8.3 Check Code for Computing Derivatives

A. Purpose

Subroutine DCKDER checks the mutual consistency of
code for computing values of a (possibly vector valued)
function with code for computing first derivatives (e.g.,
gradient vector or Jacobian matrix) of the function. In
particular this is expected to be useful for persons using
the software of Chapters 8.2, 9.2, and 9.3.

B. Usage
B.1 Program Prototype, Double Precision

INTEGER MODE, M, N, LDFJAC, IMAX,
JMAX

DOUBLE PRECISION X(>N), FVEC(>M),
FJAC(LDFJAC,>N), TSTMAX,
TEST(LDFJAC,>N)

Assign values to M, N, and LDFJAC.

Set X() to the value of the vector x at which
consistency is to be tested.

Compute FJAC(,) as the M x N Jacobian matrix
of first partial derivatives of FVEC with respect
to x, evaluated at X().

MODE =1

10 continue

CALL DCKDER(MODE, M, N, X,
FVEC, FJAC, LDFJAC, TEST,
IMAX, JMAX,TSTMAX)

if(MODE .eq. 2) then
Compute FVEC() as an M-vector of function
values evaluated at X().
go to 10
end if
Here the process is completed. Results are in
TEST(,), IMAX, JMAX, and TSTMAX.

B.2 Argument Definitions

MODE [inout] On initial entry set MODE = 1.
DCKDER will return a number of times with MODE
= 2. The calling code should compute FVEC() as a
function of X() and call DCKDER again, not altering
MODE. When DCKDER is finished, it returns with
MODE = 3.

M [in] Number of terms in FVEC() and number of rows
of data in FJAC(,).

©1997 Calif. Inst. of Technology, 2015 Math & la Carte, Inc.

July 11, 2015

Check Code for Computing Derivatives

N [in] Number of terms in X() and number of columns
of data in FJAC(,).

X() [inout] Initially must contain the vector x around
which the testing will be done. Contains perturbed x
on each return with MODE = 2. On final return with
MODE = 3, contains the original x exactly restored.

FVEC() [in] On entries with MODE = 2, the user
stores function values in FVEC(), i.e., FVEC(i) = f;.

FJAC(,) [in] On the initial entry with MODE = 1,
the user stores the Jacobian matrix in FJAC(,), i.e.,

LDFJAC [in] Declared first dimension of the arrays
FJAC(,) and TEST(,). Require LDFJAC > M.

TEST(,) [inout] Array with the same dimensions
as FJAC(). On final return with MODE = 3,
TEST(i,j) contains the consistency measure for
FJAC(i,j) for all ¢ = 1, ..., M, and 5 = 1, ..., N.
This quantity is computed as the signed difference:
FJAC(i,j) minus a central finite difference approxi-
mation to df;/0x;. The user does not need to store
anything in TEST(,) before the initial entry with
MODE = 1. On intermediate returns with MODE
= 2, TEST(,) contains saved intermediate quanti-
ties, and thus the user must not alter the contents of
TEST(,) on these returns.

IMAX, JMAX, TSTMAX [inout] On final return
with MODE = 3, these quantities are set so that

TSTMAX = abs(TEST(IMAX, JMAX)) =
max{abs(TEST(i,5)) : ¢« = 1, ..., M; j = 1, ..,
N}. The user does not need to store anything in
these variables before the initial entry with MODE
= 1. On intermediate returns with MODE = 2, these
variables contain saved intermediate quantities, and
thus the user must not alter their contents on these
returns.

B.3 Modifications for Single Precision

For single precision usage change the DOUBLE PRE-
CISION statements to REAL and change the name
DCKDER to SCKDER. It is recommended that one use
the double precision rather than the single precision ver-
sion of this package for better reliability, except possibly
on computers such as the Cray Y/MP that have preci-
sion of about 14 decimal places in single precision.

C. Examples and Remarks

The program DRDCKDER illustrates the use of
DCKDER. Results are shown in ODDCKDER. This ex-
ample was run using double precision IEEE arithmetic

8.3-1

which has precision of € ~ 0.22 x 10715, If third deriva-
tives have about the same magnitude as function val-
ues, and the relative error in function evaluations is
about machine precision, then the magnitude of entries
of TEST(,) should be about €2/3 times the magnitude
of the function values. For example in our sample case
we have |f1| = 0.0646 and so we would expect the mag-
nitude of terms in the first row of TEST(,) to be about
(0.37 x 10719) x 0.0646 ~ 0.24 x 10711, with the stated
assumptions on the size of third derivatives and the er-
ror in function evaluations. If the relative error in the
computation of function values is larger than the ma-
chine precision, or the magnitudes of third derivatives
are larger than the magnitudes of the function values,
the values in TEST(,) will be larger as discussed in Sec-
tion D, even when the code being tested is correct.

D. Functional Description

Let x denote the vector given initially in X(). As-
sume FJAC(,) contains the m x n Jacobian matrix of
0fi/0x; evaluated at x. Let e denote the machine pre-
cision and w denote the underflow limit. These are
given by DIMACH(4) and DIMACH(1) respectively
(RIMACH() in single precision) (See Chapter 19.1). De-
fine @ = (3¢)'/? and ¢ = max(10°w/a, €?). For each
value of j from 1 to n, compute h; = az; if |z;| > o, or
hj =acif0 < |z;| <o,or hj =aif z; =0. Let e,
denote the n-vector that is all zeros except for the j**
component which is one.

For each ¢ and j compute

TEST(i, j) = FJAC(i,) —

filx + hje;) — fi(x — hje;)
2h,

The error in this central difference approximation to the
derivative 0f;/0x; is

h2M3/6 + 6 /h,

where Mz denotes the magnitude of 93f;/93x; evalu-
ated at some point on the line segment from x — hje; to
x+hje;, and § is a bound on the error in computing f;.
The optimal step length to minimize this error estimate
is

(30/M3)'/3

If we assume M3 =~ |f;| and § = €|f;|, so 6/Ms = e,
throughout the relevant interval, then the optimal step
length is (3€)!/® and the error bound is 3(3¢)?/3|f;| ~
1.04€%/3| f;]. These formulas, and useful insights into the

computational use of finite differences, are given in Sec-
tion 8.6 of [I].

References

1. Philip E. Gill, Walter Murray, and Margaret H.
Wright, Practical Optimization, Academic Press,
New York (1981) 401 pages. Sixth printing, 1987.

E. Error Procedures and Restrictions

Require MODE = 1 or 2 on any entry to DCKDER. If
not, DCKDER will call the error message processor of
Chapter 19.2 with an error level of 0 and return with
MODE unchanged.

F. Supporting Information
The source language is ANSI Fortran 77.

Entry Required Files

DCKDER AMACH, DCKDER, ERFIN, ERMSG,
IERM1, IERV1

SCKDER AMACH, ERFIN, ERMSG, IERM1, IERV1,
SCKDER

Designed and programmed by C. L. Lawson and F. T.

Krogh, JPL, 1991.

DRDCKDER

c program DrDCKDER

> 2007—01/02 DRDCKDER Krogh Put commas around

’in formats.

c>> 1996—06—28 DrDCKDER Krogh Format changes for conversion to C.

c>> 1994—11—02 DrDCKDER Krogh
> 1992—04—15 DrDCKDER CLL

c>> 1992—01—13 C. L. Lawson, JPL.
¢ DRDCKDER. .

Demo driver for DCKDER.

Changes to wuse M77CON

Checks derivative calculation .

c
c—D replaces
c

»27: Dr?CKDER,

?CKDER,

?TRG11

integer I,IMAX, J, JMAX, M,N,LDFJAC,MODE, NMAX

parameter (LDFJAC = 5, NMAX = 5)

double precision FVEC(15) ,FJAC(LDFJAC,NMAX)
double precision TEST(LDFJAC,NMAX), TSTMAX, X(NMAX)

data M, N / LDFJAC, NMAX /

8.3-2

Check Code for Computing Derivatives

July 11, 2015

data X / 0.13d0, 0.14d0, 0.15d0, 0.16d0, 0.17d0 /

print*, ’Program DrDCKDER.. Demo driver for DCKDER. ’
call DTRGI1(N, X, FVEC ,FJAC, 2)
MODE = 1
10 continue
call DCKDER(MODE, M, N, X, FVEC, FJAC, LDFJAC,
* TEST, IMAX, JMAX, TSTMAX)
if (MODE .eq. 2) then
call DTRGI1(N, X, FVEC ,FJAC, 1)
go to 10
endif

call DTRGI1(N, X, FVEC ,FJAC, 1)

print’(/11x,’'X(J) =’ ,5g11.3,:,/(17x,5g11.3)) " (X(J),J=1N)
print ' (/1x,’’ 1 FVEC(I) ... B
k FIAC(I,J) .o /Yy

do 20 T = 1M
print ’(1x,i3 ,1x,gl11.3,1x,5g11.3,:,/(17x,5g11.3)) 7,
% I1,FVEC(1) ,(FJAC(I,J),J=1N)
20 continue

print’(/1x,’ TEST(,): "’ /)’
do 30 I = 1M
print ’(1x,i3,13x,5¢g11.3,:,/(17x,5g11.3)) ’,I,(TEST(I,J),J=1,N)
30 continue

print ' (/1x,’ 'IMAX ="",i3,’ 7, JMAX =" i3, 7, TSTMAX =",
* gll.3)’, IMAX, JMAX, TSTMAX

stop

end

subroutine DTRG11(N, X, FVEC ,FJAC, IFLAG)

c Trigonometric test case No. 11 from MINPACK test set developed by
c J. J. More’, B. S. Garbow, and K. E. Hillstrom , Argonne National
c Laboratories, 1980.
c

integer 1, IFLAG, J, N

double precision FJAC(N,N), FVEC(N), SUM, TEMP, X(N)
c

if (IFLAG .eq. 1) then
c Compute function vector.

SUM = 0.0d0
do 10 J =1, N
FVEC(J) = cos(X(J))
SUM = SUM + FVEC(J)
10 continue
do 20 J =1, N
FVEC(J) = dble(N+J) — sin(X(J)) — SUM — dble(J)«FVEC(J)
20 continue
elseif (IFLAG .eq. 2) then
c Compute Jacobian matriz.
do 40 J =1, N
TEMP = sin (X(J))
do 30 I =1, N

FJAC(I,J) TEMP
30 continue
FJAC(J,J) = dble(J+1)*TEMP — cos (X(J))
40 continue

endif

July 11, 2015 Check Code for Computing Derivatives 8.3-3

return
end

8.3-4 Check Code for Computing Derivatives July 11, 2015

July 11, 2015

Program DrDCKDER. .

ODDCKDER

Demo driver for DCKDER.

O O O OO

O O O oo

.169
.169
.169
.169
.295E-01

.134E-10
.134E-10
.134E-10
.134E-10
.128E-09

X(J) = 0.130 0.140 0.150 0.160

I FVEC(I) o FIAC(I,J) . o,

1 —0.646E—01 —0.732 0.140 0.149 0.159

2 —0.633E—01 0.130 —0.572 0.149 0.159

3 —0.591E—01 0.130 0.140 —0.391 0.159

4 —0.516E-01 0.130 0.140 0.149 ~0.191

5 —0.405E—01 0.130 0.140 0.149 0.159
TEST(,):

1 0.173E—09 0.185E—10 0.217E—09 0.693E—10

2 0.315E—09 —0.783E—10 0.217E—09 0.693E—10

3 0.315E—09 0.185E—10 0.273E—09 0.693E—10

4 0.315E—09 0.185E—10 0.217E—09 0.222E—09

5 0.315E—09 0.185E—10 0.217E—09 0.693E—10
IMAX = 2, JMAX = 1, TSIMAX = 0.315E—09

Check Code for Computing Derivatives

8.3-5

	Check Code for Computing Derivatives
	Purpose
	Usage
	Program Prototype, Double Precision
	Argument Definitions
	Modifications for Single Precision

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

