect of the problem and one expects that
the solution may lie on a constraint boundary, or

(4) those in which it is necessary to constrain the region
of search to prevent the algorithm from wandering
away from the expected neighborhood of the solu-
tion.

B. Usage

B.1 Program Prototype, Double Precision
EXTERNAL DNQFJ

INTEGER N, IOPT(), IDIMW

DOUBLE PRECISION X(>N), FVEC(>N),
XTOL, W(IDIMW)

Assign values to N, X(), XTOL, IOPT(), IDIMW, and
optionally, W().

©1997 Calif. Inst. of Technology, 2015 Math & la Carte, Inc.

July 11, 2015

Solve System of Nonlinear Equations

CALL DNQSOL(DNQFJ, N, X, FVEC,
XTOL, IOPT, W, IDIMW)

Computed results will be returned in X(), FVEC(),
IOPT(1:3), and W(3).

B.2 Argument Definitions

DNQFJ [in] Name of subroutine provided by the user
to compute the value of f, and optionally J, at any
specified value of x. This subroutine must be of the
form:

subroutine DNQFJ(N, X, FVEC, FJAC, IFLAG)
integer N, IFLAG
double precision X(N), FVEC(N), FJAC(N,N)
On entry X() contains the current value
of x.
If IFLAG =0, print X() and FVECQ).
{This action is needed only if the
tprint option is selected with nprint
positive.}
If IFLAG =1, compute f(x), storing f; in

FVEC(i) for i=1, ...,N.
If IFLAG =2, compute J(x), storing
0fi/0x; in FJAC(4,j) for i=1, ..., N,

and j =1, ., N. {This action is not
needed if the inoj option is selected,
however FJAC must still appear in the
argument list.}

return

end

The subroutine DNQFJ may set IFLAG to a negative
integer value to cause immediate termination of the
solution procedure. Otherwise, the value of IFLAG
should not be changed.

Except at the initial x, a call to DNQFJ with IFLAG
= 2 will almost never be with the same x as the previ-
ous call with IFLAG = 1. Thus, it is not easy to save
subexpressions from the computation of function val-
ues for reuse in the computation of the Jacobian. The
Jacobian updating method used by this algorithm re-
duces the number of Jacobian evaluations needed.

In some applications DNQFJ may need additional
data that may have been input by the user’s main
program. One way to handle this in Fortran 77 is by
use of named COMMON blocks.

N [in] The number, n, of components in x and in f.

8.2-1

8.2-2

X () [inout] On entry X() must contain an initial value

for the x vector. On successful termination X() con-
tains the final estimate of the solution vector, x.

FVEC() [out] On termination FVEC() contains the

value of the f vector evaluated at the final x.

XTOL [in] Require XTOL > 0.0. The algorithm will

report successful termination when it estimates the
relative error in x, in a weighted Euclidean vec-
tor norm sense, is less than max(XTOL,¢), where €
is the machine accuracy, given by DIMACH(4) (or
RIMACH(4) for single precision). DIMACH and
RIMACH are described in Chapter 19.1.

We suggest setting XTOL in the range from €
0.75
e,

0.50 to

See Section D for further discussion of XTOL and
the convergence test.

IOPT() [inout] Array used to select options and to re-

turn information. The first three locations are used
to return information as follows:

IOPT(1) = info. Indicator of status on termination.
If info < 0, termination is due to IFLAG having
been set negative in DNQFJ, and info will have the
value that was assigned to IFLAG. Otherwise, info
may have the following values:

0 Successful termination. Either the XTOL test
is satisfied or the condition f = 0 is satisfied
exactly.

1 Improper input parameters. Require N > 0,
IDIMW > the value specified below, and valid
entries in IOPT(i) for i > 4.

2 Number of calls to DNQFJ has reached the limit
of mazfev. Default: max fev =200 x (N + 1).

3 It appears to be impossible to satisfy the XTOL
test. Possibly XTOL should be set larger.

4,5 The value 4 means there have been five succes-
sive evaluations of the Jacobian matrix without
any significant reduction in ||f]|, while 5 means
there have been ten successive evaluations of f
without any significant reduction in ||f]|. Typi-
cally the algorithm will terminate with IOPT(1)
= 4 or 5 when it is trapped in the neighborhood
of a local minimum of ||f|| at which f is not the
zero vector.

When IOPT(1) = 2, 4, or 5 it is advisable to check
the validity of the user code, if any, for computing
the Jacobian. Once that is assured it may be useful
to try different initial values for x.

IOPT(2) = nfev. Number of function evaluations
used, i.e., the number of times DNQFJ was called
with IFLAG = 1.

Solve System of Nonlinear Equations

IOPT(3) = njev. Number of evaluations of the Jaco-
bian matrix, either by finite-difference approximation
or by calling DNQFJ with IFLAG = 2.

Locations in IOPT() indexed from 4 on are available
for selecting options. The sequence of option selec-
tions must be terminated with a zero. For the sim-
plest usage, if DNQFJ contains code for computing
the Jacobian matrix just set IOPT(4) = 0, while if
DNQFJ does not contain code for the Jacobian set
IOPT(4) = 1 and IOPT(5) = 0.

Options have code numbers from 1 to 8, and some op-
tions have one or two integer arguments. The code
numbers of options to be exercised, each followed im-
mediately by its arguments, if any, must be placed in
IOPT() beginning at IOPT(4), with no gaps, and
terminated by a zero value. The ordering of different
options in IOPT() is not significant. If an option is
repeated the last occurrence prevails.

As a convenience for altering the set of selected op-
tions, the negative of an option code is interpreted
to mean the option is to take its default value. If
this is an option that has arguments, space for the
appropriate number of arguments must still be al-
located following the option code, even though the
arguments will not be used.

The option codes and their arguments are as follows:

1 inoj. Select this option if the subroutine
DNQFJ does not contain code for computing
the Jacobian matrix. In this case no calls to
DNQFJ will be made with IFLAG = 2, and the
algorithm will estimate the Jacobian matrix by
computing finite differences of values of f.

2 isetd. Argument: dmode. Selects manner of ini-
tializing and subsequently altering the weight-
ing array, diag(), which is stored in W(4 : N+3)
and discussed in Section D. dmode may be set
to 1, 2, or 3. The default value is 1.

1 DNQSOL will set diag() to all ones and not
subsequently alter these values. Reference
[1] states that, for most tested problems,
the MINPACK code from which the present
package was derived was most successful us-
ing this option.

2 The user must assign positive values to
diag() before calling DNQSOL. DNQSOL
will not subsequently alter these values.

3 DNQSOL will initially set diag(j) to be the
Euclidian norm of the j** column of the ini-
tial Jacobian matrix, for j =1, ..., N. If the
4" column is all zeros diag(j) will be set to
one. The value of diag(j) will be increased

July 11, 2015

subsequently if the norm of the j** column
increases.

3 dprint. Argument: nprint. The algorithm in-
crements an internal counter, ibest, whenever a
new value of x is accepted as giving a signifi-
cant reduction in ||f||. If nprint > 0, DNQFJ
will be called with IFLAG = 0 after the first
evaluation of f, after every nprint'" time ibest
is incremented, and on termination. DNQFJ
is expected to print X() and FVEC() on these
occasions. The values in X() and FVEC() on
these calls will be those that have given the
smallest value of ||f|| up to that point. Thus,
these will not always be the values associated
with the most recent function evaluation. Set-
ting nprint < 0 has the same effect as not exer-
cising option iprint, i.e., no calls will be made
to DNQFJ with IFLAG = 0.

4 dimazfev. Argument: mazfev. The algorithm will
terminate with info = 2 if convergence has not
been attained after mazfev function evaluations.
Default value: 200 x (N + 1).

5 iband. Arguments: ml and mu. If DNQFJ will
not be computing the Jacobian matrix, J, and
thus option inoj is selected, and if J has a suf-
ficiently narrow band structure, a reduction in
the number of function evaluations needed to es-
timate J by finite differences can be effected by
informing the algorithm of the band structure.
In such a case set ml and mu to values such that
all the nonzero elements of J lie within the first
ml subdiagonals, the main diagonal, and the
first mu superdiagonals. This only reduces the

number of function evaluations if mi+mu-+1 <
N.

6 iepsfn. Select this option if DNQFJ will not be
computing the Jacobian matrix, J, and thus op-
tion inoj is selected, and you are providing an
estimate, epsfen, in W(1), of the relative error
expected in function evaluations. epsfen is used
by the algorithm in selecting the increment used
in computing finite difference approximations to
derivatives. Default: epsfcn = machine preci-
sion obtained as DIMACH(4) (or RIMACH(4)
in single precision.)

7 ifactr. Select this option if you are providing a
value, factor, in W(2). factor provides a bound
on the weighted length of the first step the al-
gorithm takes. Default: factor = 0.75. See
Section D for more information on the role of
factor.

8 idtrace. This option activates printing of inter-
mediate diagnostic output. The output state-

July 11, 2015

Solve System of Nonlinear Equations

ments use unit “ * 7 to direct the output to the
standard system output unit.

W(

If option iepsfn is selected the user must store epsfen
in W(1). This value will not be altered.

If option i factr is selected the user must store factor
in W(2). This value will not be altered.

On return W(3) will contain a quantity, toltst, that
can be regarded as an estimate of the relative error
in the final x in a weighted norm sense. If x # 0,
toltst = A/||Dx||, which is the value compared with
XTOL for the convergence test (see Section D).

If x =0, toltst = 0.

If option isetd is selected with dmode = 2, the
user must store positive values for diag(l : N) in
W (4 : N+3). In this case the contents of W(4 : N+3)
will not be altered by DNQSOL. If isetd is not se-
lected or if it is selected with dmode = 1 or 3, values
for diag() will be stored in W(4 : N+3) by DNQSOL.

W(N+4:3+(15x N43 x N?)/2) is used as working
space.

IDIMW [in] Dimension of W() array. Require IDIMW
>3+ (15 x N+ 3 x N?)/2.

[in, out, scratch] An array of length IDIMW.

B.3 Modifications for Single Precision

For single precision usage change the DOUBLE PRECI-
SION statements to REAL and change the initial letters
of the subroutine names from “D” to “S.” It is recom-
mended that one use the double precision rather than
the single precision version of this package for better re-
liability, except on computers such as the Cray Y/MP
that have precision of about 14 decimal places in single
precision.

C. Examples and Remarks

Consider the sample problem:

exp(—x1) + sinh(2z5) + tanh(2z3) = 5.01
exp(2z1) + sinh(—x2) + tanh(2x3) = 5.85
exp(2x1) + sinh(2x2) 4 tanh(—z3) = 8.88
To use DNQSOL this must be put in the form of expres-

sions whose desired values are zeros. Thus, for instance
we may define

fi = exp(—=z1) + sinh(2z2) + tanh(2z3) — 5.01 =0

fo = exp(2x1) + sinh(—x3) + tanh(2z3) — 5.85 =0
f3 = exp(2x1) + sinh(225) + tanh(—z3) — 8.88 =0

The program DRDNQSOL illustrates the use of DNQ-
SOL to solve this problem. DRDNQSOL also illustrates

8.2-3

the use of DCKDER of Chapter 8.3 to check the mu-
tual consistency of the code for function and Jacobian
evaluation. Results are shown in ODDNQSOL.

A problem f(x) = 0 may have no solutions, or one or
more solutions. The residual norm |[f(x)|| may have
more than one local minimum, some with f not zero.
The norm ||f(x)|| can have a nonzero minimum only at
a point where the Jacobian matrix is singular. The user
should choose an initial x that is as close to the desired
solution as possible. For a problem whose properties
with regard to multiplicity of solutions or local minima
are not known, it may be advisable to apply the sub-
routine several times using different initial x’s to see if
different termination points occur.

It is often useful, or even necessary, to limit the search to
a specified region. Subroutine DNQSOL does not have
a specific feature for bounding variables. One can limit
the size of the initial step by setting factor using op-
tion i factr. If bounding of variables is definitely needed,
one can use the nonlinear least-squares package of Chap-
ter 9.3. If a problem can be solved by DNQSOL, this
approach will generally require less execution time than
would the use of the Chapter 9.3 package.

Since the uniformly weighted Euclidean norm of f plays
a central role in the algorithm, it is generally advanta-
geous to have the separate components of f scaled so that
an error of one unit in one component of f has about the
same importance as an error of one unit in any other
component.

If the user has estimates of positive numbers dx; such
that a change of magnitude dz; in z; is expected to
have about the same effect on ||f|| as a change of mag-
nitude dz; in z; for all ¢ and j, it may be useful to set
diag(j) = 1/dz; for j = 1, ..., n, by using the option
isetd. The overall scaling of values for diag() must be
coordinated with the choice of XTOL and factor to as-
sure that the convergence test (see end of Section D)
makes sense. For example it may be convenient to scale
diag() so its largest element is 1.

D. Functional Description

The algorithm attempts to find a vector X satisfying
f(X) = 0, starting the search from a given point xg.

The algorithm is a trust-region method, using a Broy-
den update to reduce the number of times the Jaco-
bian matrix must be recomputed, and using a double-
dogleg method of solving the constrained linearized prob-
lem within the trust-region. For detailed descriptions of
these terms and techniques, see [2]. A brief description
follows:

Given a point, X, a positive diagonal scaling matrix, D,
and a trust-region radius, A, the algorithm attempts to

8.2-4

Solve System of Nonlinear Equations

find a step vector, p, that solves the modified problem:
min{[|f(x + p)|* : | Dp|| < A}

where || - || denotes the Euclidean norm. The algorithm
replaces this problem by the linearization,

min{[[f + Jp|*: [Dp|| < A}

where f and J denote the function vector and Ja-
cobian matrix evaluated at x. This problem is ap-
proximately solved using a double-dogleg method that
further restricts the step vector p to be in the two-
dimensional subspace spanned by the Gauss-Newton di-
rection, —J'f, and the scaled gradient descent direc-
tion, —D2J*f.

The region {x+p : ||[Dp|| < A} is called the trust-region
associated with x. The algorithm attempts to regulate
the size of A so the linear function f + Jp will be a rea-
sonably good approximation to the nonlinear function
f(x 4+ p) within the trust-region.

Diagonal elements of D are stored in the array diag(),
which is initialized, and optionally updated, as described
in Section B. The trust-region radius A is initially com-
puted as A = factor x ||xol||, if ||xo|| > 0, and as
A = factor, otherwise. The initialization of factor is
described in Section B.

Let p denote the step vector determined by this pro-
cess and define x; = x4+ p. If ||[f(x4)] > ||f(x)| the
algorithm will reduce A and solve for a new p.

If a smaller value of ||f|| is found, the algorithm com-
putes an estimate of the Jacobian at the new point and
starts the step determination process again. Rather than
always computing the new Jacobian by calling the user-
supplied code or using finite differences, the algorithm
first tries to use an updated Jacobian which is more eco-
nomical to compute. The update formula, due to Broy-
den, is

(f(x+p) — f(x) — Jp) (D' Dp)'

Jp=J+
|Dp?

The algorithm computes and maintains a QR factoriza-
tion of J. The Broyden update process is applied to the
QR factorization of J.

If progress is unsatisfactory when based on an updated
Jacobian, the algorithm will recompute the Jacobian us-
ing the user-supplied code for J, if available, or otherwise
by finite differences of user-computed values of f.

As the algorithm makes progress toward a zero of f, the
step p will generally become smaller. If also the trust-
region seems reliable, in the sense that the relative re-
duction in ||f||? is within 10% of the relative reduction
predicted by the linear model, then A will be reset to

July 11, 2015

2||Dp|| so that A decreases as || Dp|| decreases. Conver-
gence to a zero of f is assumed to have occurred when

A < max(XTOL,¢€) x || Dx]|,

or if an x is found for which f(x) = 0, exactly. In these
cases the subroutine returns with IOPT(1) = 1.

If the algorithm gets trapped in the neighborhood of a
local minimum of ||f|| at which f is not zero, the step p,
and thus the trust-region radius, A, will generally not
get small. The Jacobian J will be singular at such a
local minimum. These conditions generally result in a
return with IOPT(1) =4 or 5 or possibly 2.

References

1. M. J. D. Powell, A hybrid method for nonlinear equa-
tions, in P. Rabinowitz, editor, Numerical Methods
for Nonlinear Algebraic Equations, Gordon and
Breach (1970). Harwell library subroutine NSO1A, de-
scribed earlier by Powell in Harwell reports AERE-R—
5947 (1968) A Fortran Subroutine for Solving Systems
of Non-linear Algebraic Equations, and T.P. 364 (1969)
A Hybrid Method for Non-linear Equations.

2. John E. Dennis Jr. and Robert B. Schnabel, Nu-

merical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, Prentice-Hall, En-
glewood Cliffs, N. J. (1983) 378 pages.

3. Jorge J. Moré, Burton S. Garbow, and Kenneth E.
Hillstrom, User Guide for MINPACK-1. Techni-
cal Report ANL-80-74, Argonne National Laboratory
(1980) 261 pages.

4. Burton S. Garbow, Kenneth E. Hillstrom, and
Jorge J. Moré, Implementation Guide for

MINPACK-1. Technical Report ANL-80-68,
Argonne National Laboratory (1980) 58 pages.

E. Error Procedures and Restrictions

Notice of any detected error condition is sent to the er-
ror message printing routines of Chapter 19.2 using error
level 0, and the subroutine will return with a value of
info in IOPT(1) other than 0. The action of the error
printing routines can be altered as described in Chap-
ter 19.2.

F. Supporting Information

Entry Required Files

DNQSOL AMACH, DERV1, DNQSOL, DNRM2,
ERFIN, ERMSG, IERM1, IERV1

SNQSOL AMACH, ERFIN, ERMSG, IERM1, IERV1,
SERV1, SNQSOL, SNRM2

The source language is ANSI Fortran 77.

The original MINPACK version of this code was de-
signed and programmed by the authors of [3] and [4]
where this code is called HYBRD and HYBRJ. They, in
turn, cite [I] for the general strategy of their approach
and numerous other authors for additional ideas. The
MINPACK code was downloaded from netlib to JPL by
C. L. Lawson in February 1990. The subroutine names
and the user interface were modified by Lawson and F.
T. Krogh in 1990 and 1991 to conform to the MATH77
library style. Changes to the logic of the algorithm have
been made that reduced the execution time and im-
proved the reliability of the code when applied to the set
of fourteen test problems included with the MINPACK
package.

DRDNQSOL

c program DRDNQSOL

c>> 1996—06—21 DRDNQSOL Krogh
c>> 1994—11—02 DRDNQSOL Krogh
> 1992—04—15 DRDNQSOL CLL.
c>> 1992—01—14 CLL.

Changes for C conversion.
Changes to use M77CON

c Demo driver for DNQSOL. Also wusing DCKDER.

c Ezpected solution wvector: 0.9000518 1.0001835 1.0945009
c

¢c—D replaces 7¢”7: DR?NQSOL, ¢NQSOL, ?NRM2, ?CKDER, ?NQFJ

c
external DIMACH, DNQFJ, DNRM2

July 11, 2015

integer I, IMAX, IOPT(5), J, JMAX, LWA, M, MODE, N, NMAX
parameter (NMAX = 3, LWA = 34 (15+NMAX+3+NMAX+NMAX) /2)
double precision DIMACH, DNRM2

double precision FJAC(NMAXNMAX), FNORM, FVEC(NMAX)

double precision TEST(NMAX,NMAX), TOL, TSTMAX, WA(LWA), X(NMAX)

data N / NMAX /

IOPT (4) = 0

Solve System of Nonlinear Equations

8.2-5

8.2-6

TOL = sqrt (DIMACH(4))
X(1) = 3.0D0

X(2) = 3.0D0

X(3) = 3.0D0

printx,

* 'Program DRDNQSOL. Demo driver for DNQSOL. Also using DCKDER. ’

Using DCKDER to check derivative computation.

print’(/’’ Using DCKDER to check derivative computation.’’)’

M =N
call DNQFJ(N, X, FVEC ,FJAC, 2)
MODE = 1

10 continue

call DCKDER(MODE, M, N, X, FVEC, FJAC, NMAX, TEST,
* IMAX, JMAX, TSTMAX)
if (MODE .eq. 2) then
call DNQFJ(N, X, FVEC ,FJAC, 1)
go to 10
endif
call DNQFJ(N, X, FVEC ,FJAC, 1)

print’(/11x,’°X(J) =’",5g11.3:/(17x,5g11.3))’ ,(X(J),J=1,N)

print ' (/1x,’’ 1 FVEC(I) 7,

e FIAC(I,J) ...

do 20 I = 1M
print ’(1x,i3 ,1x,g11.3,1x,5g11.3:/(17x,5g11.3)) ",
% I1,FVEC(1),(FJAC(I,J),J=1N)

20 continue

print’ (/1x, "TEST(,):’’/)’
do 30 I = 1 M

print ’(1x,i3,13x,5g11.3:/(17x,5¢11.3)) > ,I,(TEST(I,J),J=1,N)
30 continue
print’(/1x,’ 'IMAX =’",i3,’ 7, JMAX =77 ,i3," 7, TSITMAX =",

« gll1.3) 7, IMAX,JMAX, TSTMAX

Using DNQSOL to solve system of mnonlinear equations.

print

x (/77 Using DNQSOL to solve system of nonlinear equations.’’)

call DNQSOL(DNQFJ, N, X, FVEC, TOL, IOPT, WA, LWA)

FNORM = DNRM2(N,FVEC, 1)

c++ CODE for ~.C. is active

print ’(’’ Termination status: ’’,i6/’’ NFEV, NJEV:

* 2i6/ '’ Final residual norm: ’’,gl14.3/’’ Final X():

« /(8x,4f14.7)), IOPT(1), IOPT(2), IOPT(3),
« FNORM, (X(J), J = 1, N)

c++ CODE for .C. is inactive

c%%
c%%
c%%
%%
c%%
c%%
c%%
c%%

printf(7 Termination status: %6ld\n NFEV, NJEV:

"%61d%61d\n Final residual norm: %14.3g\n Final X():

Topt[1], Topt[2], Iopt[3], fnorm);
for (j = 0; j < m; j+=4){
printf("\n ");
for (i =j; i< (1 <m—=382%2 35 +4 :n); i++)
printf("%14.7f7, z[i]);}
printf("\n”);

Solve System of Nonlinear Equations

k]

July 11, 2015

July 11, 2015

C

c

++ END
stop
end

subroutine DNQFJ(N, X, FVEC ,FJAC, IFLAG)

c>> 1992—01—-14 CLL.

C
C
Cc

Sample 3—dimensional function of 8 wvariables for demo of solution

of a system of monlinear equations.

integer I, IFLAG, N

double precision C1(3), C2(3), C3(3), FJAC(N,N), FVEC(N)
double precision TERM(3), X(N)

data C1 / —1.0d0, 2.0d0, 2.0d0 /

data C2 / 2.0d0, —1.0d0, 2.0d0 /

data C3 / 2.0d0, 2.0d0, —1.0d0 /

data TERM / 5.01d0, 5.85d0, 8.88d0 /

if (IFLAG .eq. 1) then

Compute function wvector.

do 10 T = 1,N
FVEC(I) = exp(C1(1)xX(1)) + sinh(C2(I1)%X(2)) +
* tanh (C3(1)*X(3)) — TERM(I)
10 continue
elseif (IFLAG .eq. 2) then

Compute Jacobian matriz.

do 40 I = 1, N

FJAC(I,1) exp(C1(I)*X(1)) = C1(I)

FJAC(I,2) = cosh(C2(I)xX(2)) = C2(I)

FJAC(1,3) = (1.0d0/cosh(C3(1)xX(3)))*x2 x C3(1I)

40 continue
endif
return
end
ODDNQSOL

Program DRDNQSOL. Demo driver for DNQSOL. Also using DCKDER.

Using DCKDER to check derivative computation.

X(J) = 3.00 3.00 3.00
I FVEC(I) oo FIAC(I,J) . i
1 198. —0.498E—01 403. 0.492E—04
389. 807. ~10.1 0.492E—04
3 595. 807. 403. —0.987E—02
TEST(,):
1 0.368E—10 —0.185E—06 0.103E—09
—~0.370E—06 0.172E—08 0.103E—09
3 —0.370E—06 —0.185E—06 0.462E—09
IMAX = 2, JMAX = 1, TSIMAX = 0.370E—06

Using DNQSOL to solve system of nonlinear equations.
Termination status: 0

Solve System of Nonlinear Equations

8.2-7

NFEV, NJEV: 38 5
Final residual norm: 0.516E-09
Final X():
0.9000518 1.0001835 1.0945009

8.2-8 Solve System of Nonlinear Equations July 11, 2015

	Solve System of Nonlinear Equations
	Purpose
	Usage
	Program Prototype, Double Precision
	Argument Definitions
	Modifications for Single Precision

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

