
11.1 Polynomial Least-Squares Curve Fit

A. Purpose

This subroutine determines a univariate polynomial that
fits a given discrete set of data in the sense of minimizing
the weighted sum of squares of residuals. The fitted poly-
nomial can be constrained to match some data points
exactly by appropriate setting of the a priori standard
deviations of the data errors.

Auxiliary subroutines, described in Chapter 11.2, may
be used to evaluate, differentiate, or integrate a polyno-
mial produced by this fitting procedure.

B. Usage

B.1 Program Prototype, Single Precision

INTEGER M, NMAX, NDEG

REAL X(≥M),Y(≥M),SD(≥M or =1),P(≥NMAX+3),
SIGFAC, W(≥(NMAX+3)×(NMAX+3))

LOGICAL SEEKN, COMTRN, CHBBAS

Assign values to M, X(), Y(), SD(), NMAX, SEEKN,
COMTRN and CHBBAS. If COMTRN = .FALSE. val-
ues must also be assigned to P(1) and P(2).

CALL SPFIT (M, X, Y, SD, NMAX, SEEKN,
COMTRN, CHBBAS, P, NDEG,SIGFAC, W)

Following the CALL to SPFIT one may wish to use
SCPVAL or SMPVAL to evaluate the fitted polynomial
at specific points, SCPDRV or SMPDRV to differentiate
the polynomial, or SCPINT or SMPINT to integrate the
polynomial. See Chapter 11.2 for descriptions of these
subprograms.

B.2 Argument Definitions

M [in] Number of data points.

X() [in] Array of values of the independent variable.
Values need not be ordered and may be repeated.

Y() [in] Array of values of the dependent variable in-
dexed to correspond to the X() values.

SD() [in] If SD(1) > 0., each SD(i) must be positive
and will be assumed to be the user’s a priori estimate
of the standard deviation of the uncertainty (obser-
vational errors, etc.) in the corresponding data value
Y(i).

If SD(1) < 0., |SD(1)| will be used as the a priori
standard deviation of each data value Y(i). In this
case the array SD() can be dimensioned SD(1) since
locations following SD(1) will not be used.

NMAX [in] Specifies the maximum degree polynomial
to be considered. Require NMAX ≥ 0. If NMAX >
M − 1 the subroutine will function as though NMAX
= M − 1.

SEEKN [in] If SEEKN = .TRUE. the subroutine will
determine the optimum value of NDEG ≤ NMAX in
the sense described below in Section D.

If SEEKN = .FALSE. the subroutine will set NDEG
= NMAX unless this is a singular or nearly singu-
lar problem, in which case NDEG will be reduced as
necessary.

COMTRN [in] If COMTRN = .TRUE. the subroutine
will determine the transformation parameters P(1)
and P(2) as described in Section D.

If COMTRN = .FALSE. the subroutine will use the
values of P(1) and P(2) that have been set by the
user.

CHBBAS [in] If CHBBAS = .TRUE. the subroutine
will use the Chebyshev basis. If CHBBAS = .FALSE.
the subroutine will use the monomial basis. The
Chebyshev basis is recommended for better numeri-
cal stability, when NMAX is greater than about six.

P() [inout] Parameter vector defining a polynomial ac-
cording to Eqs. (1) and (2) or (3) and (4). Values of
P(1) and P(2) may either be set by the user, or by the
subroutine, depending upon the value of COMTRN.
Values of P(j+3), j = 0, ..., NMAX will be com-
puted by the subroutine. If NDEG < NMAX, the
subroutine will set P(i+3) = 0, for i = NDEG + 1,
..., NMAX.

NDEG [out] Set by the subroutine to indicate the de-
gree of the fitted polynomial. On return NDEG will
satisfy 0 ≤ NDEG ≤ NMAX if the computation was
successful and will be set to −1 if an error occurred.

SIGFAC [out] Number computed by the subroutine.
See discussion of SIGFAC in Sections C and D fol-
lowing.

W() [scratch] Array of working storage.

B.3 Modifications for Double Precision

For double precision usage change the REAL type state-
ments to DOUBLE PRECISION and change the subrou-
tine name from SPFIT to DPFIT. Change the names
of the auxiliary subroutines mentioned above to DCP-
VAL, DMPVAL, DCPDRV, DMPDRV, DCPINT, and
DMPINT, respectively.
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July 11, 2015 Polynomial Least-Squares Curve Fit 11.1–1



C. Examples and Remarks

C.1 Example

Given a set of 12 data pairs (xi, yi), compute the
weighted least-squares polynomial fit to these data let-
ting the subroutine determine the preferred polynomial
degree not to exceed 8. After computing the least-
squares polynomial p(x), compute and tabulate the
quantities xi, yi, p(xi), and ri = yi − p(xi).
The program DRSPFIT carries out this computation
using subroutines SPFIT and SCPVAL. The output is
shown in ODSPFIT. Note that the value of NDEG se-
lected by the subroutine is 7.

C.2 Transformation of the Independent Vari-
able

For the best numerical accuracy, both in determining
the best fitting polynomial and in the later evalua-
tion of the polynomial, it is generally advisable to use
transformation parameters P(1) and P(2) that cause the
transformed variable u of Eqs. (1) or (3) to range from
−1 to +1. This condition can be obtained by setting
COMTRN = .TRUE.

When fitting with polynomials of degree higher than
about six, the Chebyshev basis generally gives better
numerical accuracy than the monomial basis. To obtain
the potential numerical advantages of the Chebyshev ba-
sis it is essential to cause the transformed variable, u, to
range from −1 to +1.

To force an identity transformation (i.e., effectively
no transformation) of the independent variable, set
COMTRN = .FALSE., P(1) = 0., and P(2) = 1.

C.3 Interpretation of SIGFAC

If the user has set all SD(i) = 1.0, or equivalently, set
SD(1) = −1.0, SIGFAC can be interpreted as an a pos-
teriori estimate of the standard deviation of the error
in each Y(i) value. More generally, whatever values the
user has assigned to the SD(i)’s, the a posteriori esti-
mate of the standard deviation of the error in Y(i) is
SIGFAC × SD(i).

C.4 Equality Constraints

If the user wishes the fitted polynomial to agree to ma-
chine accuracy with one or more of the data points, this
can be accomplished by setting the SD() value for such
points much smaller than for the other points.

Let ε denote the machine precision, i.e., ε =
R1MACH(4) in single precision or ε = D1MACH(4)
in double precision, see Chapter 19.1. For some value
of c in the range 0.5 ≤ c ≤ 0.75, we suggest setting
SD(i) = εc for the points at which an exact fit is de-
sired and SD(i) = 1.0 for all other points. For example

if ε = 10−8 set SD(i) in the range 10−4 through 10−6 for
the exact fit points.

Using c < 0.5 may not produce sufficiently small resid-
uals at the desired points of exact fit, whereas setting
c > 0.75 may trip the near-singularity test in these sub-
routines leading to an unwanted alteration of the prob-
lem.

Note that it is not mathematically reasonable to attempt
to force exact fits at more than NMAX+1 points.

D. Functional Description

The user provides data (xi, yi, si), for i = 1, ..., M, and
an integer NMAX. If SEEKN = .FALSE. and the prob-
lem is not rank-deficient or extremely ill-conditioned,
the subroutine simply determines the polynomial pn(x)
of degree n = NMAX that minimizes the following
weighted sum of squares of residuals:

ρ2n =

M∑
i=1

[
yi − pn(xi)

si

]2
The subroutine also computes

σn =

[
ρ2n

max(1,M − n− 1)

]1/2
and returns this value as SIGFAC.

The subroutine makes use of subroutines SROTMG and
SROTM (or DROTMG and DROTM) from the BLAS1
(See Chapter 6.3.) to implement a sequential Modified
Givens orthogonal transformation method of reducing
the matrix of the least-squares problem to triangular
form [1], and then solves the triangular system. This
method has excellent numerical stability.

After triangularizing the matrix of the problem for de-
gree NMAX, the quantities ρ2n and σ2

n may be computed
inexpensively for all degrees n from zero through NMAX.
Thus, if the user sets SEEKN = .TRUE. the subroutine
computes these values of ρ2n and computes

CMIN = min{σ2
n : 0 ≤ n ≤ NMAX}.

The quantity ρn is a strictly nonincreasing function of n
whereas σn typically decreases initially with increasing
n but then oscillates and slowly increases as n becomes
so large that the polynomial pn(x) is fitting noise rather
than a true polynomial signal in the data.

The subroutine sets NDEG to be the smallest value of
n for which σ2

n ≤ 1.01×CMIN, and it sets SIGFAC
= σNDEG. This method of selecting NDEG is gener-
ally satisfactory when the ratio NMAX/M is reasonably
small, say less than 1/3. If this ratio is larger there is
a tendency for the NDEG selected by this method to
be larger than one might pick if one viewed graphs of
solution polynomials of different degrees.
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Whatever the setting of SEEKN, if the problem for de-
gree NMAX is rank-deficient, or very ill-conditioned, the
subroutine will restrict consideration to lower degrees for
which the problem is not extremely ill-conditioned. In
particular this reduction of degree will certainly occur if
NMAX+1 > M.

Parameterization of the polynomial, pn(x)

In this subroutine an nth degree polynomial pn(x) is rep-
resented in one of two special parametric forms (mono-
mial basis or Chebyshev basis), both of which include the
specification of a linear transformation of the indepen-
dent variable in the parameterization. The parameters
defining an nth degree polynomial pn(x) are stored in
the array P(i), i = 1, ..., n+ 3.

Using the monomial basis these parameters define the
polynomial pn(x) as follows:

u =
x− P (1)

P (2)
(1)

pn(x) =

n∑
i=0

P (i+ 3)ui (2)

whereas, if the Chebyshev basis is requested, pn(x) is
defined as:

u =
x− P (1)

P (2)
(3)

pn(x) =

n∑
i=0

P (i+ 3)Ti(u) (4)

where Ti(u) denotes the Chebyshev polynomial of de-
gree i. The Chebyshev polynomials may be defined as
follows:

T0(u) = 1, T1(u) = u, T2(u) = 2u2 − 1

Ti(u) = 2u Ti−1(u)− Ti−2(u) i = 3, 4, ...

The parameters P(1) and P(2) that occur in the trans-
formation formula (1) or (3) may be set by the user
(COMTRN = .FALSE.) or else computed by this sub-
routine (COMTRN = .TRUE.). In the latter case P(1)
and P(2) will be computed as

P(1) = (xmax + xmin)/2

P(2) = (xmax − xmin)/2

where xmax and xmin are respectively the maximum and
minimum values of x in the data array X(i), i = 1, ...,

M. This causes the transformed variable u of Eq. (1) or
(3) to range from −1 to +1 as x ranges from xmin to
xmax.

References

1. Charles L. Lawson and Richard J. Hanson, Solving
Least-Squares Problems, Prentice-Hall, Englewood
Cliffs, N. J. (1974) 340 pages.

E. Error Procedures and Restrictions

The use of the Chebyshev basis is effective in improving
the conditioning of the problem only if a transformation
of the variable is used that maps the interval of interest
for both fitting and evaluation to an interval approxi-
mately coincident with [−1., 1.].

The automatic procedure for selecting the degree of the
fitted polynomial, used when SEEKN = .TRUE., tends
to select the degree somewhat higher in some cases than
one would choose by looking at plots of fits of different
degrees.

This subroutine will issue an error message using the er-
ror processor in Chapter 19.2 at level 0, set NDEG = −1,
and return if any of the following erroneous conditions
exists:

1. SD(1) = 0, or M ≤ 0, or NMAX < 0.

2. COMTRN = .FALSE. and P(2) = 0.

3. SD(1) > 0. and some SD(i) ≤ 0. for 1 < i ≤ M.

F. Supporting Information

The source language is Fortran 77.

Entry Required Files

DPFIT AMACH, DERM1, DERV1, DPFIT,
DROTM, DROTMG, ERFIN, ERMSG,
IERM1, IERV1

SPFIT AMACH, ERFIN, ERMSG, IERM1, IERV1,
SERM1, SERV1, SPFIT, SROTM,
SROTMG

Initially designed and programmed by C. L. Lawson,
JPL, 1970. Modified by Lawson and S. Y. Chiu, 1984, to
use Modified Givens rather than Householder transfor-
mations to reduce the storage requirement for W() and
the complexity of the program. Also, adapted the code
to Fortran 77.
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DRSPFIT

c program DRSPFIT
c>> 1996−06−21 DRSPFIT Krogh Spec i a l code f o r C convers ion .
c>> 1996−05−28 DRSPFIT Krogh Added e x t e r na l s ta tement .
c>> 1995−09−15 DRSPFIT Krogh Declare a l l v a r i a b l e s .
c>> 1995−09−15 DRSPFIT Krogh Remove ’0 ’ in format ( again ?)
c>> 1994−10−19 DRSPFIT Krogh Changes to use M77CON
c>> 1994−08−09 DRSPFIT WVS Remove ’0 ’ in format
c>> 1991−11−20 DRSPFIT CLL Edited f o r Fortran 90
c>> 1987−12−09 DRSPFIT Lawson I n i t i a l Code .
c−−S r ep l a c e s ”?”: DR?PFIT, ?PFIT , ?CPVAL
c Demonstration d r i v e r f o r SPFIT .
c++ Code f o r .C. i s i n a c t i v e
c%% long i n t j ;
c++ End

external SCPVAL
real X(12) ,Y(12 ) ,P(11 ) ,SIGFAC,W(121) ,SCPVAL
real SIG (1 ) , R, YFIT
integer I , M, NDEG, NP3

c
data X / 2 .E0 , 4 .E0 , 6 .E0 , 8 .E0 , 10 .E0 , 12 .E0 , 14 .E0 ,
∗ 16 .E0 , 18 .E0 , 20 .E0 , 22 .E0 , 24 .E0 /
data Y / 2 .2E0 , 4 . 0E0 , 5 . 0E0 , 4 . 6E0 , 2 . 8E0 , 2 . 7E0 ,
∗ 3 .8E0 , 5 . 1E0 , 6 . 1E0 , 6 . 3E0 , 5 . 0E0 , 2 . 0E0 /
data SIG (1) / −1.E0 /
data M / 12 /

c
1001 format (1X/ ’ I X Y YFIT R=Y−YFIT ’ /1X)
1002 format (1X, I2 , F6 . 0 , 2F9 . 3 , F10 . 3 )

c
ca l l SPFIT(M,X,Y, SIG , 8 , .TRUE. , .TRUE. , .TRUE. ,P,NDEG,SIGFAC,W)
NP3 = NDEG+3

c++ Code f o r ˜ .C. i s a c t i v e
print
∗ ’ (/ ’ ’ NDEG =’ ’ , I2 , 10X, ’ ’SIGFAC =’ ’ ,F8 .4//
∗ ’ ’ P( 1 ) ,P(2 ) =’ ’ ,9X, 2 F15 .8// ’ ’ P ( 3 ) , . . . , P(NDEG+3) =’ ’ ,3F15 .8/
∗(21X,3 F15 . 8 ) ) ’ , NDEG,SIGFAC, (P( I ) , I=1,NP3)

c++ Code f o r .C. i s i n a c t i v e
c%% p r i n t f (
c%% ”\n NDEG =%2l d SIGFAC =%8.4 f ” , ndeg , s i g f a c ) ;
c%% p r i n t f (
c%% ”\n\n P(1) ,P(2) = %15.8 f %15.5 f \n\n P( 3 ) , . . . ,P(NDEG+3) =”,
c%% p [ 0 ] , p [ 1 ] ) ;
c%% fo r ( i = 2 ; i < ( np3 ) ; i+=3){
c%% fo r ( j = i ; j < ( i < np3−2 ? i+3 : np3 ) ; j++)
c%% p r i n t f (”%15.8 f ” , p [ j ] ) ;
c%% i f ( i < np3−2) p r i n t f (”\n ”) ;}
c%% p r i n t f ( ”\n” ) ;
c++ End

write (∗ , 1001)
do 20 I = 1 ,M

YFIT = SCPVAL(P,NDEG,X( I ) )
R = Y( I ) − YFIT
write (∗ , 1002) I ,X( I ) ,Y( I ) ,YFIT ,R

20 continue
stop
end
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ODSPFIT

NDEG = 7 SIGFAC = 0.2216

P(1 ) ,P(2 ) = 13.00000000 11.00000000

P ( 3 ) , . . . , P(NDEG+3) = 3.99472594 0.57358360 −0.82918429
−0.58353752 −1.42390406 0.20219161
0.35689130 −0.29838806

I X Y YFIT R=Y−YFIT

1 2 . 2 .200 2 .205 −0.005
2 4 . 4 .000 3 .959 0 .041
3 6 . 5 .000 5 .147 −0.147
4 8 . 4 .600 4 .333 0 .267
5 10 . 2 .800 3 .028 −0.228
6 12 . 2 .700 2 .699 0 .001
7 14 . 3 .800 3 .651 0 .149
8 16 . 5 .100 5 .156 −0.056
9 18 . 6 .100 6 .196 −0.096

10 20 . 6 .300 6 .187 0 .113
11 22 . 5 .000 5 .048 −0.048
12 24 . 2 .000 1 .992 0 .008
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