
10.0 Overview of Fourier Transforms and Spectral Analysis

A. Introduction

The subroutines in this chapter compute discrete Fourier
transforms, using the fast Fourier transform (FFT). Dis-
crete Fourier transforms can be used in turn to approx-
imate Fourier coefficients or evaluate truncated Fourier
series, to approximate power spectra, to compute con-
volutions and lagged products (as might be required in
computing correlations and in filtering), and in several
other applications where the speed of the FFT has been
found of value, see, e.g., [1].

The purpose of this introductory section is to outline
what is available, to help the reader in the selection of
the appropriate subroutine, to outline how the discrete
transform can be used for the computation of convolu-
tions and lagged products, to examine the errors intro-
duced in using the discrete transform as an approxima-
tion to other transforms, and to suggest a computational
procedure to those with doubts on how to proceed.

Lower case English letters are used for functions of t,
the independent variable, and Greek letters for Fourier
transform functions, that are functions of ω, with units
of radians/(units of t).

B. Subroutines Available

The one dimensional discrete transform pairs available
are indicated below. In “SRFT1/DRFT1” (for example)
SRFT1 is the name for the single precision version and
DRFT1 is the name for the double precision version. In
all cases N = 2M where M is a nonnegative integer and
W = e2πi/N = cos 2π/N + i sin 2π/N.

SRFT1/DRFT1 One dimensional real transform

xj =

N−1∑
k=0

ξkW
jk, j = 0, 1, ..., N − 1 (1)

ξk =
1

N

N−1∑
j=0

xjW
−jk, k = 0, 1..., N − 1 (2)

STCST/DTCST Trigonometric transform

yj =
1

2
α0 +

(N/2)−1∑
k=1

[
αk cos

2πjk

N
+ βk sin

2πjk

N

]
+

1

2
αN/2(−1)j , j = 0, 1, ..., N − 1 (3)

αk =
2

N

N−1∑
j=0

yj cos
2πjk

N
, k = 0, 1, ...,

N

2

βk =
2

N

N−1∑
j=1

yj sin
2πjk

N
, k = 1, 2, ...,

N

2
− 1

(4)

STCST/DTCST Cosine transform

yj =
1

2
α0 +

N−1∑
k=1

αk cos
πjk

N
+

1

2
αN (−1)j ,

j = 0, 1, ..., N (5)

αk =
2

N

1

2
y0 +

N−1∑
j=1

yj cos
πjk

N
+

1

2
yN (−1)k


k = 0, 1, ..., N (6)

STCST/DTCST Sine transform

yj =

N−1∑
k=1

βk sin
πjk

N
, j = 1, 2, ..., N − 1 (7)

βk =
2

N

N−1∑
j=1

yj sin
πjk

N
, k = 1, 2, ..., N − 1 (8)

SCFT/DCFT Complex transform

zj =

N−1∑
k=0

ζkW
jk, j = 0, 1, ..., N − 1 (9)

ζk =
1

N

N−1∑
j=0

zjW
−jk, k = 0, 1, ..., N − 1 (10)

All variables in the above equations are real, except W ,
ξ, z, and ζ which are complex. For each of the trans-
form pairs given, either equation can be derived from the
other – there are no approximations involved.

Taking real and imaginary parts of Eq. (2) and making
comparisons with Eq. (4), it is clear that if xj = yj ,
then 2 <ξk = αk and 2 =ξk = −βk. Thus the trigono-
metric transform and the real transform are closely re-
lated. Since SRFT1 is slightly more efficient and shorter
than STCST, it is recommended unless one has a dis-
tinct preference for the trigonometric form. If one has
data that are even (or odd) then one can save a factor
of two in both storage and computation by using the co-
sine (or sine) transform in STCST. One could use SCFT
for real data by setting =zj = 0, but since this requires
twice the storage and twice the work as SRFT1, SCFT
is recommended only for complex data.

Subroutines STCST, SCFT, and SRFT (similar to
SRFT1) can be used for data in more than one dimen-
sion. As above, there is a connection between the real
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transform and the trigonometric transform, but the re-
lations connecting the two are not as simple. Indexing of
the coefficients in SRFT is more complicated, and thus
we recommend STCST for multi-dimensional real data
unless one prefers the form of the solution provided by
SRFT.

C. Discrete Convolutions and Correla-
tions

Here we consider computing sums of the form

cn =

N−1∑
j=0

ajbn±j , n = 0, 1, ..., N − 1 (11)

Initially it is assumed that aj and bj are periodic with
period N. (That is, if j is not in the range 0 ≤ j ≤ N − 1,
it is replaced by its value mod N.) Thus αk and βk can
be defined by

aj =

N−1∑
k=0

αkW
jk, and bj =

N−1∑
k=0

βkW
jk.

Substitution in Eq. (11) yields

cn =

N−1∑
j=0

[
N−1∑
k′=0

αk′W
jk′

][
N−1∑
k=0

βkW
(n±j)k

]

=

N−1∑
k′=0

N−1∑
k=0

αk′βkW
nk

N−1∑
j=0

W j(k′±k).

(12)

From the easily verified fact that

N−1∑
j=0

W j(k′±k) =

{
N if k′ ≡ ∓k mod N

0 if k′ 6≡ ∓k mod N
(13)

and since αk is periodic with period N there follows from
Eq. (12)

cn = N

N−1∑
k=0

α∓kβkW
nk, n = 0, 1, ..., N − 1

= N

N−1∑
k=0

γkW
nk, where γk = α∓kβk.

(14)

The cn can be computed most efficiently by the indi-
rect route of using the FFT to compute the α′s and β′s
from the a′s and b′s, then computing γk as defined in
Eq. (14), and finally using the FFT to compute the c′s
from the γ′s. For real data, SRFT1 is recommended for
computing the transforms. Note that with SRFT1 αk,
βk, and γk are only computed for k = 0, 1, ..., N/2; for
k = (N/2) + 1, ..., N − 1, one must use the fact that for
real data αN−k = αk (z = conjugate of z).

Ordinarily one has aj and bj defined for j = 0, 1, ..., J−1,
assumed to be 0 for other values of j, and desires cn
for n = 0, 1, ..., L − 1, where L ≤ J . The above pro-
cedure can be used to get the first L values of cn if
one sets N = smallest power of 2 > J + L and sets
aj and bj = 0 for j = J, J + 1, ..., N − 1. (If J + L
is equal to or just slightly greater than a power of 2,
it pays to reduce L so that J + L is one less than a
power of 2, and to compute cn directly from Eq. (11) for
values of n = new L, ..., desired L − 1.) Direct com-
putation of the cn for n = 0, 1, ..., L − 1 from Eq. (11)
requires L(2J − L + 1)/2 multiplies and adds. Using
SRFT1 and the procedure above requires approximately
(9/4)N log2N multiplies, (33/8)N(log2N+1) adds, and
a little additional overhead. If aj = bj then the counts
using SRFT1 can be multiplied by 2/3. The fastest pro-
cedure clearly depends on the values of J, L, and N . For
J < 64, or for values of L small relative to J , the direct
method is fastest, see [1].

Note that no assumption need be made about aj and bj ;
the only errors introduced in the calculation of cn using
SRFT1 are round-off errors.

D. Estimating Power Spectra

To within a constant factor (different normalizations are
used), an estimate of the power at the kth frequency
(defined in E below) is given by |ξk|2 = (<ξk)2 + (=ξk)2,
where the ξk are obtained from SRFT1, Eq. (2) above.
This estimate suffers from the same type of errors dis-
cussed below for the case of computing Fourier integrals.

E. Replacement of Continuous Trans-
forms with Discrete Ones

To simplify the material that follows we consider only the
case of complex functions. Results for real data follow
immediately by considering real and imaginary parts of
the variables and equations below. Proofs for the trans-
form pairs are given in many books on Fourier trans-
forms, although different scalings for ϕ and ω are used.
We have used definitions that maximize symmetry while
matching up with the form of the discrete transform pro-
vided by the FFT.

For continuous data we have the following transform
pairs.

Fourier Integral
(∫∞
−∞ |f(t)| dt exists

)
f(t) =

∫ ∞
−∞

ϕ(ω)e2πiωtdω (15)

ϕ(ω) =

∫ ∞
−∞

f(t)e−2πiωtdt (16)
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Fourier Series (s(t) = s(t+ T ))

s(t) =

∞∑
k=−∞

σke
2πikt/T (17)

σk =
1

T

∫ T/2

−T/2
s(t)e−2πikt/T dt (18)

The discrete transform Eq. (10) can be used to approxi-
mate Eq. (16) if the infinite limits are replaced by finite
limits and f is sampled at equally spaced points between
the two limits. As an example let the infinite limits be
replaced by −T/2 and T/2, and let

zj =


f(−T

2
+ j∆t), j = 1, 2, ..., N − 1

1

2

[
f(−T

2
) + f(

T

2
)

]
, j = 0,

(19)

∆t =
T

N
. (20)

This value of z0 gives significantly better results than
simply setting z0 = f(−T/2). With the assumption that
the contribution to the integral in Eq. (16) is negligible
for |t| > T/2, the trapezoidal rule gives

ϕ(ω) ≈ ∆t

N−1∑
j=0

zje
−πiω(−T+2j∆t)

≈ T

N
eπiωT

N−1∑
j=0

zje
−2πijωT/N .

(21)

In order that Eq. (21) have the form of Eq. (10), the so-
lution is obtained for ω = ωk, where

ωk =
k

T
, k = 0, 1, ...N − 1. (22)

Then

ϕ(ωk) ≈ T

N
eπik

N−1∑
j=0

zjW
−jk (W = e2πi/N ). (23)

Thus ϕ(ωk) ≈ Teπikζk, ζk defined as in (10). The factor
eπik(= (−1)k) is due to shifting the lower limit of −T/2
on the integral to a lower limit of 0 on the summation.

Note that the kth frequency, 2πωk, depends only on
T, the length of the interval over which f is sampled.
Thus, from Eq. (22), 2πωk radians/(units of t) = k/T
cycles/(units of t). From Eqs. (20) and Eq. (21) it follows
that the largest frequency for which a result is obtained
is ωN−1 = (N − 1)/(N∆T ) cycles. For real data, our
approximation is such that ϕ(ωN−k) is the conjugate of

ϕ(ω−k), and thus in this case the largest effective fre-
quency is

ωN/2 =
1

2∆t
cycles/(units of t). (24)

This frequency is commonly called the Nyquist fre-
quency. Note that this frequency depends only on the
sampling interval ∆t.

All that has been said above for Eq. (16) applies almost
word for word to Eq. (18), except that Eq. (18) does
not require replacing infinite limits by finite ones. Be-
cause of the factor 1/T appearing in Eq. (18), in place of
ϕ(ωk) ≈ Teπikζk, we have σk ≈ eπikζk.

F. Errors Introduced by Using the Dis-
crete Transform

The discrete Fourier transform when used as above is
a crude approximation to a continuous transform. Its
primary virtue is the speed with which it can be com-
puted using the FFT (Fast Fourier Transform). Many
procedures have been suggested for computing continu-
ous transforms and power spectra, some of which permit
the use of the FFT and some which do not. References
in Section H below give a sampling of what has been
suggested.

Any computational procedure involves making assump-
tions about either f(t) or ϕ(ω) (or both), and any as-
sumption about one implies something about the other.
Answers to questions such as the following help one in
understanding the implications of a computational pro-
cedure.

(Q1) How are the true and computed transform related?

(Q2) What is the error in the computed transform?

(Q3) What assumptions (if any) are made or implied
concerning the transform?

(Q4) What assumptions are made about the function at
points where its value is not used?

(Q5) At the points where the value of the function is
used, how is the function related to a function that would
give the true transform at selected values of ω?

These questions are considered below for the case of the
discrete transform. We begin by giving some results re-
quired in the analysis, then consider the effect of limiting
the sampling of f to a finite range, the effect of discrete
sampling, a combination of the two, and finally the effect
on the discrete transform of filling in with zeros.

F.1 Convolution Theorems

For Fourier integrals we have

ϕ(ω) = ϕ1(ω)ϕ2(ω) if and only if (25)
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f(t) =

∫ ∞
−∞

f1(τ)f2(t− τ) dτ. (26)

This result can be derived from Eqs. (15) and (16), and
is also true if ϕ and f are interchanged throughout
Eqs. (25) and (26).

In the case of Fourier series there are two convolution
theorems. We work with the three transform pairs (a, α),
(b, β), and (c, γ). If c(t) = a(t)b(t), then

γn =
1

T

∫ T/2

−T/2

∞∑
k=−∞

∞∑
k′=−∞

αkβk′e
2πit(k+k′−n)/T dt. (27)

Interchanging integration and summation, the integral
is 0 if k′ 6= n− k, and is T if k′ = n− k. Thus

γn =

∞∑
k=−∞

αkβn−k. (28)

The second convolution theorem starts with

c(t) =
1

T

∫ T/2

−T/2
a(

1 + τ

2
)b(

1− τ
2

) dτ

=
1

T

∫ T/2

−T/2

∞∑
k=−∞

∞∑
k′=−∞

αkβk′e
2πi[t(k+k′)+τ(k−k′)]/2T dτ.

(29)

Moving the integral inside the summations, we get a
nonzero result only for k′ = k in which case the inte-
gral is exp(2πitk/T ). Thus

c(t) =

∞∑
k=−∞

αkβke
2πitk/T , and so

γk = αkβk. (30)

The convolution theorem for the discrete Fourier trans-
form has already been given in Eqs. (11) and (14).

F.2 Fourier Transform of a Step Function

For Fourier integrals, let

rT (t) =

{
1 −T2 < t < T

2

0 |t| > T
2

(31)

ρT (ω) =

∫ ∞
−∞

rT (t)e−2πiωtdt

=

∫ T/2

−T/2
e−2πiωtdt =

sinπωT

πω
.

(32)

Similarly, one has the transform pair ( 1
πt sinπtΩ, rΩ(ω)).

For Fourier series, we are interested in the case

ρ̂
(K)
k =

{
1 −K ≤ k < K

0 k ≥ K or k < −K
(33)

r̂(K) =

∞∑
k=−∞

ρ̂
(K)
k e2πitk/T =

K−1∑
k=−K

e2πitk/T

=
2i(sin 2πKt/T )

e2πit/T − 1

=
(1 + e−2πit/T )(sin 2πKt/T )

sin 2πt/T
.

(34)

For the discrete Fourier transform, consider

r̃
(J)
j+kN =

{
1 0 ≤ j ≤ J − 1

0 J ≤ j ≤ N − 1
k = 0,±1,±2, ... (35)

ρ̃
(J)
k =

1

N

N−1∑
j=0

r̃
(J)
j W−jk =

1

N

J−1∑
j=0

W−jk

ρ̃
(J)
k =

J/N k = 0,±N,±2N, ...

1−W−Jk

N(1−W−k)
otherwise.

(36)

F.3 Errors Due to a Finite Range

Consider approximating ϕ(ω) in Eq. (16) with

ϕ̂(ω) =

∫ T/2

−T/2
f(t)e−2πiωtdt. (37)

This is equivalent to answering (Q4) with f(t) = 0 for
|t| > T/2.

To answer (Q1), rewrite the above equation as follows

ϕ̂(ω) =

∫ ∞
−∞

rT (t)f(t)e−2πiωtdt, (38)

and using Eqs. (25) and (26) (with f and ϕ interchanged)

ϕ̂(ω) =

∫ ∞
−∞

ϕ(ω)
sinπT (ω − w)

π(ω − w)
dw. (39)

Thus the effect of a finite range is a loss of resolution
due to the smearing as indicated in Eq. (39).

One answer to (Q2) is to subtract both sides of Eq. (39)
from ϕ(ω). A more useful result is obtained by subtract-
ing Eq. (37) from Eq. (16).

ϕ(ω)−ϕ̂(ω) =

∫ ∞
T/2

[
f(t)e−2πiωt + f(−t)e2πiωt

]
dt. (40)
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Thus a bound on the error is given by

|ϕ(ω)− ϕ̂(ω)| ≤
∫ ∞
T/2

[|f(t)|+ |f(−t)|] dt. (41)

If
∫∞
−∞ |f

(j)(t)| dt exists for j = 0, 1, ..., J + 1, integra-
tion by parts of the two terms in the integral of Eq. (40)
yields (k an integer)

ϕ(k/T )− ϕ̂(k/T ) =

(−1)k
J∑
j=0

[
−iT
2πk

](j+1) [
f (j)(T/2)− f (j)(−T/2)

]
+R,

(42)

where R is a remainder term that goes to 0 as k → ∞.
Except for the form of the remainder, the same result is
obtained in the same way from the negative of the right
side of Eq. (37), where ϕ̂ is defined. Thus for large ω,
ϕ̂(ω) is mainly error unless derivatives of f at −T/2 are
very nearly equal to those at T/2. If the jth derivatives
of f at the endpoints are not equal, then ϕ̂(ω) decreases
no faster than ω−(j+1) for large ω. We find below that
nearly equal derivatives at the ends of the interval are
also important when estimating ϕ̂ using the FFT.

To answer (Q5) consider

ϕ(k/T ) =

∫ ∞
−∞

f(t)e−2πikt/T dt

=

∞∑
j=−∞

∫ T/2+jT

−T/2+jT

f(t)e−2πikt/T dt

=

∫ T/2

−T/2

∞∑
j=−∞

f(t+ jT )e−2πik(t+jT )/T dt.

And since e−2πijk = 1, we have

ϕ(k/T ) =

∫ T/2

−T/2
f̂(t)e−2πikt/T dt, where

f̂(t) =

∞∑
j=−∞

f(t+ jT )

(43)

If f(t) is replaced by f̂(t) as defined above, then
ϕ̂(k/T ) = ϕ(k/T ).

F.4 Errors Due to Discrete Sampling

Given f(j∆t), j = 0, ±1, ±2, ..., we have (proceeding
much as was done in obtaining Eq. (42))

f(j∆t) =

∫ ∞
−∞

ϕ(ω)e2πiωj∆tdω

=

∞∑
k=−∞

∫ (k+1/2)/∆t

(k−1/2)/∆t

ϕ(ω)e2πiωj∆tdω

f(j∆t) =

∫ 1/2∆t

−1/2∆t

ϕ̃(ω)e2πiωj∆tdω, where

ϕ̃(ω) =

∞∑
k=−∞

ϕ(ω +
k

∆t
).

(44)

Clearly ϕ̃(ω) is periodic with period 1/∆t, thus from
Eqs. (18) and (17)

ϕ̃(ω) = ∆t

∞∑
j=−∞

f(j∆t)e−2πiωj∆t. (45)

If no assumptions are made about f or ϕ, then given
just f(j∆t), j = 0, ±1, ... values of ϕ for frequencies
that differ by a multiple of 1/∆t cycles are irrevocably
mixed. This phenomenon is commonly called aliasing.

When sampling at discrete points the usual assumption
made is that f is band-limited. That is, ϕ(ω) = 0 for
|ω| > 1/(2∆t). Thus the computed transform is equal to
ϕ̂ as given in Eq. (45), and questions (Q1) and (Q2) are
answered by the expression for ϕ̂ as given in Eq. (44).

To answer (Q4) and (Q5), note that if f̃ is a function
whose true transform is 0 for |ω| > 1/(2∆t) and is ϕ(ω)
otherwise, then

f̃(t) =

∫ ∞
−∞

r1/∆t(ω)ϕ(ω)e2πiωtdω, (46)

and using Eqs. (25), (26), (31), and (32)

f̃(t) =

∫ ∞
−∞

f(τ)
sin(π(t− τ)/∆t)

π(t− τ)
dτ. (47)

Note the symmetries between f and ϕ in Eqs. (38) and
(46); (39) and (47); and (43) and (44). Relations sym-
metric to Eqs. (40) – (42) are easily obtained, but we do
not bother to do so here.

F.5 Errors Due to Discrete Sampling on a Fi-
nite Interval

Here we consider errors that result from evaluating the
integral in Eq. (18) using the discrete Fourier transform.
The results also apply to the integral in Eq. (37), and
thus errors examined here combined with those due to a
finite range give the total error due to replacing a Fourier
integral with a discrete Fourier transform.

The aliasing problem is revealed much as it was obtained
in Eq. (44). Let ∆t = T/N , and from Eq. (17)

s(j∆t) =

∞∑
k=−∞

σke
2πijk/N =

∞∑
m=−∞

(m+1)N−1∑
k=mN

σkW
jk

=

N−1∑
k=0

∞∑
m=−∞

σk+mNW
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s(j∆t) =

N−1∑
k=0

σ̃kW
jk, where σ̃k =

∞∑
m=−∞

σk+mN . (48)

And, as for Eq. (45), there results from Eqs. (9) and (10)

σ̃k =
1

N

N−1∑
j=0

s(j∆t)W−jk. (49)

Since σ̃k−N = σ̃k, and W j(k−N) = W jk, Eq. (48) can be
rewritten to make more apparent the assumption that s
is band-limited. Subtracting N from all indices k ≥ N/2,
there results

s(j∆t) =

(N/2)−1∑
k=−N/2

σ̃kW
jk. (50)

As before, if we assume that s(t) is band-limited, ques-
tions (Q1) and (Q2) are answered by the expression for
σ̃ given in Eq. (48).

To answer (Q4) and (Q5) as in Eq. (47) we use Eqs. (29),
(30), (33), and (34) to obtain from

s̃(t) =

∞∑
k=−∞

σkρ̂
(N/2)
k e2πikt/T , (51)

s̃(t) =
1

T

∫ T/2

−T/2

[
s(
t+ τ

2
)
(

1 + e−πi(t−τ)/T
)

× sin(πN(t− τ)/2T )

sin(π(t− τ)/T )

]
dτ. (52)

Another answer to (Q2) can be obtained using the Euler-
Maclaurin formula. Let Sk(t) = s(t)e−2πikt/T , define

S
(µ)
k,j to be the µth derivative of Sk evaluated at t =

−T2 + j∆t, and Sk,j = S
(0)
k,j . Then the Euler-Maclaurin

formula applied to Eq. (18) gives

σk =
∆t

T

1

2
[Sk,N + Sk,0)] +

N−1∑
j=1

Sk,j + C
(r)
k

+R
(r)
k ,

(53)

where

C
(r)
k =

r∑
ν=1

B2ν(∆t)2ν−1

2ν!

[
S

(2ν−1)
k,N − S(2ν−1)

k,0

]
,

B2ν is the 2νth Bernoulli number, and R
(r)
k is a remain-

der term. The terms in Eq. (53) that contain S are what
one would use following the procedure given in Section

E above. The terms involving a (2ν − 1)st derivative of
S are correction terms, which if not used, give an indica-
tion (which can be misleading) of the error. To examine
the errors as they depend on the derivatives of s, we
write

S
(µ)
k (t) =

µ∑
j=1

(
µ

j

)
s(j)(t)

[
−2πik

T

]µ−j
e−2πikt/T , (54)

S
(µ)
k (±T/2) =

µ∑
j=1

(
µ

j

)[
−2πik

T

]µ−j
(−1)ks(j)(±T/2).

(55)

Substitution into C
(r)
k and a little algebraic manipulation

gives the following result.

∆t

T
C

(r)
k =

(−1)k

N

2r−1∑
j=0

b
(r)
j

[
iT

2πk

]j[
s(j)(

T

2
)− s(j)(−T

2
)

]
,

(56)

where

b
(r)
j =

r∑
ν=bj/2c+1

(
2ν − 1

j

)
B2ν(−2πik/N)2ν−1

(2ν)!
, (57)

and bj/2c is the integer part of j/2. Note the similarities
between Eqs. (42) and (56). The degree of continuity in
the periodic extension of the function sampled on [−T/2,
T/2] is extremely important in determining how well the
discrete Fourier transform will approximate either of the
other Fourier transforms.

F.6 Filling in with Zeros

The requirement that N be a power of 2 imposed by the
FFT routines in this chapter may be inconvenient. It is
sometimes suggested that if one has N ′ function values,
that the remaining N − N ′ values be set to 0, where
N is the first power of 2 ≥ N ′. Let zj denote the true
values of the function for j = 0, 1, ..., N − 1, and let ζk
and ζ̂k denote the true and computed coefficients for the
discrete Fourier transform of z. Then clearly

ζk − ζ̂k =
1

N

N−1∑
j=N ′

zjW
−jk. (58)

And, using Eqs. (11), (14), (35), and (36)

ζ̂k =

N−1∑
ν=0

ζν
1−W−N ′(k−ν)

N(1−W−(k−ν))
(59)

where for ν = k the multiplier of ζν is N ′/N.
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It is perhaps more instructive to consider the connection
between ζ̂k and ζ̃k, where

ζ̃k =
1

N ′

N ′−1∑
j=0

zje
−2πijk/N ′

. (60)

By extending the definitions of ζ̂k, and ζ̃k to noninteger
k in the obvious way, one obtains

ζ̂kN/N ′ =
1

N

N ′−1∑
j=0

zje
−2πijk/N ′

=
N ′

N
ζ̃k, and

ζ̃kN ′/N =
1

N ′

N ′−1∑
j=0

zje
−2πijk/N =

N

N ′
ζ̂k

(61)

Thus N
N ′ ζ̂k can be thought of as a way of computing ζ̃

with a smaller than usual ∆ω. In particular, if N = 2N ′,
ζ̂2k = ζ̃k/2. It is sometimes suggested that N ′ extra ze-
ros be added even when N ′ is a power of 2. By doing
this one can use the FFT to get the autocorrelation from
Eqs. (11) and (14), and the power spectrum, which can
be defined as the Fourier transform of the autocorrela-
tion function, is obtained automatically. An alternative
method for those who like this approach is to compute
ζ̃k/2 (N ′ a power of 2) to get ζ̂2k, and obtain ζ̂2k+1 by
setting it equal to the kthdiscrete Fourier coefficient of
z′ where z′j = zje

πij/N ′
, j = 0, 1, ..., N ′ − 1.

If one zeros ζk for k = N ′, N ′ + 1, ..., N, then instead
of defining a trigonometric polynomial of degree N − 1
that passes through zj , j = 0, 1, ..., N − 1, the ζ ′s define
a trigonometric polynomial of degree N ′−1, that fit the
zj in a least-squares sense. Multiplication by the Lanc-
zos sigma factors, see below, should usually give better
smoothing characteristics for nonperiodic data.

G. Recommendations

The FFT gives good results if one is sampling a periodic
function over one period. Results are less satisfactory for
other cases. What we suggest here should usually give
an improvement over the FFT, however, in many cases
one can undoubtedly do ever better.

It is assumed that trends in the data (e.g., a linear trend)
have been removed, and that appropriate action has been
taken for wild points or gaps in the data. By a trend,
we mean a smooth function S, so that the (estimated)
average value of |S(t) − z(t)| is as small as possible for
t outside the sampling interval. In some cases one may
want to add the Fourier transform of S to the computed
transform of z.

For functions that are not periodic it makes little sense
to attempt a representation in terms of a discrete set of

frequencies. In Eq. (61) the value of the discrete trans-
form for noninteger values is defined. What we propose
here amounts to computing ζk, which is an average of
the values of the discrete transform for nearby noninte-
ger values of k. Starting from Eq. (21), consider

ϕa(ω) =
1

2a

∫ ω+a

ω−a
ϕ(α) dα

=
T

N

N−1∑
j=0

zj
1

2a

∫ ω+a

ω−a
eπiαT (N−2j)/Ndα

=
T

N
eπiωT

N−1∑
j=0

[
sin[πaT (N − 2j)/N ]

πaT (N − 2j)/N

]
zje
−2πijωT/N .

(62)

With ω = ωk, Eq. (62) is the same as Eq. (23) except
for the multiplier of zj . The choice a = 1/T is attrac-
tive for several reasons: it is the smallest value of a that
gives a multiplier of 0 for z0(and for zN if it were used),
and thus helps to minimize the effect of a discontinuity
in the periodic extension of zj ; the value of ϕ1/T (ωk) is
the average value of ϕ from ωk−1 to ωk+1, so not much
resolution is lost; finally, if Eq. (39) is integrated from
ω−a to ω+a as was done in Eq. (21), one finds that the
choice a = 1/T minimizes the effect of ϕ(ω̂) on ϕ̂k(ω)
for values of ω̂ remote from ω. Thus, we define

σj =


sinπj/N

πj/N
j 6= 0

1 j = 0

(63)

and the multiplier of zj in Eq. (62) is σN−2j . And since
σ−N+2j = σN−2j , zN−j has the same multiplier.

The σj defined in Eq. (63) are the Lanczos sigma factors,
see [2] for a different motivation in their derivation, and
for instructive examples. If one wants a greater smooth-
ing, rather than increasing a, we recommend averaging
the average. Thus if the same procedure is applied to
Eq. (62) as was applied to Eq. (21) one finds that σN−2j

is replaced by σ2
N−2j . This process can of course be re-

peated, depending on how much resolution one is willing
to give up. The sinπj/N are readily available from the
sine table required by the FFT subroutines as illustrated
in the example for SRFT1.

The choice of a = 1/T is not appropriate if one has filled
out with zeros because N ′ values are given and N ′ is not
a power of 2. We assume the given values of z are stored
in zj , j = N ′/2, ..., [(N + N ′)/2], and that both ends
have been zero filled. Then one should set a = N/(N ′T ).

The σ factors are also useful for smoothing. Given real
data, x, one can replace xj by the average value of the
trigonometric polynomial interpolating the data on the
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interval xj−1 ≤ x ≤ xj+1 using the σ factors. Sim-
ply compute the ζk using the FFT, multiply ζk by σ2k,
k = 1, 2, ..., N/2, and then compute the inverse trans-
form. This application is illustrated in the example for
SRFT.

When the number of data points is not a power of two,
one may have an interest in using a mixed radix algo-
rithm such as that in [3], or one could use the codes given
here together with the technique described in [4]. Before
making the decision to go with something more compli-
cated than padding the data with 0’s, (or when padding
the data with 0’s), one should understand the connec-
tions described from Eq. (60) to just below Eq. (61).

References

1. James W. Cooley. Applications of the fast Fourier
transform method. in Proc. of the IBM Scientific
Computing Symposium on Digital Simulation of
Continuous Systems, 83–96, (June 1966).

2. Cornelius Lanczos, Applied Analysis, Prentice-
Hall, Englewood Cliffs, N. J. (1956). One of the first
and best books dealing with practical problems of spec-
tral analysis.

3. Richard C. Singleton, An algorithm for computing the
mixed radix fast Fourier transform, IEEE Transac-
tions on Audio and Electroacoustics AU-17, 2
(June 1969) 93–103. The June 1969 issue of this jour-
nal is a special issue devoted to the FFT.

4. David H. Bailey and Paul N. Swarztrauber, The frac-
tional Fourier transform and applications, SIAM Re-
view 33, 3 (Sept. 1991) 389–404.

5. R. W. Hamming, Numerical Methods for Scien-
tists and Engineers, McGraw-Hill, New York (1962).
Does an excellent job explaining the aliasing problem.

May be the only numerical analysis book that examines
the “band-limited-function” approach.

6. Gwilym M. Jenkins and Donald G. Watts, Spectral
Analysis and its Applications, Holden-Day (1968).
A highly regarded book concerned with time series anal-
ysis.

7. Tore H̊avie, Remarks on an expansion for integrals of
rapidly oscillating functions, BIT 13 (1973) 16–29.

8. Flavian Abramovici, The accurate calculation of
Fourier integrals by the fast Fourier transform tech-
nique, J. Comp. Phys. 11 (1973) 28–37.

9. J. N. Lyness, The calculation of Fourier coefficients
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