
9.1 Find a Local Minimum of a Univariate Function

A. Purpose

Find a local minimum of a univariate function, f(x), in
the closed interval between specified abscissae, a and b,
to within a specified tolerance, TOL.

B. Usage

This subroutine uses reverse communication, i.e., it re-
turns to the calling program each time it needs to have
f() evaluated at a new value of x.

B.1 Program Prototype, Single Precision

INTEGER MODE

REAL X, XORF, TOL

MODE = 0
X = An endpoint of the search interval
XORF = The other endpoint
TOL = Tolerance on x

10 continue

CALL SFMIN(X, XORF, MODE, TOL)

if( MODE .eq. 1) then
XORF = f() evaluated at X
go to 10

endif

Computed quantities are returned in MODE, X, and
XORF.

B.2 Argument Definitions

X, XORF, MODE [all are inout] When starting a
new problem, the user must set MODE = 0, X =
a, and XORF = b. The value of MODE should not
be changed during the solution process, except to
control detailed printing as explained in Section D.

a and b denote endpoints defining a closed interval in
which a local minimum is to be found. Permit a < b
or a > b or a = b.

On each return after a call with MODE = 0 or 1, this
subroutine will set MODE to a value in the range
[1:4] to indicate the action needed from the calling
program or the status on termination.

= 1 means the calling program must evaluate f(X),
store the value in XORF, and then call this sub-
routine again.

= 2 means normal termination. XORF contains the
value of f(X) where X is a local minimum of the
function in the interval specified.

= 3 same as MODE = 2, except the requested ac-
curacy was not obtained.

= 4 means error termination due to SFMIN having
been entered with MODE > 1.

TOL [in] An absolute tolerance on the uncertainty in
the final estimate of the local minimum. If TOL ≤
0, SFMIN attempts to get all the accuracy it can.
MODE will not be set to 3 in this case. Let ε de-
note the machine precision, the value of which is ob-
tained by reference to R1MACH(4) (D1MACH(4) for
double precision), see Chapter 19.1. The operational
tolerance, τ , at any trial abscissa, X, will be

τ = (2/3)× TOL + 2× |X| × ε1/2.

B.3 Modifications for Double Precision

For double-precision usage change the name SFMIN to
DFMIN, and change the REAL declaration to DOUBLE
PRECISION.

C. Examples and Remarks

The program DRSFMIN illustrates the use of SFMIN
to compute the local minimum of the function, f(x) =
2x + 2−2x, for which the exact answer is x = 1/3, with a
minimum value of (3/2)21/3 ≈ 1.88988. Output is shown
in ODSFMIN.

This algorithm evaluates f at an initial endpoint, a or b,
only if the descent process leads to one of these points.

D. Functional Description

At the beginning of each iteration after the first, the al-
gorithm has three ordered abscissae, a′ < x < b′. The
point x will have the smallest function value found up
to this point. All further searching will be in the closed
interval [a′, b′]. The algorithm will not necessarily have
evaluated the function at a′ and b′. There may also be
up to two saved points, w and v, with associated saved
function values satisfying f(x) ≤ f(w) ≤ f(v). The
points w and v may or may not coincide with a′ and b′.
If max(x − a′, b′ − x) ≤ τ , where τ is the operational
tolerance defined above in Section B, the algorithm ter-
minates, returning x as the approximate abscissa of the
local minimum.

If the algorithm has not converged then the algorithm
generates a new point strictly between a′ and b′ by use
of either

(1) parabolic interpolation using x, w, v, f(x), f(w),
and f(v), or
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(2) golden section prediction using a′, x, and b′.

The algorithm chooses between these two methods on
the basis of tests designed to achieve a balance between
rapid progress and reliability. Let ei denote the dis-
tance of the ith trial abscissa from the solution abscissa.
For a sufficiently smooth function whose first deriva-
tive has a simple zero at the minimizing abscissa, and
when the trial point is sufficiently close to the solu-
tion, Method 1 converges according to ei+1 = e1.324i .
Method 2 is slower but more reliable, converging ac-
cording to (b′ − a′)i+1 = 0.618(b′ − a′)i regardless of
the smoothness of the function or the proximity to the
solution. Note that five steps of Method 2 gains some-
what more than one decimal place in the solution since
(0.618)5 ≈ 0.090.

This algorithm, with a Fortran 66 implementation, is
presented in [1]. The algorithm is due to R. P. Brent,
[2].

The algorithm as given in [1] never evaluates f at ei-
ther of the initially given endpoints. In cases in which
the minimum is at an endpoint, the algorithm returns a
final abscissa that differs from the endpoint by τ , and
may use many iterations. We have altered the code to
permit evaluation at an endpoint when the search pro-
cess approaches an endpoint, and to keep the number of
iterations used for an endpoint minimum essentially the
same as for an interior minimum.

Detailed printing

Before the initial call with MODE = 0, or any time dur-
ing the iterative process, the user may initiate or stop
the detailed output by calling SFMIN with a negative
value of MODE. There is no problem-solving action on
such a call. A saved counter is set so detailed output will
be written using WRITE(*,...) on the next |MODE| − 1
normal calls. To resume normal computation the calling
program must set MODE = 0 if a new problem sequence
is being started or MODE = 1 if an iterative sequence is
being continued.

The detailed output will consist of X, XORF, and IC.
IC is an internal variable that is initially 0 and is in-
cremented by 1 whenever a golden section move is used
rather than a move determined from a parabola. If IC
gets to 4, it will either be set to −99, or it serves as an
internal flag to check the results at an endpoint.

References

1. G. E. Forsythe, M. A. Malcolm, and C. B. Moler,
Computer Methods for Mathematical Compu-
tations, Prentice-Hall, Englewood Cliffs, N. J. (1977)
259 pages.

2. R. P. Brent, Algorithms for Minimization With-
out Derivatives, Prentice-Hall, Englewood Cliffs, N.
J. (1973).

E. Error Procedures and Restrictions

SFMIN permits the given endpoints to satisfy a < b, a >
b, or a = b. In the latter case the solution is x = a, and
it will be found in one iteration.

The user must initially set MODE = 0 and must not alter
MODE after that while iterating on the same problem,
except to obtain the detailed printing as described in
Section D. Entering SFMIN with MODE > 1 is an error
condition and an error message will be issued using the
error processing routines of Chapter 19.2 with an error
level of 0.

SFMIN uses the Fortran 77 SAVE statement to save
values of internal variables between the successive calls
needed to solve a problem. Thus SFMIN cannot be used
to work on more than one problem at a time. In particu-
lar, calling SFMIN with MODE = 0 will always initialize
it for a new problem and no data will be retained from a
previous problem, except for the internal detailed print-
ing counter mentioned in Section D. If one needs this
type of capability, possibly because of a recursive for-
mulation of a multivariate minimization problem, one
could make multiple copies of this subroutine, giving a
distinct name to each copy. DMLC01, Chapter 9.2, is
recommended for most such problems, however.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DFMIN AMACH, DFMIN, ERFIN, ERMSG,
IERM1, IERV1

SFMIN AMACH, ERFIN, ERMSG, IERM1, IERV1,
SFMIN

Adapted to Fortran 77 for the JPL MATH77 library from
the subroutine, FMIN, in [1] by C. L. Lawson and F. T.
Krogh, JPL, Oct. 1987.
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DRSFMIN

c program DRSFMIN
c>> 1996−05−28 DRSFMIN Krogh Moved format up .
c>> 1994−10−19 DRSFMIN Krogh Changes to use M77CON
c>> 1994−07−15 DRSFMIN CLL
c>> 1993−03−01 CLL Changed ” zero ” to ”minimum”.
c>> 1992−03−24 CLL Added miss ing comma in format s ta tement .
c>> 1987−12−09 DRSFMIN Lawson I n i t i a l Code .
c Demo d r i v e r f o r SFMIN. Finds minimum of a un i v a r i a t e f unc t i on .
c C. L . Lawson & S . Y. Chiu , JPL , Aug 1987 , Oct 1987
c F. T. Krogh , Oct . 1987.
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−S r ep l a c e s ”?”: DR?FMIN, ?FMIN
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real A, B, X, XORF, TOL, XTOL, TWO
parameter (A = −1.0E0 , B = 1 .0E0 , XTOL = 1.0E−7)
parameter (TWO = 2.0E0)
integer MODE

1 format ( ’ Resu l t s returned by SFMIN: ’ / ’ MODE = ’ , i 3 /
∗ ’ So lu t i on : X = ’ , f16 .08/
∗ ’ f (X) = ’ , f16 . 0 8 )

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
write (∗ , ’ (1x , a ) ’ )

∗ ’DRSFMIN . . Demo d r i v e r f o r SFMIN, un i va r i a t e minimum f i nd e r . ’ ,
∗ ’ Problem : Find minimum of 2∗∗X + 2∗∗(−2∗X) . ’ ,
∗ ’ Exact r e s u l t : X = 1/3 ’ ,
∗ ’Min value : 1 . 5 ∗ 2∗∗(1/3) = 1 . 8 8 9 8 8 1 5 7 . . . ’
X = A
XORF = B
TOL = XTOL
MODE = 0

10 ca l l SFMIN(X, XORF, MODE, TOL)
i f (MODE .ne . 1) go to 20

XORF = TWO∗∗X + TWO∗∗(−TWO∗X)
go to 10

20 continue
write (∗ , 1 ) MODE, X, XORF
stop
end

ODSFMIN

DRSFMIN . . Demo dr i v e r f o r SFMIN, un i va r i a t e minimum f i nd e r .
Problem : Find minimum of 2∗∗X + 2∗∗(−2∗X) .
Exact r e s u l t : X = 1/3
Min value : 1 . 5 ∗ 2∗∗(1/3) = 1 . 8 8 9 8 8 1 5 7 . . .
Resu l t s returned by SFMIN:

MODE = 3
So lu t i on : X = 0.33340994

f (X) = 1.88988161
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