9.2 Local Minimum of a Multivariate Function
with Linear Constraints

A. Purpose

The subroutine DMLCOL1 finds a local minimum of a con-
tinuously differentiable function f of n variables. Vari-
ables may be subject to bounds, and linear equality and
inequality constraints. The problem statement is

Minimize f(x), subject to
Ax < b, and (1)
XLJ‘S.’E]'SXU]', j:].,...,’n (2)

where A is an m xn matrix, b is an m-vector, and x is the
n-vector to be determined. It can be specified that the
first MEQ rows of the system Ax < b are to be equal-
ity constraints. This subroutine is also applicable to an
unconstrained problem as one can set m = 0 and set the
contents of XL() and XU() to have large magnitudes.

B. Usage
B.1 Program Prototype, Double Precision

INTEGER N, M, MEQ, LDA, IPRINT,
MXEVAL, LIW, LW, IW (LIW)

DOUBLE PRECISION A(LDA,>N), B(>M),
XL(>N), XU(>N), X(>N), ACC, W(LW)

EXTERNAL DMLCFG

Assign values to N, M, MEQ, A(,), B(), XL(), XU(),
X(), ACC, IPRINT, MXEVAL, LIW, and LW.

CALL DMLC01 (DMLCFG, N, M, MEQ, A,
LDA, B, XL, XU, X, ACC, IPRINT,
MXEVAL, IW, LIW, W, LW)

Results are returned in X(), IW(), and W().
B.2 Argument Definitions

DMLCFG [in] The name of a subroutine provided by
the user to compute the function value, f(x), and op-
tionally the gradient vector, g, g; = 0f/0x;, j =1,
..., N, using the current x-vector given in X(). It
must have an interface of the form:

SUBROUTINE DMLCFG(N, X, F, G, HAVEG)
INTEGER N

DOUBLE PRECISION X(N), F, G(N)
LOGICAL HAVEG

DMLCFG must store the function value in F.
©1997 Calif. Inst. of Technology, 2015 Math & la Carte, Inc.

July 11, 2015

Local Minimum of a Multivariate Function with Linear Constraints

DMLCFG may either compute the gradient vector
or let the package compute an estimate of the gradi-
ent vector by computing finite differences of function
values. Performance will generally be more reliable
if DMLCFG computes the gradient vector.

If DMLCFG computes the gradient vector it must
store it in G(1:N) and set HAVEG = .true. If DML-
CFG does not compute the gradient it must set
HAVEG = .false. and must not store anything into
G().

DMLCFG must not change the values of N or X().

In some applications DMLCFG may need additional
data that may have been input by the user’s main
program. One way to handle this in Fortran 77 is by
use of named COMMON blocks.

N [in] Number of components in the vector x. Require
N>1

M [in] Number of general linear constraints, i.e., num-
ber of rows in the matrix A and components in the
vector b. Require M > 0.

MEQ [in] Specifies that rows 1 through MEQ of the
system Ax < b are to be interpreted as equality con-
straints. Require 0 < MEQ < M.

A(,) [in] Array containing the MxN matrix A. Even
if M = 0 the array A(,) must be declared and given
positive dimensions. This is a Fortran 77 language
requirement.

LDA [in] The leading dimension of the array A(,). Re-
quire LDA > max(1,M).

B() [in] Array containing the M-vector b. Even if M =
0 the array B() must be declared and given a positive
dimension. This is a Fortran 77 language require-
ment.

XL(), XU() [in] Lower and upper bounds on the vari-
ables. See Eq.(2) above. Require XL(j) < XU(j)
for j =1, ..., N. To leave a solution component effec-
tively unconstrained, set its lower bound to a nega-
tive number of large magnitude and its upper bound
to a large positive number. Do not set these bounds
to such large magnitudes that computation of the
difference, XU(j)— XL(j), would overflow for some
j. Setting XL(j) = XU(y) is permitted and has the
effect of fixing x; at the value XL(j).

X() [inout] The vector of variables of the optimization
calculation. On entry X() must contain an initial es-
timate of x. The subroutines can usually cope with

9.2-1

9.2-2

a poor estimate, and the initial x is not required to
satisfy Eqgs. (1) and (2). On return X() will contain
the subroutine’s best estimate of the solution vector
X.

ACC [in] A tolerance on the first order Kuhn-Tucker

conditions that the solution must satisfy. See Eq. (4),
page[d and Remark 4 in Section C. Setting ACC = 0.0
is permitted and essentially means the user wants
as much accuracy as possible on the host computer.
The termination will then usually be with INFO = 2,
meaning Eq. (4) could not be satisfied.

IPRINT [in] Contains five print control parameters,

packed as follows:

IPRINT = IPFREQ x 100 + IPTOL x 8 +
IPFRST x 4 + IPMORE x 2 + IPLAST

Iteration counting only begins after a first feasible x
is found. The items to be printed are selected by IP-
MORE. The other parameters specify when to print.
If any of IPFREQ, IPTOL, IPFRST, or IPLAST are
nonzero, there will be an initial printing of N, M,
MEQ, ACC, RELACC, and TOL.

IPFREQ is zero or positive. If positive, printing is
done on iterations 0, IPFREQ, 2*IPFREQ), etc.

IPTOL = 0 or 1. 1 means to print the new TOL
value and the standard items each time TOL is
changed. TOL is described in Section D.

IPFRST = 0 or 1. 1 means to print on the first it-
eration, ¢.e. on iteration number 0.

IPMORE = 0 or 1. Items always printed are

ITERC — The iteration count.

NFVALS — The count of function evaluations,
which is tested against MXEVAL.

F — The current value of f(x).

TOL — See Section D.

lloll — The Euclidean norm of RESKT(1:N).
This is the quantity that will be compared
with ACC for the main convergence test.
See Section D.

X(1:N) — The current value of x.

When IPMORE = 1 the package also prints

G(1:N), RESKT(1:N), TACT(1:NACT), and

PAR(1:NACT). These quantities are described

in Section D.

IPLAST = 0or 1. 1 means to print the final results,
and the reason for termination.

MXEVAL [in] If positive, this sets an upper limit on

the number of function evaluations. Gradient eval-
uations and function evaluations for estimating the
gradient are not counted. If MXEVAL = 0, there is
no upper limit.

Local Minimum of a Multivariate Function with Linear Constraints

IW() [work, out] Integer work space of length LIW.

Also used to return status information. On return
IW() contains information as follows:

IW (1) contains INFO. Indicates reason for termina-
tion as follows:

1 means successful termination. X() is feasi-
ble and the convergence test involving ACC
is satisfied.

2 means X() is feasible and satisfaction of the
ACC test seems to be prevented by the pre-
cision of arithmetic being used. This mode
of termination will commonly occur if the
user sets ACC = 0.

3 means X() is feasible but the objective func-
tion fails to decrease, although a decrease
is predicted by the current gradient vector.
This may be due to limitation of compu-
tational precision as with INFO = 2, how-
ever, if the final RESKT() has components
of large magnitude and the user has pro-
vided code to compute the gradient vector,
this could be due to an error in the gradient
code. One should also question the coding
of the gradient when the final rate of con-
vergence is slow.

4 means bad input values. See requirements
on N, M; MEQ, XL(), XU(), LIW, and LW.
No solution is computed in this case.

5 means the equality constraints are inconsis-
tent. These constraints include any com-
ponents of x that are frozen by setting
XL(j) = XU(5)-

6 means the equality constraints and the
bounds on the variables are inconsistent.

7 means there is no x satisfying all of the con-
straints. Specifically, when this return or
an INFO = 6 return occurs, the current ac-
tive constraints indexed in TACT(1:NACT)
prevent any change in X() that reduces the
sum of constraint violations.

8 means the limit set by MXEVAL has been
reached, and there would have been further
calculation otherwise.

9 means the solution is uniquely determined
by the constraints, so there is no further
freedom for minimization of f(x). In this
case the results returned in W() will include
f evaluated at the solution, but will not
include PAR() and RESKT(), and will in-
clude G() only if DMLCFG computes G().

IW(2) contains ITERC. Number of iterations used.

July 11, 2015

IW(3) contains NFVALS. Number of function eval-
uations, not counting extra function evaluations
done to estimate the gradient when the gradient
is not computed explicitly. In this latter case
the actual number of function evaluations will
be (K + 1) x NFVALS, where K is the number
of solution components whose lower and upper
bounds are not equal.

IW(4) contains NACT. The number of active con-
straints at the final x. Will be in the interval
[MEQ, NJ.

IW(5:4+NACT) contains IACT(1:NACT).
TACT() is used as work space of length M + 2x
N. On return the first NACT locations con-
tain the indices of the constraints that are
active at the final point. Indices [1:M] re-
fer to rows of the system Ax < b. Indices
[M+1:M+N] refer to component lower bounds.
Indices [M+N+1:M+2xN] refer to component
upper bounds.

LIW [in] Dimension of IW(). Require
LIW >4+ M+ 2 x N.

W() [work, out] Working space of floating point vari-
ables of length LW. Also used to return auxiliary re-
sults. On return W() contains information as follows:

W(1) contains FVAL, the final value of the objec-
tive function, f.

W(2) contains the Euclidean norm of the Kuhn-
Tucker residual vector, i.e. ||p|| as described in
Section D.

W (3:24+N) contains the final gradient vector,
G(1:N).

W (34+N:2+2xN) contains the Kuhn-Tucker resid-
ual vector, RESKT(1:N).

W(34+2xN:24+2xN+NACT) contains the La-
grange multipliers, PAR(1:NACT) where
NACT has a value in [MEQ, N].

G(), RESKT(), and PAR() are described in Section
D.

LW [in] Dimension of W(). Require
LW >3 + M+ N x (16 + N).

B.3 Modifications for Single Precision

For single precision usage change all subroutine names
beginning with D, except DIMACH, to begin with S.
Change the name DIMACH to RIMACH. Change all
DOUBLE PRECISION type statements to REAL.

We suggest that the double precision version of this
package be used, except on machines such as the Cray
J90, where single precision arithmetic has precision of
about 14.4 decimal places.

July 11, 2015

Local Minimum of a Multivariate Function with Linear Constraints

C. Examples and Remarks
4
Example: Minimize f(x) = ij Inz;.
k=1

Let us bound each variable in [0,1] and require the sum
of variables to be 1. With just these constraints a unique
minimum would occur when x; = 0.25, for all j. We shall
add two more constraints to break up the symmetry:

1 —xo = 0.25
o — I3 Z 0.10

Since inequality constraints must be expressed in less
than or equal form, we rewrite this last constraint as

—x2 + T3 S —010

In matrix form the three general linear constraints are

1 1 11 1.00
1 -1 0 0| x< 0.25
0 -1 1 0 -0.10

and we will specify that the first two rows are to be
treated as equality constraints by setting MEQ = 2.

The program DRDMLCO1 illustrates the use of DMLCO01
to solve this problem, and also uses DCKDER to check
the consistency of the function and gradient calculations.
The output is shown in ODDMLCO01. We have set ACC
= 0.0, meaning we want as much accuracy as the host
computer can provide. Note that the termination code
is 2 indicating that the requested accuracy of 0.0 could
not be attained. This is the usual termination code when
the user has set ACC = 0.

We have set the lower bounds in XL() to 1.0D-6 rather
than zero to avoid the possibility of the package request-
ing a function evaluation with some z; = 0, since at-
tempting to compute LOG(0.0D0) would cause an error
stop. Alternatively this issue could be handled with ap-
propriate logic in the function evaluation subroutine and
XL() could be set to zero.

As print options we have selected printing only at the
end (IPLAST = 1), and the more extensive number of
printed items (IPMORE = 1). This is indicated by set-
ting IPRINT = 2 x IPMORE + IPLAST = 3. Setting
MXEVAL = 0 means we are not setting any limit on the
number of function evaluations.

To illustrate the contents of IW() and W() on return we
have printed the results from these arrays.

Remarks

1. It is important to the success of DMLCO1 that the
initial guess be as good as possible.

2. DMLCO1 only finds a local minimum. Problems may
have more than one local minimum, so caution in accept-
ing results is suggested. It may be useful to solve the

9.2-3

problem several times using significantly different start-
ing points.

3. Minimization of a nonlinear function is inherently dif-
ficult in many cases, and sometimes may require some
interaction with the user. The intermediate output avail-
able from the subroutine may be useful if one has ques-
tions about the performance of the subroutine. It is not
uncommon to make mistakes in writing the code for com-
puting partial derivatives. This mistake is likely to cause
a return with IW(1) = 3. The user can use the subrou-
tine DCKDER of Chapter 8.3 to check the consistency
of code for function and gradient evaluation.

4. Tt is reasonable to set ACC = 0.0 the first time this
subroutine is applied to a new mathematical model. If
one intends to solve more problems of similar form and
wishes to reduce the number of iterations, one could
turn on the intermediate output and try to determine a
nonzero value of ACC that gives a result of adequate ac-
curacy in fewer iterations. From Eq. (3) one sees that an
appropriate nonzero value of ACC depends on the norms
of g and of the row vectors of A, and the constraints ac-
tive at the solution. If g is computed by finite-differences
the magnitude of f must be considered also.

D. Functional Description

The algorithm provides for the bounds on the variables
to be specified and treated separately from the general
linear constraints because this is convenient for the user
and allows for efficiencies in storage and execution time.
However, for analysis of the problem it is more conve-
nient to treat the bounds as additional general linear
constraints. Thus the full set of constraints can be ex-
pressed as

A b
-1 | x< | =XL
I XU

with the first MEQ rows to be treated as equality con-
straints. Here I denotes the N x N identity matrix, X L
denotes the N-vector of lower bounds, and XU denotes
the N-vector of upper bounds.

Let C denote the left-side matrix and d the right-side
vector in the above expression. Thus the constraints can
be written simply as Cx < d, where C' and d each have
M + 2N rows. Let c¢; denote the column vector which is
the transpose of row i of C.

If XL; = XU; for some j, then row M+j of Cx < d will
be treated as an equality constraint and row M + N + j
will be ignored (not changing the indexing of other rows).
A set C of linearly independent equality constraints is
identified. This will generally consist of the constraints
due to equality of lower and upper bounds, plus the first

9.2-4

Local Minimum of a Multivariate Function with Linear Constraints

MEQ rows. However, it may consist of a proper subset
of these if this set is not linearly independent. An inter-
nal variable, MEQL, is set to the number of these con-
straints and their indices are stored in TACT(1:MEQL).
After setting MEQL and the contents of IACT(1:MEQL)
these will remain unchanged throughout the rest of the
algorithm.

A vector x is feasible if it satisfies Cx < d, and in ad-
dition achieves equality for the rows in the set C. With
any feasible x the algorithm considers, it associates a
list of indices of at most N of the rows of Cx < d that
are satisfied with equality. These rows are called the ac-
tive constraints (for x) and the indices are denoted by
TACT(k), k =1, ..., NACT, where NACT depends on x,
but will satisfy MEQL < NACT < N.

The first-order Kuhn-Tucker necessary conditions for a
solution x are that x must be feasible and that the gradi-
ent, g, of f at x must be a linear combination of vectors
c; in the active set for x, with combining coefficients
(called Lagrange coefficients) that are of unrestricted
sign for constraints in set C, and are nonpositive for
constraints not in set C. Thus define the Kuhn-Tucker
residual vector

NACT

p=g— > MCracr(, with A, <0 for k> MEQL (3)

k=1

Then the Kuhn-Tucker condition on a vector x can be
stated as the requirement that there exist A\;’s such that
p is a zero vector. The convergence test used in the

package is
ol < ACC (4)
where || - || denotes the Euclidean vector norm.

Internally the package stores g in G(), p in RESKTY(),
and the A\g’s in PAR(). These can be printed using the
IPRINT argument and are returned in the W() array.

The package also uses internal tolerance parameters,
RELACC and TOL. RELACC is set to about 100 times
the machine precision. TOL is initially set to 0.01, and is
reduced as the algorithm progresses until it reaches the
value RELACC. TOL is used as a relative tolerance in
checking the satisfaction of constraints. The technique
of starting with TOL fairly large and later reducing it
is a unique design feature of this algorithm. It has the
effect of avoiding many small changes to x in the early
stages of the algorithm.

The algorithm is described in detail by the author in
] and [2]. He characterizes the algorithm as an active
set method as described in [3], using BFGS updating of
second derivative approximations as described in [4] and
the matrix factorizations of [5]. Examples from [6] were
used by the author in testing the package.

July 11, 2015

References

1. Michael J. D. Powell, TOLMIN: A Fortran pack-
age for linearly constrained optimization calcu-
lations. Technical Report DAMTP 1989/NA2, Depart-
ment of Applied Mathematics and Theoretical Physics,
University of Cambridge (June 1989) 98 pages.

2. M. J. D. Powell, A tolerant algorithm for linearly
constrained optimization calculations, Mathematical
Programming 45, 3, Ser. B (1988) 547-566. Ap-
peared originally as DAMTP/1988/NA17, University
of Cambridge, 1988.

3. Philip E. Gill, Walter Murray, and Margaret H.
Wright, Practical Optimization, Academic Press,
New York (1981) 401 pages. Sixth printing, 1987.

4. M. J. D. Powell, Updating conjugate directions by the
BFGS formula, Mlathematical Programming 38, 1
(1987) 20-46.

5. D. Goldfarb and A. Idnani, A numerically stable dual
method for solving strictly convexr quadratic programs,
Mathematical Programming 27, 1 (1983) 1-33.

6. W. Hock and K. Schittkowski, Test Examples for
Nonlinear Programming Codes, Lecture Notes in

Economics and Mathematical Systems 187, Springer
Verlag, Berlin (1981).

E. Error Procedures and Restrictions

On all returns, successful or not, the reason for the re-
turn is indicated by INFO, stored in IW(1). See the
specification of IW(1) in Section B for the interpretation
of these values. On returns with IW(1) from 3 to 8 an
error message will be printed using the error message
printing subroutines of Chapter 19.2 with an error level
of 0.

F. Supporting Information
The source language is ANSI Fortran 77.

Entry Required Files

DMLC01 AMACH, DERV1, DMLC, ERFIN,
ERMOR, ERMSG, IERM1, IERV1

SMLCO01 AMACH, ERFIN, ERMOR, ERMSG,
IERM1, IERV1, SERV1, SMLC

Cvonerted from Powell’s code cited above by C. L. Law-
son, April, 1990 (with minor contribution from F. T.
Krogh).

DRDMLCO01

c program DRDMLCO1

c>> 2001—05—22 DRDMLCO1 Krogh Minor change for making .f90 wversion.
> 1996—07—08 DRDMLCO!I Krogh Minor format change for C conversion.

c>> 1994—11—02 DRDMLCO1 Krogh
> 1994—09—13 DRDMLCO! CLL
c>> 1992—05—13 CLL

c>> 1992—04—15 CLL

c>> 1992—01—-21 CLL

c>> 1991—-06—10 CLL

c>> 1992—01—16 CLL

c>> 1990—-07—-12 CLL

Demo driver for DMLCOI.

The constraints are Az .le.
two rows.

Changes to wuse M77CON

Also uses DCKDER to check gradient.
Minimization with linear constraints.
b with equality required in the first

OO O O 0

¢c—D replaces ”2”: DR?MLCOI1,

c

?MLCO1,

¢?XLOGX, ?CKDER

external DXLOGX
integer MMAX NMAX, LIW, LW

parameter (MMAX = 3, NMAX = 4)

parameter (LIW = 4 + MMAX + 2+«NMAX)

parameter (LW

= 3 + MMAX + NMAX#(16 + NMAX))

integer I, IMAX, IPRINT, IW(LIW), J, JMAX
integer M, MBEQ, MODE, MXEVAL, N

logical HAVEG

July 11, 2015

double precision A(MMAX, NMAX), ACC, B(MMAX), FVAL(1), GRAD(NMAX)
double precision GDUMMY(NMAX) , TEST(NMAX), TSTMAX, W(LW)
double precision X(NMAX), XL(NMAX), XU(NMAX)

Local Minimum of a Multivariate Function with Linear Constraints

9.2-5

data M, MEQ, N / 3, 2, 4 /
data ACC, IPRINT, MXEVAL / 0.0D0, 3, 0 /
data ((A(1,J),J=1,4),1=1,3) / 1.0D0, 1.0D0, 1.0D0, 1.0D0 ,
* 1.0D0, —-1.0D0, 0.0D0, 0.0DO,
% 0.0D0, —1.0D0, 1.0D0O, 0.0D0 /
data (B(I),I=1,3) / 1.0D0, 0.25D0, —0.1D0 /
data (XL(J),J=1,4) / 4%1.0D-6 /
data (XU(J),J=1,4) / 4%1.0D0 /
data (X(J),J=1,4) / 0.7d0, 0.6d0, 0.5d0, 0.4d0 /
c
printx,

* ’Program DRDMLCOL.. Demo driver for DMLCOl. Also uses DCKDER.’
Using DCKDER to check the gradient calculation .

MODE = 1
call DXLOGX(N, X, FVAL(1), GRAD, HAVEG)
10 continue
call DCKDER(MODE, 1, N, X, FVAL, GRAD, 1, TEST, IMAX, JMAX,TSTMAX)
call DXLOGX(N, X, FVAL(1), GDUMMY, HAVEG)
if (MODE .eq. 2) go to 10
print’(/’’ Using DCKDER to check the gradient calculation.’’)’

print’(/11x, 'X(J) =" ,5g11.3:/(17x,5g11.3)) " ,(X(J),J=1,N)
print’(11x,’'FVAL ="’ ,5gl11.3)’ ,FVAL(1)

print’(7x,’’Gradient ="’ ,5g11.3:/(17x,5g11.3)) "’ ,(GRAD(J),J=1,N)
print’ (9x, ' "TEST() ='’,5g11.3/(17x,5g11.3)) " ,(EST(),J=1N)
print’ (11x, JMAX =’ i3 " TSIMAX =’ ,g11.3) ’ ,JMAX,
* TSTMAX

Using DMLCO! to solve the minimization problem.

print’(/’’ Using DMLCOl to solve the minimization problem.’’)”’
call DMLCO01 (DXLOGX, N, M, MEQ, A, MMAX B, XL, XU, X, ACC,

* IPRINT, MXEVAL, IW, LIW, W, LW)

stop

end

subroutine DXLOGX(N, X, F, G, HAVEG)

integer 1, N
double precision F, G(N), X(N)
logical HAVEG

HAVEG = .true.

F = 0.0D0

do 10 T = 1,N
F=F+ X(I) % log(X(I))
G(I) = 1.0D0 + log(X(I))

10 continue
return
end

9.2-6 Local Minimum of a Multivariate Function with Linear Constraints July 11, 2015

July 11, 2015

Program DRDMLCO1. .

ODDMLCO01

Demo driver for DMLCOL.

Using DCKDER to check the gradient calculation.

X(J) =
FVAL =
Gradient =
TEST() =
JMAX =

0.700 0.600 0.500 0.400

—-1.27

0.643 0.489 0.307 0.837E-01
—0.425E-11 —-0.507E-11 —0.279E-12 0.318E-10

4, TSTMAX = 0.318E-10

Using DMLCO1 to solve the minimization problem.

Beginning subroutine DMLCO02, called from DMLCO1:

N = 4, M= 3, MEQ = 2, ACC = 0.00
RELACC = 0.222E-13, TOL = 0.100E-01
[2] DMLCOl quitting due to limitation of computational precision.
6 iterations. 17 function evals. F = —1.2608
TOL = 0.22204E-13 Norm of RESKT = 0.11342E-10
X = 0.46004 0.21004 0.11004 0.21989
G = 0.22355 —0.56047 —1.2069 —0.51462
RESKT = —0.32740E—11 —-0.32740E—11 —0.32740E—11 0.98221E-11
IACT = 1 2 3
PAR = —0.51462 0.73817 —0.69232

Local Minimum of a Multivariate Function with Linear Constraints

Also uses DCKDER.

9.2-7

	Local Minimum of a Multivariate Function with Linear Constraints
	Purpose
	Usage
	Program Prototype, Double Precision
	Argument Definitions
	Modifications for Single Precision

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

